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Abstract
Using the Dirac–Heisenberg–Wigner formalism, effects of the asymmetric pulse shape on the generation of electron-
positron pairs in three typical polarized fields, i.e., linear, middle elliptical and circular fields, are investigated. Two
kinds of asymmetries for the falling pulse length, short and elongated, are studied. We find that the interference effect
disappears with the shorter pulse length and that the peak value of the momentum spectrum is concentrated in the center
of the momentum space. In the case of the extending falling pulse length, a multiring structure without interference
appears in the momentum spectrum. Research results show that the momentum spectrum is very sensitive to the
asymmetry of the pulse as well as to the polarization of the fields. We also find that the number density of electron-
positron pairs under different polarizations is sensitive to the asymmetry of the electric field. For the short falling pulse,
the number density can be significantly enhanced by over two orders of magnitude. These results could be useful in
planning high-power and/or high-intensity laser experiments.
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1. Introduction

In intense electromagnetic fields the vacuum state is unsta-
ble and spontaneously generates electron-positron (e−e+)
pairs. This is known as the Schwinger effect, which is
one of the highly nontrivial predictions in quantum elec-
trodynamics (QED)[1–3]. Because of the tunneling nature
of the Schwinger effect, this interesting phenomenon is
exponentially suppressed and the pair production rate is
proportional to exp (−πEcr/E), where the corresponding
Schwinger critical field strength Ecr = m2

ec3/e� = 1.3 ×
1018 V/m. The associated laser intensity, e.g., I = 4.3 ×
1029 W/cm2, is too high and beyond current technological
possibilities. Its detection has therefore remained a challenge
for many decades[4]. However, current advances in high-
power laser technology[5–7] and forthcoming experimental
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facilities (for example, the Extreme Light Infrastructure, the
Exawatt Center for Extreme Light Studies, and the Station
of Extreme Light at the Shanghai Coherent Light Source)
have led to the hope of QED predictions entering the realm
of observation. On the other hand, using X-ray free-electron
laser facilities can in principle yield a strong field at about
E = 0.1Ecr = 1.3×1017 V/m[8] and drive interest in studying
pair production under super strong fields.

The Schwinger effect is one of the nonperturbative
phenomena in QED, while the understanding of it is still
far from complete. Therefore, studying pair production in
the nonperturbative regime would deepen our knowledge
about the relatively less tested branch of QED. Motivated
by this, many exploratory studies of the Schwinger effect
based on a number of different theoretical techniques have
been undertaken, for example, within the quantum kinetic
approach[9–11] and the real time Dirac–Heisenberg–Wigner
(DHW) formalism[12–18], the WKB approximation[19, 20] as
well as the worldline instanton technique[21]. Schützhold
et al.[21] found that the pair production rate can be strongly
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enhanced by superimposing the slowly varying strong field
with the rapid oscillating weak field, which is now called the
dynamically assisted Schwinger effect. In Ref. [22], by using
the quantum kinetic approach, the momentum spectrum of
the produced pairs has been computed, and the spectrum
was found to be extremely sensitive to these physical pulse
parameters. The pair production in a pulsed electric field[23]

is to present the signature of the effective mass of the created
particles in the strong oscillating electric field. In Refs. [24–
26] researchers have shown the importance of pulse shape
effects on the pair creation process in different situations.
For a concrete description of the various approaches and
relevant publications, see our review of pair production[27].

In this paper we further investigate the Schwinger effect by
considering the asymmetric pulse shape with Gaussian enve-
lope and different polarizations. We mainly consider asym-
metric pulse shape effects on pair production in different
polarizations, e.g., linear, elliptic and circular polarizations.
We reveal some novel features of the momentum spectra of
created pairs for differently polarized electric fields. In this
study the real-time DHW formalism is employed as it leads
to efficient calculations in the case of a circularly[28–30] or
elliptically polarized electric field[31, 32].

This paper is organized as follows. In Section 2 we intro-
duce the model of a background field. In Section 3 we
briefly introduce the DHW formalism that is used in our
calculations for completeness. In Section 4 we show the
numerical results for momentum spectra and analyze the
underlying physics. In Section 5 we give the numerical
results for the pair number density. We end the paper with
a brief summary and discussion in Section 6.

2. External electric field model

We focus on the study of e−e+ pair production in differently
polarized and time-dependent asymmetric electric fields.
The explicit form of the external field is given as

E(t)= E0√
1+ δ2

[
e−(t/τ1)2/2θ (−t)+ e−(t/τ2)2/2θ(t)

]

×
⎛
⎝ cos (ωt +φ)
δ sin(ωt +φ)

0

⎞
⎠, (1)

where E0/
√

1+ δ2 is the field amplitude, τ1 and τ2 are the
rising and falling pulse durations, respectively, θ(t) is the
Heaviside step function, ω is the oscillation frequency, φ
is the carrier phase and δ represents the field polarization
(or the ellipticity). The field parameters are chosen as E0 =
0.1

√
2Ecr, ω = 0.6m, τ1 = 10/m and φ = 0, where m is

the electron mass. For the falling pulse length, we set the
parameter as τ2 = kτ1, where k is the ratio of the falling to
rising pulse length. Throughout this paper, we use natural
units � = c = 1.

The main interest in this study is asymmetric pulse dura-
tion effects on pair production in differently polarized and
time-dependent asymmetric electric fields. We mainly con-
sider two different situations when the rising pulse length
τ1 is fixed. One in which the falling pulse length τ2 = kτ1

becomes shorter with 0 < k ≤ 1, and another in which the
falling pulse length τ2 = kτ1 becomes longer with k ≥ 1.

3. Brief outline of the DHW formalism

The DHW formalism is an approach used to describe the
quantum phenomena of a system by a Wigner function as the
relativistic phase space distribution. It has also been further
adopted in the studies of Sauter-Schwinger QED vacuum
pair production[12–16]. The DHW formalism automatically
combines quantum electrodynamics with notions familiar
from statistical physics[19, 22], and it allows one to incorpo-
rate temporal as well as spatial inhomogeneities[12–18]. Most
importantly, the DHW formalism gives access to the rela-
tivistic phase-space distribution of the produced particles.
In the following, we present a brief outline of the DHW
formalism for completeness.

A convenient starting point is the gauge-invariant density
operator of two Dirac field operators in the Heisenberg
picture

Ĉαβ (r,s)= U (A,r,s)[ψβ (r − s/2),ψα (r + s/2)
]
, (2)

where ψα(x) is the electron’s spinor-valued Dirac field, and
r and s are the center-of-mass and relative coordinates,
respectively. The Wilson-line factor before the commutators

U (A,r,s)= exp
[

ies
∫ 1/2

−1/2
dξA(r + ξs)

]
(3)

is used to keep the density operator gauge invariant, and
this factor depends on the elementary charge e and the
background gauge field A. In addition, we use a mean-
field (Hartree) approximation by replacing the gauge field
operator with the background field.

The important quantity in the DHW method is the covari-
ant Wigner operator, given as the Fourier transform of the
density operator (Equation (2)):

Ŵαβ (r,p)= 1
2

∫
d4seipsĈαβ (r,s) . (4)

By taking the vacuum expectation value of the Wigner
operator, we obtain the Wigner function

W(r,p)=
〈
�|Ŵ (r,p) |�

〉
. (5)

For numerical convenience, the Wigner function can be
decomposed into a complete basis set {1,γ5,γ

μ,γ5γ
μ,σμν
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:= i[γ μ,γ ν]/2}. Then we obtain the 16 covariant real Wigner
components

W = 1
4

(
1S+ iγ5P+γ μVμ+γ μγ5Aμ+σμνTμν

)
. (6)

Here S, P, Vμ, Aμ and Tμν are scalar, pseudoscalar, vector,
axial vector and tensor, respectively. According to Refs.
[12–16] and by using the equations of motion for the
fermionic Heisenberg operators, the dynamical equation
for the Wigner function is

DtW = −1
2

Dx
[
γ 0γ,W

]+ im
[
γ 0,W

]− iP
{
γ 0γ,W

}
,

(7)

where Dt, Dx and P denote the pseudodifferential operators

Dt = ∂t + e
∫ 1/2

−1/2
dλE

(
x+ iλ∇p,t

)×∇p, (8a)

Dx = ∇x + e
∫ 1/2

−1/2
dλB

(
x+ iλ∇p,t

)×∇p, (8b)

P = p− ie
∫ 1/2

−1/2
dλλB

(
x+ iλ∇p,t

)×∇p. (8c)

Inserting decomposition (Equation (6)) into the equation
of motion, Equation (7), for the Wigner function, we obtain a
set of partial differential equations (PDEs) for the 16 Wigner
components. Furthermore, for spatially homogeneous elec-
tric fields like Equation (1), by using the characteristic
method[28, 29] and replacing the kinetic momentum p with
the canonical momentum q via q − eA(t), the PDEs for the
16 Wigner components can be reduced to 10 ordinary differ-
ential equations of the nonvanishing Wigner coefficients

w = (s,vi,ai,ti), ti := t0i −ti0. (9)

For detailed derivations and explicit forms of these 10
equations, we refer the reader to Refs. [16, 17, 33]. Note that
the corresponding vacuum nonvanishing initial values are

svac = −2m√
p2 +m2

, vi,vac = −2pi√
p2 +m2

. (10)

In the following, we express the scalar Wigner coefficient
by the one-particle momentum distribution function

f (q,t)= 1
2�(q,t)

(ε− εvac), (11)

where �(q,t) =
√

p2(t)+m2 =
√

m2 + [
q− eA(t)

]2 is the
total energy of the electrons (positrons) and ε = ms +

pivi is the phase-space energy density. To obtain the one-
particle momentum distribution function f (q,t), referring to
Refs. [28, 29], it is helpful to introduce an auxiliary three-
dimensional vector

vi[q,t] := vi[p(t),t]− [1− f (q,t)]vi,vac[p(t),t]. (12)

So the one-particle momentum distribution function
f (q,t) can be obtained by solving the following ordinary
differential equations, including it as well as the other nine
auxiliary quantities:

ḟ = eE ·v
2�

, (13a)

v̇ = 2
�3

[
(eE ·p)p− eE�2](f −1)

− (eE ·v)p
�2 −2p×a−2mt, (13b)

ȧ = −2p×v, (13c)

ṫ = 2
m

[
m2v− (p ·v)p

]
, (13d)

with the initial conditions f (q,−∞) = 0, v(q,−∞) =
a(q,−∞) = t(q,−∞) = 0. Here the time derivative
is indicated by a dot, a(q,t) and t(q,t) are the three-
dimensional vectors corresponding to Wigner components
and A(t) denotes the vector potential of the external field.

Finally, by integrating the distribution function f (q,t) over
the full momentum space, we obtain the number density of
created pairs defined at asymptotic times t → +∞:

n = lim
t→+∞

∫
d3q

(2π)3
f (q,t) . (14)

4. Momentum spectra of the produced particles

In this section we report some interesting results for the
momentum spectra of the produced particles with several
pulse parameters under typical cases of the polarization field,
such as linear (δ= 0), elliptical (δ= 0.5) and circular (δ= 1)
fields.

4.1. Linear polarization, δ = 0

First, in Figure 1 we show the momentum spectra for dif-
ferent k when we keep the rising pulse length τ1 fixed but
change the falling pulse length τ2 = kτ1 to be shorter with
0 < k ≤ 1. For k = 1, the momentum spectrum is centered
at the origin, and weak oscillation is observed, as shown
in the upper-left panel of Figure 1. The physical origin of
the oscillation is explained in Ref. [20] in terms of the
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Figure 1. Momentum spectra of produced e+e− pairs for linear polarization (δ = 0) at qz = 0 in the
(
qx,qy

)
plane when the rising pulse length τ1 is fixed

but the falling pulse length τ2 = kτ1 becomes shorter with 0< k ≤ 1. The chosen parameters are E0 = 0.1
√

2Ecr, ω = 0.6m and τ1 = 10/m, where m is the
electron mass.

interference between separate complex conjugate pairs of
turning points.

It can be seen that the momentum spectrum of the created
pair is very sensitive to the asymmetry of the electric field.
When the ratio parameter k is changed to k = 0.5, the main
peak of the momentum spectrum is shifted to the positive qx

and the symmetry distribution of the momentum spectrum
is destroyed. This effect is similar to the effect of carrier
phase studied in Ref. [22]. Considering this fact that, for
small k, pulse asymmetry plays the carrier-phase-like role,
the physical explanation of momentum spectrum distribution
due to pulse asymmetry can be understood by assuming
that particles are created with vanishing initial longitudinal
momentum. In the presence of E(t), the produced pairs are
continuously accelerated, and particle momentum is mainly
determined by its creation time[11, 18]. At the earlier time t0
it is created; after t0, it has to be accelerated at the longer
time and finally it gets the higher longitudinal momentum.
In general, most pairs are expected to appear at those times
corresponding to the local maxima of the field. Then those
produced pairs are subject to acceleration by the electric
field, and the gained momenta are[32]

q =
∫ t

t0

eE(t)dt = eA(t0)− eA(t). (15)

Because of the fact that the vector potential vanishes
at asymptotic times t → ∞, the final particle momentum
solely depends on the vector potential at the time when
the particle was created. For example, the peak in Figure 1
when k = 1 at q(t0) = 0 is due to the dominant peak in
the electric field at t = 0. As E(t) decreases at later times,
less particles are produced. However, as A(t) increases at
the same time, these particles are effectively accelerated
more strongly. So the peak positions and/or momentum
spectrum patterns depend on the pulse shape. Furthermore,
when k = 0.3, the main parts of the momentum spectrum
also appear for negative qx beside the positive qx peak,
splitting the momentum spectrum. Therefore, two peaks are
observed. This result is similar to the effect introduced by
the frequencies chirp in Ref. [33]. For the very asymmetric
case of k = 0.1, the momentum spectrum of the particle
is again concentrated in the center but the oscillation of
the momentum spectrum disappears. Finally, we note that
the peak value of the momentum spectrum of the pairs is
increased from 2.94×10−5 (k = 1) to 8.28×10−4 (k = 0.1).

Second, in Figure 2 we show the momentum spectra for
different k when the rising pulse length τ1 is fixed but the
falling pulse length τ2 becomes longer with k ≥ 1. From
this figure we can see that, as the field asymmetry increases,
the main center peak of the momentum spectrum decreases
while some disconnected ringlike structures with peaks
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Figure 2. Same as Figure 1 except that the falling pulse length τ2 = kτ1 becomes longer with k ≥ 1.

appear and gradually become main peaks. This tendency is
more striking with larger k.

We find that the center maximum value of the momen-
tum spectrum decreases until k ≤ 5. For the pulse length
k = 10, the maximum value at the ring is slightly larger
than that of symmetrical pulse when k = 1. Note that the
ring structure in the momentum spectrum is a typical feature
of the multiphoton pair production mechanism. Because the
produced pairs momentum spectrum lines up exactly with
the prediction that

| q |= 1
2

√
(nω)2 − (2m∗)2, (16)

after the considering of effective mass[23], the Keldysh
parameters are large enough to support multiphoton pair
production. For example, the inner ring is formed by
absorbing four photons and the outermost obscured structure
corresponds to the absorption of five photons.

4.2. Elliptic polarization, δ = 0.5

For the middle-elliptical polarization case, δ = 0.5, in
Figure 3 we show the momentum spectrum for shorter
pulses. From the upper-left panel of Figure 3, where k = 1,
we see that the momentum spectrum is symmetrically
distributed about the qx axis, and that the spectrum

peak is located at q = 0. With decreasing k, we observe
that distortion of the momentum spectrum occurs, or,
equivalently, the mirror symmetry about qx is lost. As
the peak position shifts, the maximum value of the peak
increases. For example, when k = 0.5, the main peak shifts
along the positive qy direction, while, when k = 0.3, the main
peak shifts along the negative qx direction with a slightly
larger peak value. For the very asymmetric case of k = 0.1,
the momentum spectrum is concentrated around the center
and the main peak is almost located at the center again.

Now let us consider the elongated falling pulse cases with
k ≥ 1 for the middle-elliptical polarization case, δ = 0.5;
see Figure 4. For k = 2, the symmetry of the momentum
spectrum about the qx axis is destroyed. The peak position
shifts to the positive and negative qy direction, while the peak
value decreases compared to the symmetric case, k = 1. For
larger k, the spectrum at the center vanishes gradually with
increasing k, and a complete ringlike shape appears. The
peak positions are very interesting which form two elongated
strips by locating at the relative narrower regime of positive
and negative qy but relative broader regime of positive
and negative qx. Finally, the additional outer ring structure
again appears, which is a clear signal of multiphoton pair
production processes. This can be understood from the fact
that, with increasing pulse length kτ1, the electric field has
long enough duration and changes its direction during the
pair creation process. Thus, the created particles may be
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Figure 3. Same as Figure 1 except for elliptic polarization, δ = 0.5.
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Figure 4. Same as Figure 2 except for elliptic polarization, δ = 0.5.
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accelerated in different directions depending on the field
direction at the time of production. This results in a ring
structure of the spectrum. On the other hand, as the pulse
duration increases with k, the number of oscillation cycles
within the Gaussian envelope also increases, and there will
be more photons contributing to pair production by the
multiphoton absorption mechanism, so in the spectrum the
signal of multiphoton pair creation becomes pronounced
with a ring shape. However, for the shorter pulse cases,
the number of oscillation cycles in the envelope is very
small, which does not show the complete multiphoton pair
production signal in the momentum spectrum clearly since,
for small pulse length τ , the Keldysh parameter γ = mω/eE0

will be influenced by the time scale τ . This phenomenon also
appears in the linear and circular polarizations.

4.3. Circular polarization,δ = 1

For the circular polarization, δ = 1, we show the momentum
spectra in Figure 5 when the pulse length is shorter with
0< k ≤ 1. It can be seen that in the symmetric case, k = 1, the
momentum spectrum has an obvious ring structure centered
around the origin, meanwhile a weak interference effect
and/or oscillation is also observed between the hole and outer
ring along the negative values of the qy axis; see Figure 5
for k = 1. On the one hand, the ring shape arises from

absorbing four photons in the multiphoton pair production.
We know that the ring radius can be calculated using energy
conservation, including the effective mass consideration, as
| q |= 1

2

√
(nω)2 − (2m∗)2, where n is the number of photons

participating in the pair creation and m∗ is the effective
mass[23]. On the other hand, the weak interference effect can
be explained by analyzing the distribution of turning points
in the semiclassical picture[33]. The complex-valued turning
points are those tp that are obtained by �

(
q,tp

) = 0, which
is responsible for the interference effects of the spectrum.
We refer the reader to Ref. [33] for the interference pattern
associated with the turning points.

With decreasing k, the peaks of the momentum spectra
display quite a rich structure and the interference effects
gradually vanish. When k = 0.7, the peak appears in
the upper-left side of the momentum spectrum space.
When k = 0.3, the partial ring structure vanishes and
the momentum spectrum becomes distorted. For the very
asymmetric case of k = 0.1, the peak position is located at the
near central region. Note that, for the circular polarization,
the peak value of the momentum spectrum is remarkably
enhanced by two orders of magnitude compared to that in
the symmetric case, k = 1.

We again consider the opposite situation of falling pulse
change, i.e., the falling pulse length τ2 becomes longer with
k ≥ 1. The momentum spectra are shown in Figure 6. It is
obvious that in this case the momentum distribution at the
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Figure 5. Same as Figure 1 except for circular polarization, δ = 1.
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Figure 6. Same as Figure 2 except for circular polarization, δ = 1.

Table 1. The peak values of the particle distribution function
f (q,∞) for the typical polarization δ when the rising pulse length
τ1 = 10/m is fixed and the falling pulse length τ2 = kτ1 is short
and/or elongated. Note that these peaks occur at different values
of the momentum q.

fmax (q,∞) at peak
k = 1 k = 0.1 k = 10

δ = 0 29.40×10−6 8.28×10−4 5.24×10−5

δ = 0.5 9.65×10−6 7.50×10−4 6.36×10−5

δ = 1 2.36×10−6 6.46×10−4 6.38×10−5

inner part of the ring gradually vanishes with increasing k,
and that the red ring distribution becomes thin with lacking
interference effect. Finally, the additional outer ring shape
again appears, although it is a little obscure. The red inner
ring in the momentum spectrum corresponds to the absorp-
tion of four photons; however, the outer ring corresponds to
the absorption of five photons.

In Table 1 we list some corresponding peak values of
the momentum distribution for different polarizations. We
find that in the shorter falling pulse cases the peak value of
the momentum spectrum is enhanced but this enhancement
decreases as the field polarization increases. In the elongated
falling pulse cases the peak value is also enhanced. How-
ever, on the one hand, this enhancement increases as the
field polarization increases, while, on the other hand, the

enhancements in the elongated cases are weaker globally
compared to the shorter pulse cases.

5. Number density of pair production

In this section we calculate the change of the pair number
density generated in different polarization electric fields with
asymmetric shape and different pulse length ratio k. The
results are shown in Figures 7 and 8 for shorter and elongated
falling pulses, respectively.

We find that, when the falling pulse width is shorter, i.e.,
0< k ≤ 1, the number density of created pairs decreases with
the increasing electric field polarization. We also find that
the number density of e−e+ pairs in different polarizations
increases with decreasing pulse length ratio value k. For the
larger compression, it is more obvious, especially for k = 0.4
to k = 0.1. When the pulse length is shorter, the number
density increases by more than two orders of magnitude for
each polarization. As k decreases, the electric field com-
prises a strong pulse (when t< 0) superimposed with a weak
pulse (when t > 0, but having wider frequency components
in the sense of Fourier decomposition); therefore, these two
half pulses with different time scales act as an effective
dynamically assisted mechanism. Thus, this results in an
enhancement of the number density of produced pairs.

Concretely, for linear polarization, the number density
increases from 1.20 × 10−7 when k = 1 to 1.853 × 10−5
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Figure 7. The number density (in units of λ−3
c = m3) of pairs produced in differently polarized electric fields for the shorter falling length of the asymmetric

pulse shape with 0< k ≤ 1. The field parameters are the same as in Figure 1. Here LP, EP and CP with squares, circles and triangles denote the linear δ = 0,
elliptical δ = 0.5 and circular δ = 1 cases, respectively.
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Figure 8. Same as Figure 7 except for the elongated falling case with k ≥ 1.

when k = 0.1. For elliptical polarization, it increases from
8.799 × 10−8 when k = 1 to 1.673 × 10−5 when k = 0.1. For
circle polarization, it increases from 7.237×10−8 when k = 1
to 1.414×10−5 when k = 0.1.

On the other hand, in the case of the elongated falling
pulse, the number density of created pairs increases almost
linearly with the field polarization parameter δ as well
as the pulse elongation parameter k except that for linear
polarization, it decreases little when the falling pulse elon-
gation is not large, but still increases with larger k. This
is mainly attributed to effect of field asymmetry due to
the puse length on the pair production processes. These
results therefore show that the degree of pulse asymmetry

is an important parameter in the pair production process for
polarized electric fields. Note that our results are similar to
the findings of Kohlfürst et al.[24], who considered the single
Sauter pulse. They found that the particle number increases
first with increasing pulse length until it reaches τ = 0.5m−1,
then decreases and reaches its minimum at τ = 30m−1 and
finally increases again slowly; see Figure 4 of Ref. [24].

From Figures 7 and 8, we can infer that the number density
exhibits polarization dependence for shorter pulse asymme-
try and elongated pulse asymmetry of the field. For shorter
pulse asymmetry cases, the number density decreases with
increasing field polarization, while for elongated pulse
cases, the number density increases with increasing field
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polarization except for the case in which k = 1. However,
the number density has a minimum at some k for each
polarization field, for example, k = 2 and k = 0.8 correspond
to linear (δ = 0) and circular (δ = 1) polarization fields,
respectively. The number density exhibiting this nonlinear
behavior with k can be attributed to the following two
features. For larger k, because the duration is elongated,
the number increases almost linearly with k for an almost
constant pair production rate. On the other hand, for
progressively smaller k, progressively wider frequencies
make the dynamically assisted mechanism progressively
more effective so that it enhances the number density.

In summary, when the falling pulse length is shortened, the
number density can be increased by two orders of magnitude;
however, when the falling pulse length is extended, the
number density is enhanced to within only half orders of
magnitude. Therefore, for asymmetric electric fields with
different polarizations, in order to effectively increase the
number density of the produced electron-positron pairs, it is
better to shorten the falling pulse. Note that in our previous
work on the linearly polarized case[25], in which we used the
quantum Vlasov equation approach, a similar finding was
qualitatively presented.

6. Summary and discussion

In this study we have investigated the effects of the asymmet-
ric pulse shape on the momentum spectrum of created e−e+

pairs in strong electric fields for three different polarization
fields, linearly, middle elliptically and circularly polarized
fields, on the momentum spectrum of created particles by
applying the DHW formalism. The main results for the
spectra of produced pairs can be summarized as follows.

When the falling pulse length is shorter, for linear polar-
ization, the spectra of the produced pairs exhibit a shift
and split of the peaks. For middle elliptic polarization as
well as circular polarization, the momentum spectra become
distorted and exhibit a shift of the peaks. Finally, for each dif-
ferent polarization, the peaks shifted to the central region in
the momentum plane; therefore, peak values were enhanced
by two orders of magnitude compared to the symmetric
situation. When the falling pulse length is elongated, ring
structures appear for different polarizations. We also noted
that, for this asymmetric situation, the peak values increased
with the field polarization compared to the symmetric case,
but were smaller than in the shorter pulse cases. Some
phenomena of the momentum spectra are consistent with the
effect of frequency chirp[33].

We also studied the effect of asymmetric falling pulse on
the obtained number density. We found that the number den-
sity decreases and/or increases with polarization for shorter
and/or elongated falling pulses. It is important to note that,
when the falling pulse is shorter, the number density of the

produced pairs can be significantly enhanced by more than
two orders of magnitude.

The results are helpful to understand the influence of
the pulse duration, which is an important parameter of
the external field, and to deepen our understanding of the
external pulse structure. Although these results reveal some
useful information about the production of e+e− pairs in dif-
ferent elliptical polarization cases, in this study we restricted
ourselves to multiphoton pair creation, so asymmetric pulse
shape effects for pair creation under the Schwinger mecha-
nism need to be studied further for different polarized fields.

To understand why the multiphoton process is not obvious
for shorter pulse cases k < 1, we note that the traditional
standard multiphoton pair production is weaker because the
Keldysh parameter γ = mω/eE0 is modified by the inverse
of another time scale τ of the pulse duration. For very
small τ , this means that the oscillation number of the field
includes fewer cycles and/or subcycles so that it is strictly
not a complete multiphoton process. However, in this case,
the number density of pairs can be increased remarkably
due to the dynamically assisted mechanism. On the other
hand, for the elongation pulse k > 1, as k increases, pair
creation is dominated by the multiphoton mechanism; at this
time for ω = 0.6m, the corresponding number density for
the circular polarization is greater than that for the middle
elliptical polarization, with the latter greater than that for the
linear polarization case (see also Figure 4 of Ref. [31]).

The other important phenomenon observed in our numer-
ical results is the spiral structure in the momentum spectrum
that has an intrinsic connection with the spin and/or orbital
angular momentum of field photons as well as the produced
e−e+ particles. The theoretical analysis for this characteristic
is not easy and almost completely ignored in the present
study. However, its abundant information about the rotation
degree is very important and helpful in understanding the
involved strong external field interaction with a vacuum and
possible applications in future real experiments.
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