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1. INTRODUCTION 

The effect of binary encounters is examined by restricting considerations 
to a sphere of finite radius R, instead of an infinite one assumed 
hitherto. The sphere is centered at an assigned test-particle with 
velocity T5. The corresponding modified assumption is that particles lying 
outside the sphere are scattered randomly with an average number density n 
and their velocity distribution is Maxwellian with an r.m.s. offitf in the 
space velocity. As for the particles* masses the same M is presumed. 
Now the number of particles, with relative velocities V(V,&,<p) referred to 
the test-one, entering into a spherical band between the colatitudial 
angles X and X+dX per unit time, dNi , is given by multiplying nVcos<9*2TTR'2X 
sinXdX with the frequency distribution of IT as follows (c.f. Fig. l). 

c^N1-2l^viRVExpC-X~V2+iNtiV(coS^co5X+Sin^5inXCOS(f>)3v3dY 

where Y=V/(/2<r) denotes the non-dimensional relative speed of a field-
particle and Yo=Vo/(/2<f) the non-dimensional speed of the test-one. 

2. DENSITY DISTRIBUTION OF ENCOUNTING PARTICLES 

Taking into account that the encounter phenomena are symmetric around 

Fig. 1. Notations concerning an encounting particle's orbit. 
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the z-axis (c.f. Fig. l) let us evaluate the number density per unit time 
of the entered particles at a point with radius r and colatitudial angle 
X', v(r,x'). Since each of the entered particles moves supposedly along 
a Keplerian orbit, its position and its motion at some instant are 
expressed in terms of Y, Yo , <9, <?, and X. Hence, the change of variables 
from X and <£ to x'and ^'in eq. (l) provides information on the number of 
encounting particles in a volume element 2rcr:2drsinXdxi However, the time-
interval for staying in a spherical shell between the radii r and r+dr, 
namely dr/|r| (f: the radial velocity at r) depends on r, so that it must 
be taken into account. Then, letting X be r/R and since sinXdXd$>=sinx'dXd<j? 
we have 

Jc ' 

where the integral range of Y is taken in order to exclude the elliptic 
orbits, since the escape velocity at R corresponds to /2GM/(^R) = «i, while 
that of 0 is conditioned so as to reject the imaginary radial velocity by 
putting 6|=Sin^*X(l-X)/Yz+Xa. After cancelling drsinx'dx'on both sides and 
carrying out some calculations eq. (2) is reduced to 

+ Exfo fcxX.yz°S(W+uT+e) cosX.'3 I*r:*o<,\̂ Si,n(w-+u/+<9)Siŵ 3]̂  (3) 

where y denotes Y/oc,, <?= \r\/(f?<s'cx\) the non-dimensional radial velocity, 
W the true anomaly at an incident point P on the sphere, w the true 

v(xX) , , , 

afr j& Jv 9& 75& ,scr x 
Fig. 2. Dependence of ^(X,X') on X. Fig. 3- Dependence of V(X,X') on X'. 
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anomaly at r, and I0 (x)=JE(x/2) /(i!i!) the modified Bessel function of the 
zeroth order. It should be noticed that the second and the third line in 
eq. (3) correspond to the particles going into and those going out from a 
sphere with radius r respectively. 
From eq. (3) the number of particles per unit time in a spherical shell 
between the radii r and r+dr,<JN(X), is derived as follows. 

This indicates that the proportionality ofdN(X) to X holds more closely 
as X becomes smaller. Accordingly a nearly dependence of v(X,X/) on X~'^ 
is expected for sufficiently small values of X. 
Our numerical results substantiate it as exemplified in Fig. 2, where 
full and broken lines indicate runs of v(X,X=90°)/n, while ^(X,X=179°)/n 
and y(X,X/=l° )/n are specified by upward marks (̂ ,A, orA) and downward 
ones (v,v, or v) respectively. In the vicinity of the test-particle, 
where such linearity holds approximately, the dependence of v(X9X') on 
ex, appears to be roughly linear for a certain set of Yo and XC 
As for the relationship between v(X,X')/n and X it is illustrated in Fig. I 
in which a dence crowding of particles is detectable in the stern of the 
test-particle. Such a trend is magnified as tf, increases and YQ increases. 

For X=£«l all the terms in the second line of eq. (5) reduce to 4(y-l/y)/£. 
Thus eq. (5) without the second line represents F(o), namely the force 
due to all the particles in the whole sphere of the radius R. This F(o) 
is proved to be identical with the velocity change per unit time of the 
test-particle, £*v̂ , derived under the same assumption as made here, so 
that F(X) is nothing but a part of the so-called dynamical friction. 
Numerical integrations of eq. (5) for different values of X furnish 
information concerning which part of the hypothetical sphere contributes 
significantly to the encounter effect. Fig. 4 illustrates the dependence 
of F(X)/F(0) on X and the value of F(o) for each value of Y in the case 
of or,=2/£xl(r3. It is found therein that the encounter effect on a test-
particle is mainly caused by its neighbouring particles crowding backwards 
and the other ones lying in the outer part of the sphere contribute a 
little even though their number is much larger. 
Our results show that as ex, increases and Y decreases a smaller range of 
logX covers nearly the same curve of F(X)/F(O) as shown in Fig. 4. 

3. DYNAMICAL FRICTION 

Now the gravitational force acting on a unit mass of the test-particle 
due to the encounting particles lying outside an assigned radius r, F(X), 
can be obtained by multiplying (GM/r*)cosX^nr^drsinx'dx' with eq. (3) and 
integrating with respect to X/ and r. After lengthy calculations we have 

-*/ x *~2x$^* |/HX(^I)+VX1 2X(f(^o IVHXCY~IWX(*~I/*)|- K 
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Fig. 4* F(0) and dependence 
of F(X)/F(0) on X. 

Fig. 5- Percentage difference 
in IAV., ((C-S)/S). 

4. NUMERICAL DIFFERENCES BETWEEN CHANDRASEKHAR'S Ẑ ifi AND OURS. 

Here we compare numerical values from ChandrasekharTs formula of Ẑ vu 
with those from our F(0). Supposing D̂ =R and denoting 9>(x) the error 
integral, we can write the former in our notations as 

^ ^ - K ^ d - ^ ^ - x ^ ) ] . **ri (6) 

Numerical differences in YAV^ / (ryt/<f) between eq, (6) and F(0) from eq. 
(5) are shown graphically in Fig. 5 with different values of <x, and Y . 
It is found there that deviations remain insignificant so long as o(| is 
small enough as for the stellar field in the solar neighbourhood, but for 
a larger 04 as in the cores of globular clusters and of clusters of 
galaxies the deviation becomes larger as Y0 departs far from /1.5 corres
ponding to Vo=f5<5. This may be anticipated since the initial assumption 
in deriving eq. (6) was R-*», so<Xr*0. On this connection it should be 
remarked that the impact parameter and the inclination of the orbital 
plane have usually been taken as the pair of independent variables, while 
in our treatment the colatitudial angle and the azimuthal one of the 
incident point on the sphere are adopted, consequently a modification 
sets in even when R tends to infinity. 
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