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Abstract

Generalizing earlier results of Katrifidk, El-Assar and the present author we prove new structure theorems
for /-algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary
bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.
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1. Introduction

It is well known that geometric lattices are direct products of subdirectly irreducible
geometric lattices. This result naturally involves the question: 'Under what conditions
a lattice L can be decomposed into a direct product of subdirectly irreducible lattices?'
In [11] the author of this paper proved:

THEOREM 1.1. Let L be a CJ-generated algebraic lattice. Then the following are
equivalent:

(i) L is a direct product of subdirectly irreducible lattices.
(ii) L enjoys property (PCC) and Con L is an atomic Stone lattice.

We say that a congruence distributive algebra A enjoys property (PCC), if any
complemented congruence of A permutes with its complement.

Katrinak and El-Assar investigated a similar problem [8], for congruence distribu-
tive algebras. One of their important results is the following:
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42 Sandor Radeleczki [2]

THEOREM 1.2 ([8, Theorem 11 (iii)]). Let A. be a congruence distributive algebra
with a strong centre and enjoying property (PCC). Then Con A is {atomic and) com-
pletely Stonean if and only if A is a finite direct product of finitely subdirectly irre-
ducible (subdirectly irreducible) algebras.

In [8] they applied their results to the class of so called /-algebras (see Defini-
tion 2.4 (iii)) too.

Comparing the above two results, it seems that Theorem 1.1 can be valid in a more
general context. Our main result can be considered as a common generalization of
Theorem 1.1 and Theorem 1.2 for /-algebras. This is the following:

THEOREM 1.3. Let & be an l-algebra. Then

(1) J&? is a direct product of finitely subdirectly irreducible l-algebras if and only if
_£f enjoys property (PCC), Con j£f is a Stone lattice and the underlying lattice L is
weakly central-complete with an atomic center.
(2) _£? is a direct product of subdirectly irreducible l-algebras if and only if j£f

enjoys property (PCC), Con »£f is an atomic Stone lattice and the underlying lattice L
is weakly central-complete.

Since any bounded lattice is a particular /-algebra, Theorem 3.1 can be also applied
to bounded lattices.

The proof of this theorem can be found in Section 5. The preliminary notions
and some technical results are contained in Section 2. In Section 3 we deal with
product decompositions of congruence distributive algebras. The principal result of
this section is Theorem 3.1, which will prove a useful tool in our development. In
Section 4 we prove a necessary and sufficient condition for the decomposition of an
arbitrary bounded lattice into a direct product of directly indecomposable lattices. In
Sections 6 and 7 we apply Theorem 1.3 to certain classes of /-algebras and complete
lattices.

2. Preliminaries

Let 0 and 1 stand for the least and the greatest element of a bounded lattice L. The
principal ideal and the principal filter generated by an x e L will be denoted by (x]
and [x), respectively. A bounded lattice L is called atomic if for any x e L, x ^ 0
the interval [0, x] contains at least one atom of L.

DEFINITION 2.1. Let L be a bounded lattice. An element a e L is called a central
element of L if a is complemented and for all x, y e L the sublattice generated by
[a, x, y) is distributive.
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The central elements of a (bounded) lattice L form a Boolean sublattice of L
denoted by Cen(L). A complement of an element a e L (if it exists) is denoted by a.
For any c e Cen(L), we define the relation

9C = {(•*, y) I x V y — (x A y) V a, for some a < c}.

It is easy to check that 9C is a congruence of L and that

(x, y) e 9C if and only if x A ~c = y A ~c.

REMARK 2.2. The following simple observations can be found, for instance, in [4]:

(i) For any c\, c2 e C e n ( L ) , we have 9CiVC2 = 9Civ 9C2 and 9ClAC2 = 9Ci A 6Cl. If
c\ < c2 then 0Cl < 9C2, and 0Ci = 6C2 implies c\ — c-i.

(ii) For any c € Cen(L), 9C and &z form a factor congruence pair of L and
conversely, if #1 and 62 are factor congruences of a bounded lattice L, that is,
L = L/9\ x L/92, then there exists a c e Cen(L) such that 0\ — 9C, 92 = 0?.
Moreover L/6c = (c].

The following assertion can be easily proved.

LEMMA 2.3. In any bounded lattice L = F].€/ L, there exist elements c, e Cen(L),
/ € / such that L/9c-= L(.

Let (5, A, 0, 1) denote a bounded meet-semilattice. Then to every element a e S
we assign a congruence <pa as follows:

<Pa = {(x, y) e S2 | x A a = y A a}.

Let j£"(S) stand for the lattice of all filters of S. An element a e Sis called central
if [a) is a central element of &{S). Cen(S) is our notation for the set of central
element of 5. If (5, A, V, 0, 1) is bounded lattice, then it is easy to check that the
central elements of the semilattice (5, A, 0, 1) and of the lattice (5, A, v, 0, 1) are the
same. Now we have <pc = 9? for all c e Cen(S).

DEFINITION 2.4. Let (5, A, 0,1) be a bounded meet-semilattice.

(i) We say that an n-ary operation / : 5" -> S is centre-preserving if for every
c e C e n ( S ) , ( x h y , ) e cpc, i = 1 , . . . , n , i m p l i e s ( f ( x u . . . , x n ) , f ( y u . . . , y n ) ) e <pc.

(ii) An algebra (S, A, 0, 1, F), where F is a set of operations defined on S, is
called an algebra with a strong centre if every / e F is centre-preserving.

(iii) (L, A, V, 0, 1, F) is called an l-algebra if (L, A, 0, 1, F) is an algebra with a
strong centre and (L, A, v, 0, 1) is a bounded lattice.
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The best known examples of /-algebras are bounded lattices, p -algebras, ortholat-
tices (bounded lattices together with the orthocomplementation operation) and Heyting
algebras. Implicative semilattices and p-semilattices (these are bounded semilattices
with pseudocomplementation) are examples for algebras with a strong centre which
are not /-algebras in general. (For details see [8].) Clearly, any /-algebra is congruence
distributive and the factor congruences of an /-algebra and of its underlying lattice L
coincide. Thus an /-algebra _Sf is directly indecomposable if and only if its underlying
lattice L is directly indecomposable. These facts together with Lemma 2.3 lead us to
the following:

COROLLARY 2.5. Let _£? = (L, A, V, 0, 1, F) be an l-algebra. Then the following
assertions are satisfied:

(i) X = n , e , &i with Sf, = (L,, A, V, 0,, 1,, F) if and only ifL = f L , L,.
(ii) j£f is a direct product of directly indecomposable l-algebras if and only ifL is

a direct product of directly indecomposable lattices.

A lattice L with 0 element is called a pseudocomplemented lattice if for each x e L
there exists an element x* e L such that for any y e L, y A x = 0 is equivalent
to y ^ x*. If x* V JC** = 1 holds for all JC e L, then L is called a Stone lattice.
In any Stone lattice the identity (x v y)** = x** v y** is also satisfied. A complete
distributive lattice L is called completely Stone if (Vie/*')** = Vie/*!** h°fcls for
any JC(, / e / . If L is a bounded pseudocomplemented lattice, then (L, A, V, 0, 1,*)
is called a p -algebra.

Now let A = Yliei A, be a direct product of algebras A,, / e / and let xt e A,
denote the i-th coordinate of an x € A. The identical and total relations on A (on A()
are denoted by A^, VA (by A,, V/)» respectively. A congruence 0 e Con A is called
the product of the congruences 6t e Con A, if

0 = {(a, b) € A1 | (ah b() e 0, for each i e / } .

We write 6 = fl,e/ 0{ or 9 = 0{ x • • • x 0n (when / = { 1 , . . . , n}).

REMARK 2.6. (i) Obviously, the relations \J/t ^0(, i e I imply

16/ 16/

moreover f ] . € / 9t = AA exactly when 0t = A, for all i e I.
(ii) For any 0 = J~[ie/ ^, e Con A and any \j/ = ]~[/e/ V̂r £ Con A we have

,(0i A xlri) and# V \Ir <

Let ker ̂ , denote the kernel congruence of the natural projection 7r, : f|i€/ ^« ""*" «̂»
7ij(Xi) = JC, (/ € / ) . The proof of the following lemma is implicitly contained in [1,
Chapter IV, Section 11].
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LEMMA 2.7. 9 is a product congruence of the algebra A = J~[I.e/ A, if and only if
6 = Aie/(0 V kerTT,). In particular if A is congruence distributive and I is finite,
then any congruence on A is a product congruence.

3. Product decompositions of congruence distributive algebras

In this section we deal with congruence distributive algebras. We note that the
congruence lattice of such an algebra A is always pseudocomplemented. It is also
known that in this case A = f]"=i A« implies Con A = [~["=i Con A,. The main result
of the present section is the following:

THEOREM 3.1. Let A = I~J.€/ A, be a congruence distributive algebra and assume
that all A,, / e / are directly indecomposable. Then the following are equiva-
lent:

(i) A enjoys property (PCC) and Con A is a Stone lattice {an atomic Stone lattice).
(ii) Any A, is finitely subdirectly irreducible (subdirectly irreducible).

First we prove the following:

LEMMA 3.2. If A = Yitei A< /5 a congruence distributive algebra, then the follow-
ing statements are true:

(i) For any 9 e Con A, 6* is a product congruence.

(ii) ifO = Hiel °i e C o n A with e> e C o n A<> then °* = Yliel °*-
(iii) For any congruence 6 € Con A, 6 ^ AA there exists a product congruence

cp = Y[iei <Pi with (ft 6 Con A, such that AA < cp ^6.

PROOF, (i) Clearly, 9* ^ A,e/(^* v ker^,-). On the other hand, we have

9 A /\(<9*vker7r()
Lie/

= / \ [9 A (9* v kerTT,)] = /\(9 A kerjr,)
16/ !€/

si i = AA,

iel

whence /\iel(0* v ker7r() ^ 9*. Thus we get 9* = /\iei(9* v ker7T,) and in view of
Lemma 2.7 this means that 9* is a product congruence,

(ii) We have

ie/ / \ie/ / \ ie/ / iel iel
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therefore J~[/€/ #* = 0*- Further, in view of the above (i), 0* is of the form 0* =
with fit e Con A,. Thus

i e / i e /

whence we get 0, A /?, = A, providing that /?, ^ 0* for all / € /. Hence

( € /

Summarizing, we obtain 0* = f|.€/ 0*.
(iii) We have 0 ^ kerxr^ for some /0 € / , otherwise we would get

! € /

a contradiction. Since Aie/\(to) ^er7ri ^s m e complement of ker/r^ in Con A, we have

A(o}

Set <p = 6 A ( Ai€/\{«o) ker7T,). Then A^ < <p ^ 0. We claim that cp is a product
congruence.

Clearly, we have ^ V ker7T, = ker7r, for all / e / \ {i0} and

cp v k e r ^ = (^v ker7r,

= (0 v
Now, we can write:

vker7r,) =

= (0 v

A

,) A V. = 0 v

A j / \ (<pvker7T()
«6/\(«o}

A
l€/\{«o}

0 A v ( / \ ker 7r, ) =<pv AA =<p.

In view of Lemma 2.7 v? = flie/ «̂ f°r s o m e ^i e Con A,. D

PROOF OF THEOREM 3.1. (ii) implies (i). Let A = n , € / A ' w i t n a11 A« finitely
subdirectly irreducible. According to [8, Section 5, Corollary 2] Con A, and Con A
are Stone lattices. In order to prove that A obeys property (PCC) take a complemented
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congruence 9 e Con A. Then 9* = 9 and (0)* = 9. Now, in view of Lemma 3.2 (i)
there exist 9t e Con A,, i e / such that 9 = Yli&i^t a nd Lemma 3.2 (ii) gives
9 = 9* = n,-e/ 0* and 9 = (9)* = Y\i€l 9**. As 9* A 9** = A, and since A, is finitely
subdirectly irreducible, we get that either 9* = A, and 9** = V, or 9** = A, and
9* = (9**)* = V^Take K = {i e I \ 9* = A,}. Then / \ K = {i e I \ 9** = A,}
and we obtain A/9 = Y[ieK A, and A/9 = Uiei\K A«-

Since

' ( n ' ) x
i€/ \ I

canonically, 9 and 9 form a factor congruence pair of A, therefore they permute.
Finally, we show that whenever each A,, i € / is subdirectly irreducible, then Con A

is an atomic lattice. Take 9 e Con A, 9 j£ AA arbitrary. In view of Lemma 3.2 (iii)
there is a product congruence <p = F],€/ <Pi with <p, e Con A, and A^ < cp = 9. Then
we have cp^ / A^ for some i0 € I- We define the congruence a = F].€/ a, , where
ak is the least nonzero element of Con A^ and a, = A, for i ^ i0. Clearly, a is an
atom of Con A satisfying a = <p ^ 9. Thus Con A is an atomic lattice.

(i) implies (ii). First we prove that for any i e I, Con A, is an (atomic) Stone lattice
and A, enjoys property (PCC).

For every i € / , take B, = lL€/\{,-)A*- T h e n A = B, x A, and Con A =
Con B, x Con A,. Now Con A, as a direct factor of the (atomic) Stone lattice Con A
is also an (atomic) Stone lattice.

Now we prove that A, enjoys (PCC). Take a complemented a e Con A,. Let B,
denote the same algebra as above. We get A = B, x A,. Let us consider the product
congruences <p = VBi x a, 7p = AB. xa. Clearly, cp and 7p are complemented and by
hypothesis q> o7p = lp o (p. Therefore, a oct = ct oa.

Further, observe that in order to prove that A, is finitely subdirectly irreducible,
it is enough to show that A, is a meet-irreducible element of Con A,. Assume that
there are (p,9 e Con A, such that cp / A,, 9 ^ A, and cp A 6 = A,. Then we
have 9* £ Vi a"d 9* > <p > A,. The latter relation implies 9** ^ y , and we
also have 9** > 9 > A,. Thus we get 9\ 9** i {A,, v«}- S i n c e Con A, is a Stone
lattice, we get that 9* and 9** are complements of each other. As A, obeys (PCC),
9* and 9** permute. Thus they form a factor congruence pair of A,, so we have
A, = At/9* x Ai/9**. Since none of these two factor algebras are trivial, we get
that A, is directly decomposable, a contradiction. Therefore A, is meet-irreducible,
providing that A, is finitely subdirectly irreducible.

Assume now that Con A is an atomic lattice, then Con A, is also atomic (as we
have already seen), and let a be an atom of it. Since A, is meet-irreducible, we
have 9 A a = a for all 9 e Con A, \ {A,}, whence we get that a = 9 for all
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6 e Con A,, 0 7̂  A,-. Thus any algebra A, is subdirectly irreducible, and the proof is
completed. D

Since any algebra with a finite congruence lattice is a direct product of directly
indecomposable algebras, the following corollary of Theorem 3.1 is immediate.

COROLLARY 3.3. A congruence distributive algebra A with finite Con A is a direct
product of subdirectly irreducible algebras if and only if A enjoys (PCC) and Con A
is a Stone lattice.

The following consequence of Theorem 3.1 can be considered as a completion of
[8, Theorem 1.2].

PROPOSITION 3.4. Let Abe a congruence distributive algebra with a strong centre.
Then the following assertions are equivalent:

(i) A enjoys (PCC) and Con A is a completely Stonean {atomic) lattice.
(ii) A is a finite direct product of finitely subdirectly irreducible {subdirectly irre-

ducible) algebras.

PROOF. Applying Theorem 1.2 we get that (i) implies (ii).
Now we prove that (ii) implies (i). In view of Theorem 3.1 the assumption of (ii)

implies that A obeys property (PCC) (and Con A is a Stone lattice). Applying again
Theorem 1.2 we get that Con A is a completely Stonean (atomic) lattice. •

An other remarkable result of [8] is the following (see [8, Theorem 6 (iii)]): 'Let A
be a congruence distributive algebra with a strong centre and let A enjoy the property
(PCC). Then Con A is a Boolean lattice if and only if A is a finite direct product of
simple algebras.'

By using this result and Theorem 3.1 we prove:

PROPOSITION 3.5. Let Abe a congruence distributive algebra with a strong centre.
Then A is a finite direct product of simple algebras if and only if A is congruence
permutable and Con A is a Boolean lattice.

PROOF. In view of the above cited theorem of [8] our proof is quite similar to
the proof of Proposition 3.4. In addition we have only to prove that a congruence
distributive algebra A = J~]"=1 A, with all A, simple is congruence permutable. Since
now any 9 e Con A is of the form 9 = ]~["=i Oi e Con A with 9t e (A,, V,}, this
assertion is obvious. •

REMARK 3.6. As any /-algebra is congruence distributive with a strong centre,
Propositions 3.4 and 3.5 also apply to the case of /-algebras. We note that Proposi-
tion 3.5 generalizes Dilworth's result from [2].
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An element p e L \ {0} of a (complete) lattice L is called completely join-irreducible
if for any system of elements x, e L,i e I the equality p = \J{Xi | / e /} implies/? =
jtjo for some io € I. If any nonzero element of L is a join of completely join-irreducible
elements, then L is called a CJ-generated lattice. In view of Libkin's result [9], any
CJ-generated algebraic lattice is a direct product of directly indecomposable lattices.
Therefore, by applying Theorem 3.1 we can add to Theorem 1.1 the following:

COROLLARY 3.7. Let L be a CJ-generated algebraic lattice. Then L is a direct
product of finitely subdirectly irreducible lattices if and only if L enjoys property
(PCC) and Con L is a Stone lattice.

4. Lattices which are direct products of directly indecomposable lattices

The difficulty to apply Theorem 3.1 to obtain product decompositions of /-algebras
(where the decomposition may contain an infinite number of factors) is that we do
not even know under what conditions an arbitrary /-algebra can be written as a direct
product of directly indecomposable /-algebras. In view of Corollary 2.5 such a
direct decomposition of an /-algebra exists if and only if the underlying lattice is a
direct product of directly indecomposable lattices. Therefore in this section we shall
establish a necessary and sufficient condition (Theorem 4.2) for the existence of the
above mentioned direct decomposition of bounded lattices.

The following notion will play an important role in our investigation.

DEFINITION 4.1. A bounded lattice L is called weakly central-complete if for any set
{ak e Cen(L) \ k e K) of distinct atoms of Cen(L) and for any set [xk e L \ xk ^ ak,
k e K} of elements the join V*e*: •** exists in L.

Obviously, any complete lattice and any bounded lattice whose center contains a
finite number of atoms is weakly central-complete. The following theorem clarifies
the role of the above notion.

THEOREM 4.2. Let Lbea bounded nontrivial lattice. Then the following assertions
are equivalent:

(i) L = Yliei Li with directly indecomposable (nontrivial) Li's.
(ii) Cen(L) is an atomic lattice, L is weakly central-complete and for any set of

elements c} e Cen(L), j e J there is a u e Cen(L) such that /\jeJ 0C. = 6U.

PROOF, (i) implies (ii). Clearly, we can restrict our consideration to the case

L = n,-e/
 Li- F o r e a c h M = J w e define the elements cM e n,-€/

 Li b v (cM)i = li
for all i 6 M, otherwise (cM)i = 0,. It can be easily seen that cM e Cen(L) and
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Lt = (c{/|], providing that every sublattice (c{i]] is directly indecomposable (see also
Lemma 2.3). It is also easy to see that any c{i] is an atom of Cen(L). (Indeed, if an
element c e Cen(L) with 0 < c < c{l] would exist, then c and c A c(l) would form a
complemented pair of central elements of the sublattice (c1'1].)

Take any a e Cen(L), a ^ 0. We claim that a = cM for some M Q I. As cU] is
an atom of Cen(L) and a A c[i] e Cen(L), we get for each / e / either a A c1'1 = 0 or
a A c{l] = c((), that is, at = 0, or at = 1,. Then a = cM, where M = {/ € / | a,• = 1}.
Since any nonzero element of Cen(L) is of the form cM with M ^ 0 and c'*01 ^ c^
for any i'o ^ M, we deduce that {c{/1 \ i e 1} is the set of all atoms of Cen(L) and
Cen(L) is atomic.

Now take the elements cs e Cen(L), j e J; then q = cMj for some Mj Q I.
It is easy to check that 9CM = {(x, y) e L2 \ (x v y), = (x A y)t for all / ^ A/}.
In consequence 6CM = {(x,y) e L2 \ Xj = y, for all / ^ M}. We claim that
/ 6Cj = 0u, where u - <A«' ̂ . Indeed,

I xt• = yi for each i e I \ Mj ]

:, =y, for all / e (J( / \M,)
jeJ

xi = yi forall i e / \ | p | = eu.

Finally, a nonempty set of distinct atoms of Cen(L) can be written as A = {c{k] \ keK},
where 0 ^ K Q I. Take any set {xk e L \ k e K) with xk ^ c[k]. Now we have:

(*) (xk)k ^ lk and , = 0, for all i ^ k.

Define * n e L as follows: (jcn), = 0, for all i e I \ K and (xn) , = (*,-),- for
all i e K. Then, in view of (*), we have {xk)t ^ (xn) , for all / e I and this gives
Xk ^ xn for all k e K. Let y e L be an arbitrary upper bound of {xk | k e K). Then
(•**)/ = vi f ° r all i € / and keK, whence we get (.**)* ^ yk for all keK. Now
we have jcn ^ y, by the definition of ; t n . Therefore xn is the least upper bound of
{xk e L | k e K) in L, that is, jcn = V*6^ •*•*• Thus L is weakly central-complete.

(ii) implies (i). First we show that Cen(L) is a complete sublattice of L. Take
ck e Cen(L), keK; then, by our assumption, A*€A: ^ = ^« ^or s o m e u e Cen(L).
Since ^u ^ ^Ct implies u ^ ck, k e K, we get that w is a lower bound of the set
{ck | k e K). On the other hand, for any lower bound / e L of {ck \ k e K) we
have (0,1) e 9Ct, k e K. Thus (0, /) e f\keK 9Ck = 9U, whence we get / ^ u proving
u = f\keK ck. Therefore /\k€K ck exists in L and /\k€K ck = u e Cen(L), moreover
we obtained that f\keK 9Ck = 9^HK Ck.
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Now take v = /\k€K ck. Then v e Cen(L) and so v ^ ck, k e K, thus i> is
a upper bound for {ck \ k e K). Let a € L with a ^ Q , A: e K, then we have
(a, 1) e AksK&ck = Qv, according to the definition of congruences %. So we get
a v v = 1, implying v = (aVv)Av = aAv. Hence v ^ a. Therefore Vte/c ck

exists in L and \fk€K ck = v e Cen(L).
Since Cen(L) is an atomic complete Boolean lattice, it is atomistic and infinitely

distributive too. (Even more it is completely distributive.) Let {at \ i € /} be the set
of all atoms of Cen(L). Then V,€/ ai = 1 a nd we prove that L = Y\i<=i(ak\-

Let us define the map / : L —>• F~[ie/(«»], by setting (f (x))j = x A at, i e I for all
x e L (where JC, stands for the i-th coordinate of an x e Oie/(a*D- ^ *s n o t ^ar<^ t 0

check that / is a homomorphism.
In order to prove that / is one to one take x,y e L with f (x) = f (y); then

x A a,; = y A a, implies (x, y) e % for all / e / . Hence (x, y) e /\i€l 9a- = 9/\ie,a;-
Since Cen(L) is an infinitely distributive Boolean lattice /\ ,e / ^ e Cen(L) is the
complement of V,-e/

 at = 1- Thus we have f\ieIa~i = 0, and this implies (JC, y) e
9Q = AL. Hence we get x = y.

To prove that / is onto, take a y = (y,),e/ e I~I,e/(«il- Since y, ^ a,, / e 1 and
since L is weakly central-complete, the join z = Vie/ y« e x i s t s m ^- We claim that

Indeed, we have yk ^ (Vie/ ?<) A â  = z A at for all /: e / . On the other hand we
can write:

A ak = (yk A ak) V

Since Cen(L) is infinitely distributive, we have

\f a, ) A ak = \J (a, A ak) = 0.
(€/\{*) / i€l\[k)

Now yk ^ â  implies that z Aak ^ yk. Thus z A ak = yk for all k e / , whence we get
/ ( z ) = (z A a*)i€/ = (yk)k€i = y» providing that / is onto. Hence the m a p / is an
isomorphism and this completes the proof. D

5. The proof of main theorem

To present the proof of Theorem 1.3 we need some essential remarks on the Boolean
part of a pseudocomplemented lattice.

If L is a pseudocomplemented lattice, then the set {x e L \ x** = x) is called
the Boolean part of L and it is denoted by B(L). Since the identity A,€/x/** =
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(/ \ 1 € /JC**) is satisfied in any complete pseudocomplemented lattice, B(L) is a
complete A-subsemilattice of any complete L. If L is a Stone lattice, then B(L) is a
Boolean sublattice of L (see [4]). (We note that B(L) is not necessarily a complete
sublattice of L, since for*, e B(L), / e / the relation \JieIxt e B(L) is not true in
general.) Now we formulate:

LEMMA 5.1. Let Abe a congruence distributive algebra, then

(i) If Con A is an atomic lattice, then B(Con A) is also atomic.
(ii) If A enjoys property (PCC) and Con A is a Stone lattice, then B(ConA)

coincides with the set of all factor congruences of A.

PROOF, (i) Let 9 e Con A be an atom. We claim that 9** is an atom of B(Con A).
Really, let a < p = p** ^ 9** and a is an atom of B(ConA), a ^ 9 implies
ffA^A. Therefore, A = A** = (a A 9)** = a** A 9** = a*\ a contradiction.
Now a = 9 and it follows P** = 9**, proving that 9** is an atom of B(Con A).

Now, take any cp e B(Con A). As Con A is atomic, there exists an atom 9 e Con A
such that 9 ^ (p, whence we get 9** ^ cp** = cp.

(ii) Since Con A is a pseudocomplemented distributive lattice, for any factor con-
gruence 9 e Con A we have 9* = 9 and (9)* = (9) = 9, that is 9** = 9. Hence
9 e B(ConA).

Conversely, take any 9 e B(ConA). As Con A is a Stone lattice and 9 = 9**,
we can write: 9 v 9* = 9** v 9* = V, therefore 9 and 0*are the complements of
each other. Now property (PCC) implies 9 o9* = 9* o9, providing that 9 is a factor
congruence of A. •

We note that the above result (ii) is contained in [8] in an implicit form.

PROOF OF THEOREM 1.3. Let _£? = (L, A, V, 0, 1, F) be an /-algebra such that
i f = n , 6 / -#• w i t h -#• = (£,-, A, v, 0, 1, F), all i 5 , / e / being finitely subdirectly
irreducible. Since finitely subdirectly irreducible algebras are directly indecomposable
and any /-algebra is congruence distributive, we can apply Theorem 3.1 and this gives
that i f enjoys property (PCC) and Con i f is a Stone lattice. Moreover, if all i ^
are subdirectly irreducible then Theorem 3.1 gives in addition that Con i f is atomic.
By Corollary 2.5 we have L = Y\iel L, with directly indecomposable L,'s. Now
Theorem 4.2 implies that L is a weakly central-complete lattice with an atomic center.
Thus we have verified the 'only if part for both of assertions (1) and (2).

Now we prove the converse implications.
Let S^ = (L, A, v, 0, 1, F) be an /-algebra satisfying property (PCC) and such

that L is weakly central-complete and Con i f is a Stone lattice. Take c; € Cen(L),
j e J; then the congruences 0C., j e J are factor congruences of L and thereby of
the whole algebra J^. Thus, in view of Lemma 5.1 (ii), we have 0C. e B(Con i f )
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for all j e J. Since B(Con^f) is a complete A-subsemilattice of ConJSf, we get
/\jeJ0Cj e B(Con_Sf). Using Lemma 5.1 (ii) again we obtain that /\j&J9Cj is a
factor congruence of the algebra j£f, and so it is a factor congruence of the lattice L.
Therefore, there is an element u e Cen(L) such that

(**) f\eCj=eu.

Let us observe also, that the map \Js : 9 i-> 9C in this case is a Cen(L) —> B(Con
isomorphism. Indeed, in view of Remark 2.2 and Corollary 2.5 V is an injective
homomorphism and the above argument gives that any 9 € B(Con _Sf) is of the form
9 = 9C, c e Cen(L), that is, \f/ is onto.

Case (1). Since Cen(L) is atomic and L is weakly central-complete and sat-
isfies (**), Theorem 4.2 implies that L = \\iei Li with all L(, i e I directly
indecomposable. Therefore, Corollary 2.5 gives that .£? = f]j€/ - ^ ' w n e r e aH

= (Li, A, v, 0;, 1,, F) are directly indecomposable /-algebras. Since the algebra
enjoys (PCC) and its congruence lattice is Stonean, applying Theorem 3.1 we

get that all ^ , i e I are finitely subdirectly irreducible, completing the proof of (1).
Case (2). Now L is weakly central-complete and Con j£? is atomic, moreover we

already have shown that L satisfies the property (**). Further, in view of Lemma 5.1 (i)
the lattice B(Con j£?) is atomic. As we have already seen that Cen(L) = B(Con^f),
we obtain that Cen(L) is also atomic.

Using the facts that Cen(L) is atomic and L is weakly central-complete and that L
satisfies (**) we can repeat the argument in the 'if part of the proof of assertion (1)
providing that JSf is a direct product of directly indecomposable /-algebras. Since
S£ obeys (PCC) and Con jSf is an atomic Stone lattice, Theorem 3.1 implies that the
above direct factors of j£f are subdirectly irreducible /-algebras. This completes the
proof. •

REMARK 5.2. (i) Applying Proposition 3.4 to /-algebras we get that the product
decomposition given by Theorem 1.3 consists of finite factors if and only if S£ admits
(PCC) and Con j£? is completely Stonean (and atomic in case (2)).

(ii) We note that in [8] it is also proved (see [8, Theorem 6 (i)]) that Cen(j£?) is
finite whenever j£f obeys (PCC) and Con j£f is completely Stonean. Since Cen(L) =

, in this case Cen(L) is atomic and L is weakly central-complete.

6. Applications to certain classes of/-algebras and lattices

In [8] it was established that double p-algebras, ortholattices and Heyting algebras
enjoy property (PCC). (A double p-algebra is an /-algebra (L, A, v,*,+ ), where
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(L, A, V,*) is a p-algebra and (L, V, A,+ ) is a dual /?-algebra.) Combining the
above observations and Theorem 1.3 we obtain

COROLLARY 6.1. Let JS? be any double p-algebra {ortholattice, Heyting algebra).
Then the following are equivalent:

(i) Con _£? is Stonean, the underlying lattice L is weakly-central complete and
Cen(L) (Con L) is atomic.

(ii) _£? is a direct product of finitely subdirectly irreducible (subdirectly irreducible)
algebras.

Since any bounded lattice is an /-algebra, Theorem 3.1 also can be applied to
bounded lattices. In [11] the present author proved the equivalence of the following
conditions:

(i) L enjoys property (PCC) and Con L is a Stone lattice,
(ii) For any 0 e Con L, there exists a c e Cen(L) such that 0* = 6C.

Thus we obtain the following

COROLLARY 6.2. Let L be a bounded lattice. Then the following assertions are
equivalent:

(i) L is a direct product of finitely subdirectly irreducible {subdirectly irreducible)
lattices.

(ii) L is weakly central-complete, enjoys property (PCC), Con L is a Stone lattice
and Cen(L) (Con L) is atomic.

(iii) L is weakly central-complete, for any 6 € Con L there is a c e Cen(L) such
that 6* = 9C and Cen(L) (Con L) is atomic.

COROLLARY 6.3. A Boolean lattice L is isomorphic to a power set lattice &(I) if
and only if Con L is an atomic Stone lattice.

PROOF. Obviously, any Boolean lattice obeys (PCC) and by [3] Con L is a Stone
lattice if and only if L is complete. (See also [6] and [7].) Since a subdirectly
irreducible Boolean lattice is isomorphic to 2 (the two element chain), L is a direct
product of subdirectly irreducible lattices exactly when L = 2' for some / / 0. As
2' = £?(I), our result can be derived from Corollary 6.2. •

7. Applications to certain classes of complete lattices

In [6] Janowitz proved that any complemented lattice enjoys property (PCC) and
exhibited several classes of lattices with Stonean congruence lattice. Here we mention
some examples:
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- uniquely complemented complete lattices,
- weakly modular sectionally complemented complete lattices.

Since any complete lattice is bounded and weakly central-complete, Corollary 6.2
implies

COROLLARY 7.1. Let L be a lattice from one of the above classes. Then L is a
direct product of finitely subdirectly irreducible (subdirectly irreducible) lattices if
and only ifCen(L) (Con L) is atomic.

A lattice L with 0 is called section semicomplemented (SeSC) if for every a, b e L,
a < b there is an element 0 < u ^ b such that a A u = 0. L is dually section
complemented (DSeSC) if its dual L{d) is section semicomplemented (see [10]). If L
is a complete lattice then for any <p e Con L we define w ((p) € L as the supremum
of its kernel: w(cp) = \J{x e L | (0, x) e <p}. Janowitz proved that whenever L
is both SeSC and DSeSC then we have w(cp) e Cen(L) for any (p e Con L (see [5,
Theorem 4.17 (ii)]). He also proved that the congruence lattice of a lattice which is
both SeSC and DSeSC is a Stone lattice. Now we can proceed further:

PROPOSITION 7.2. Let Lbea complete lattice which is both SeSC and DSeSC. Then
L is a direct product of finitely subdirectly irreducible (subdirectly irreducible) lattices
if and only ifCen(L) (Con L) is atomic.

PROOF. Take any <p e ConL. We only have to prove (p* = 9w{(p.), and then the
statement of the proposition follows by applying Corollary 6.2.

Let us show first that cp* ^ 9wi<f)*). Clearly, 9W(<fi.) v 9-^-^ = VL. As we have
(p* = ((p* A 9wir)) v (<p* A 9-^]), the relation (p* A 9^j = AL implies cp* ^ 9w(r).
Thus it is sufficient to verify that cp* A 9-^^ = AL.

Contrary, suppose that there exist a,b e L, a < b such that (a, b) e <p* A
Since L is section semicomplemented, there isau e L,0 < u ^ b such that a A u = 0.
Then (0, u) e <p* A 9w{(p.), so we get (0, u) e <p* and u ^ w(cp*). Now (0, u) e (p*
gives u ^ w(<p*), whence we obtain that u ^ w((p*) A w(<p*) = 0, a contradiction.

Further, we have to show that 9W(<P*) 5: (p*. If it is not the case, then there exist c,d e
L, c < d such that (c, d) e 9W^) A (p. As L is dually section semicomplemented,
there is a v e L, c ^ v < I such that d v v = 1. Then (v, 1) e 6W^) A <p and
this means that v v w((p*) = 1 and (v, 1) e (p. Observe, that for every x e L with
(0, x) e (p* we have now (v A x, x) e <p A cp* = AL, whence we get that x = v A x,
that is, x ^ v. Therefore we obtain w((p*) ^ v, implying that v V w(9*) = v ^ 1, a
contradiction.

Hence we conclude that <p* = 9w((p.), and this completes the proof. •
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