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Recent progress in understanding subcritical transition to turbulence is based on the
concept of the edge, the manifold separating the basins of attraction of the laminar
and the turbulent state. Originally developed in numerical studies of parallel shear
flows with a linearly stable base flow, this concept is adapted here to the case of
a spatially developing Blasius boundary layer. Longer time horizons fundamentally
change the nature of the problem due to the loss of stability of the base flow due
to Tollmien–Schlichting (TS) waves. We demonstrate, using a moving box technique,
that efficient long-time tracking of edge trajectories is possible for the parameter range
relevant to bypass transition, even if the asymptotic state itself remains out of reach.
The flow along the edge trajectory features streak switching observed for the first
time in the Blasius boundary layer. At long enough times, TS waves co-exist with
the coherent structure characteristic of edge trajectories. In this situation we suggest
a reinterpretation of the edge as a manifold dividing the state space between the two
main types of boundary layer transition, i.e. bypass transition and classical transition.

Key words: transition to turbulence, boundary layer stability, nonlinear dynamical systems

1. Introduction
Understanding the onset of transition in boundary layer flows has always been

an important challenge in aerodynamics because of the high drag associated with
turbulent flows. It is crucially dependent on the level of ambient turbulence present
in the free stream, both for aeronautic applications and in wind tunnels. An archetype
for the investigation of boundary layer transition is the incompressible Blasius
boundary layer. The corresponding laminar base flow is two-dimensional and develops
spatially with the distance downstream. Two main transition scenarios dominate this
flow case depending on the incoming level of perturbations. For weak incoming
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levels corresponding to flight mode in a calm atmosphere, the classical scenario
predicts linear instability of the base flow to two-dimensional, spanwise-invariant
Tollmien–Schlichting (TS) waves, followed by their further destabilisation (Schubauer
& Skramstad 1948; Boiko et al. 1994; Schmid & Henningson 2001; Schlichting
& Gersten 2016). For higher turbulence levels (typically for perturbation velocities
exceeding 2 % of the free-stream velocity) akin to those found in turbomachines, the
so-called bypass route starts at earlier streamwise locations. It features streamwise
velocity defects (‘streaks’) sustained by streamwise vorticity via the lift-up mechanism,
and growing rapidly downstream (Klebanoff 1955; Kline et al. 1967; Morkovin 1969).
Those streaks support further instabilities (Henningson, Lundbladh & Johansson 1993;
Kachanov 1994; Andersson et al. 2001; Jacobs & Durbin 2001; Brandt, Schlatter
& Henningson 2004; Schlatter et al. 2008; Vaughan & Zaki 2011; Hack & Zaki
2014) leading to the nucleation of turbulent spots that invade the flow (Matsubara &
Alfredsson 2001; Brandt et al. 2004; Kreilos et al. 2016). For sufficiently perturbed
inflow, no TS wave has been convincingly reported in the bypass picture.

Linear stability of the Blasius boundary layer profile can be carried out relatively
easily by freezing the base flow and parametrising it by a Reynolds number
Reδ∗ = U∞δ∗/ν, where δ∗ the displacement thickness for the laminar base flow,
U∞ is the free-stream velocity and ν the kinematic viscosity of the fluid. This
Reynolds number is understood here as a parameter whereas for genuine spatially
developing flows it increases with the distance downstream and should rather be
interpreted as a streamwise coordinate. The onset of TS waves is reported from
linear stability analysis at Reδ∗ ≈ 520 (Jordison 1970), with moderate corrections
when taking non-parallelism into account (Berlin 1998). However bypass transition
has been reported for finite-amplitude disturbances introduced as early as Reδ∗ ≈ 300
(Jacobs & Durbin 2001). This suggests that bypass transition falls a priori into the
category of subcritical flows such as pipe flow, channel flow, plane Couette flow or
the asymptotic suction boundary layer (ASBL), for which turbulence can exist despite
the linear stability of the base flow (Eckhardt et al. 2007). Borrowing concepts and
toolboxes from subcritical transition hence appears as promising. In particular, a
useful and recent nonlinear concept developed in wall-bounded flows is the edge
manifold, the state space boundary that separates the respective basins of attraction
of the laminar and the turbulent state (assumed here an attractor). This manifold Σ is
formally of codimension one, and is the stable manifold of a simpler low-dimensional
invariant regime called the edge state. In principle all trajectories starting on Σ reach
asymptotically this edge state, while any small perturbation to such an edge trajectory
is on the verge of both relaminarising and transitioning (Schneider & Eckhardt 2006).
This property makes edge states, together with the set of all edge trajectories, the
alternative nonlinear base flow of interest to predict bypass transition and therefore
to prevent or to control it. Besides, edge states and their approximations display
robust localisation in physical space as soon as the numerical domain allows for it
(Duguet, Schlatter & Henningson 2009; Khapko et al. 2016). Recently, supported by
numerical evidence that even arbitrary initial noise allows for a transient detection of
the edge regime (Khapko et al. 2016), the concept of the edge state and its instability
have been used to model the nucleation process of turbulent spots in the presence
of strong free-stream turbulence (Kreilos et al. 2016). It is thus essential for the
understanding of spot nucleation to gather additional knowledge about edge states in
spatially developing boundary layer flows.

Former attempts at identifying edge states in boundary layer flows fall into two
categories. The first category relies on different parallel approximations of the Blasius
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profile (Biau 2012; Khapko et al. 2013, 2014, 2016). Robust slow dynamics emerges
in all cases: low- and high-speed streaks burst quasi-periodically before they switch
location. The second category is free from the parallel assumption and gathers
edge computations in longer domains (Cherubini et al. 2011; Duguet et al. 2012),
although with some limitations, being the domain size or spanwise symmetry. The
coherent structure emerging in all cases consists of an elongated localised pair of
streaks, whose three spatial dimensions grow self-similarly with the variable δ∗.
Being computationally much more demanding, this approach shows severe limitations
in time. The longest bisection to date, originally performed with imposed spanwise
symmetry, suggests that the symmetric edge trajectory also features quasi-cyclic
regeneration of the low-speed streak in terms of rescaled time variables. Importantly,
none of these investigations has reported the presence of TS waves, though such
waves are expected to grow exponentially in time provided Re∗δ can get large enough.

The present study aims at revisiting edge computations in the Blasius boundary
layer, by extending their time horizon sufficiently far that the nonlinear interaction
between TS waves and the streaks manifests itself. An earlier study of the interaction
between streaks and TS waves by superimposing both disturbances can be found
in Schlatter et al. (2010). In our case, the interaction is revealed by combining the
classical bisection method with a numerical technique tailored to deal with moving
localised disturbances. As we shall see, this calls for a generalisation of the concept
of edge state to cases where the governing base flow instability is supercritical rather
than subcritical. This situation is not specific to the Blasius profile and is expected in
other shear flows such as channel flow, which also loses its stability at a finite value
of the Reynolds number (Zammert & Eckhardt 2017a,b).

The structure of the paper is at follows. Section 2 is devoted to the numerical
aspects of this work, whereas the main results are given in § 3. Eventually, all the
results and their implications are discussed in § 4.

2. Computational methodology
2.1. Flow set-up

The Blasius boundary layer is the incompressible boundary layer flow over a flat
plate with zero pressure gradient. Let x, y, z denote respectively the streamwise, wall-
normal and spanwise coordinates, x being measured from the inlet of the domain,
itself located at a distance x0 from the leading edge of the plate. Let v = (vx, vy, vz)
be the corresponding velocity field. Let u= v− vB be the velocity perturbation to the
Blasius solution vB, itself a self-similar two-dimensional solution of the incompressible
boundary layer equations for the rescaled variable η = y(U∞x)/ν. A local Reynolds
number can be defined as Reδ∗ = U∞δ∗(x)/ν, where δ∗ =

∫
∞

0 (1 − v
B
x )/U∞ dy is the

thickness of the undisturbed Blasius flow.
Direct numerical simulation of the incompressible Navier–Stokes equations is

performed using SIMSON (Chevalier et al. 2007). The equations are solved in the
velocity–vorticity formulation using a pseudo-spectral method, and are advanced in
time using an explicit low storage fourth-order Runge–Kutta method for the nonlinear
term and a second-order implicit Crank–Nicolson method for the linear terms. The
velocity field v(x, y, z, t) is expanded in Nx and Nz Fourier modes in the x and z
directions, respectively. The wall-normal expansion is based on Ny Chebyshev modes.
To satisfy the periodicity required by the Fourier expansion in the streamwise direction
despite the spatial development, a fringe region is considered at the downstream end
of the computational domain. Within the fringe an artificial volume force damps all
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FIGURE 1. (Colour online) Sketch of the flow geometry including the moving box.

velocity disturbances and re-establishes the correct inflow profile (see appendix A
for details). The boundary layer thickness at the inlet of the domain δ∗0 is chosen
so that Reδ∗0 = 300. Velocities and lengths are made non-dimensional by using
respectively the quantities U∞ and δ∗0 . In these units the computational domain is a
rectangular box V of size (Lx, Ly, Lz) = (6000, 60, 100). The spectral resolution is
(Nx, Ny, Nz) = (6144, 201, 256), excluding the additional modes in x and z used for
dealiasing by the 3/2-rule. A no-slip/no-penetration boundary condition is enforced
at the wall (y= 0) and a Neumann condition is used in the free stream (y= Ly) for
the three velocity components. The local resolution is comparable to the one used in
Duguet et al. (2012).

2.2. The moving box technique
Numerical simulation of localised coherent structures usually requires computational
domains at least one order of magnitude larger than their typical size (Duguet et al.
2009). When such coherent structures are allowed to move within the domain, length
requirements become even more severe, while most of the flow domain contains only
laminar, largely undisturbed flow.

In order to circumvent this issue, we suggest a moving box technique, not used
previously in the case of spatially developing flows, in which the computational
domain moves in the streamwise direction with piecewise constant velocity cbox (see
figure 1). The method then consists of Galilean changes of the reference frame of
the type vx← vx− cbox, where cbox is the instantaneous speed of the moving box (see
appendix A for details). In the present simulations, the box velocity takes alternatively
the values cbox = 0 or 0.8 depending on the time elapsed. Different histories of cbox
yield exactly the same results as long as all travelling coherent structures remain
within the computational domain. The present computation of the edge trajectory
using the moving box technique was validated against the case of a non-moving
domain of size (Lx, Ly, Lz)= (12 000, 60, 100), simulated with a spectral resolution of
(Nx,Ny,Nz)= (12 288, 201, 256).

2.3. Edge tracking algorithm
The dynamics on the edge is tracked iteratively using the bisection technique originally
introduced by Itano & Toh (2001) and Skufca, Yorke & Eckhardt (2006). A single
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scalar time-dependent observable a(t) is selected, together with two threshold values
aL and aT allowing to discard unambiguously trajectories evolving towards the laminar
or the turbulent regime, respectively. The choice of the observable is here

a=
(

1
vol(V)

∫
V
|ωx|

2 dv
)1/2

, (2.1)

a normalised integral measure of the streamwise vorticity ωx in the computational
domain of volume vol(V), where ω= (ωx, ωy, ωz) is the vorticity field. This observable
is not affected by the choice of the reference frame. It is a measure of the amplitude
of streamwise vortices, known to play a crucial role in the streak formation. It is
zero for the laminar Blasius profile. Moreover the observable is also zero when
the aforementioned profile is perturbed by TS waves in their linear stage (with no
spanwise dependence and zero spanwise velocity). For a trajectory starting from a
given initial perturbation velocity field u0, localised in space, the observable a(t) is
monitored until its value crosses one of the two thresholds, aL from above, or aT from
below. In the present study we used aL = 8.74× 10−5 and aT = 2.68× 10−3, although
different values of aL have been tested without significant influence. Depending on
which threshold is crossed, the field u0 is re-labelled respectively uL and uT . From
the history of the bisection and the knowledge of the last fields uL and uT , a new
update u0 ←

1
2(uL + uT) is constructed (for simplicity one can start with uL = 0).

This is a convergent iterative process that brackets the edge manifold. The iterative
bisection process yields a sequence of positive numbers λ(n), n = 1, 2, . . . and an
associated sequence of initial conditions u(n). For n large enough λ(n) ≈ λ∗, such
that in the n→∞ limit uλ∗ = λ∗u(0)0 lies exactly on the edge manifold Σ , and uλ(n)
is an approximation of such a state. In practice, when machine precision is met
regarding the accuracy of λ∗, the whole bisection process is restarted from another
state further along the edge trajectory. This bisection technique is similar to that
used in previous subcritical systems, except that crossing the bound aL is here not
necessarily interpreted as relaminarisation. In Cherubini et al. (2011) and Duguet
et al. (2012) the time horizon in the bisection was not sufficiently long for the linear
instability of the base flow to manifest itself, therefore crossing the threshold aL from
above necessarily corresponded to an effective relaminarisation. We demonstrate here
that this picture needs be revised when bisecting is no longer limited in time.

3. Results
3.1. The edge for moderate times

The initial condition u0 consists of a pair of counter-rotating vortices located close
to the wall at x = 50, z = 0, and not aligned with the main flow direction; unlike
in Duguet et al. (2012) the evolution of the flow is here free from any discrete
symmetry constraint. For 06 t 6 4700 (in units of δ∗0/U∞) it is possible to effectively
bracket the edge using the algorithm described above and the current definition of the
observable a(t). Time series of a(t) during the bisection process are shown in figure 2.
The dynamics along the edge trajectory is globally comparable to that in Khapko
et al. (2016) though there are also clear differences. The velocity field along the
edge trajectory is characterised by long streamwise streaks and streamwise vortices,
both characteristics of a self-sustained process described in Duguet et al. (2012).
It remains spatially localised in three dimensions at all times. Three-dimensional
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FIGURE 2. (Colour online) Observable a(t) versus t during application of the bisection
algorithm over moderate time horizons. The thick line (blue online) represents the edge
trajectory found by bisection, the two dotted lines are the observable bounds a = aL =

8.74× 10−5 and aT = 2.68× 10−3 (see text).

visualisations of three specific snapshots are shown in figure 3, where a typical
regeneration cycle of the edge dynamics is displayed. The whole localised structure
is unsteady; similarly to Duguet et al. (2012) it is possible to identify a robust streaky
core upstream, together with recurrent secondary structures that detach from the main
core, travel further downstream and dissipate. The global structure and the temporal
dynamics along this edge trajectory is qualitatively closer to that computed in other
flows, notably the localised edge state obtained in the ASBL (Khapko et al. 2016)
except for the sparser occurrence of bursts. Compared to the spanwise-symmetric
analysed in Duguet et al. (2012), the streak organisation is different. The robust pair
of symmetric low-speed streaks flanking a high-speed streak is lost in favour of an
unsteady dynamics, where the sandwiched streak is alternatively the high-speed and
the low-speed one. As this process does not occur simultaneously at all locations, it
is possible to visualise different stages of the streak switching cycle at the same time
by comparing for instance the initial and final frames in figure 4. Visualisation of
the λ2 criterion (Jeong & Hussain 1995) in figure 3 shows the presence of slightly
asymmetric vortical structures above the regions where the streaks pinch together. Our
observations suggest that the strongest of these approximately hairpin-shaped vortices,
because of the wall-normal flows they induce, act as precursors of the switch events
such as the one in figure 4. Streak switching appears recurrently in the literature as
characteristic of unsteady edge states (Toh & Itano 2003; Biau 2012; Khapko et al.
2013, 2016), and could now be confirmed in spatially developing boundary layer
flows as well.

The spatially developing nature of the boundary layer suggests the use of a ‘local’
boundary layer thickness as a characteristic length scale. To define a length scale
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(a)

(b)

(c)

FIGURE 3. (Colour online) Three-dimensional perspective view from above of the edge
trajectory at times t = 1700, 2750 and 3550 (from top to bottom), showing isosurfaces
of streamwise perturbation velocity with respect to spanwise mean with values 0.06 and
−0.08 (red and blue, respectively), together with vortical structures λ2 = −1.5 × 10−5

(green). Flow from left to right. The black lines are separated by a distance of 200 in
units of δ∗0 . The last snapshot includes the cross-sections presented in figure 4.
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FIGURE 4. (Colour online) Illustration of a streak switching event along the edge
trajectory at t = 3550; (y, z) cross-sections of ux. From left to right x = 2140, 2420 and
2980.

rigorously it is necessary to refer to an unambiguous streamwise location. Exploiting
the spatial localisation of the coherent structure under study, we define its streamwise
position xG in analogy with the centre of mass by

xG(t)=

∫∫
x|ux(x, yp, z, t)| dx dz∫∫
|ux(x, yp, z, t)| dx dz

, (3.1)

where yp is the wall-normal coordinate of a given plane known to intersect the
coherent structure at all times (in practice yp = 1.5δ∗0 ). The weighting function in
the integrals in (3.1) is the absolute value of the streamwise perturbation velocity ux,
xG(t) is an estimation of the displacement of the main coherent structure with time
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FIGURE 5. (Colour online) The (z, t) space–time diagram of ux(x, y, z, t) along the edge
trajectory, in a frame moving with the centre of mass located at x= xG(t) and y= yp, of
the perturbation streamwise velocity. Both z and t are rescaled by the local boundary layer
thickness δ/δ∗0 , causing the apparent narrowing of the domain.

from its initial location. The local displacement thickness δ = δ∗(xG), evaluated at
this time-dependent location, provides the scaling factor δ/δ∗0 for the boundary layer
growth.

Monitoring xG(t) and its temporal derivative ẋG(t) is a convenient way to define
the advection speed of the structure as a whole. After a relatively short initial
transient of t≈ 500, ẋG(t) reaches an almost constant value of 0.625 in units of U∞,
comparable to the values found in Duguet et al. (2012). Velocities scale with U∞
and are unaffected by the rescaling, while vorticities and the domain dimensions are
now time dependent. The rescaled space–time diagram for the streamwise velocity
perturbation ux(x= xG(t), y= yp, z, t) (evaluated at the centre of mass of the coherent
structure) is shown in figure 5. The approximately constant width of the streak core
in time is a confirmation that the δ∗(xG)/δ

∗

0 -scaling is relevant at least for the spatial
coordinates. Similarly, the same scaling for the time coordinate suggests that the
apparent period for the streak switching becomes inherently larger as the boundary
layer grows. This diverging time scale, together with the diverging length of the
streaks, is the main quantitative obstacle to significantly longer edge tracking. In
practice it is possible to observe only two full streak switching cycles, during the
time intervals t ≈ 600–1300 and 1900–3300, i.e. in the rescaled variables tδ∗0/δ ≈
300–420 and 630–770. Furthermore the whole state grows in length, from ≈ 400δ∗0
at t= 1750 to ≈ 1200δ∗0 at t= 4700, as shown in figure 3.

3.2. Coexistence of Tollmien–Schlichting waves and streaks for long times
3.2.1. Physical space

The edge trajectory is by construction linearly unstable. So is the laminar base
flow, except that the instabilities manifest themselves over different time scales,
with the base flow instability being typically slower (Zammert & Eckhardt 2017b).
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FIGURE 6. (Colour online) The (z, t) space–time diagrams of ux(x, y, z, t) evaluated at x=
xG(t) and y= yp, for two initially nearby trajectories bracketing the edge trajectory. Both z
and t are rescaled by the local boundary layer thickness δ/δ∗0 . (a) Bypass transition route.
(b) Streak decay followed by classical transition based on the growth of the Tollmien–
Schlichting waves.

If the time horizon in the bisection is large enough there is a competition between
bypass transition (expected from the linear instability of the edge) and the classical
transition scenario (featuring Tollmien–Schlichting waves, due to the linear instability
of the base flow). We report now the unforced simultaneous occurrence of these two
transition mechanisms.

Figure 6 shows that a relative difference δλ/λ∗ of magnitude O(10−4) in the choice
of the bisection parameter λ = λ∗ + δλ leads to different transition scenarios in the
long-time horizon. For δλ> 0 destabilisation of the edge trajectory leads to breakdown
of the streaks akin to that reported in bypass transition (Brandt et al. 2004). The
breakdown of the streak is local in z, as visible in figure 6(a). On the other hand, for
δλ < 0 the streaky structure is not strong enough to self-sustain, instead it starts to
decay viscously. During the streak decay the linear instability of the flow manifests
itself in the form of TS waves emerging upstream of the streak core, well visible
in figure 6(b). The apparent wavelength as well as the propagation speed of these
waves makes it clear that they correspond to TS waves. Regarding wavelengths, these
waves have kz= 0 and kx < 0.35 at all times, which matches the linear stability curve
from the literature (cf. Berlin 1998). The speed of propagation of the waves can be
measured from space–time diagrams such as figure 7. It is approximatively 0.32 ±
0.005, matching quantitatively the speed of the TS waves obtained from linear stability
analysis of the frozen Blasius profile at their onset (Schmid & Henningson 2001).
A more detailed study of the TS waves is shown in figure 8(b). The figure shows the
comparison between the nonlinear TS waves in our simulation and the results from
linear stability analysis, for a streamwise wavenumber kx ≈ 2π/λTS = 0.037, where
λTS = 170δ∗0/δ

∗

x,TS. The wavelength λTS is obtained from the intercrest distance 170
scaled with the local boundary thickness δ∗x,TS, itself an evaluation of δ∗ at the position
x= xTS. The position xTS is obtained by tracking in time and space the specific crest
passing through x=5186 for time t=8500 (indicated in figure 7 by a cross). Moreover
figure 8 (a) shows the position of xG(t) from the trajectory bracketing the edge from
below. The position of the edge is well fitted by the straight line xG(t)= xG0 + vGxt,
where xG0 = 70 and vGx = 0.625. It is clear that the TS waves travel at a velocity
approximately half that of the streak core. This slower propagation speed makes the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

76
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.763


Edge tracking in spatially developing boundary layer flows 173

4000 4500 5000 5500 6000 6500 7000 7500 8000 90008500

1.5

1.4

1.3

1.2

1.1

1.0

0.9

(÷ 104)
0.10
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.10

x

t

FIGURE 7. (Colour online) Space–time diagram of ux(x, y, z, t) for z = −10 and y = yp
for the trajectory away from the edge manifold, as displayed in figure 6(b). The streaks
decay while the TS wavepacket grows in amplitude, forming a turbulent spot. The red
cross indicates the initial position of the crest tracked in figure 8.

associated TS wavepacket detach progressively from the decaying streak core, while
as a result the position of the centre of mass drifts upstream of the streak core as
seen in figure 6(b). The exact way how the TS wavepacket is triggered is not fully
understood, preliminary examination points towards disturbances growing from the
wake of the streaks. The waves grow upstream of the coherent structure, and they
do not interact with the streak core. This is consistent with previous observations
that finite-amplitude streaks act as additional damping of TS-wave growth (Cossu &
Brandt 2004) and that streaks and TS waves are not seen to overlap spatially. The
TS wavepacket grows in size as it travels downstream, with the number of individual
rollers growing too (Gaster 1975). At later times the waves inside the wavepacket
undergo a secondary instability with spanwise wavenumber kz 6= 0 (of fundamental
Klebanoff type), followed by a rapid local breakdown into turbulence.

3.2.2. State space
Further complementary information about the global temporal dynamics can be

obtained from phase portraits. We use here the L2-norms of the three integral
observables ωx, ωy and uz. In order to take into account the evolution of the boundary
layer thickness downstream and the variable size of the domain when expressed in
units of δ(t) rather than δ∗0 , the root mean square (r.m.s.) vorticities need to be
rescaled using the correcting factor (δ∗0/δ)

1/2, and the r.m.s. velocities by (δ∗0/δ)
(3/2),

as explained in Duguet et al. (2012). We hence consider the three phase portraits
observables Ωx, Ωy and W, defined by (3.2)–(3.4) and parametrised by time only:

Ωx = (δ
∗

0/δ)
1/2

(
1

vol(V)

∫
V
|ωx|

2 dv
)1/2

, (3.2)

Ωy = (δ
∗

0/δ)
1/2

(
1

vol(V)

∫
V
|ωy|

2 dv
)1/2

, (3.3)

W = (δ∗0/δ)
3/2

(
1

vol(V)

∫
V
|uz|

2 dv
)1/2

. (3.4)
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FIGURE 8. (Colour online) Streamwise propagation velocities. (a) Position of the centre
of mass of the coherent structure xG(t) for a trajectory below the edge versus time. The
vertical line indicates the time limitation of edge tracking (see text). Circles: data, solid
line (blue online): linear fit. (b) Phase velocity of TS waves, numerical simulation versus
linear instability analysis (see text). The error bars represent the accuracy in estimating
the convection speed from figure 7.

The reduced phase portrait is displayed in figure 9 (a). The initial condition
associated with λ∗ corresponds to the point (Ωx, Ωy, W) = (1.72, 6.62, 1.80) × 10−4.
Trajectories bracketing the edge have an initial condition very close to it, and
are indistinguishable in the figure. Past a initial transient of approximatively
500δ∗0/U∞, all trajectories approach a single recurrent region bounded from above
by W = 6× 10−5 and characterised by apparent swirls in all displayed variables. At
later times the trajectories leave this part of state space and evolve towards higher
W values associated with turbulent flow. The recurrence region corresponds to the
neighbourhood of the unstable edge state. It is displayed in the zoom in figure 10,
where up to three recurrent cycles can be distinguished. Each of the swirls in the
(Ωx,Ωy) plane corresponds in physical space to a streak switching event and a release
of vortical perturbations downstream. The dynamics of the trajectories leaving the
edge is interesting, because independently of the route to turbulence all trajectories
point towards the same direction, i.e. towards a common turbulent attractor. This last
aspect, sets this flow apart from the usual subcritical picture characterised by the
coexistence of two different attractors with clearly distinct basins of attraction (see
e.g. the introductory sketch in Duguet et al. (2013)).

4. Discussion and conclusions
Large-scale computational edge tracking in a spatially developing Blasius boundary

layer has been revisited, considering much longer time horizons than previously. In
addition to a better understanding of the short-time dynamics, the results call for a
revision of the concept of edge at large times, in the special case where the base
flow instability is of a supercritical nature rather than subcritical. On the shorter time
scales, a regeneration process is confirmed, whose characteristic time scale increases
as the boundary layer thickness grows. Before the edge instability, recurrent visits to
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FIGURE 9. (Colour online) Three-dimensional phase portrait using global variables
Ωx, Ωy and W. The initial condition associated lies at approximately (Ωx, Ωy, W) =
(1.72, 6.62, 1.80)× 10−4 but the first 500 time units are not shown. The blue dot at the
(0, 0, 0) is the laminar state. The red trajectory corresponds to bypass transition, the blue
one to classical TS transition, and their points in common define the converged part of
the edge trajectory. In grey, the projections on the different two-dimensional planes.

a streaky active core are observed as in most previous studies (Duguet et al. 2012;
Khapko et al. 2013, 2016), including the slow phenomenon of streak switching,
observed here in a spatially developing configuration. Furthermore, concomitant
scenarios of bypass and classical transition have been observed on longer time scales,
and their possibly simultaneous occurrence blurs the long-time output of the edge
tracking algorithm. To our knowledge, whereas instances of such a coexistence have
been reported in more complicated geometries (Xu et al. 2017; Canton et al. 2019)
this coexistence is reported for the first time that in a simulation of an unforced
boundary layer flow.

A moving box technique allows for a more efficient usage of the computational
domain. This moving box technique is a simple generalisation of the Galilean changes
of reference frequently used in simulations of parallel flows. It proves efficient for
the tracking of all spatially localised coherent structures; it is not limited to edge
tracking and can also handle minimal seeds, linear or nonlinear localised wavepackets
and incipient turbulent spots. The longest individual simulations requested more
than 12 000 time units for one of the two bounds aL or aT to be reached, this is
at least four to six times more than in Duguet et al. (2012) due to the use of the
moving box technique. If both the streaky state and the TS waves, which travel
at markedly different speeds, are contained in the same computational domain (the
worst-case scenario), the improvement in tracking time is 40 % compared to the
fixed case, and much more otherwise. In total, edge tracking has been achieved here
over a time horizon three times longer than in previous investigations of the Blasius
boundary layer. The temporal limit for the edge tracking is met when the relative
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FIGURE 10. (Colour online) Zoom on the edge region using only Ωx and Ωy (same data
as figure 9). The dotted lines correspond to two other bracketing trajectories. The first 300
time units are omitted. Swirls are indicated using closed dashed lines (orange online).

difference in the main observable between the closest edge-bracketing trajectories is
2 % or less, and we have no further information on the nature (bypass or classical)
of the trajectories within these 2 %. This limit corresponds here t ≈ 4700 and the
corresponding distance, expressed in non-dimensional units of Rex = U∞x/ν, is
Remax

x ≈ 9× 105.
From the perspective of dynamical system theories, the reinterpretation of the

edge manifold Σ as a boundary between two transition scenarios leads to interesting
theoretical questions. One of the objectives of the description of the transition in
terms of dynamical systems is to map out the state space of the system together
with its invariant sets, at least in the context of an initial-value problem. Note that
the Reynolds number is here not a parameter. The only fixed point of the system
is the laminar state, which happens to be an unstable one, in the sense that there
always exist perturbations likely to grow exponentially in time (without any parameter
threshold to exceed). The turbulent attractor may not be within reach or even well
defined, but the edge state as relative attractor is well defined in the asymptotic limit
t→+∞. In particular it is an invariant set for the temporal dynamics. It is also a
self-similar object in terms of spatial dimensions and temporal dynamics. However the
edge tracking technique, which by construction only identifies finite-time trajectories
belonging to the stable manifold of the edge state, finds here a natural time limitation.
This algorithm is based on bounds for a given observable a, originally designed to
discard the basins of attraction of the other attracting sets. Here there is only one
attracting turbulent set, therefore Σ does not separate two distinct basins of attraction
like in bistable systems. This is the main difficulty in interpreting phase portraits such
as those in figure 9. In particular, no matter how small or how large the bound aL,
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FIGURE 11. (Colour online) Observable a(t) versus t during application of the bisection
algorithm. The green vertical line marks the maximum time for the edge tracking
algorithm using that observable, and the two dotted lines stand for the observable bounds
a= aL and aT (see text).

provided the computational box is long enough there will always be another trajectory
with a< aL also experiencing transition, possibly featuring destabilisation of TS waves.
A similar situation was described by Zammert & Eckhardt (2017b) in the context of
plane Poiseuille flow in a small periodic domain, where the type of transition was
determined from the knowledge of pre-defined transition times. In the present study,
a suitable choice of the observable can extend the time over which the bisection stays
valid. For instance, the use of the ωx component to define the observable a in (2.1)
is a convenient way to ignore Tollmien–Schlichting waves in their initial stage of
their growth, because for TS waves it is non-zero only after they have undergone a
secondary instability. Other one-dimensional observables can be envisioned. However,
without extensive monitoring of the properties of the trajectories generated during the
bisection, a one-dimensional observable by itself does not contain enough information
on the route to turbulence (bypass or classical) that is followed. Multi-dimensional
observables, containing e.g. information about amplitude or growth of the TS waves,
are a possible alternative but they do not make bisection generically possible, since
bisection is essentially a one-dimensional search process. For investigations where the
asymptotic nature of the edge state matters, alternative methods are now welcome,
specifically local methods that do not require the knowledge of how trajectories
behave far away in state space from the edge manifold under study.

The possibility for proper coexistence of the two routes to turbulence sets a natural
time limitation to the current algorithm of edge tracking. This time limit, estimated
in § 3 as approximately 4700δ∗0/U∞, is highlighted in figure 11, which shows the
time series of the observable a(t) during the bisection process. It corresponds to a
limitation of the maximum distance downstream along which edge tracking can be
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FIGURE 12. (Colour online) Value of Tu (%) versus Rex for experimental bypass transition
data (Shahinfar & Fransson 2011), showing intermittency of 10 % and 90 % (thick lines)
and 50 % (dashed line). The arrows mark the Rex-limitation of the bisection algorithm. For
larger times and Rex, mixed transition is expected (grey area). The theoretical onset for
TS waves lies at Rex = 9.1× 104.

achieved, estimated here as Remax
x ≈ 9 × 105. This is close to 10 times the value of

Rex = 9.1× 104 corresponding to the onset of TS waves according to linear stability
analysis, and much larger than the value of Rex = 3× 104 corresponding to the inlet
defined by Reδ∗0 = 300. We now demonstrate that if the asymptotic edge state remains
out of reach, the computed edge trajectories are relevant in practice for most instances
of bypass transition under the influence of free-stream turbulence. We use for this
purpose the experimental database by Shahinfar & Fransson (2011) from the KTH
wind tunnel with parametrisable free-stream turbulence, measured by Tu = urms/U∞
and expressed in %. The Rex-intervals where intermittency (and hence nucleation
of turbulent spots) occurs are reported in figure 12 as functions of the parameter
Tu, where the dependence on the integral length scale of the incoming turbulence is
already taken into account.

The lower and upper bounds of these intervals are defined respectively by the values
of Rex for which the intermittency factor is 0.1 and 0.9. They both scale like Rex =

O(Tu−2) (Shahinfar & Fransson 2011). For Tu ≈ 2 % and above, the corresponding
values of Rex in the diagram are always below the value of Remax

x . This means that the
edge state is known – and already computed – for these cases, and that it can be used
as an alternative base flow for a stability analysis (generalised to unsteady flows). The
only difficult situation corresponds to Tu< 2 %, when the bisection technique is not
able to track the edge all the way into the zone where spots nucleate. In this mixed
area, both routes to turbulence are indistinguishable, at least from the monitoring of
one scalar observable only. This mixed area is the parameter area where the turbulent
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patches observed in practice can be due to the destabilisation of either TS waves
or streaky perturbations. It has long been known as a delicate range of parameters
and has sometimes been labelled ‘weak bypass regime’, as opposed to the ‘strong
bypass regime’ where streak breakdown is the sole cause for transition (Narasimha
1994). Future efforts should be made to better characterise the complex transition to
turbulence in this intermediate regime.
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Appendix A
In order to implement the moving box it is necessary to do a Galilean change of

reference and to update the base flow enforcing correct inflow and outflow conditions
while preserving streamwise periodicity. The update of the base flow can be explained
as follows. We first consider the incompressible Navier–Stokes equations

∂tvi + vj∂jvi =−∂ip+ Re−1
δ∗0
∂2

j vi + Fi, (A 1)

∂jvj = 0. (A 2)

The perturbation velocity field u is deduced from the full velocity field v
by subtracting the analytical Blasius profile vB

= (uB
x , v

B
x , 0), itself an excellent

approximation to the steady base flow for x� 1 (Schlichting & Gersten 2016). The
field F = (Fx, Fy, Fz) is a volume force imposed in the fringe region in order to
ensure the x-periodicity in spatial simulations. The form of the forcing is

F= γ (x)(U(t)− v), (A 3)

where v is the instantaneous flow field and γ (x) is a non-negative fringe function.
The function γ (x) is non-zero in the fringe region only. The streamwise component
of U(t) is computed as (see Chevalier et al. 2007)

U(x, y, z, t)=U(x, y, z, t)+ [U(x+ xL, y, z, t)−U(x, y, z, t)]S
(

x− xblend

∆blend

)
, (A 4)

where S(xblend, ∆blend) is a step function, and where xblend and ∆blend are chosen so
that the flow connects smoothly the outflow to the inflow. The normal component of
U(t) is computed from continuity. The novelty in our approach is that U(x, y, z, t),
the solution to the boundary layer equations, is allowed to change with time, thereby
modifying the base flow on which the fringe acts; U(x, y, z, t) = vB

x (x, y, x0(t)) is
updated at time t, such that the inlet of the box x0 for which δ∗0 = 1 at Reδ∗ = 300
reads x0← x0 + cboxtm, where tm is the total time during which the box has moved
with velocity cbox.
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