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The instability of non-monotonic drag laws
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A series of recent studies has indicated that the component of the bottom drag caused
by irregular small-scale topography in the ocean varies non-monotonically with the
flow speed. The roughness-induced forcing increases with the speed of relatively slow
abyssal currents but, somewhat counterintuitively, starts to decrease when flows are
sufficiently swift. This reduction in drag at high speeds leads to the instability of laterally
uniform currents, and the resulting evolutionary patterns are explored using numerical
and analytical methods. The drag-law instability manifests in the spontaneous emergence
of parallel jets, aligned in the direction of the basic flow and separated by relatively
quiescent regions. We hypothesize that the mechanisms identified in this investigation
could play a role in the dynamics of zonal striations commonly observed in the
ocean.
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1. Introduction

Mainstream oceanographic models represent the bottom drag by assuming simple
monotonic relations between the lateral stress at the seafloor and the flow speed above
the benthic boundary layer (Pedlosky 1987; Vallis 2006). The most popular choices are
the linear and quadratic drag laws (e.g. Arbic & Scott 2008) with empirical pre-factors
adjusted to match oceanographic observations. The quadratic law can be rationalized on
dimensional grounds and is consistent with several field and laboratory investigations (e.g.
Thorpe 2005). The linear drag model is inspired by the classical boundary-layer theory
(Ekman 1905), which assumes uniform vertical eddy viscosity and considers the effects of
planetary rotation.

Importantly, both linear and quadratic drag models were designed to capture the local
effects attributed to the vertical transfer of momentum by small-scale turbulence in
the bottom boundary layer. However, a series of recent studies (e.g. Chassignet & Xu
2017; LaCasce et al. 2019; Mashayek 2023; Radko 2023a,b) draws attention to another,
fundamentally dissimilar and perhaps more significant, component of bottom forcing

† Email address for correspondence: tradko@nps.edu

© The Author(s), 2024. Published by Cambridge University Press 993 A13-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:tradko@nps.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.635&domain=pdf
https://doi.org/10.1017/jfm.2024.635


T. Radko

– the roughness-induced drag. In the present context, ‘roughness’ refers to irregular
bathymetric patterns with a lateral extent of several kilometres. Such structures are
ubiquitous throughout the World Ocean (e.g. Goff 2020), and their cumulative impact on
large-scale flows can be dramatic. Despite the limited vertical extent of rough topography
(40–400 m), which represents just a small fraction of the open ocean depth, seafloor
roughness can affect flows with strength and dimensions comparable to those of the Gulf
Stream and Kuroshio (LaCasce et al. 2019). Chassignet & Xu (2021) demonstrate that
models cannot accurately represent even such pronounced oceanic features as the Gulf
Stream and the North Atlantic recirculating gyres unless the kilometre-scale bathymetry
is resolved. Several studies (Radko 2020; Palóczy & LaCasce 2022) highlight the role
of roughness in controlling the intensity of mesoscale variability – transient motions with
lateral scales of 20–200 km that dominate the kinetic energy of the World Ocean (Stammer
1997). Rough topography also affects the evolution of coherent vortices in the ocean,
extending their lifespan and ability to transport heat, nutrients and pollutants (Gulliver
& Radko 2022).

A pragmatic impetus for in-depth investigations of large-scale effects of rough
topography comes from a fundamental limitation of global predictive systems. Despite
continuous advancements in high-performance computing, the Earth System Models will
not resolve kilometre-scale bathymetric features in the foreseeable future (e.g. Mashayek
2023). To circumvent this problem, the most feasible approach is the development of
accurate and physical parameterizations of roughness-induced forcing. A promising step
in this direction is the ‘sandpaper model’ of flow–topography interaction (Radko 2023a,b,
2024). This model utilizes conventional techniques of multiscale homogenization theory
(e.g. Vanneste 2000, 2003; Mei & Vernescu 2010; Goldsmith & Esler 2021) and leads
to explicit evolutionary large-scale equations. The key feature of the sandpaper theory
is its focus on statistical spectral properties of the seafloor relief (Goff & Jordan 1988;
Goff 2020), which are expected to be more universal than patterns of topography in
physical space. Because sandpaper theory is explicit and dynamically transparent, it can
elucidate key mechanisms and concurrently offer parameterizations for coarse-resolution
models.

One of the most intriguing predictions of the sandpaper theory, supported by
roughness-resolving simulations, is the non-monotonic pattern of the roughness-induced
drag. For relatively slow abyssal flows, drag increases with rising speed. However,
when currents reach a certain velocity, bottom drag begins to decrease, as illustrated in
figure 1. This reduction is attributed to the homogenization of net potential vorticity in
the abyssal layer, which occurs at high flow speeds and partially offsets the topographic
form drag (Radko 2022a,b). The dissimilar patterns of the conventional and the
sandpaper drag laws are not particularly surprising. These models address very different
physical processes operating on disparate spatial scales. Nevertheless, the relatively new
proposition that the bottom-drag law may be non-monotonic prompts an inquiry into its
large-scale ramifications. This concern becomes particularly urgent since forcing induced
by rough topography can easily dominate the local turbulent drag for representative
conditions (e.g. Radko 2022a,b). In particular, the present study explores the connection
between the non-monotonic drag-law pattern and the instability of large-scale abyssal
flows.

The physical argument pointing to a potentially destabilizing tendency of seafloor
roughness is illustrated in figure 1. Consider a steady zonal current with uniform speed
U flowing above rough topography. This current is assumed to be maintained by the
external basin-scale forcing that balances the bottom drag in the integral sense. Suppose
this current’s speed is large enough to place it on the decreasing limb of the drag law
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(b)

y

uU

Φ

(a)
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Figure 1. Schematic diagram illustrating (a) the non-monotonic forcing pattern produced by rough topography
and (b) the physical mechanism of the drag-law instability. A decrease in the bottom drag (Φ) with increasing
velocity (u) results in the growth of perturbations u′ = u − U of a uniform zonal current of speed U.

Φ(u). The basic state {U, Φ(U)} is indicated on the diagram in figure 1(a) by the black
dot. Consider a weak, zonally uniform perturbation u′( y) = u − U that increases the zonal
velocity (u) in some locations but decreases it in others. Relatively swift parts of the flow
(blue dot in figure 1a) would experience a reduction in the bottom drag. Since external
mechanisms maintain the mean flow strength, these water masses will likely respond to
the drag reduction by accelerating further, as indicated by the blue arrows in figure 1(b).
Relatively slow flows (red dot in figure 1a), on the other hand, would be affected by larger
bottom drag and therefore will likely decelerate. Thus, the perturbations will amplify in
time, implying the instability of uniform flows.

There are obvious parallels between the proposed mechanism of drag-law instability
and the well-known instability of buoyancy flux laws (Phillips 1972; Posmentier 1977;
Balmforth, Llewellyn Smith & Young 1998). The latter models consider the evolution of
turbulent density-stratified systems and conclude that states with uniform stratification
are inherently unstable if the vertical eddy-induced buoyancy flux decreases with
increasing buoyancy gradient. It was suggested that the flux-law instability may induce the
spontaneous formation of mixed layers separated by thin interfaces – an effect reproduced
in laboratory experiments with turbulent one-component flows (Ruddick, McDougall &
Turner 1989; Park, Whitehead & Gnanadeskian 1994). If the analogy between the flux-law
and drag-law instabilities extends into the nonlinear regime, it is conceivable that the latter
will result in a state dominated by swift parallel jets, interspersed by relatively quiescent
water masses. One of the principal objectives of this study is to determine whether, and to
what degree, this evolutionary outcome is realized for typical oceanic conditions.

The material is organized as follows. In § 2, we consider the homogeneous
quasi-geostrophic model in which the effects of rough topography are represented by
non-monotonic drag laws based on the sandpaper theory. The obtained parametric
solutions are compared with the corresponding terrain-resolving simulations. Section 3
extends the analysis to stratified systems using a two-layer isopycnal model. The results
are summarized, and conclusions are drawn, in § 4.
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2. The homogeneous model

2.1. Formulation
The minimal framework for the analysis of the interaction of large-scale barotropic flows
with topography is the quasi-geostrophic rigid-lid model (e.g. Pedlosky 1987)

∂∇2Ψ

∂t
+ J(Ψ,∇2Ψ )+ β

∂Ψ

∂x
+ f0

H0
J(Ψ, η) = υ∇4Ψ − γ∇2Ψ, (2.1)

where Ψ is the streamfunction associated with the velocity field (u, v) = (−∂Ψ/∂y,
∂Ψ/∂x), η is the depth variation, J is the Jacobian, υ is the lateral eddy viscosity, γ is
the Ekman bottom-drag coefficient and β ≡ ∂f /∂y is the meridional gradient of planetary
vorticity. The constant reference values of the ocean depth and the Coriolis parameters
are denoted by H0 and f0, respectively. It should be noted that typical large-scale interior
oceanic flows, far separated from the coastal boundaries, tend to be zonally oriented.
To reflect this property, the net streamfunction (Ψ ) is separated into the basic state
representing the uniform zonal current (−Uy) and the perturbation (ψ) for which we
assume doubly periodic boundary conditions. When the governing equation (2.1) is
expressed in terms of ψ , we arrive at

∂∇2ψ

∂t
+ J(ψ,∇2ψ)+ U

∂∇2ψ

∂x
+ β

∂ψ

∂x
+ f0

H0
J(ψ, η)+ U

∂η

∂x
= υ∇4ψ − γ∇2ψ.

(2.2)

The pattern of rough topography (η) is constructed using the empirical spectrum derived
by Goff & Jordan (1988) from the echo-sounding ocean depth sampling

Ph = η2
0(μ− 2)

(2π)3k0l0

(
1 +

(
k

2πk0

)2

+
(

l
2πl0

)2
)−μ/2

, (2.3)

where k and l are the zonal and meridional wavenumbers respectively, and the coefficient
η0 controls the root-mean-square roughness amplitude (ηrms). In the present study, we
assume parameters suggested by Nikurashin et al. (2014)

μ = 3.5, k0 = 1.8 × 10−4 m−1, l0 = 1.8 × 10−4 m−1, (2.4a–c)

and represent bottom topography by a sum of Fourier modes with random phases and
spectral amplitudes conforming to the Goff–Jordan spectrum.

The present study also considers the sandpaper model of roughness (Radko 2023a,b,
2024). Its key result is the explicit large-scale evolutionary equation that, in the present
framework, takes the form

∂∇2ψls

∂t
+ J(ψls,∇2ψls)+ U

∂∇2ψls

∂x
+ β

∂ψls

∂x
+ curl F = υ∇4ψls − γ∇2ψls, (2.5)

where ψls is the large-scale perturbation streamfunction and F denotes the
roughness-induced drag

F = Φ(Vabs)s, Φ = √
GslowGfast exp(−

√
1 + [ln(VabsV−1

C )]
2
). (2.6)

In this expression, s = (uls + U, vls)V−1
abs denotes the unit vector aligned in the direction

of the large-scale flow (uls + U, vls) and Vabs =
√
(uls + U)2 + v2

ls. Model (2.6) is
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designed to bridge two distinct regimes. For relatively slow flows (Vabs � VC) the forcing
magnitude increases with large-scale velocity Φ ≈ GslowVabs. However, this forcing
begins to decrease with increasing speed (Φ ≈ GfastV−1

abs) when the flow is sufficiently
swift (Vabs � VC), as illustrated by the schematic diagram in figure 1(a). The critical
velocity marking the transition between fast-flow and slow-flow regimes is given by
VC = √

Gfast/Gslow, where coefficients Gfast and Gslow are determined by the roughness
pattern. In its most basic form, the sandpaper theory (e.g. Radko 2023b) suggests

Gfast = 2πυ
f 2
0

H2
0

∫
|η̃|2κ dκ, Gslow = π

υ

f 2
0

H2
0

∫
|η̃|2κ−1 dκ, κ =

√
k2 + l2, (2.7a,b)

where η̃(κ) is the Fourier image of rough bathymetry, which is assumed to be isotropic
and restricted to a finite range of wavelengths

Lmin < 2πκ−1 < Lmax. (2.8)

The upper limit is imposed to permit a distinct treatment of small scales that we wish
to parameterize, and large scales incorporated explicitly in the model. The lower bound
in (2.8) is introduced to ensure that the Rossby numbers remain uniformly small, as
required by the quasi-geostrophic model (2.2). In the following calculations, we assume
Lmin = 3 km and Lmax = 30 km.

2.2. Linear stability analysis
Our starting point is the stability analysis of the parametric large-scale vorticity equation
(2.5). The uniform basic flow (ψls = 0) represents an exact solution of (2.5), and its
linearization in the limit of weak perturbations (|ψls| → 0) yields

∂∇2ψls

∂t
+ U

∂∇2ψls

∂x
+ β

∂ψls

∂x
+Φ1

∂2ψls

∂y2 + Φ0

|U|
∂2ψls

∂x2 = υ∇4ψls − γ∇2ψls, (2.9)

where

Φ0 = Φ(U), Φ1 = ∂Φ

∂Vabs

∣∣∣∣
Vabs=U

. (2.10)

We consider normal modes

ψls = ψ̂exp(ikx + ily + λt), (2.11)

which reduce (2.9) to

λ = −iUk + iβkκ−2 − υκ2 −Φ1l2κ−2 −Φ0|U|−1k2κ−2 − γ. (2.12)

Of particular interest is the real part of the growth rate (λr), which determines the
stability of the basic state

λr = −υκ2 −Φ1l2κ−2 −Φ0|U|−1k2κ−2 − γ. (2.13)

It should be emphasized that the only potentially destabilizing factor in this system is
the second term on the right-hand side of (2.13), which is determined by the pattern
of the roughness-induced drag law. If this drag decreases with the increasing velocity
(Φ1 < 0), positive growth rates are possible. This conclusion is consistent with the
physical interpretation of the drag-law instability in figure 1.
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Figure 2. The growth rates (λr) predicted by linear stability analysis are plotted as a function of the
wavenumbers k and l. Only positive growth rates are shown.

In figure 2, we plot the growth rate λr as a function of wavenumbers for the
oceanographically representative parameters of

f = 10−4 s−1, β = 2 × 10−11 m−1 s−1, γ = 2 × 10−7 s−1,

υ = 20 m−1 s−1, ηrms = 300 m, H0 = 3000 m.
(2.14)

The results in figure 2 indicate that the growth rates are of the order of λr ∼ 10−7 s−1,
which corresponds to the amplification periods of approximately a hundred days. Another
notable finding is that the largest growth rates are realized for modes with k = 0, which
suggests that the drag-law instability likely takes the form of parallel zonal jets. For zonally
uniform modes, λr monotonically increases with the decreasing meridional wavenumber,
and l = 0 represents a singular point in the growth rate pattern. This implies that linear
stability analysis cannot predict the preferred meridional scale of drag-law instabilities.

2.3. Nonlinear parametric model
To glean insight into the nonlinear dynamics of drag-law instability, we integrate
the parametric model (2.5) numerically. The simulation is performed using the
de-aliased pseudo-spectral model employed in our previous studies (e.g. Radko 2022a,b)
on the computational domain of size (Lx, Ly) = (2 × 106 m, 106 m) resolved by
(Nx,Ny) = (512, 256) grid points. Other model parameters are listed in (2.14). The
experiment is initiated by the random low-amplitude distribution of ψls, introduced to
seed primary instabilities. It is extended for ten years of model time, and the results are
presented in figure 3. The left panels show the patterns of vorticity ςls = ∇2ψls at various
times, and the x-averaged zonal velocity 〈u〉 is plotted as a function of y in the right panels.

The first stage in the development of the drag-law instability is the emergence of weak
and relatively narrow striations, shown in figure 3(a,b) at t = 1 year. These structures
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Figure 3. The parametric simulation. The instantaneous large-scale vorticity patterns (ςls) are potted at
t = 1, 3 and 10 years in panels (a,c,e), respectively. Panels (b,d, f ) show the corresponding patterns of the
x-averaged zonal velocity 〈u〉.

are predominantly zonal. Their limited meridional extent is attributed to the random
initial distribution of ψls, which preferentially excites small (grid-scale) perturbations.
However, in time, jets amplify and merge. These mergers tend to occur when relatively
strong jets grow at the expense of weaker ones, which gradually disappear. No systematic
meridional drift is observed. Using the nomenclature introduced by Radko (2007), these
evolutionary patterns can be described as B-mergers. By t = 3 years (figure 3c,d), the flow
field becomes dominated by thin, high-shear interfaces separated by much wider low-shear
zones. Such patterns are reminiscent of – and perhaps dynamically analogous to – the
so-called potential vorticity staircases. The latter can form in turbulent fluids due to the
suppression of eddy transport across the potential vorticity barriers (Baldwin et al. 2007;
Dritschel & McIntyre 2008). Finally, by t = 10 years (figure 3e, f ), the system evolves into
a quasi-steady state consisting of two isolated zonal jets.

2.4. Roughness-resolving simulation
The parametric calculations (§§ 2.2 and 2.3) are highly suggestive in describing key
features of the drag-law instability. However, a more stringent and convincing test of our
ideas is afforded by the roughness-resolving simulation. The following model integrates
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Figure 4. The same as in figure 3, but for the roughness-resolving simulation.

the full vorticity equation (2.2) and does not attempt to introduce the drag laws a priori.
The pattern of topography conforms to the Goff–Jordan spectrum (2.3). The requirement
to resolve rough topography demands using a much finer grid, and therefore we adopt a
mesh with (Nx,Ny) = (4096, 2048) grid points. Other parameters match those used for
the parametric simulation in figure 3.

The roughness-resolving simulation is shown in figure 4. Due to its interaction with
small-scale topography, the flow rapidly develops fine structures. In particular, the
vorticity field ς = ∇2ψ becomes completely dominated by variability on scales of several
kilometres. To reveal the underlying large-scale vorticity pattern, we apply Gaussian
smoothing with the filtering scale of Lmax = 30 km, and the resulting large-scale vorticity
(ςls) patterns are presented in figure 4(a,c,e). The evolution of the flow field in the
roughness-resolving simulation is broadly consistent with that in figure 3. The first
evolutionary phase is characterized by the emergence of numerous zonally oriented jets
(figure 4a,b), which strengthen and occasionally merge (figure 4c,d). By t = 10 years
(figure 4e, f ) the system reaches statistical equilibrium represented by two well-defined
jets separated by relatively slow flows.

There are some visible differences between the parametric (figure 3) and
roughness-resolving (figure 4) simulations. For instance, in the roughness-resolving
experiment, topography rapidly generates substantial perturbations to the basic current,
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and therefore the transition to the fully nonlinear regime is more rapid. By t = 1 year,
the perturbation velocity (figure 4b) is already comparable to the mean. In the parametric
simulation, the perturbation at the same stage is still very weak (figure 3b). The vorticity
fronts in the roughness-resolving experiment are wider – whereas the maximal velocity
of jets is somewhat lower – than in the parametric simulation. Nevertheless, the general
similarities in the evolution of these two systems are undeniable, which instils confidence
in our interpretation of the dynamics at play in both roughness-resolving and parametric
models.

3. The stratified model

3.1. Formulation
Our next step toward realism is the analysis of the drag-law instability in a stratified system.
We use the two-layer quasi-geostrophic model (e.g. Pedlosky 1987). In each layer, we
separate the streamfunction Ψ i(i = 1, 2) into the basic state representing a uniform zonal
current (−Uiy) and the perturbation (ψi), which reduces the governing equations to

∂q1

∂t
+ J(ψ1, q1)+

(
β + U1 − U2

R2
d 1

)
∂ψ1

∂x
+ U1

∂q1

∂x
= υ∇4ψ1

∂q2

∂t
+ J(ψ2, q2)+ f0

H2
J(ψ2, η)+ U2

∂η

∂x
+
(
β + U2 − U1

R2
d 2

)
∂ψ2

∂x
+ U2

∂q2

∂x

= υ∇4ψ2 − γ∇2ψ2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.1)

where R di = √
g′Hi/f0 is the radius of deformation of layer i, Hi is the layer thickness, g′

is the reduced gravity and qi is the perturbation potential vorticity

q1 = ∇2ψ1 + ψ2 − ψ1

R2
d 1

q2 = ∇2ψ1 + ψ1 − ψ2

R2
d 2

⎫⎪⎪⎬
⎪⎪⎭ . (3.2)

In the following calculations, we assume

H1 = 1000 m, H2 = 3000 m, g′ = 0.01 m2 s−1, (3.3)

while other parameters are assigned the same values as in the homogeneous model (2.14).
In parametric calculations based on the sandpaper theory, the governing equations for
large-scale flow components are

∂qls 1

∂t
+ J(ψls 1, qls 1)+

(
β + U1 − U2

R2
d 1

)
∂ψls 1

∂x
+ U1

∂qls 1

∂x
= υ∇4ψls 1

∂qls 2

∂t
+ J(ψls 2, qls 2)+

(
β + U2 − U1

R2
d 2

)
∂ψls 2

∂x
+ U2

∂qls 2

∂x
+ curl F

= υ∇4ψls 2 − γ∇2ψls 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.4)

The explicit expression for the roughness-induced drag F is still given by (2.6) and (2.7),
albeit in the multilayer model, it is based on the characteristics of the bottom layer:
H0 → H2 and vls → vls 2.
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Figure 5. The growth rates (λr) predicted by linear stability analysis are plotted as a function of wavenumbers
k and l for the two-layer model with the barotropic background flow. Only positive growth rates are shown.

3.2. Barotropic background flow
Our starting point for the analysis of the stratified system is the barotropic background flow
with U1 = U2 = 0.05 m s−1. This case offers an opportunity to examine the influence
of density stratification on drag-law instability in isolation from the effects that can be
attributed to the background shear. The latter will be considered in § 3.3.

The linear stability analysis proceeds in the same manner as in the homogeneous models
(§ 2.2). We linearize the large-scale equations (3.4) and assume normal modes

ψls i = ψ̂iexp(ikx + ily + λt), i = 1, 2, (3.5)

which yields the quadratic eigenvalue equation for the growth rate. We focus on the root
with the larger real component (λr), which is plotted as a function of wavenumbers (k, l)
in figure 5. The growth rate pattern in figure 5 is structurally similar to its homogeneous
counterpart (figure 2). The largest growth rates are still attained by the zonally oriented
(k = 0) modes, although the values of λr tend to be somewhat lower. Thus, while
stratification adversely affects the drag-law instability, it does not completely suppress
it.

A principal difference between the stratified growth rate pattern and its homogeneous
counterpart (figure 2) is related to the location of maximal λr. The growth rate in figure 5 is
maximized at a finite meridional wavenumber (lmax = ±3.7 × 10−5 m−1). In contrast, the
homogeneous growth rate increases with decreasing |l|, but the maximal value cannot be
attained because of the model’s singularity at l = 0. We attribute this dissimilar behaviour
to the presence of the intrinsic and dynamically significant length scales in the stratified
model that are set by deformation radii (R di). These scales have no counterpart in the
homogeneous system (2.5). Another interesting feature of figure 5 is the abrupt variation
in the growth rate pattern at (k, l) = (±7 × 10−6,±3 × 10−5) m−1. At these locations,
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Figure 6. The parametric simulation. The instantaneous large-scale potential vorticity patterns in the abyssal
layer (qls 2) are potted at t = 1, 5 and 15 years in panels (a,c,e), respectively. Panels (b,d, f ) show the
corresponding patterns of potential vorticity in the upper layer (qls 1).

the discriminant of the quadratic eigenvalue equation is zero. Therefore, such points mark
transitions between structurally dissimilar branches of the solution.

The nonlinear evolutionary patterns of the drag-law instability in the stratified and
homogeneous models are analogous. This conclusion is based on stratified simulations,
the resolution, model parameters and the numerical algorithm of which match those used
in § 2. In figure 6, we present the potential vorticity patterns realized in the simulation
of the parametric system (3.4) at t = 1, 5 and 15 years. While the development and
equilibration of instability in the stratified system in figure 6 is slower than in its
homogeneous counterpart (figure 3), it goes through the same basic stages. First, we
observe the formation of multiple narrow striations that are particularly apparent in the
second-layer potential vorticity field (figure 6a). These structures undergo a series of
binary mergers, which increase their width (figure 6c). The system eventually evolves into
a quasi-equilibrium state in which thin high-q interfaces are separated by much broader
zones with low potential vorticity (figure 6e). The flow patterns observed in the upper layer
(figure 6b,d,e) are structurally similar to – but considerably weaker than – the structures in
the abyssal ocean (figure 6a,c,e).

Figure 7 presents the roughness-resolving simulation of the full quasi-geostrophic
system (3.1). The potential vorticity in the second layer is dominated by kilometre-scale
variability induced by rough topography. To reveal the underlying large-scale pattern, we
smooth q2 with the filtering scale of Lmax = 30 km. The resulting patterns of large-scale
vorticity (qls 2) are presented in figure 7(a,c,e) at t = 1, 5 and 15 years. The potential
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Figure 7. The same as in figure 6 but for the roughness-resolving simulation.

vorticity in the upper layer is largely devoid of small-scale variability, and therefore we
present (figure 7b,d, f ) the unaltered pattern of q1. The evolutionary patterns realized in
this experiment are broadly consistent with both parametric simulation (figure 6) and its
homogeneous roughness-resolving counterpart (figure 4). Once again, we first observe
the development of narrow weak striations (figure 7a,b), which strengthen and merge
(figure 7c,d), and then equilibrate (figure 7e, f ). The similar development of drag-law
instability in various configurations indicates that our conclusions are sufficiently robust
and general.

3.3. Baroclinic background flow
The configuration that we explore next is distinguished by the presence of substantial
vertical shear

U1 = 0.1 m s−1, U2 = 0.05 m s−1. (3.6a,b)

All other parameters are the same as in § 3.2. In terms of mean velocity pattern and
orientation, this system broadly reflects characteristics of the Antarctic Circumpolar
Current – a major zonal oceanic flow that circumnavigates the globe in the Southern
Ocean (e.g. Johnson & Bryden 1989; Hallberg & Gnanadesikan 2006). The key dynamic
consequence of vertical shear in the ocean is baroclinic instability. Thus, this model makes
it possible to gain insight into the interaction of the baroclinic and drag-law instabilities.

In this regard, linear stability analysis of the parametrized system (3.4) proves to be
informative. In figure 8(a), we plot the growth rates (λr) realized for the baroclinic
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Figure 8. The growth rates (λr) predicted by linear stability analysis are plotted as a function of wavenumbers
k and l for the two-layer model with the baroclinic background flow. The calculation in (a) is performed for
the root mean square roughness amplitude of ηrms = 300 m, whereas the corresponding flat-bottom calculation
(ηrms = 0) is shown in panel (b). Only positive growth rates are shown.

background flow (3.6) as a function of k and l. The central unstable region shaped as
number 8 in the wavenumber space closely matches the pattern realized for the barotropic
flow (figure 5) and therefore is attributed to the drag-law instability. However, in figure 8(a)
we also see unstable side lobes that are absent in figure 5. These features are interpreted
as the manifestation of baroclinic instability. This suggestion is further reinforced by
the calculation in figure 8(b), which presents the flat-bottom counterpart of the growth
rate pattern in figure 8(a). Excluding the roughness-induced drag (F = 0), eliminates
the 8-shaped pattern at the centre but retains the side lobes. It should be noted that
roughness substantially increases the growth rates of baroclinic instability. The tendency
of baroclinic instability to intensify in response to dissipative processes has been discussed
previously in the context of Ekman friction (e.g. Swaters 2010). The fact that it is realized
for a considerably different roughness-induced drag model points to the generic nature
of dissipation-induced destabilization. A series of growth rate calculations analogous to
those in figure 8 have also been performed with numerous other values of (U1,U2). These
analyses consistently indicate that, while the vertical shear (U1 − U2) controls the growth
rate of baroclinic instability, it has only a marginal impact on drag-law instabilities. The
latter are largely determined by the abyssal flow (U2).

The following examples focus on the nonlinear evolution of drag-law instability in
parametric (figure 9) and topography-resolving (figures 10 and 11) simulations. The key
feature brought by the presence of a baroclinic background flow is the intense mesoscale
variability, clearly identifiable in potential vorticity patterns (figures 9 and 10). The
irregular transient eddies, which we attribute to baroclinic instability, are particularly
active in the upper layer. Although mesoscale variability partially masks the zonal jets,
they are still visible. The plots of the x-averaged velocity (figure 11) are particularly
revealing in this regard. In both upper and lower layers, weak and relatively narrow
jets form first (figure 11a,b), intensify and merge (figure 11c,d) and eventually settle
into a quasi-equilibrium state (figure 11e, f ). Note that the upper- and lower-layer jets
remain spatially well correlated throughout the simulation. This implies that the drag-law
instability is particularly effective in controlling the barotropic component of the flow field.
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Figure 9. The same as in figure 6 but for the baroclinic background flow.

4. Discussion

This study explores the instabilities of large-scale ocean currents caused by irregular
kilometre-scale bathymetric variability. Such patterns are ubiquitous in the World Ocean
and are commonly referred to as seafloor roughness. Although the general theory of flow
interaction with rough topography is still in its infancy (Mashayek 2023; Radko 2023a,b,
2024), recent studies reveal some generic and reproducible tendencies. Notably, there is an
emerging consensus regarding the profound impact of roughness on large-scale circulation
patterns (e.g. LaCasce et al. 2019; Chassignet & Xu 2021; Gulliver & Radko 2022).
The forcing of abyssal currents by rough topography likely surpasses the drag induced
by small-scale turbulence in the bottom boundary layer, which has been used almost
exclusively to represent the flow–seafloor interaction in the past.

The non-monotonic pattern of bottom drag is another consistent characteristic of rough
topography (Gulliver & Radko 2023; Radko 2023a,b, 2024). For relatively slow flows,
drag increases with the speed of abyssal currents but, after reaching a critical velocity,
it starts to decrease (figure 1a). According to the sandpaper theory (Radko 2023a), this
non-monotonic pattern reflects two distinct physical mechanisms of roughness-induced
forcing. Slow flows are primarily affected by the form drag, which arises from pressure
differences upstream and downstream of topographic features. Fast flows, on the other
hand, are more susceptible to the Reynolds stresses associated with eddies generated by
rough terrain. This forcing pattern represents a cardinal departure from the traditional
oceanographic models, which assume monotonic – either linear or quadratic – drag laws.
It is worth noting that an analogous reduction in the air–sea drag coefficient at high wind
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Figure 10. The same as in figure 9 but for the roughness-resolving simulation.

speeds has been reported in the meteorological literature (e.g. Powel et al. 2003). However,
the frictional mechanisms in the lower atmosphere are substantially different from those
proposed by the sandpaper theory for the abyssal flows in the ocean.

The relatively new suggestion that the bottom drag can decrease with increasing flow
speed prompts an inquiry into its large-scale consequences. Of particular concern is the
possibility of destabilization of abyssal currents, and the suggested mechanism of drag-law
instability is illustrated in figure 1. We assume that the mean flow strength is maintained
by basin-scale processes of unspecified origin. In this case, the local increase in speed
of relatively swift currents is accompanied by the reduction in bottom drag, further
accelerating the flow. Conversely, the speed reduction implies higher drag, which slows
down the flow even more, and this positive feedback points to the instability of large-scale
currents.

The linear stability analyses and numerical simulations in this study confirm our
suspicions. Fast, laterally uniform flows develop instabilities in the form of zonal jets
separated by relatively quiescent zones. These structures appear in both stratified and
homogeneous systems. Although mesoscale variability, caused by the baroclinic instability
of the background flow, makes these jets less prominent, they can still be readily identified
by zonally averaging the velocity fields (figure 11). Importantly, drag-law instabilities
develop even in roughness-resolving simulations that make no a priori assumptions about
the relation between bottom forcing and flow speed. It should be noted that the present
model considers zonal background currents, which reflects the predominant orientation of
large-scale flows in the ocean interior. Thus, the zonal orientation of drag-law instabilities
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Figure 11. The roughness-resolving simulation. The instantaneous patterns of the x-averaged zonal velocity in
the upper (right panels) and lower (left panels) layers are potted as a function of y at t = 1, 5 and 15 years in
the first, second and third rows of panels, respectively.

could be caused by the direction of the background flow or by the meridional variation of
the Coriolis parameter. The relative contribution of these effects is not clear at this point
and could be regime dependent.

The instability signatures extend throughout the entire water column even in stratified
simulations. Therefore, it is possible that drag-law instabilities, particularly the most
intense ones, can be detected in satellite-based sea surface measurements. The patterns
forming in our experiments resemble zonal striations commonly observed in the ocean
(Maximenko, Bang & Sasaki 2005; Sokolov & Rintoul 2007; Maximenko et al. 2008;
Berloff & Kamenkovich 2019). The alternating zonal jets can be generated by several
mechanisms (e.g. Senior, Zhai & Stevens 2024), and they have also been identified in
simulations that do not resolve seafloor roughness (e.g. Kamenkovich, Berloff & Pedlosky
2009). Nevertheless, the tendency of drag-law instability to preferentially amplify zonal
patterns indicates that it can promote the formation and maintenance of oceanic striations.

The present investigation can be extended in several ways. Perhaps the most pressing
next step is the search for observational confirmation of our ideas. The suggested

993 A13-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.635


The instability of non-monotonic drag laws

non-monotonicity of drag laws and the associated destabilization of large-scale flows
are based on theoretical arguments and idealized numerical models. Consequently, many
processes that could interfere with the proposed mechanisms in the ocean are excluded
from the outset. Another promising avenue of inquiry lies in theoretical explorations of
the nonlinear evolution of such systems. It is crucial to fully explain the dynamics of
jet-merging events and the statistical equilibration of drag-law instabilities. There are
several precedents for the analytical treatment of quasi-one-dimensional systems that
could guide such studies (e.g. Manfroi & Young 1999). For instance, it may be prudent
to exploit the analogy between the drag-law instability and the more extensively studied
Phillips–Posmentier instability of turbulent flux laws (e.g. Balmforth et al. 1998; Radko
2007; Pružina, Hughes & Pegler 2023). The analysis of drag-law instabilities in non-zonal
background flows is also bound to reveal a rich and interesting dynamics. In all such
endeavours, the present study can serve as necessary proof of concept and a starting point
for more detailed investigations.
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