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ON NUMBER OF INTEGERS REPRESENTABLE
AS SUMS OF UNIT FRACTIONS

BY
HISASHI YOKOTA

ABSTRACT. Let N(n) be the set of all integers that can be written in
the form 3", €; /i, where ¢; = 0 or 1. Then |N(n)| 2 (1/2 — e(n)) logn,
where e(n) — 0 as n — oo, answering a question of P. Erdos and R. L.
Graham.

1. Introduction. Let N(n) be the set of all integers that can be written in the
form ) | €;/i, where ¢; = 0 or 1. It is easy to see that |[N(n)| = logn+ 1, where |A|
denotes the cardinality of the set A. We are interested in a question of the lower bound
of |[N(n)|, i.e., the maximum number of positive integers in N (n). This question was
raised by P. Erdos and R. L. Graham [2]. It is known that |[N(n)| 2 log log n. But it
is not known whether |N (n)| = 0(log ). In this paper, we show that |[N(n)| = clogn,
where ¢ 2 (1/2) — e(n), e(n) = log, n/logn — 0 as n — o0. Here and in the sequel,
we let log, n denote log log n.

2. Main theorems. To improve the lower bound, we need the following theorems.
Let S be the increasing sequence of positive integers of the form pzk, where k 2 0
and p a prime. Let s; be the ith element of S. Let {p, } be the increasing sequence of
primes such that p,, = s, < p,,. Then we have

THEOREM 1. If Zdép,k 1/d < a < Zdéplm 1/d, where d’s are divisors of
T s TT py,» then p,, < et@=D(1=1/logsi=3/10g" s0™"

Now let ¢ and k be chosen so that s, / 2 < /Py, <2s; and denote loglogn = log; n.
Then

TueoreM 2. If (1 + 1/(logap,) — 2/\/3_,)1_['l Si Hlfp,‘. < r < 2[Is H’fp,,,
then r = Y .d;, where d;'s are distinct divisors of []| s H’f pi, such that d; 2

Htl Si H]; Py /9ptk (log P )2(10g2 Py )3 .

Assuming Theorems 1 and 2, we show that every positive integer a is in N(n) if
a = (1/2 —logy n/logn)logn for n sufficiently large. Let a be a large integer and
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choose 7 so that v/e? < s, < 24/e?. Then
1
Z -<logs +1<a.
)
d<s,
Thus we can choose k so that
>, 3<a< )
a=p d=py,,

where d| [T, si [T} p,. Then by Theorem 1, we have p, < ¢“3/2. Now let dy be the
largest divisors of [T s; [T\ p;, so that > -4<q, 1/d = a. Then we have p, = do < py,,-
Let d~(dy), d*(do) denote the largest divisor of [T} s; H'{ p;, less than dy and the
smallest divisor of H'l Si Hll( p., greater than dy, respectively. Then

> $<Z$<a< >

d<d-(dy) d<d, d<d*(do)
Thus we have
1 < 1 < 1 < 1 N 1 < 2
— <a-— —_ Ll < —
plm dO déd() d dO d+(d0)
Now we write
1 _ r
a-— E t k
d=d~(dp) H 5; Hp,‘
1 1
Then we have
1 r 2
< < —

Let ¢ = [2+1/loga p,) T} si H'f pi/r]”, where [x]* denotes the greatest integer less

than x. Then : .
r
a- Z d 5 = 5
d=d~(do) H 5 H
1 Pti
1 1
—— r*
Y k ’
a[Is [1».
1 1
where

t

1 k . t k
+(10g21)zk)* ] rk HS’HI":<’ <2HS:‘HP;,.
HSiIIpfi : : ! 1
1 1
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Thus

t k
<1 —1~— )Hs,Hp,,<r <2Hs,Hp,,
1 1

(10g2 Pu
Therefore by Theorem 2, r* = 3" d;, where d; 2 [T, s; [T} p,,/9p, (log p,,*(loga p, ).
Hence 1 .
=X it (Za)
dSd-(do) i

where d} < 9p, (log p,)*(log, p,,)>. Thus the largest denominator in this expansion of
a is less than 9gp,, (log p,,)*(loga p,,)*. Since g < (2+1/1oga p,, ) IT} s: [T} pu /7 < 5
and p, < e*3/?, we have

qdl* é 45(ea+3/2)2 log(ea+3/2)3

< ae2"+8.

Hence a € N(n) provided ae?**8 < n. But this implies that a < (1/2 — log, n/ log n).
Thus [N (n)| 2 clogn with ¢ 2 1/2—e(n), where e(n) = log, n/ logn — 0 as n — oo.
3. Lemmata. To prove Theorems 1 and 2, we need a few lemmas.

Lemma 1. (i) [T} s, & = 0 or 1, are all distinct;
() if1<a<s,thena=T][|s' e=0o0r1.

LEMMA 2. Ilef_lp[ <NK Hll‘p,-, then p; < logN(1+2/logyN) for N large
and py = 2logN /log?2 for N Z 2.

LEmMA 3. IfI—['{_l 5i<N < H'{ si, then s Z logN(1 —2/logy N) for N large.

LEMMA 4. Let s, be a prime such that s, 2 5. Then D = {d : /s, < d <
2s,logs, /log?2, d| [I,"" s:}U{0} contains all residues modulo s,.

Lemma 5. If (1-2/4/5)) I} si < r < 211} si, t 2 3, then there are distinct divisors
d; of T1| si such that r = Y d;, with d; > T si/3s? log s;.

Proofs of Lemmas 1 and 3 can be found in [4]. A proof of Lemma 2 is in [1].
Proofs of Lemmas 4 and 5 are in [5].
4. Proof of Theorems. We start with the proof of Theorem 1. Let d’s be divisors

of [T} s: Hll( p;;- Then we have

Py

1 1 1 1 1 1 1
> l/d:Z - {W (l+§+”'+m_l)+”'+p‘?f“ (1+§+...+;i>]
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where myg, is the largest integer such that mg, p* < p, and p* || [T s, yielding
p%*! = s, by Lemma 1. Thus

Py
1 1
2 1/d > E o m(s;) (s_,) (logp, —logs; +1).
i=1 :

ngIA

Since m(x) = x(1+3/2logx)/logx for x > 1 by [3], we have

1 3
Ud > 1— _ + 1.
Z / 0g Py, ( log s, 2(log 51)2)

d=p,

Thus if p, > e(@=1(1-1/log5,=3/210g"s)™'  Thep ngp'k 1/d > a. Hence p, =
e(a—l)(l—l/log\v,—3/2logzx,)"' O

Proor oF THeorem 2. Let D; = {d : 1 £ d < 3(logp,)*log, p,. d | [T} s:}. Let s,
be an element in S such that s, > 3(log, p,, 2. Then sq = 6(logy py, Y2 < s,. Define
forj=1,2,...,k,

, ot Jj—1
VT 117

Rt
pf= )11t . .
J ( Yq'd dED.I

Note that if d/* S Dj*, then

t Jj—1 t j—1
[T+ 17 I 117
1 1 <grst
3s,(logp,)?logy p, 7 Sq

We claim that
{Zd;ej:ej:o or 1,df€D}‘}5{0,1,2,3,...,17,/—1}(modp,]).

Let a be a residue modulo py;- Let k be such that H’{_l si <py < H’f s;. Then by
Lemma 2, 5; < logp,j(l + 2/ logs p;;). Now consider

a _opystrt

k
G'H Si
1
k - k ’
Py - H Si Py - H i
1

1

Py B
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where r* is chosen so that (1 —2/,/5;) H’f i St < ZH]; s;. Then by Lemma 5,
r* =Y d;, where d; are distinct divisors of HII s; and d; 2 Hl]‘ s; /3s% log s;.. Thus

E

u r
= H o
1
M
1
k
_ > di
=lls (5=
1
I+
1
357 log s

€
i E ; (mod pr,)'

i=1

)

I

k
1
Since (HA1 SiyPy) = 1, a H’; s; runs through all residues modulo p, except 0 as a

runs through all residues except 0. Thus

352 log s k

k
€ .
HS,‘ E —’ 26,':001‘]7 I|HS,‘
1
1

i=1 1

contains all residues modulo p,. Since (IIi,, s [T, pu/ssp,) = 1, we have
{Xdl¢j:¢g=00r1,df €D} ={0,1,2,3,...,p,— 1} (mod p;). Thus r = 3" die;
(mod p,,) and

t

k—1
1__[ N H 147 A
Z dye; = o sql (Z %)
t

k—1
H Si H Py

< ————— [log(3(logp,)’ loga py,) + 1]
q
t k—1
H Si H P
< —————[3logs py ]
Sq

Let ry = (r — )_ dfes)/py,, an integer. Then
t

1 2 3logap =
2 P

m2 1y — = 2Pe2Pu ”s.”p

! ( \/3‘? [k‘Sq> ! f

+
(loga py,) p o
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and
t

k-1
r <rlp, < 2Hsi Hp,l.
1 1

Repeat the same argument £ — 1 times and note that

Py,
Py

< loga py, + By + 1/(log? p,,) — (loga pr, + B2 — 1/(210g? p,,))

|~

<log2+3/log? p, byI[3]

and s, 2 3(logy p,,)*. Then we have

Py t
1 2 3loga py, 1
n2ll+———uuon — — — —=% — S

t

1 2 1
e i
<+(log2p,k) Vs (logzp,‘)) Hs

2 t
2(1—-— i
(=) 11

Also ry <2 [T} si. Thus

%

Note that
r=p,r+ Zd,’fek

=Py (ptk—lrz +Zdlt—16k—l) + Zd}:ek
k k

= Hptirk +Hp,i(ZdT€1) +... +ptk(2d;_16k_1) +Zdz€k,
1 2 .

and Hf py,d;_ are all distinct for j = 2,3,..., k. Note also that

t

k
H Si Hpti
1

k
% 1
P id' >
:j[} i 3py;s,(log p,,)* loga p,,

t k
H Si H Py
1 1

>
9p,, (log p,, )*(logz py, )}
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for j = 1,2,...,k — 1. Thus to show r = >~d;, where d; are distinct divisors of
[T, s [ py, and & =TT, s: TI " po./9ps, (log p, 2(logs py, ), it suffices to show ry =
d!, where d are distinct divisors of []|s; and & = [T s;/9p, (log p, )*(loga p.,)>.

i i 1 i 1 k 3 k

Since
2 t t
1—— SiSn<2]]s
(1 ) oIl

by Lemma 5, we have r, = d!, where d! are distinct divisors of []}s; and
d. = TT,s:/3s?logs,. Also s;/2 < ./p,. Thus we have d. > [} si/3s?logs, >
IT; s:/9p, (log p,)*(loga p,, ) for P large.

RemARk. Erdos and Graham [2] also asked size of the smallest integer not in N (n).
From the above result, it is at least log n(1/2 — ¢(n)), where e(n) — 0 as n — oo.
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