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Abstract

In this paper we address the issue of existence of cusp forms by using an extension and
refinement of a classic method involving (adelic) compactly supported Poincaré series.
As a consequence of our adelic approach, we also deal with cusp forms for congruence
subgroups.

1. Introduction

The existence and construction of cusp forms is a fundamental problem in the modern theory
of automorphic forms; see [Art05, Gol06, LS, Mul08, Sel56]. In this paper we address the issue of
existence of cusp forms by using an extension and refinement of a classic method involving (adelic)
compactly supported Poincaré series [Hen84, Sha90, Vig86]. Our approach is based on spectral
decomposition of compactly supported Poincaré series. This method has been successfully applied
to the case of a cocompact discrete subgroup of a semisimple Lie group [Mui08], yielding some
quantitative information on the decomposition of the corresponding L2-space. The main result
of this paper develops this idea further (see Theorem 7.2(iv)) using adelic language.

This is not the only application of our Theorem 7.2. Another application that we have in
mind is the one with which we began this introduction. To explain it, let us first introduce some
notation.

Let G be a semisimple algebraic group defined over a number field k. We write Vf
(respectively, V∞) for the set of finite (respectively, archimedean) places. For v ∈ V∞ ∪ Vf , we
write kv for the completion of k at v; if v ∈ Vf , then we let Ov be the ring of integers of kv.
Let G∞ =

∏
v∈V∞ G(kv). This is a semisimple Lie group with finite center; let K∞ and g∞ be

a maximal compact subgroup and the (real) Lie algebra of G∞, respectively. Let G(Af ) be the
restricted product of all G(kv) for v ∈ Vf . Let Acusp(G(k)\G(A)) be the space of K∞-finite cusp
forms for G(A) (see [BJ79] or § 2). This is a ((g∞, K∞)×G(Af ))-module. In particular, it is a
smooth G(kv)-module for v ∈ Vf . This fact enables us to apply Bernstein’s theory and decompose
Acusp(G(k)\G(A)) according to the Bernstein classes Mv (see § 5):

Acusp(G(k)\G(A)) =
⊕
M v

Acusp(G(k)\G(A))(Mv).

If Mv is a Bernstein class of (Mv, ρv), where Mv is a Levi subgroup of G(kv) and ρv is an
irreducible supercuspidal representation of Mv, then, by definition, Acusp(G(k)\G(A))(Mv) is
the largest G(kv)-submodule of Acusp(G(k)\G(A)) such that every irreducible subquotient of
it is a subquotient of IndG(kv)

Pv
(χvρv), for some unramified character χv of Mv. Here Pv is an
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arbitrary parabolic subgroup of G(kv) containing Mv as a Levi subgroup. Obviously, this is
also a ((g∞, K∞)×G(Af ))-module decomposition. Further, we can iterate this for v ranging
over a finite set of places, and as a result we arrive at the question of non-triviality of a
((g∞, K∞)×G(Af ))-module Acusp(G(k)\G(A))(Mv; v ∈ T ), where T ⊂ Vf is a finite and non-
empty set of places. The following theorem gives rather precise information on the structure of
Acusp(G(k)\G(A))(Mv; v ∈ T ). The present nice formulation was suggested by the referee.

Theorem 1.1. Let T be a finite set of places of k such that G is unramified over kv for
v ∈ Vf − T . For v ∈ T , let Mv be a Bernstein class of G(kv) determined by (Mv, ρv). We define P

to be the set of all k-parabolic subgroups P such that a Levi factor of P (kv) contains a G(kv)-
conjugate of Mv for all v ∈ T . Then we have the following.

(i) Acusp(G(k)\G(A))(Mv; v ∈ T ) 6= 0.

(ii) Assume that

P = {G}. (1.2)

Then, for a sufficiently small open-compact subgroup L⊂G(Af ) of the form

L=
∏
v∈T

Lv ×
∏

v∈Vf−T
G(Ov),

there exist infinitely many K∞-types δ which depend on L such that a ((g∞, K∞)×G(Af ))-
module Acusp(G(k)\G(A))(Mv; v ∈ T ) contains infinitely many irreducible representations

of the form πj∞ ⊗v∈Vf
πjv. Here, πjv is unramified for v ∈ Vf − T , belongs to the class Mv and

contains a non-trivial vector invariant under Lv for v ∈ T , while the irreducible unitarizable
(g∞, K∞)-module πj∞ contains δ; the set of equivalence classes {πj∞} is infinite.

We remark that an optimal choice of Lv may, in future, be obtained along the lines
of [BK98, MP96], but one can give an easy description of Lv that works here. More precisely,
if (Mv, ρv) is the local Bernstein data, then we can take any Lv as long as it has an Iwahori
decomposition

Lv = L−v L
0
vL

+
v

and ρv has a non-zero L0
v =Mv ∩ Lv-fixed vector. This follows from [Cas, Proposition 3.3.6].

The assumption (1.2) is satisfied if for at least one element v ∈ T the Bernstein class Mv

satisfies Mv =G(kv), or if G(k)\G(A) is compact. It is also satisfied in a significant number
of other cases. The following example was proposed by the referee. Let G be the k-split Sp2n.
We select two places v1, v2 ∈ Vf and let Mv1 = GLn(kv) and Mv2 = GL1(kv)n−1 × SL2(kv). Then
P = {Sp2n} since Mv1 = GLn(kv) does not contain a long root of SL2 which is contained in Mv2 .

Theorem 1.1(ii) is a direct consequence of the spectral decomposition of adelic compactly
supported Poincaré series (see Theorem 7.2) together with the cuspidality criterion given by
Proposition 5.3. Theorem 1.1(i) follows from Theorem 1.1(ii) upon enlarging T by a place w ∈ Vf
and taking some Bernstein class Mw of G(kw) determined by a pair of the form (G(kw), ρw),
where ρw is an arbitrary supercuspidal representation of G(kw).

Now we outline the content of the paper. Let f ∈ C∞c (G(A)). Then the adelic compactly
supported Poincaré series P (f) is defined as follows:

P (f)(g) =
∑

γ∈G(k)

f(γ · g).
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It is well-known [God66] that the right-regular representation of G(A) on L2
cusp(G(k)\G(A)) can

be decomposed into a countable direct sum of irreducible G(A)-invariant subspaces:

L2
cusp(G(k)\G(A)) =

⊕
j

Hj .

We then define the cuspidal spectral decomposition of P (f) as follows:

the orthogonal projection of P (f) to L2
cusp(G(k)\G(A)) =

∑
j

ψj with ψj ∈ Hj .

In order to make this concept useful, we employ the following approach. We fix an arbitrary
function

⊗
v∈Vf

fv ∈ C∞c (G(Af )) which does not vanish at 1, and we select an open-compact
group L⊂G(Af ) such that this function is right-invariant under L. Then, in § 4 we study possible
K∞-types δ which appear in L2(K∞ ∩ ΓL\K∞) and f∞ ∈ C∞c (G∞) such that the following hold.

(a) The Poincaré series P (f) and its restriction to G∞ are non-trivial, where f def= f∞ ⊗v∈Vf
fv ∈

C∞c (G(A)).

(b) P (f) is right-invariant under L and transforms according to δ on the right.

(c) The support of P (f)|G∞ is contained in a set of the form ΓL · C, where C is a compact set
that is right-invariant under K∞ and ΓL · C is not the whole of G∞.1

The precise description of the K∞-types is given by Theorem 4.2. The requirement that δ belong
to L2(K∞ ∩ ΓL\K∞) is explained in [Mui08, Theorem 3-1]. This is necessary in order to apply
a non-vanishing criterion from [Mui08, § 3]. We remark that P (f) has a fairly large support
because of (b); hence, its non-vanishing is difficult to ensure. The condition (c) is fundamental in
establishing that the number of cusp forms in Theorem 1.1 is infinite. This is done in the main
result of § 7; see Theorem 7.2(iv). It is based on a principle explained in [Mui08, § 4].

To make the results of § 4 useful, in § 5 we apply Bernstein’s theory to the right-regular smooth
representation of C∞c (G(kv)), for each finite place v ∈ Vf . The main results of that section are the
principle of local cuspidality along a parabolic subgroup (Lemma 5.1) and the non-triviality of
Bernstein components for the right-regular smooth representation of C∞c (G(kv)) (Lemma 5.2).
The global consequence of cuspidality of Poincaré series is discussed in Proposition 5.3. In § 6,
we show that an analogous theory does not exist in the archimedean case (see Proposition 6.1).
Finally, in § 7, Theorem 7.2, we explain the spectral decomposition of cuspidal Poincaré series
constructed in Theorem 4.2.

We believe that, when combined with the p-adic theory of types (see [BK98, MP96]), the
main results of this paper will be even more useful in the construction of cuspidal automorphic
representations. Some of this work is pursued in [Mui].

We remark that completely different adelic Poincaré series were studied in [Mui09]; there we
established their cuspidality and non-vanishing properties.

2. Preliminary results

In this section we fix the notation to be used in this paper. Let G be a semisimple algebraic
group defined over a number field k. We write Vf (respectively, V∞) for the set of finite

1 We remind the reader that to any open-compact subgroup L⊂G(Af ) we can attach a congruence subgroup
ΓL ⊂G∞ (see § 2).
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(respectively, archimedean) places. For v ∈ V := V∞ ∪ Vf , we write kv for the completion of k
at v. If v ∈ Vf , we let Ov denote the ring of integers of kv. Let A be the ring of adeles of k. For
almost all places of k, G is defined over Ov. The group of adelic points G(A) =

∏′
v G(kv) is a

restricted product over all places of k of the groups G(kv): g = (gv)v∈V ∈G(A) if and only if
gv ∈G(Ov) for almost all v. Note that G(A) is a locally compact group and G(k) is embedded
diagonally as a discrete subgroup of G(A).

For a finite subset S ⊂ V , we let

GS =
∏
v∈S

G(kv).

If, in addition, S contains all archimedean places V∞, we let GS =
∏′
v/∈S G(kv). Then

G(A) =GS ×GS . (2.1)

We let G∞ =GV∞ and G(Af ) =GV∞ .
The group G∞ is a semisimple Lie group. It may not be connected, but it has a finite center.

The groupG(Af ) is a totally disconnected group. LetK∞ ⊂G∞ be a maximal compact subgroup.
Let g∞ = Lie(G∞) be the (real) Lie algebra of G∞. Let U(g∞) be the universal enveloping
algebra of the complexified Lie algebra g∞,C = g∞ ⊗R C. Let Z(g∞) be the center of U(g∞). The
maximal compact subgroup K∞ comes as a fixed-point set of a Cartan involution Θ of G∞.
The differential θ of Θ gives the following decomposition of g∞:

g∞ = k⊕ p,

where k and p are the +1 and −1 eigenspaces of θ, respectively. We have k = Lie(K∞). Let a∞
be a maximal abelian subalgebra of p. We choose some ordering of the roots Σ(a∞, g∞) so that
the positive roots Σ+(a∞, g∞) are determined. Let N∞ be the corresponding unipotent radical.
This determines a minimal parabolic subgroup P∞ =M∞A∞N∞ of G∞, where A∞ = exp(a∞)
and M∞ = ZK∞(A∞). We have the diffeomorphism

N∞ ×A∞ ×K∞
(n,a,k)7→n·a·k−−−−−−−−−−→G∞ =N∞A∞K∞.

The Iwasawa decomposition implies that there exist unique C∞-functions a :G∞→A∞, n :
G∞→N∞, and k :G∞→K∞ such that

g = n(g) · a(g) · k(g) for g ∈G∞. (2.2)

Let K̂∞ be the set of equivalence classes of irreducible representations of K∞. Let δ ∈ K̂∞,
then we write d(δ) and ξδ for the degree and character of δ, respectively. We fix the normalized
Haar measure dk on K∞. Let π be a Banach representation of G∞ on a Banach space B. Then,
for b ∈ B and δ ∈ K̂∞, we let

Eδ(b) =
∫
K∞

d(δ)ξδ(k)π(k)b dk.

This belongs to the δ-isotypic component B(δ) of B.
We say that a continuous function f :G(A)→ C is smooth if f(·, gf ) ∈ C∞(G∞) for all

gf ∈G(Af ) and there exists an open-compact subgroup L⊂G(Af ) such that f(g∞, gf · l) =
f(g∞, gf ) for all (g∞, gf ) ∈G∞ ×G(Af ) and l ∈ L. Here we consider f as a function of two
variables f(g) = f(g∞, gf ), where g = (g∞, gf ). We write C∞(G(A)) for the vector space of all
smooth functions on G(A). We let C∞c (G(A)) be the space of all smooth compactly supported
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functions on G(A). It is easy to show that C∞c (G(A)) is a span of the functions f∞ ⊗v∈Vf
fv

where f∞ ∈ C∞c (G∞), fv ∈ C∞c (G(kv)) for all v ∈ Vf , and fv = charG(Ov) for almost all v.

By definition, we let C∞(G(k)\G(A))⊂ C∞(G(A)) be the subspace consisting of all functions
f ∈ C∞(G(A)) such that f(γ · g) = f(g) for all γ ∈G(k) and g ∈G(A).

Let X ∈ g∞. Let f ∈ C∞(G(A)). Then we set

X.f(g∞, gf ) = d/dt|t=0f(g∞ exp(tX), gf ).

This gives the structure of a U(g∞)-module on C∞(G(A)). The subspace C∞(G(k)\G(A))
is a U(g∞)-submodule. In fact, both spaces are invariant under the action of G(A) by
right-translation.

A function f ∈ C∞(G(A)) is K∞-finite (on the right) if

spanC{(g∞, gf )→ f(g∞k∞, gf ) : k∞ ∈K∞}

is finite-dimensional. Similarly, f ∈ C∞(G(A)) is Z(g∞)-finite if the space spanned by z.f , z ∈
Z(g∞), is finite-dimensional; in other words, the annhilator of f in Z(g∞) has finite codimension.
By a well-known result, if f ∈ C∞(G(A)) is K∞-finite and Z(g∞)-finite, then it is real-analytic
in g∞. We write C∞(G(A))K∞,Z(g∞)-finite for the space of all f ∈ C∞(G(A)) which are K∞-finite
and Z(g∞)-finite on the right. In a similar way, we can define C∞(G(k)\G(A))K∞,Z(g∞)-finite.
The space C∞(G(A))K∞,Z(g∞)-finite is no longer G(A)-invariant, but it is a ((g∞, K∞)×G(Af ))-
module, and the space C∞(G(k)\G(A))K∞,Z(g∞)-finite is its submodule.

An automorphic form is a function f ∈ C∞(G(k)\G(A))K∞,Z(g∞)-finite which satisfies a
certain growth condition (see [BJ79, 4.2]). We denote the space of all automorphic forms
by A(G(k)\G(A)). It is a ((g∞, K∞)×G(Af ))-submodule of C∞(G(k)\G(A))K∞,Z(g∞)-finite.
We denote the subspace of cuspidal automorphic forms by Acusp(G(k)\G(A)). By definition,
f ∈ A(G(k)\G(A)) is a cuspidal automorphic form if∫

UP (k)\UP (A)
f(ng) dn= 0 for all g ∈G(A), (2.3)

for all proper k-parabolic subgroups P of G. In this paper we write UP for the unipotent
radical of a k-parabolic subgroup P of G. In general, we say that a locally integrable function
f :G(k)\G(A)→ C is a cuspidal function if it satisfies (2.3) for almost all g ∈G(A).

The space of cuspidal automorphic forms Acusp(G(k)\G(A)) is a ((g∞, K∞)×G(Af ))-
submodule of A(G(k)\G(A)).

The topological space G(k)\G(A) has a finite-volume G(A)-invariant measure,∫
G(k)\G(A)

P (f)(g) dg =
∫
G(A)

f(g) dg for f ∈ C∞c (G(A)), (2.4)

where the adelic compactly supported Poincaré series P (f) is defined by

P (f)(g) =
∑

γ∈G(k)

f(γ · g) ∈ C∞c (G(k)\G(A)). (2.5)

We say that P (f) is a an adelic compactly supported cuspidal Poincaré series if the function
P (f) is a cuspidal function.

The measure introduced in (2.4) enables us to define the Hilbert space L2(G(k)\G(A)) and
its closed subspace L2

cusp(G(k)\G(A)) that consists of all cuspidal functions in L2(G(k)\G(A)).
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Both spaces are unitary representations of G(A). Moreover, we have the following result from
representation theory (see [God66]).

Theorem 2.6. The space L2
cusp(G(k)\G(A)) can be decomposed into a direct sum of irreducible

unitary representations of G(A) that each occur with a finite multiplicity.

Let L⊂G(Af ) be an open-compact subgroup. Then the intersection

Γ = ΓL =G(k) ∩ L⊂G(Af ), (2.7)

which is taken in G(Af ), is a discrete subgroup of G∞. It is called a congruence subgroup [BJ79].
It is well-known that we can fix a finite-volume G∞-invariant measure on Γ\G∞,∫

Γ\G∞
P (f∞)(g) dg =

∫
G∞

f∞(g) dg (2.8)

for f∞ ∈ C∞c (G∞), where the compactly supported Poincaré series (for Γ) is defined as follows:

P (f∞)(g) def=
∑
γ∈Γ

f∞(γ · g). (2.9)

The function P (f∞) belongs to the space C∞c (Γ\G∞) (the subspace of C∞(G∞) consisting of
all left-Γ-invariant functions compactly supported modulo Γ). We use the measure on Γ\G∞ to
define a Hilbert space L2(Γ\G∞) which is a unitary representation of G∞. Similarly to what we
did before, we define the notion of cuspidality by letting UP,∞ be the product

UP,∞ =
∏
v∈V∞

UP (kv) (2.10)

and integrating over UP,∞ ∩ Γ\UP,∞, for any proper k-parabolic subgroup P of G. The analogue
of Theorem 2.6 is valid (see [God66]).

3. Restriction of an adelic compactly supported Poincaré series to G∞

In this section, we study the restriction of an adelic Poincaré series (2.5) to G∞. As before, we
write g = (g∞, gf ) ∈G(A) =G∞ ×G(Af ). We have

P (f)(g∞, 1) =
∑

γ∈G(k)

f(γ · g∞, γ). (3.1)

Now we show the following simple but important proposition.

Proposition 3.2. Let f ∈ C∞c (G(A)). Assume that L is an open-compact subgroup of G(Af )
such that f is right-invariant under L. We define a congruence subgroup of G∞ using (2.7). Then
the function in (3.1) is a compactly supported Poincaré series attached to G∞ for ΓL. Moreover,
if P (f) is cuspidal, then the function in (3.1) is cuspidal for ΓL.

Proof. Since f is compactly supported, we can find c1, . . . , cl ∈G(Af ) and f∞,1, . . . , f∞,l ∈
C∞c (G∞) such that f =

∑l
i=1 f∞,i ⊗ charci·L. Then (3.1) implies that

P (f)(g∞, 1) =
∑

γ∈G(k)

f(γ · g∞, γ) =
l∑

i=1

∑
γ∈G(k)∩ci·L

f∞,i(γ · g∞).
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It could happen that G(k) ∩ ci · L= ∅, since G(k) is not necessarily dense in G(Af ). Nevertheless,
if G(k) ∩ ci · L 6= ∅, we may assume that ci ∈G(k). Hence G(k) ∩ ci · L= ci · ΓL. Thus

P (f)(g∞, 1) =
∑

16i6l
G(k)∩ci·L6=∅

∑
γ∈ΓL

f∞,i(ci · γ · g∞).

This function belongs to C∞c (ΓL\G∞) and is a compactly supported Poincaré series for ΓL.

Let P be a k-parabolic subgroup of G. Then, for a fixed g∞ ∈G∞, the function u 7→
P (f)(u · (g∞, 1)) is right-invariant under the open-compact subgroup LP

def= L ∩ Uv(Af ). Now,
Lemma 3.3 below shows that the cuspidality of P (f) implies the ΓL-cuspidality of the function
given by (3.1). 2

It remains to state and prove Lemma 3.3. Let P be a k-parabolic subgroup of G. We remind
the reader that UP,∞ is defined by (2.10). We fix Haar measures du∞, duf and du on UP,∞,
UP (Af ) and UP (A), respectively, such that∫

UP (A)
ϕ(u) du=

∫
UP,∞

∫
UP (Af )

ϕ(u∞, uf ) du∞ duf for ϕ ∈ Cc(UP (A)).

Lemma 3.3. Let ψ : UP (k)\UP (A)→ C be a continuous function which is right-invariant under
an open-compact subgroup LP ⊂ UP (Af ). Then, if we let volUP (Af )(LP ) =

∫
UP (Af ) charLP

duf ,

we have the formula∫
UP (k)\UP (A)

ψ(u) du= volUP (Af )(LP ) ·
∫

ΓLP
\UP,∞

ψ(u∞) du∞,

where ΓLP
is a discrete subgroup of UP,∞ defined as ΓLP

= UP (k) ∩ LP .

Proof. By the usual integration theory, we can find a compactly supported continuous function
ϕ : UP (A)→ C such that ψ = P (ϕ), where P (ϕ)(u) def=

∑
γ∈UP (k) ϕ(γ · u) for u ∈ UP (A). Since ψ

is right-invariant under the open-compact subgroup LP , we can assume that ϕ satisfies the same.
Now, we can find u1, . . . , ul ∈ UP (Af ) and continuous compactly supported functions ϕ1, . . . , ϕl
on UP,∞ such that ϕ=

∑l
i=1 ϕi ⊗ charuiLP

, where we consider ϕ as a function of two variables

u= (u∞, uf ) ∈ UP (A) = UP,∞ × UP (Af ).

Next, the strong approximation implies that UP (A) = UP (k)UP,∞LP . Hence UP (Af ) = UP (k)LP ,
which implies that we can assume u1, . . . , ul ∈ UP (k). This is used to determine the restriction
of ψ to UP,∞. As in the proof of Proposition 3.2, we obtain that

ψ(u∞) =
l∑

i=1

∑
γ∈ΓLP

(l(u−1
i )ϕi)(γ · u∞),

where l denotes the left-translation. Hence∫
ΓLP
\UP,∞

ψ(u∞) du∞ =
l∑

i=1

∫
ΓLP
\UP,∞

( ∑
γ∈ΓLP

(l(u−1
i )ϕi)(γ · u∞)

)
du∞

=
l∑

i=1

∫
UP,∞

(l(u−1
i )ϕi)(u∞) du∞ =

l∑
i=1

∫
UP,∞

ϕi(u∞) du∞.
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Again, by the definition we compute that∫
UP (k)\UP (A)

ψ(u) du =
∫
UP (k)\UP (A)

( ∑
γ∈UP (k)

ϕ(γ · u)
)
du=

∫
UP (A)

ϕ(u) du

=
∫
UP,∞

(∫
UP (Af )

ϕ(u∞, uf ) duf

)
du∞

= volUP (Af )(LP ) ·
∫
UP,∞

( l∑
i=1

ϕi(u∞)
)
du∞.

Combining the preceding two formulas gives the lemma. 2

4. Non-vanishing of adelic compactly supported Poincaré series

In this section we develop a non-vanishing criterion for (2.5) which controls not only the non-
vanishing of (2.5) but also the non-vanishing of the restriction to G∞ (see § 3). The criterion is
based on a non-vanishing criterion given by [Mui08, Lemma 4.2].

First we introduce some notation. Let S be a finite set of places which contains V∞ and
is large enough that G is defined over Ov for v 6∈ S. We use the decomposition of G(A) given
by (2.1). Let

ΓS =
(∏
v 6∈S

G(Ov)
)
∩G(k) with the intersection taken in GS .

This can be considered as a subgroup of GS by using the diagonal embedding of G(k) into the
product (2.1) and then the projection to the first component. Since G(k) is a discrete subgroup
of G(A), it follows that ΓS is a discrete subgroup of GS .

For v ∈ S − V∞, we choose an open-compact subgroup Lv. We put

Γ =
( ∏
v∈S−V∞

Lv ×
∏
v 6∈S

G(Ov)
)
∩G(k) = ΓS ∩

( ∏
v∈S−V∞

Lv

)
. (4.1)

This is a discrete subgroup of G∞. Now we have the following non-vanishing criterion.

Theorem 4.2. Let S be a finite set of places which contains V∞ and is large enough that G
is defined over Ov for v 6∈ S. Assume that for each v ∈ Vf , we have fv ∈ C∞c (G(kv)) such that
fv(1) 6= 0 and fv = charG(Ov) for all v 6∈ S. For v ∈ S − V∞, we choose an open-compact subgroup
Lv such that fv is right-invariant under Lv. Then the intersection

ΓS ∩
[
K∞ ×

∏
v∈S−V∞

supp(fv)
]

is a finite set and can be written as

l⋃
j=1

γj · (K∞ ∩ Γ). (4.3)

Next, we let

cj =
∏

v∈S−V∞

fv(γj).
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Then the K∞-invariant map C∞(K∞)→ C∞(K∞ ∩ Γ\K∞) given by

α 7→
(
k 7→ α̂(k) def=

l∑
j=1

∑
γ∈K∞∩Γ

cj · α(γjγ · k)
)

(4.4)

is non-trivial, and for every δ ∈ K̂∞ contributing to the decomposition of the closure of the image
of (4.4) in L2(K∞ ∩ Γ\K∞) we can find a non-trivial f∞ ∈ C∞c (G∞) such that the following hold.

(i) Eδ(f∞) = f∞.

(ii) The Poincaré series P (f) and its restriction to G∞ (which is a Poincaré series for ΓL) are

non-trivial, where f
def= f∞ ⊗v∈Vf

fv ∈ C∞c (G(A)).
(iii) Eδ(P (f)) = P (f) and P (f) is right-invariant under L.

(iv) The support of P (f)|G∞ is contained in a set of the form ΓL · C, where C is a compact set
which is right-invariant under K∞ and such that ΓL · C is not the whole of G∞.

Proof. Arguing as in the proof of [Mui08, Lemma 4.1], we can find a neighborhood of 1 ∈G∞ of
the form UVK∞, where U ⊂N∞ and V ⊂A∞ are neighborhoods of identities, such that

ΓS ∩
[
(UVK∞)×

∏
v∈S−V∞

supp(fv)
]

= ΓS ∩
[
K∞ ×

∏
v∈S−V∞

supp(fv)
]
. (4.5)

Obviously, the intersection in (4.5) is finite. It can be described as the set of all γ ∈ ΓS satisfying

γ ∈K∞ and
∏

v∈S−V∞

fv(γ) 6= 0. (4.6)

The set of all γ ∈ ΓS satisfying
∏
v∈S−V∞ fv(γ) 6= 0 is clearly right-invariant under Γ. Hence, the

characterization of the intersection in (4.5) given by (4.6) shows that the intersection in (4.5) is
right-invariant under K∞ ∩ Γ and can be written as a disjoint union of the form (4.3).

We now show that the map (4.4) is non-trivial. First of all, our assumption that fv(1) 6= 0
for v ∈ Vf and the characterization of the intersection (4.5) given by (4.6) enable us to assume
that γ1 = 1. Then c1 =

∏
v∈S−V∞ fv(1) 6= 0.

Next, let W be a neighborhood of γ1 = 1 ∈K∞ such that W intersects the finite set (4.3)
exactly in {γ1}. Let α ∈ C∞(K∞) be such that it vanishes outside W and α(γ1) 6= 0. Then, for
k = 1, the right-hand side of (4.4) becomes

l∑
j=1

∑
γ∈K∞∩Γ

cj · α(γjγ) = c1α(γ1) 6= 0.

This shows the non-triviality of the map (4.4).
Let α ∈ C∞(K∞) be any function such that the right-hand side of (4.4) is non-trivial. We

can write its spectral expansion in L2(K∞ ∩ Γ\K∞) as

α̂=
∑
δ∈K̂∞

Eδ(α̂), (4.7)

where

Eδ(α̂)(k) =
∫
K∞

d(δ)ξδ(k′)α̂(kk′) dk′.

As we explain at the beginning of [Mui08, § 3], only those δ containing a non-trivial vector
invariant under K∞ ∩ Γ can contribute to the spectral expansion given by (4.7). For δ ∈ K̂∞ such
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that Eδ(α̂) 6= 0, Eδ(α̂) is a linear combination of matrix coefficients of the form [Mui08, (4)]. In
particular, since Êδ(α) = Eδ(α̂), this shows the existence of α such that Eδ(α) = α and α̂ 6= 0, for
every δ appearing in the decomposition of the closure of the image of the map α 7→ α̂ under K∞.

Now, fix δ appearing in the decomposition under K∞ of the closure in L2(K∞ ∩ Γ\K∞) of the
image of the map α 7→ α̂, and select an arbitrary ξ ∈ C∞(K∞) such that Eδ(ξ) = ξ and ξ̂ 6= 0. We
also take ζ ∈ C∞c (U) and η ∈ C∞c (V ) such that ζ(1) 6= 0 and η(1) 6= 0. We define f∞ ∈ C∞c (G∞)
by

f∞(uvk) = ζ(u)η(v)ξ(k).
Then, by a short calculation, we obtain Eδ(f∞) = f∞. This proves (i). Also, it immediately
implies that Eδ(P (f)) = P (f), which is the first claim in (iii). The right-invariance under L in
(iii) is obvious.

By construction, we see that
supp(f∞)⊂ UVK∞. (4.8)

This is used to prove the following observation.

Lemma 4.9. Let γ ∈ ΓS be such that
∏
v∈S−V∞ fv(γ) 6= 0, and let k ∈K∞. Then, f∞(γ · k) 6= 0

implies γ ∈ ΓS ∩ [K∞ ×
∏
v∈S−V∞ supp(fv)].

Proof. Indeed, (4.8) implies that

γ · k ∈ ΓS ∩
[
(UVK∞)×

∏
v∈S−V∞

supp(fv)
]
.

Hence

γ ∈ ΓS ∩
[
(UVK∞ · k−1)×

∏
v∈S−V∞

supp(fv)
]

= ΓS ∩
[
(UVK∞)×

∏
v∈S−V∞

supp(fv)
]
.

Now apply (4.5) and the result follows. 2

For k ∈K∞, by using Lemma 4.9 we compute that

P (f)(k, 1) =
∑
γ∈ΓS

( ∏
v∈S−V∞

fv(γ)
)
· f∞(γ · k) =

l∑
j=1

∑
γ∈K∞∩Γ

cj · f∞(γjγ · k) = ζ(1)η(1)ξ̂(k).

(4.10)
In particular, P (f) is not identically zero on K∞. This proves assertion (ii) of Theorem 4.2.

Finally, let us prove (iv). Since f is factorizable, using the notation from the proof of
Proposition 3.2 we see that f∞,1 = · · ·= f∞,l = f∞ in the expression for f given at the beginning
of the proof of Proposition 3.2. The same proof then gives the following expression for the
restriction to G∞:

P (f)(g∞, 1) =
∑

16i6l
G(k)∩ci·L6=∅

∑
γ∈ΓL

f∞(ci · γ · g∞).

(We remind the reader that the ci in the above formula are not those from the present theorem
but are, rather, the ones from the proof of Proposition 3.2. In particular, if G(k) ∩ ci · L 6= ∅,
then we take ci ∈G(k).) Since (4.8) holds, we see that the restriction has support contained in⋃

16i6l
G(k)∩ci·L6=∅

ΓL · c−1
i · UVK∞.
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One can easily show that this is different from G∞, if we shrink U and V . (One can adjust the
argument given in [Mui08, Lemma 4.2].) This completes the proof of Theorem 4.2(iv). 2

We finish this section with the following remark.

Lemma 4.11. Maintaining the assumptions of Theorem 4.2, there are infinitely many δ ∈ K̂∞
that contribute to the decomposition of the closure of the image of (4.4).

Proof. Indeed, it is enough to show that given different elements k1, . . . , kl ∈K∞ and non-zero
c1, . . . , cl ∈ C− {0}, the map C∞(K∞)→ C∞(K∞) given by

α 7→
(
k 7→ α̂(k) def=

l∑
i=1

ci · α(ki · k)
)

has no finite image. To accomplish this, we select a neighborhood U of 1 ∈K∞ such that
kik
−1
j U ∩ U = ∅ for all i, j with i 6= j. Then, if α is supported in U , we easily see that α̂ 6= 0. 2

5. Construction of cuspidal compactly supported adelic Poincaré series

In this section we use Bernstein’s decomposition of the category of smooth complex
representations of reductive p-adic groups [Ber92] to construct adelic cuspidal compactly
supported Poincaré series on G(A).

Let us fix a place v ∈ Vf . We introduce some notation following the standard references [BZ76,
BZ77]. A parabolic subgroup of G(kv) is a group of kv-points of a kv-parabolic subgroup of G. We
consider the category of smooth (or algebraic) representations of G(kv). Let Pv be a parabolic
subgroup of G(kv) given by a Levi decomposition Pv =MvUv, where Mv is a Levi factor and Uv
is the unipotent radical of Pv. If σv is a smooth representation of Mv that was extended trivially
across Uv to a representation of Pv, then we denote the normalized induction by IndG(kv)

Pv
(σv).

If πv is a smooth representation of G(kv), then we denote by JacqPv

G(kv)(πv) a normalized Jacquet

module of πv with respect to Pv. When restricted to Uv, JacqPv

G(kv)(πv) is a direct sum of
(possibly infinitely many) copies of a trivial representation. Therefore, when Mv is fixed, we
write JacqMv

G(kv)(πv) = JacqPv

G(kv)(πv). Let M0
v be the subgroup of Mv given by the intersection of

the kernels of all characters mv 7→ |χv(mv)|v, where χv ranges over the group of all kv-rational
algebraic characters Mv→ k×v . We say that a character χv :Mv→ C× is unramified if it is trivial
on M0

v . We say that an irreducible representation ρv of Mv is supercuspidal if JacqQv

Mv
(ρv) = 0

for all proper parabolic subgroups Qv of Mv.
Now, following Bernstein [Ber92], on the set of pairs (Mv, ρv) where Mv is a Levi subgroup

of G(kv) and ρv is a smooth irreducible supercuspidal representation of Mv we introduce an
equivalence relation as follows: (Mv, ρv) and (M ′v, ρ

′
v) are equivalent if we can find gv ∈G(kv)

and an unramified character χv of M ′v such that M ′v = gvMvg
−1
v and ρ′v ' χvρ

gv
v , that is,

ρgv
v (m′v) = χv(m′v)ρv(g

−1
v m′vgv) for m′v ∈M ′v.

In the discussion below, we shall write Mv for the Bernstein equivalence class of a pair (Mv, ρv).
Let V be a smooth complex representation of G(kv). Let V (Mv) be the largest smooth

submodule of V such that every irreducible subquotient of V is a subquotient of IndG(kv)
Pv

(χvρv)
for some unramified character χv of Mv. Here Pv is an arbitrary parabolic subgroup of G(kv)
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containing Mv as a Levi subgroup. The fundamental result of Bernstein is the decomposition

V =
⊕
M v

V (Mv).

Now, we prove the following lemma.

Lemma 5.1. Fix a Bernstein equivalence class Mv (of a pair (Mv, ρv)), and consider C∞c (G(kv))
as a smooth representation of G(kv) acting by right-translations. Let fv ∈ C∞c (G(kv))(Mv). Let
P ′v =M ′vU

′
Pv

be a parabolic subgroup of G(kv) such that M ′v does not contain a conjugate of Mv.
Then ∫

U ′Pv

fv(gvuvg′v) duv = 0 for all gv, g
′
v ∈G(kv).

Proof. Assume that we can find gv, g
′
v ∈G(kv) such that

0 6=
∫
U ′Pv

fv(gvuvg′v) duv =
∫

(g′v)−1U ′Pv
g′v

fv(gvg′vuv) duv =
∫

(g′v)−1U ′Pv
g′v

Fv(uv) duv,

where Fv is defined by Fv(x) def= fv(gvg′v · x) for x ∈G(kv). Since the action of G(kv) by left-
translations commutes with the action by right-translations, we obtain Fv ∈ C∞c (G(kv))(Mv).
This enables us to assume that gv = g′v = 1. Let X(fv) be a subrepresentation of C∞c (G(kv))(Mv)
generated by fv. Since

∫
U ′Pv

fv(uv) duv 6= 0, we see that

JacqP
′
v

G(kv)(X(fv)) 6= 0.

The set of parabolic subgroups of G(kv) contained in P ′v is partially ordered by inclusion. Let P ′′v
be the minimal parabolic subgroup contained in P ′v such that JacqP

′′
v

G(kv)(X(fv)) 6= 0. We write
P ′′v =M ′′vU

′′
v for some Levi decomposition of P ′′v . By standard theory (see, e.g., [BZ76, 2.6]), there

exists an irreducible smooth representation ρ′′v of M ′′v which is a subquotient of JacqP
′′
v

G(kv)(X(fv)).
We claim that ρ′′v is supercuspidal. If ρ′′v is not supercuspidal, we can find a parabolic subgroup
Q′′v of M ′′v such that JacqQ

′′
v

M ′′v
(ρ′′v) 6= 0. Then R′′v =Q′′vU

′′
v is a proper parabolic subgroup of P ′′v .

The transitivity of Jacquet modules [BZ77, Proposition 2.3] implies that

JacqR
′′
v

G(kv)(X(fv)) = JacqQ
′′
v

M ′′v
(JacqP

′′
v

G(kv)(X(fv))).

Now, the exactness of Jacquet functors implies that JacqR
′′
v

G(kv)(X(fv)) 6= 0. But this is a
contradiction; therefore ρ′′v is supercuspidal.

Now, since ρ′′v is supercuspidal, [BZ77, Theorem 2.4(c)] implies that

HomM ′′v (JacqP
′′
v

G(kv)(X(fv)), ρ′′v) 6= 0.

Thus, Frobenius reciprocity gives

HomG(kv)(X(fv), IndG(kv)
P ′′v

(ρ′′v))'HomM ′′v (JacqP
′′
v

G(kv)(X(fv)), ρ′′v) 6= 0.

Since X(fv) is a subrepresentation of C∞c (G(kv))(Mv), we have

(M ′′v , ρ
′′
v) ∈Mv.

In particular, M ′′v is conjugate to Mv. But since P ′′v ⊂ P ′v, by fixing some appropriate minimal
parabolic subgroup of G(kv) contained in P ′v and the corresponding maximal split torus we see
that M ′′v is conjugate to a Levi subgroup in M ′v, which is a contradiction. 2
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The next lemma gives further information on the decomposition of C∞c (G(kv)).

Lemma 5.2. Let Mv be a Bernstein equivalence class. Let (Mv, ρv) represent the class Mv. Then
the following hold.

(i) C∞c (G(kv))(Mv) 6= 0.

(ii) Let πv be a smooth irreducible representation of G(kv), and assume that fv ∈
C∞c (G(kv))(Mv). If πv(fv) 6= 0, then the contragredient representation π̃v belongs to the
class Mv, i.e. there exist a parabolic subgroup Pv of G(kv) which has Mv as a Levi
factor and an unramified character χv of Mv such that π̃v is an irreducible subquotient

of IndG(kv)
Pv

(χvρv). In other words, πv belongs to the class of (Mv, ρ̃v).

Proof. As before, in this proof the group G(kv) acts on C∞c (G(kv)) by right-translations. We
begin the proof with the following observation. Let (πv, Vv) be a smooth (not necessarily
irreducible) representation of G(kv). We write (π̃v, Ṽv) for the contragredient representation
of πv. We denote by 〈·, ·〉 : Vv × Ṽv→ C a canonical G(kv)-invariant pairing. The functions
fv ∈ C∞c (G(kv)) act as follows:

πv(fv)vv =
∫
G(kv)

fv(gv)πv(gv)vv dgv for vv ∈ Vv.

For a fixed ṽv ∈ Ṽv, this implies the following G(kv)-invariant pairing:

(fv, vv) 7→ 〈πv(fv)vv, ṽv〉=
∫
G(kv)

fv(gv)〈πv(gv)vv, ṽv〉 dgv.

If πv(fv) is not trivial, then we can select ṽv so that the pairing is non-trivial when restricted to
X(fv)× Vv, where X(fv) is a G(kv)-subrepresentation of C∞c (G(kv)) generated by fv. Hence

HomG(kv)(X(fv), π̃v) 6= 0.

This proves (ii) by the definition of C∞c (G(kv))(Mv).

Let πv
def= IndG(kv)

Pv
(ρ̃v). Then we can select some fv ∈ C∞c (G(kv)) such that πv(fv) 6= 0. (For

example, a characteristic function of a sufficiently small open-compact subgroup would do.)
Then, the first part of the proof gives

HomG(kv)

(
X(fv), IndG(kv)

Pv
(ρv)

)
6= 0.

If we make a decomposition

X(fv) =
⊕
N v

X(fv)(Nv)

according to the Bernstein classes and then apply (ii), we see that

HomG(kv)

(
X(fv)(Mv), IndG(kv)

Pv
(ρv)

)
6= 0.

In particular, X(fv)(Mv) 6= 0, and this implies (i). 2

Now we go back to a global theory and prove the following proposition.

Proposition 5.3. Let f = f∞ ⊗v∈Vf
fv ∈ C∞c (G(A)), and let P be a k-parabolic subgroup of G.

Assume that there is a finite place w and an equivalence class Mw (represented by (Mw, ρw)) such
that a Levi subgroup of P (kw) does not contain a conjugate of Mw and fw ∈ C∞c (G(kw))(Mw).
Then the constant term of P (f) along P vanishes.
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Proof. By definition, the constant term of P (f) with respect to a k-parabolic subgroup P of G is∫
UP (k)\UP (A)

P (f)(ug) du =
∫
UP (k)\UP (A)

( ∑
γ∈G(k)

ϕ(γ · ug)
)
du

=
∫
UP (A)

( ∑
γ∈G(k)/UP (k)

f(γ · ug)
)
du

=
∑

γ∈G(k)/UP (k)

∫
UP (A)

f(γ · ug) du. (5.4)

Since f is factorizable, i.e. f = f∞ ⊗v∈Vf
fv ∈ C∞c (G(A)), every term on the right-hand side

of the formula (5.4) is zero because of Lemma 5.1:∫
UP (A)

f(γ · ug) du=
(∫

UP,∞

f∞(γ · u∞ · g∞) du∞

)
·
∏
v∈Vf

∫
UP (kv)

fv(γ · uv · gv) duv = 0. 2

6. A comment on the archimedean case

In this section we show that the analogue of the results of § 5 in the archimedean case does not
give anything interesting.

Proposition 6.1. Let P be a proper parabolic subgroup of a Lie group G∞, and let UP,∞ be its
unipotent radical. Let ϕ ∈ C∞c (G∞). If

∫
UP,∞

ϕ(g1 · u · g2) du= 0 for all g1, g2 ∈G∞, then ϕ= 0.

Proof. We remind the reader that N∞ is the unipotent radical of the minimal parabolic subgroup
of G∞ fixed in § 2. We show that the assumption in the lemma implies that∫

N∞

ϕ(g1 · n · g2) dn= 0 for all g1, g2 ∈G∞. (6.2)

Indeed, after conjugation by an element of G∞, we may assume that UP,∞ ⊂N∞. Now,∫
N∞

ϕ(g1ng2) dn=
∫
UP,∞\N∞

(∫
UP,∞

ϕ(g1uu
′g2) du

)
du′ = 0.

This proves (6.2).

Having established (6.2), let P now denote an arbitrary standard parabolic subgroup of G∞
(i.e. it contains P∞). We write the Langlands decomposition of P as P =APM

1
PUP,∞. The Haar

measure is given by the formula∫
G∞

f(g) dg =
∫
UP,∞

∫
AP

∫
M1

P

∫
K∞

f(uamk)δ−1
P (a) du da dm dk (6.3)

with f ∈ C∞c (G∞), where we require that the Haar measure dk be normalized, i.e.
∫
K∞

dk = 1.

We assume that M1
P has representations in the discrete series. Let ν ∈ a∗P ⊗R C and σ ∈ M̂1

P

be a representation in the discrete series acting on a Hilbert space Hσ with a M1
P -invariant scalar

product (·, ·)σ. We consider the induced representation IndG∞P (ν, σ) on the space of classes of
measurable functions F :G∞→ Hσ such that

F (uamg) = eν(log a)δ
1/2
P (a)σ(m)F (g) for a ∈AP , m ∈M1

P , u ∈ UP,∞, g ∈G∞. (6.4)
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The functions f ∈ C∞c (G∞) act on IndG∞P (ν, σ) as bounded operators:

IndG∞P (R)(ν, σ)(f).F (g) =
∫
G∞

f(h)F (gh) dh.

The induced representation IndG∞P (ν, σ) is unitary under the usual scalar product

(F1, F2) =
∫
K∞

(F1(k), F2(k))σ dk

if ν ∈
√
−1 a∗P .

For a minimal parabolic subgroup P∞, the Langlands decomposition is P∞ =A∞M∞N∞
(fixed in § 2). Now, letting P = P∞, (6.2) yields

IndG∞P∞ (ν, σ)(ϕ).F (g) =
∫
G∞

F (gh)ϕ(h) dh=
∫
G∞

ϕ(g−1h)F (h) dh

=
∫
N∞

∫
A∞

∫
M∞

∫
K∞

eν(log a)δ
−1/2
P∞

(a)ϕ(g−1uamk)σ(m)F (k) du da dm dk

=
∫
A∞

∫
M∞

∫
K∞

{
eν(log a)δ

−1/2
P∞

(a)
(∫

N∞(R)
ϕ(g−1uamk) du

)
× σ(m)F (k)

}
da dm dk = 0.

Hence

IndG∞P∞ (ν, σ)(ϕ) = 0 for ν ∈ a∗∞ ⊗R C. (6.5)

Next, we show that tr(π(ϕ)) = 0 for every irreducible admissible representation π of G∞. Indeed,
for an appropriate ν ∈ a∗∞ ⊗R C and σ ∈ M̂∞, π is infinitesimally equivalent to a closed irreducible
subquotient Π of IndG∞P∞ (ν, σ). But (6.5) implies that Π(ϕ) = 0. Hence we obtain

tr(π(ϕ)) = tr(Π(ϕ)) = 0,

since irreducible infinitesimally equivalent representations have equal characters.

Now we apply the Plancherel theorem [Kna86]. Let M be the set of G∞-classes of Levi
subgroups M (including G∞) such that M1 has representations in the discrete series. We
identify M with the set of representatives taken among Levi subgroups of standard parabolic
subgroups. In other words, we identify M−{G∞} with the set P of representatives of the set
of all standard parabolic subgroups of G∞ under the association. If σ ∈ M̂1

P is a representation
in the discrete series, we write d(σ) for its formal degree. Now we state the Plancherel theorem.
We can fix measures on

√
−1 a∗P and on the unitary dual M̂1

P of M1
P such that

ϕ(1) =
∑

π is in the discrete
series for G∞

d(π) · tr(π(ϕ)) +
∑
P∈P

∫
√
−1a ∗P

∫
M̂1

P

tr(IndG∞P (ν, σ)(ϕ)) dν dσ. (6.6)

Since tr(π(ϕ)) = 0 for every irreducible admissible representation π of G∞, (6.6) implies
that ϕ(1) = 0. Finally, we observe that for g0 ∈G∞ we can apply the above consideration
to rg0ϕ, where rg0ϕ(g) = ϕ(gg0). Hence rg0ϕ(1) = ϕ(g0) = 0 for all g0 ∈G∞. This proves the
proposition. 2
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7. Spectral decomposition of adelic Poincaré series

In this section we study the spectral decomposition of the Poincaré series defined by Theorem 4.2.
We decompose L2

cusp(G(k)\G(A)) into irreducible subspaces:

L2
cusp(G(k)\G(A)) =

⊕̂
j

Hj . (7.1)

Let K =K∞ ×
∏
v∈Vf

Kv be a maximal compact subgroup of G(A), where Kv =G(Ov) for
almost all v. For each j, we find a unitary irreducible representation (π̂j ,Vj) of G(A) which
is unitary equivalent to Hj and factorizable, with

Vj = Vj
∞ ⊗̂v∈Vf

Vj
v,

into a restricted tensor product of local irreducible unitary representations (π̂j∞,Vj
∞) of G∞ and

(π̂jv,Vj
v) of G(kv), for v ∈ Vf .

The space of K-finite vectors (Hj)K in Hj is isomorphic to the usual restricted tensor product
πj = πj∞ ⊗v∈Vf

πjv, where each πjv is a representation of G(kv) on the space of Kv-finite vectors
(Vj

v)K in Vj
v and πj∞ is a (g∞, K∞)-module on the space of K∞-finite vectors (Vj

∞)K in Vj
∞.

Let χj be the infinitesimal character of πj∞.
The main result of this section is the following theorem.

Theorem 7.2. Let S be a finite set of places of k containing all infinite places such that G
is defined over Ov for v 6∈ S. For each v ∈ S − V∞, let Mv be a Bernstein equivalence class
represented by (Mv(kv), ρv), where Mv is a Levi subgroup of G defined over kv and ρv is a
supercuspidal representation of Mv(kv). Further, for each v ∈ S − V∞, fix fv ∈ C∞c (G(kv))(Mv)
such that fv(1) 6= 0. We let fv = charG(Ov) for v 6∈ S. For each v ∈ S − Vf , we choose an open-
compact subgroup Lv such that fv is right-invariant under Lv. We define the open-compact
subgroup L of G(Af ) by L=

∏
v∈S−V∞ Lv ×

∏
v 6∈S G(Ov). Assume that δ ∈ K̂∞ appears in the

closure of the image of the map (4.4) (see Theorem 4.2). Let f∞ ∈ C∞c (G∞) be such that
Theorem 4.2(i)–(iv) hold. Next, we make the decomposition

the orthogonal projection of P(f) to L2
cusp(G(k)\G(A)) =

∑
j

ψj with ψj ∈ Hj . (7.3)

Then we have the following.

(i) For all j, ψj ∈ Acusp(G(k)\G(A)) is right-invariant under L and transforms according to δ,
i.e. Eδ(ψj) = ψj .

2

(ii) Assume that ψj 6= 0; then πjv belongs to the Bernstein class of (Mv(kv), ρv) for all v ∈
S − V∞.

(iii) Assume that P (f) is cuspidal; then the number of indices j in (7.3) such that ψj 6= 0 is
infinite. Moreover, let χ be an infinitesimal character; then there are only finitely many
indices j such that ψj 6= 0 and χj = χ.

(iv) Assume that P (f) is cuspidal; then there exist infinitely many irreducible unitary
representations of G∞ which contain δ and belong to L2

cusp(ΓL\G∞). Their (g∞, K∞)-
modules are among the modules πj∞; more precisely, a (g∞, K∞)-module X is a K∞-finite
part of such a representation if and only if there exists j such that ψj |G∞ 6= 0 and X ' πj∞.

2 Obviously, z.ψj = χj(z)ψj for all z ∈ Z(g∞).
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Proof. First, Theorem 4.2(iii) implies that Eδ(P (f)) = P (f) and that P (f) is right-invariant
under L. Hence the same is true for the orthogonal projection of P (f) to L2

cusp(G(k)\G(A)).
As it has a unique spectral decomposition, we obtain Eδ(ψj) = ψj and that ψj is right-invariant
under L. It remains to show that ψj ∈ Acusp(G(k)\G(A)). But ψj is K∞-finite and L-invariant;
hence it belongs to the K-finite part of Vj . In particular, the discussion before the statement of
the theorem shows that ψj is also Z(g∞)-finite. The claim now follows from [BJ79, 4.3(ii)].

We now prove (ii). One triviality is seen from (7.3), namely, for all j such that ψj 6= 0,∫
G(k)\G(A)

P (f)(g)ψj(g) dg =
∫
G(k)\G(A)

ψj(g)ψj(g) dg > 0. (7.4)

Now, we unfold the integral on the left-hand-side of (7.4) to get

0<
∫
G(k)\G(A)

P (f)(g)ψj(g) dg =
∫
G(k)\G(A)

( ∑
γ∈G(k)

f(γ · g)
)
ψj(g) dg

=
∫
G(k)\G(A)

( ∑
γ∈G(k)

f(γ · g)ψj(γ · g)
)
dg

=
∫
G(A)

ψj(g)f(g) dg. (7.5)

We remind the reader that F ∈ C∞c (G(A)) acts on a closed G(A)-invariant subspace H of
L2(G(k)\G(A)) by the formula

F.ψ(g) =
∫
G(A)

ψ(gh)F (h) dh for ψ ∈ H.

Also, the space H consisting of all ψ, ψ ∈ H is G(A)-invariant and closed. It is clear that H is
irreducible if and only if H is irreducible; it is a contragredient representation of H. Below, we
denote by π̃ the contragredient representation of π.

Next, we observe that ψj ∈ C∞(G(k)\G(A)) since ψj is an automorphic form by (i).
Hence f.ψj(g) =

∫
G(A) ψj(gh)f(h) dh again belongs to C∞(G(k)\G(A)). Therefore the inequality

in (7.4) implies that f.ψj is not identically zero. Thus, using the notation introduced before the
statement of the theorem, we obtain that

0 6= ˜̂πj(f) = ˜̂πj∞(f∞) ⊗̂v∈Vf
˜̂πjv(fv).

This implies that ˜̂πjv(fv) 6= 0 for all v ∈ Vf . Hence π̃jv(fv) 6= 0 for all v ∈ Vf . Now (ii) follows from
Lemma 5.2(ii).

To prove (iii), assume that P (f) is cuspidal. Then it is equal to its orthogonal projection to
L2

cusp(G(k)\G(A)). If the sum in (7.3) is finite, we would obtain that P (f) ∈ Acusp(G(k)\G(A)).
Hence, it is Z(g∞)-finite and K∞-finite. The same is true for its restriction to G∞, which is a
non-zero compactly supported Poincaré series for ΓL (see (2.7) for a definition) by Theorem 4.2
and Proposition 3.2. Hence P (f)|G∞ is real-analytic, but its support is contained in a set
of the form described by Theorem 4.2(iv). It is easy to see that this is a contradiction by
applying the argument from the proof given in the very last part of [Mui08, § 4]. Finally,
by a theorem of Harish-Chandra [BJ79, 4.3(i)], the space of all automorphic forms on G(A)
which are right-invariant under L, transform according to δ and have infinitesimal character χ is
finite-dimensional. Since non-zero functions among ψj are linearly independent, there must exist
only finitely many indices j such that ψj 6= 0 and χj = χ. This completes the proof of (iii).
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Finally, we prove (iv). First, Proposition 3.2 shows that P (f)|G∞ is ΓL-cuspidal. Clearly,
Eδ(P (f)|G∞) = P (f)|G∞ . Now, Theorem 4.2(iv) and the proof given in the very last part
of [Mui08, § 4] imply that there exist infinitely many irreducible unitary representations of G∞
which contain δ and belong to L2

cusp(ΓL\G∞). Next, we describe a relation between the spectral
decomposition of P (f) when it is cuspidal and that of P (f)|G∞ ∈ L2

cusp(ΓL\G∞). We first recall
some statements that are contained in [BJ79] implicitly. Let C ⊂G(Af ) be the minimal set such
that G(A) =G(k) · C ·G∞ · L. Such a C always exists [Bor63]. We may assume that 1 ∈ C. The
minimality of C implies that the classes G(k) · c ·G∞ · L, c ∈ C, are disjoint. One can easily show
that they are open and closed in G(A). Let ϕ ∈ Cc(G(k)\G(A)) be supported in G(k) · c ·G∞ · L
and right-invariant under L; then one can show the integration formula∫

G(k)\G(A)
ϕ(g) dg = volG(Af )(L) ·

∫
ΓcLc−1\G∞

ϕ(g∞, c) dg∞

by arguing as in the proof of Lemma 3.3. We remind the reader that ΓcLc−1 is a congruence
subgroup attached to the open-compact subgroup cLc−1 ⊂G(Af ); see (2.7). This implies that
the map

L2(G(k)\G(A))L→
⊕
c∈C

L2(ΓcLc−1\G∞)

defined by

ϕ 7→
⊕
c∈C

ϕ|G∞×{c}

is a unitary equivalence of (unitary) representations of G∞. In particular, the projection to a
component L2(ΓcLc−1\G∞) is a continuous G∞-map. Next, it is indicated in [BJ79] (and easy to
check) that we have the following isomorphism using the same map:

Acusp(G(k)\G(A))L '
⊕
c∈C
Acusp(ΓcLc−1\G∞),

which is now an equivalence of (g∞, K∞)-modules. In the same way, we obtain the unitary
equivalence

L2
cusp(G(k)\G(A))L '

⊕
c∈C

L2
cusp(ΓcLc−1\G∞). (7.6)

(Actually, the cuspidality in both cases can be treated using the methods of Lemma 3.3. We
leave the details to the reader.)

Since P (f) is cuspidal, P (f) =
∑

j ψj is a decomposition in L2
cusp(G(k)\G(A))L. Thus,

the corresponding decomposition in L2
cusp(ΓcLc−1\G∞) is the following one: P (f)|G∞×{c} =∑

j ψj |G∞×{c} for all c ∈ C. The above discussion shows that ψj |G∞×{c} ∈ Acusp(ΓcLc−1\G∞).
In particular, we have

P (f)|G∞ =
∑
j

ψj |G∞ with ψj |G∞ ∈ Acusp(ΓL\G∞). (7.7)

Finally, assume ψj |G∞ 6= 0. Then the closedG∞-invariant subspace of L2(G(k)\G(A))L generated
by ψj is a direct sum of copies of π̂j∞ (see the beginning of this section for the notation). Note
that the number of copies is finite, since it must be finite in each L2

cusp(ΓcLc−1\G∞); see (7.6).
Since the projection to L2

cusp(ΓL\G∞) in (7.6) is a bounded G∞-map which is the restriction
to G∞, it follows that ψj |G∞ generates a closed G∞-invariant subspace of L2

cusp(ΓL\G∞) which
is isomorphic to the direct sum of finitely many copies of Vj

∞. Because of (7.7), only such
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unitary representations of G∞ contribute to the spectral decomposition of P (f)|G∞ . Now, a
well-known equivalence between irreducible unitary representations of G∞ and unitarizable
(g∞, K∞)-modules proves (iv). This completes the proof of the theorem. 2
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