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Abstract

Using martingale methods, we derive a set of theorems of boundary crossing probabilities
for a Brownian motion with different kinds of stochastic boundaries, in particular
compound Poisson process boundaries. We present both the numerical results and
simulation experiments. The paper is motivated by limits on exposure of UK banks
set by CHAPS. The central and participating banks are interested in the probability that
the limits are exceeded. The problem can be reduced to the calculation of the boundary
crossing probability from a Brownian motion with stochastic boundaries. Boundary
crossing problems are also very popular in many fields of statistics.
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1. Introduction

Let {X;};>0 be a continuous-time standard Brownian motion, and let two continuous
functions u(¢) and [(¢) be the upper boundary and lower boundary, respectively. Define t;
as the upper first passage time and 7, as the lower first passage time:

71 = inf{X; > u(n)}, 7 = inf{X; < [(r)}.
t>0 >0

Moreover, 1) = o0 if X; < u(t) and 1y = o0 if X; > I(¢) forall t > 0.
We are interested in the boundary crossing probabilities

Pu(z) =P(r) < 00, 171 < Tp), Pl(z) =P(rn <00, 1 < 11).

The first author to obtain an explicit representation for the distribution of the first passage time
of a Brownian motion through linear boundaries was Doob; see [8, Appendix]. Anderson [2]
derived formulae for closed regions using the reflection principle and inclusion—exclusion
formulae. Escriba [9] solved the problem for sloping line boundaries. Scheike [20] derived an
exact formula for broken linear boundaries.

Recently, simpler formulae and briefer derivations were obtained by Hall [11]. In the rest
of the existing literature, some of the special cases of P,fz) and P[(z) are studied very well,
mostly on piecewise-linear boundaries. The existing results are generally divided into two
types according to two kinds of boundary. (i) The one-sided piecewise-linear boundary (in
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our notation, u(t) is a piecewise-linear function and /(t) = O for all ¢#). The unconditional
probability that a standard Brownian motion up-crosses a piecewise-linear boundary in a finite
time interval [0, T] is obtained in [24] as P\)(T) = P(X, > u(t), t < T), where u(t) is a
piecewise-linear polygonal function on the interval [0, T']. However, the calculation of Pbﬁl) (T)
involves evaluation of a multiple integral, which cannot always be expressed by an explicit
formula and, hence, must be solved numerically. In addition to this, Abundo [1] applied the
time inversion property of Brownian motion and derived a simple and explicit formula for
the conditional boundary crossing probability of X, with a piecewise-linear boundary, u(z),
consisting of two lines given that X; = n over a limit [0, T]. (ii) The two-sided boundary.
Abundo [1] also solved the conditional crossing probability for X; with two symmetric linear
boundaries, i.e. P\ (T | n) = P2(T | n) = P(1X,| > u(t), t < T | Xy = 1), where u(r) =
—I(t) = a + bt for all t. Novikov [13] derived a more general solution in terms of a piecewise
function. Hence, the approximated boundary crossing probabilities Pﬁ(z)(T) and Pi(z) (T) are
found accordingly. Asymmetric linear boundaries have been studied recently, in particular, the
probabilities Pl(z) and Pu(z) for time-dependent linear boundaries, i.e.

b1 + cit, bi,c1 >0,
c(r) =
—by —cat, by, cr >0,
are derived using powerful tools based on martingales [6], [7].

Calculations of this kind of probability are very popular in many fields of statistics. Such
calculations have played an important role in many areas of statistical analysis [2], [5], [12],
[16], [17], [19], [21], [22]. These boundary crossing probabilities have also attracted a lot of
attention in finance. The problem of pricing so-called time-dependent barrier options can be
reduced to the calculation of boundary crossing probabilities for a Brownian motion with a
deterministic function [10], [14], [18]. Moreover, there are applications in other areas, such as
biophysical models [15].

This paper is particularly motivated by an innovative development in banking systems, the
large-valued interbank payment system (which is called the real-time gross settlement payment
system and is known as CHAPS in the UK). In this particular payment system, the participating
banks are concerned about credit risk, and wish to prevent the considerable credit exposure
between two banks. (Although RTGS had replaced the Netting settlement system around the
world, by the end of 2006, 93 of world’s 174 central banks were already using RTGS systems
[3], the possibility of unexpected exposures still exists.) There is evidence that suggests that in
CHAPS, banks usually set bilateral (or multilateral) limits on the exposed position with others,
and the limits are adjusted during the course of the business day under certain circumstances.
Both the participating banks and the central bank are interested in the probabilities that these
limits are exceeded. Previous studies have shown that Markov-type models are adequate for the
UK real-time gross settlement system [6]. For a single bank, namely bank A, let the standard
Brownian motion X; be the net balance between bank A and bank i at time t. Meanwhile,
u; (t) is the bilateral limit set up by bank A for bank i. In practice, as individual banks are very
sensitive to their liquidity position when making risky transactions, once a predefined limit
is reached, it is highly likely that the limit will continue increasing throughout the day over
different occasions. Therefore, this problem can be reduced to the calculation of the boundary
crossing probability for Brownian motion with stochastic boundaries. This approach can be
adopted by both the policy maker in the central bank and the credit control departments of
participating banks to lay down decisive actions.
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In this paper we aim to find the exact boundary crossing probability of standard Brownian
motion with stochastic boundaries when the process can go without limit. In Section 2, the most
important theorems of the paper are stated, and we provide a method to derive the boundary
crossing probability for standard Brownian motion with stochastic boundaries. Powerful tools
such as martingales and the infinitesimal generator of Brownian motion are used. Our approach
is based on the classical martingale stopping approach described in [4] and elsewhere (see, for
example, [23]). The proposed approach allows us to obtain a set of simple formulae for the
two-sided boundaries crossing probabilities. Additionally, simulation results are given. In
Section 3 we draw our conclusions.

2. Stochastic boundaries
This section contains the most important theorems of this paper.

2.1. General stochastic boundaries

Consider a standard Brownian motion { X; };>0 which initially starts from x¢, with boundaries
such that Z, = Z,N:(i) Y; + b, where N(¢) is a Poisson process with rate A and the jump size
Y; > 0 has distribution function H (y) and is independent of the Brownian motion. Define the
first passage time as T = inf;~of{r: | X;| = Z;}, the first time that X; exceeds one of the two
boundaries, with the convention that T = oo if | X;| < Z; forall ¢ > 0.

Since the standard Brownian motion X; and Poisson process Z; are independent, the
martingale that we are interested in is e~V (ekX’ + e kX ), where y and k are non-
negative constants. This is true because the martingale for the Brownian motion X; is
e_kzt/Z(CkX’ + e *X1) and, for the Poisson process, it is e V4 ~M@W)=D “where ¢(y) =
fo e 7Y dH (y) is the Laplace transform of the distribution function of ¥;. One can find that
Al —o(y)) = %kz; note that the two values of k will yield identical martingales, so we will
letk = 2T = @ (7)).

Owing to the martingale property and Doob’s optional stopping theorem, we obtain
Efe 7% ("% 4+ e M) 1r ] + Ele 7% (FXr + e 1(124]
= E[e V%0 (kX0 e7kX0y], (D
E[e~7 % (XXt 4 ek Xr) Liroo)] = e~ 7b (k¥ 4 gki0y, )

where 1{; .4} and 1{;>; are indicator functions.
By the strong law of large numbers for Brownian motion, lim;—,» X;/t — 0. Then the
second term on the left-hand side of (1) becomes

lim Efe "% X + ) 12]
t—00 -

= B tim, e bz + fim o B i

li —vZ; i thX;/t li —VZ; im0 —thk X/t
=Ele Mt —o00 =Y £t g1Mt— 00 1% 1{r=oo}] +Ele 1My — 00 =¥ £t ol1M1— 00 t/ l{r
=0.

=oo}]

Hence, (2) follows immediately.
We start with the simple case where the two stochastic boundaries are symmetric about the
time horizon. Thus, consider the following set of equations only: for j =0, 1,2, ...,

Ele 7% (iXe 4 e7hi%Xe) 1 )] = e77i%0 (ki 4 e7ki0),

E[eﬂ/jﬂzr (ekj+lxr + e*kj+lxr) 1ir<oo)] = e Vi+120 (ekj+1XO + e*ijrlXO)'
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Ask; = /27(1 — ¢(y})), we have
E[e—()’j—«/”»(l—(ﬁ(}’j)))zr Tjreoo)] + E[e_()’j‘i‘«/Z)\(l_(P(Vj)))Zr 1ir<o0)]

= e Vil(ekivo 4 e7kjx0y (3)
E[e_(y_j-H_«/2)‘(1_‘p(yj+1)))zr 1{T<oo}] + E[e—()/j+1+«/2A(1—<ﬂ(}'_/+1)))zz 1{T<Oo}]
_ e—Vj+1b(ekj+1X0 + e_kj+1X0)_ 4)

In (3) and (4), we choose y; such that

Vi +V20 (1 — o) = yjr1 — /201 = o(yj11), )

so when subtracting (3) from (4) for j =0, 2,4, ..., we obtain

E[e_(yj— /21— (y)) Z< Lz <oo)] — E[e—(y,-+1+4/2A(1—<o(yj+1)))zf 1{r<c0)]

— e*ij(eijO + e*ijU) _ e*)’ij(eijXO + e*kj+1x0). (6)

Using (5), when summing (6) over j, we have

E[e—(yo—«/%(l —90(y0))Z: 1 E[e—()/n-h/%(l —o(yn))Zr 1(r<o0)]

<<>o}] -
n
- Z(—l)fe_”-fb(ek-fxo + ekivoy,
=0
Now let 8p = yo — +/21(1 — ¢(yp)). Then
On =yn — /20 (1 —(yn)) and  yu + /201 — @(yn)) =20 — Oy.

Then Theorem 1 below follows.

Theorem 1. Let ¢(y) be the Laplace transform of the distribution function of Y;. Then the
probability that X; exceeds any one of the two boundaries Z; and —Z; can be obtained via

n
Ele™ %" 1{rco0)] = Ele™ ™% Lr o] + ) (= DIe iP5 4 e7h%0) - (7)
j=0

by letting 6y) = 0 and n — oo, where

0o =y0 — V2L(1 — () and 6, = yy — /211 — @(¥u)).

2.2. Boundaries with exponential jumps
When the jumps of a compound Poisson process have an exponential distribution, the two-
sided boundary crossing probabilities P®®) (r < oo) can be derived explicitly.

Theorem 2. Suppose that a standard Brownian motion {X,};>0 with boundaries that are a
compound Poisson process, such as Z; = Zi:; Y; + b, and exponential jump sizes Y;, initially
starts from 0. The first passage time probability is

PP (r <o00) =2 (=Dfe P, (8)
j=0
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where y; = ak?/(Zk — k?) and the kjs are satisfied by
QA — kDKF ) + 20k — 200k +20kF — 42 =0 )

with kg = (Wa? + 8\ — a)/2, where ) and 1/« are the rate of the Poisson process and the
mean of the exponential jumps, respectively.

Proof. The proof is a modification of the proof of Theorem 1. When the jump size Y;
is exponentially distributed with parameter o, the function ¢(y;) = fooo e ViYae™dy =

a/(a +y;). Hence, the constants of the martingale are k; = /2Ay; /(e + y;) and y; =
akf /(A — ka.). Similarly, we want k; to satisfy (5), which means that

ak? ak?
J _ Jj+1 )
ey A e
J J+1

yielding (9); hence, the ks have the recurrence relation

\/ﬂaz + 2420 — k) (akj — k2 +22) — ok
- .
20— 2

kjt1 =

Moreover,
) ak? - :kj(kf+oekj—2x)
TToa- 2 — 2

in (7). By letting 8yp = 0, the initial value ko can be found in terms of A and « only, i.e.
ko = (Va2 4 81 — ar)/2, since both the rates  and A are nonnegative. Thereby, (7) becomes

n
P(r < 00) = E[e™ @7 1 )]+ > "(—1) e 1P (el 4 e7H00), (10)
j=0

Since we are concerned with the boundary crossing probability over an infinite time interval,
to the extent of Theorem 1, (9) can be rewritten as

j+1

= (Qh—kD(KTy, —20) + 2ha(kjp1 — k) =0. (11)

QA — k) (kG ) — k) + 2hakjyr —kj) — (2 —k5)> =0

Define lim; o k; = k. Due to (11), we obtain lim; . k; = +/2A, with both y; and 6;
monotonic functions. Then (10) becomes

P(t < o0) = Zz(_l)je—yjb
=0

with the assumption that the process starts from 0, i.e. Xo = 0.
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2.2.1. Numerical solutions. To illustrate the use of Theorem 2, we calculate first passage time
probabilities using (8) for A = 0.05,0.1, 1 and & = =5, 55, 15, With eight different starting
positions of the boundaries, b = 1, 2, 3,4, 5, 10, 15, 20; see Table 1. We see that the first
passage time probabilities would reach the tabulated values very quickly (the smaller the value
of b, the more iterations are required, but at most 16 iterations are sufficient), i.e. in (8),

0 16
P(r < 00) = ZZ(—l)fe—ij ~ 22(—1)je_7’1b.
j=0 Jj=0

Meanwhile, in the course of the experiment, the values of k; (see Table 2 for examples) which
are varied by A, the rate of the Poisson process, converge particularly fast.

On the other hand, the values of both 6; and y; (Table 2) are strictly increasing. Although,
it has not been shown in the tables, if we keep running the experiment for more iterations
(j > 16, j — 00), both 6; and y; tend to oo numerically, as does 2y; — 6;. Hence, the term
E[e~@=0)Z 1, _o)] in (10) will equal O for large 7.

We illustrate the results of Table 1 in Figure 1, where the horizontal axis is the value of b and
the vertical axis represents the probabilities. In Figure 1, the plots are separated into different
groups. In each group, the three plots have A in common and «, the lighter the color of the
curve, the larger the value of &. Within groups, from b = 0 till the point where the curves reach
the maximum, they do not diverge away from each other; after the peak, the probabilities with
the same A tend to separate; nevertheless, a confluence is achieved at the end (i.e. b = 20).
Among groups of curves, although the maximums occur over a short interval of b, the order can
still be observed. The curves show an early peak and are then decreasing. Moreover, when the
frequency of changes for the boundaries grows, the difference between the first passage time
probabilities becomes less visible. To conclude, Figure 1 indicates that, in comparison with
the effect of the value of A, the rate of the Poisson process, the values of the mean size of the

TaBLE 1: First passage time probabilities for various values of A, «, and b.

A
0.05 0.1 1

A0 09557 09124 0.4633

5 04135 0.2219 0.0018
10 0.0932 0.0252 1.59x 107
15 0.0202 0.0028 1.42x107°
20 0.0044 0.0003 1.27 x 10712

a0 09609 09191 0.4697
5 04419 0.2382 0.0019

10 0.1074 0.0291 1.85x 107

15 0.0250 0.0035 1.78x107°

20 0.0058 0.0004 1.71 x 10712

w
(=

al-
=

0.9685  0.9295 0.4803
5 04894 0.2665 0.0022

10 0.1338  0.0366 2.36 x 107

15 0.0348 0.0050 2.56 x 107

20 0.0090 0.0006 2.78 x 10~!2
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TABLE 2: Values of k;, 6, and y; when A = 0.05 and & = <5, .

1

@ =735 @ =13
J kj 0; Yj J kj 0; Vi
0 03064 0 03064 0 02922 0 0.2922
1 03129 06128 09256 1 03077 0.5844 0.8922
2 03142 1.2385 15527 2 03111 1.1999 1.511
3 03148 18669 2.1817 3 03126 1.8221 2.1347
4 03151 24965 28116 4 03134 24473 2.7607
5 03153 3.1267 34420 5 03139 3.0741 3.388
6 03155 37573 4.0728 6 03143 3.7019 4.0162
7 03156 43883 47038 7 03145 43305 4.645
8 03156 50194 53350 8 03147 49596 52743
9 03157 5.6506 59663 9 03149 5.5891 5.9039
10 03157 62820 65978 10 03150 62188 6.5339
11 03158 69135 7.2293 11 03151 6.8489 7.164
12 03158 7.5451 7.8609 12 03152 7.4792 7.7944
13 03159 8.1768 04926 13 03153 8.1096 8.4249
14 03159 8.8085 9.1244 14 03154 8.7402 9.0555
15 03159 94402 97562 15 03154 93709 9.6863
— 2=0.05
= A=0.1
= - a=1
Nal
<
Na)
2
(=9}
[0}
=
°
1
3
[=9)
Z
a8}
OO - . " o - - -
0 2 4 6 8 10 12 14 16 18 20

FIGURE 1: First passage time probabilities for various values of A, o, and b.

Boundary starting position, b

425

exponential jumps, «, vary the probabilities over a more narrow interval. Last but not least,
the initial value of the boundaries is the most deterministic factor of the crossing probabilities.

When the boundaries initially start from b > 20, they are less likely to be crossed.

2.2.2. Monte Carlo simulation results. In this section we provide the corresponding simu-
lated results. A discrete-time standard Brownian motion is generated using the Monte Carlo
Markov chain, and the two symmetric compound Poisson processes with exponential changes
are simulated in the same time horizon. We investigated the number of times the standard
Brownian motion meets up with one of the boundaries over 1000 simulations. The results were
repeated 100 times and the averaged probabilities and associated variances presented in Table 3.

https://doi.org/10.1239/jap/1371648950 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1371648950

426

X. CHE AND A. DASSIOS

TaBLE 3: Simulated mean probabilities and their variances (in parentheses).

A
o b
0.05 0.1 1
% 1 0.9554 (0.000046) 0.9141 (0.000088) 0.4633 (0.000224)
5  0.4123(0.000256) 0.2269 (0.000 166)  0.0020 (0.000 002)
10 0.0968 (0.000083)  0.0264 (0.000032)  0.0000 (0.000 000)
15 0.0274 (0.000026)  0.0029 (0.000003) 0 (0)
20 0.0041 (0.000004) 0.0003 (0.000000) 0 (0)
21—0 1 0.9637 (0.000038) 0.9172 (0.000068) 0.4645 (0.000269)
5 0.4572(0.000234) 0.2381 (0.000 148) 0.0013 (0.000001)
10 0.1037 (0.000116)  0.0310 (0.000027)  0.0000 (0.000 000)
15 0.0267 (0.000026) 0.0036 (0.000004) 0 (0)
20 0.0067 (0.000007)  0.0009 (0.000001) 0 (0)
% 1 0.9665 (0.000031) 0.9272 (0.000056) 0.4868 (0.000237)
5 0.4904 (0.000187) 0.2610 (0.000227)  0.0028 (0.000 003)
10 0.1328 (0.000132)  0.0347 (0.000039)  0.0000 (0.000 000)
15 0.0364 (0.000037) 0.0057 (0.000007) 0 (0)
20 0.0090 (0.000008)  0.0009 (0.000001) 0 (0)

For different values of b, the interval needs to be calculated at different levels for the simulated
discrete standard Brownian motion. However, generally speaking, the results are closely equal

to those in Table 1.

2.3. Boundaries with constant jumps

When the size of the jumps of the compound Poisson processes is constant, our methods can

be applied immediately.

Corollary 1. Let {X,};>0 be a standard Brownian motion with boundaries such that Z, =
b+ cNy, where N, is a Poisson process with parameter A and c is a positive constant. The first

passage time probability is given by

P(r < 00) =2 (=1)Je7?,

j=0

where y; = 2\c/(2A — ka) and the kjs satisfy the equation

QA — kDK7yy + 2hckjp1 — 2hckj + 20k3 — 422 =0

with A the rate of the Poisson process and k(()r) the positive real solution of the equation

Proof. In this case, ¢(y) = c¢/y, where ¢(y) is defined in Theorem 1. Therefore, k; =

kg — 2xko + 2xc = 0.

V20 (1 =¢/yj) and y; = 2xc/(2% — k7). Similarly to (5),

2\
2 — k%

ey

2\c

j+l1
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TABLE 4: First passage time probabilities for various values of A, ¢, and b.

A
0.05 0.1 1

& 1 09542 09125 0.4634
5 04148 0.2224 0.0018

10 0.0939 0.0253 1.60 x 10~

15 0.0204 0.0029 1.43x 1077

20 0.0044 0.0003 1.27 x 10712

c b

5109610 0.9206 0.4701
5 04520 0.2419 0.0019

10 0.1126 0.0301 1.87 x 107

15 0.0268 0.0037 1.80 x 107

20 0.0064 0.0005 1.74 x 10~12

1 09766 0.9368 0.4820
5 05568 0.2872 0.0022
10 0.1764 0.0427 2.45x 107
15 0.0527 0.0062 2.71x 107
20 0.0157 0.0009 3.00 x 10~12

==

Then k11 can be found by solving the equation
@A — kDK7 ) + 2hckjy1 — 2hckj + 20kT — 40 = 0.

We note that this is (9) with o replaced by c as in Theorem 2. However, the initial value k¢ has
a different expression in terms of A and c. We can derive ko from yg — ko = 0, i.e.

ki — 2xko + 2hc = 0, (13)

which has three roots, in general, with only the real root k(()r) yielding convergent k ;. Moreover,
if the values of the parameters A and ¢ have been chosen such that the discriminant A > 0, all
the solutions of the cubic equation (13) are distinctly real; however, only one of them will lead
to the convergence of k;.

2.3.1. Numerical solutions. Similarly as in Section 2.2.1, in Table 4 we present the boundary
crossing probabilities for a standard Brownian motion with symmetric compound Poisson
boundaries having constant jumps, according to (12). We have taken the same values for the
parameters: A = 0.05,0.1,1,b = 1,2, 3,4, 5, 10, 15, 20, and ¢ replacing « equal to %, %,
and 11—0.

A similar conclusion could be drawn as in the previous exponential jumps case, but with
fewer iterations as the tabulated boundary crossing probabilities are achieved rapidly:

0 12
P(t < o0) = 22(—1)1e—7/jb ~ 22(_1)1'6—)/,-17_
j=0 =0

Moreover, the values of the k;s converge rapidly, and both 6; and y; are monotonically
increasing and tend to oo, which ensure that the term E[e~@rn—0n)Zx 1{7 <00}] vanishes for
large n; see Table 5 for more details.
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TABLE 5: Values of kj, 6;, and y; when A = 0.05and ¢ = 4L

50° 20
c=15 c=1

J kj 0; Y J kj 0; Vi
1 03057 0.0000 03057 1 02874 0.0000 0.2874
2 03128 06114 09242 2 03071 05748 0.8819
303142 12370 15512 3 03109 1.1891 1.5000
4 03148 1.8654 2.1801 4 03125 18109 2.1234
5 03151 24949 28100 5 03133 24359 27492
6 03153 3.1251 34404 6 03139 3.0625 3.3764
7 03155 3.7557 40712 7 03142 3.6903 4.0046
8 03156 43866 47022 8 03145 43188 4.6333
9 03156 50177 53334 9 03147 49478 52626
10 03157 5.6490 59647 10 03149 55773  5.8922
11 03157 62804 65961 11 03150 62070 6.5221
12 03158 69119 7.2277 12 03151 6.8371 7.1522

TaBLE 6: Simulated mean boundary crossing probabilities and their variances (in parentheses) of
Corollary 1.

A
c b
0.05 0.1 1
% 1 0.9588 (0.000038) 0.9127 (0.000091) 0.4857 (0.000227)
5 0.4199(0.000215) 0.2211 (0.000159)  0.0015 (0.000 002)
10 0.0926 (0.000085) 0.0269 (0.000027)  0.0000 (0.000 000)
15 0.0209 (0.000018) 0.0023 (0.000002) 0 (0)
20 0.0039 (0.000004) 0.0003 (0.000000) 0 (0)
% 1 0.9511(0.000040) 0.9209 (0.000088) 0.4722 (0.000 198)
5 0.4587 (0.000276) 0.2465 (0.000238) 0.0016 (0.000 002)
10 0.1182(0.000105) 0.0256 (0.000028) 0.0000 (0.000 000)
15 0.0292 (0.000031)  0.0031 (0.000004) 0 (0)
20 0.0063 (0.000006) 0.0002 (0.000000) 0 (0)
1'—0 1 0.9746 (0.000024) 0.9335(0.000056) 0.4816 (0.000257)
5 0.5538 (0.000185) 0.2881 (0.000203) 0.0028 (0.000 002)
10  0.1736 (0.000159) 0.0451 (0.000044) 0.0000 (0.000 000)
15 0.0511 (0.000036) 0.0056 (0.000005) 0 (0)
20 0.0103 (0.000009) 0.0006 (0.000001) 0 (0)

2.3.2. Monte Carlo simulation results. InTable 6 we present the corresponding simulated results
for the number of times a standard Brownian motion crosses one of the boundaries over 1000
simulations. Again, we present the averaged results of 100 repeated calculations. The results
are close to those in Table 5.

3. Conclusions

By deriving the unconditional boundary crossing probabilities for a standard Brownian
motion with stochastic boundaries, we demonstrated how the method of applying the martingale
tools allows us to obtain a simple expression. Given the rise of liquidity risk in large-
valued interbank payment systems due to the reform, we concentrated on the problem of
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bilateral/multilateral limits that exist in the current UK payment system, CHAPS. The boundary
crossing probabilities for a standard Brownian motion with symmetric stochastic process
boundaries were studied.
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