ON NUMBER OF INTEGERS REPRESENTABLE AS SUMS OF UNIT FRACTIONS

BY

HISASHI YOKOTA

Abstract

Let $N(n)$ be the set of all integers that can be written in the form $\sum_{i=1}^{n} \epsilon_{i} / i$, where $\epsilon_{i}=0$ or 1 . Then $|N(n)| \geqq(1 / 2-\epsilon(n)) \log n$, where $\epsilon(n) \rightarrow 0$ as $n \rightarrow \infty$, answering a question of P. Erdös and R. L. Graham.

1. Introduction. Let $N(n)$ be the set of all integers that can be written in the form $\sum_{i=1}^{n} \epsilon_{i} / i$, where $\epsilon_{i}=0$ or 1 . It is easy to see that $|N(n)| \leqq \log n+1$, where $|A|$ denotes the cardinality of the set A. We are interested in a question of the lower bound of $|N(n)|$, i.e., the maximum number of positive integers in $N(n)$. This question was raised by P. Erdös and R. L. Graham [2]. It is known that $|N(n)| \geqq \log \log n$. But it is not known whether $|N(n)|=0(\log n)$. In this paper, we show that $|N(n)|=c \log n$, where $c \geqq(1 / 2)-\epsilon(n), \epsilon(n)=\log _{2} n / \log n \rightarrow 0$ as $n \rightarrow \infty$. Here and in the sequel, we let $\log _{2} n$ denote $\log \log n$.
2. Main theorems. To improve the lower bound, we need the following theorems. Let S be the increasing sequence of positive integers of the form $p^{2^{k}}$, where $k \geqq 0$ and p a prime. Let s_{i} be the i th element of S. Let $\left\{p_{t_{i}}\right\}$ be the increasing sequence of primes such that $p_{t_{0}} \leqq s_{t}<p_{t_{1}}$. Then we have

Tнеогем 1. If $\sum_{d \leqq p_{t_{k}}} 1 / d<a<\sum_{d \leqq p_{k_{k+1}}} 1 / d$, where d's are divisors of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$, then $p_{t_{k}} \leqq e^{(a-1)\left(1-1 / \log s_{t}-3 / \log ^{2} s_{t}\right)^{-1}}$.

Now let t and k be chosen so that $s_{t} / 2<\sqrt{p_{t_{k}}}<2 s_{t}$ and denote $\log \log n=\log _{2} n$. Then

Theorem 2. If $\left(1+1 /\left(\log _{2} p_{t_{k}}\right)-2 / \sqrt{s_{t}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}<r<2 \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$, then $r=\sum d_{i}$, where d_{i} 's are distinct divisors of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$ such that $d_{i} \geqq$ $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}} / 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$.

Assuming Theorems 1 and 2 , we show that every positive integer a is in $N(n)$ if $a \leqq\left(1 / 2-\log _{2} n / \log n\right) \log n$ for n sufficiently large. Let a be a large integer and

[^0]choose t so that $\sqrt{e^{a}}<s_{t}<2 \sqrt{e^{a}}$. Then
$$
\sum_{d \leqq s_{t}} \frac{1}{d}<\log s_{t}+1<a
$$

Thus we can choose k so that

$$
\sum_{d \leqq p_{k}} \frac{1}{d}<a<\sum_{d \leqq p_{k+1}} \frac{1}{d}
$$

where $d \mid \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$. Then by Theorem 1 , we have $p_{t_{k}} \leqq e^{a+3 / 2}$. Now let d_{0} be the largest divisors of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$ so that $\sum_{d \leqq d_{0}} 1 / d \leqq a$. Then we have $p_{t_{k}} \leqq d_{0}<p_{t_{k+1}}$. Let $d^{-}\left(d_{0}\right), d^{+}\left(d_{0}\right)$ denote the largest divisor of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$ less than d_{0} and the smallest divisor of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$ greater than d_{0}, respectively. Then

$$
\sum_{d \leqq d^{-}\left(d_{0}\right)} \frac{1}{d}<\sum_{d \leqq d_{0}} \frac{1}{d}<a<\sum_{d \leqq d^{+}\left(d_{0}\right)} \frac{1}{d} .
$$

Thus we have

$$
\frac{1}{p_{t_{k+1}}}<\frac{1}{d_{0}}<a-\sum_{d \leqq d_{0}} \frac{1}{d}<\frac{1}{d_{0}}+\frac{1}{d^{+}\left(d_{0}\right)}<\frac{2}{p_{t_{k}}} .
$$

Now we write

$$
a-\sum_{d \leqq d^{-}\left(d_{0}\right)} \frac{1}{d}=\frac{r}{\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}
$$

Then we have

$$
\frac{1}{p_{t_{k+1}}}<\frac{r}{\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}<\frac{2}{p_{t_{k}}}
$$

Let $q=\left[\left(2+1 / \log _{2} p_{t_{k}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}} / r\right]^{*}$, where $[x]^{*}$ denotes the greatest integer less than x. Then

$$
\begin{aligned}
a-\sum_{d \leqq d^{-}\left(d_{0}\right)} \frac{1}{d}-\frac{1}{q} & =\frac{r}{\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}-\frac{1}{q} \\
& =\frac{r^{*}}{q \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}
\end{aligned}
$$

where

$$
\left(1+\frac{1}{\left(\log _{2} p_{t_{k}}\right)}-\frac{r}{\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}<r^{*}<2 \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}
$$

Thus

$$
\left(1+\frac{1}{\left(\log _{2} p_{t_{k}}\right)}-\frac{2}{\sqrt{s_{t}}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}<r^{*}<2 \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}
$$

Therefore by Theorem 2, $r^{*}=\sum d_{i}$, where $d_{i} \geqq \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}} / 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$. Hence

$$
a=\sum_{d \leqq d-\left(d_{0}\right)} \frac{1}{d}+\frac{1}{q}+\frac{1}{q}\left(\sum \frac{1}{d_{i}^{*}}\right),
$$

where $d_{i}^{*} \leqq 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$. Thus the largest denominator in this expansion of a is less than $9 q p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$. Since $q \leqq\left(2+1 / \log _{2} p_{t_{k}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}} / r<5 p_{t_{k}}$ and $p_{t_{k}} \leqq e^{a+3 / 2}$, we have

$$
\begin{aligned}
q d_{i}^{*} & \leqq 45\left(e^{a+3 / 2}\right)^{2} \log \left(e^{a+3 / 2}\right)^{3} \\
& \leqq a e^{2 a+8} .
\end{aligned}
$$

Hence $a \in N(n)$ provided $a e^{2 a+8} \leqq n$. But this implies that $a \leqq\left(1 / 2-\log _{2} n / \log n\right)$. Thus $|N(n)| \geqq c \log n$ with $c \geqq 1 / 2-\epsilon(n)$, where $\epsilon(n)=\log _{2} n / \log n \rightarrow 0$ as $n \rightarrow \infty$.
3. Lemmata. To prove Theorems 1 and 2 , we need a few lemmas.

Lemma 1. (i) $\prod_{1}^{t} s_{i}^{\epsilon_{i}}, \epsilon_{i}=0$ or 1 , are all distinct;
(ii) if $1 \leqq a<s_{t}$, then $a=\prod_{1}^{t} s_{i}^{\epsilon_{i}}, \epsilon_{i}=0$ or 1 .

Lemma 2. If $\prod_{1}^{k-1} p_{i}<N<\prod_{1}^{k} p_{i}$, then $p_{k} \leqq \log N\left(1+2 / \log _{2} N\right)$ for N large and $p_{k} \leqq 2 \log N / \log 2$ for $N \geqq 2$.

Lemma 3. If $\prod_{1}^{k-1} s_{i}<N<\prod_{1}^{k} s_{i}$, then $s_{k} \geqq \log N\left(1-2 / \log _{2} N\right)$ for N large.
Lemma 4. Let s_{t} be a prime such that $s_{t} \geqq 5$. Then $D=\left\{d: \sqrt{s_{t}}<d<\right.$ $\left.2 s_{t} \log s_{t} / \log 2, d \mid \prod_{1}^{t-1} s_{i}\right\} U\{0\}$ contains all residues modulo s_{t}.

Lemma 5. If $\left(1-2 / \sqrt{s_{t}}\right) \prod_{1}^{t} s_{i} \leqq r \leqq 2 \prod_{1}^{t} s_{i}, t \geqq 3$, then there are distinct divisors d_{i} of $\prod_{1}^{t} s_{i}$ such that $r=\sum d_{i}$, with $d_{i}>\prod_{1}^{t} s_{i} / 3 s_{t}^{2} \log s_{t}$.

Proofs of Lemmas 1 and 3 can be found in [4]. A proof of Lemma 2 is in [1]. Proofs of Lemmas 4 and 5 are in [5].
4. Proof of Theorems. We start with the proof of Theorem 1. Let d 's be divisors of $\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}$. Then we have

$$
\begin{aligned}
\sum_{d \leq p_{l_{k}}} 1 / d & =\sum_{i=1}^{p_{t_{k}}} \frac{1}{i}-\left\{\frac{1}{2^{\alpha_{i}+1}}\left(1+\frac{1}{2}+\ldots+\frac{1}{m_{1}}\right)+\ldots+\frac{1}{p_{i}^{\alpha_{i}+1}}\left(1+\frac{1}{2}+\ldots+\frac{1}{m_{i}}\right)\right\} \\
& =\sum_{i=1}^{p_{t_{k}}} \frac{1}{i}-\sum_{1<p<s_{t}}\left(\frac{1}{p^{\alpha_{\rho}+1}}\right)\left(1+\frac{1}{2}+\ldots+\frac{1}{m_{\alpha_{p}}}\right)
\end{aligned}
$$

where $m_{\alpha_{p}}$ is the largest integer such that $m_{\alpha_{p}} p^{\alpha_{p}} \leqq p_{t_{k}}$ and $p^{\alpha_{p}} \| \prod_{1}^{t} s_{i}$, yielding $p^{\alpha_{p}+1} \geqq s_{t}$ by Lemma 1 . Thus

$$
\sum_{d \leq p_{t_{k}}} 1 / d>\sum_{i=1}^{p_{t_{k}}} \frac{1}{i}-\pi\left(s_{t}\right)\left(\frac{1}{s_{t}}\right)\left(\log p_{t_{k}}-\log s_{t}+1\right)
$$

Since $\pi(x) \leqq x(1+3 / 2 \log x) / \log x$ for $x>1$ by [3], we have

$$
\sum_{d \leq p_{t_{k}}} 1 / d>\log p_{t_{k}}\left(1-\frac{1}{\log s_{t}}-\frac{3}{2\left(\log s_{t}\right)^{2}}\right)+1
$$

Thus if $p_{t_{k}}>e^{(a-1)\left(1-1 / \log s_{t}-3 / 2 \log ^{2} s_{t}\right)^{-1}}$, Then $\sum_{d \leqq p_{t_{k}}} 1 / d>a$. Hence $p_{t_{k}} \leqq$ $e^{(a-1)\left(1-1 / \log s_{t}-3 / 2 \log ^{2} s_{t}\right)^{-1}}$.

Proof of Theorem 2. Let $D_{j}=\left\{d: 1 \leqq d \leqq 3\left(\log p_{t_{j}}\right)^{2} \log _{2} p_{t_{j}}, d \mid \prod_{1}^{t} s_{i}\right\}$. Let s_{q} be an element in S such that $s_{q}>3\left(\log _{2} p_{t_{k}}\right)^{2}$. Then $s_{q} \leqq 6\left(\log _{2} p_{t_{k}}\right)^{2}<s_{t}$. Define for $j=1,2, \ldots, k$,

$$
D_{j}^{*}=\left\{\frac{\prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}}}{s_{q} \cdot d}: d \in D_{j}\right\}
$$

Note that if $d_{j}^{*} \in D_{j}^{*}$, then

$$
\frac{\prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}}}{3 s_{q}\left(\log p_{t_{j}}\right)^{2} \log _{2} p_{t_{j}}} \leqq d_{j}^{*} \leqq \frac{\prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}}}{s_{q}}
$$

We claim that

$$
\left\{\sum d_{j}^{*} \epsilon_{j}: \epsilon_{j}=0 \quad \text { or } \quad 1, d_{j}^{*} \in D_{j}^{*}\right\} \equiv\left\{0,1,2,3, \ldots, p_{t_{j}}-1\right\}\left(\bmod p_{t_{j}}\right)
$$

Let a be a residue modulo $p_{t_{j}}$. Let k be such that $\prod_{1}^{k-1} s_{i}<p_{t_{j}}<\prod_{1}^{k} s_{i}$. Then by Lemma $2, s_{k}<\log p_{t_{j}}\left(1+2 / \log _{2} p_{t_{j}}\right)$. Now consider

$$
\frac{a}{p_{t_{k}}}=\frac{a \cdot \prod_{1}^{k} s_{i}}{p_{t_{j}} \cdot \prod_{1}^{k} s_{i}}=\frac{p_{t_{j}} s+r^{*}}{p_{t_{j}} \cdot \prod_{1}^{k} s_{i}}
$$

where r^{*} is chosen so that $\left(1-2 / \sqrt{s_{k}}\right) \prod_{1}^{k} s_{i} \leqq r^{*}<2 \prod_{1}^{k} s_{i}$. Then by Lemma 5 , $r^{*}=\sum d_{i}$, where d_{i} are distinct divisors of $\prod_{1}^{k} s_{i}$ and $d_{i} \geqq \prod_{1}^{k} s_{i} / 3 s_{k}^{2} \log s_{k}$. Thus

$$
\begin{aligned}
a \prod_{1}^{k} s_{i} & \equiv r^{*} \\
& \equiv \prod_{1}^{k} s_{i}\left(\frac{r^{*}}{k}\right) \\
& \equiv \prod_{1}^{k} s_{i}\left(\frac{\sum_{i}^{k} d_{i}}{\prod_{1}^{k} s_{i}}\right) \\
& \equiv \prod_{1}^{k} s_{i}\left(\sum_{i=1}^{3 s_{k}^{2} \log s_{k}} \frac{\epsilon_{i}}{i}\right)\left(\bmod p_{t_{j}}\right)
\end{aligned}
$$

Since $\left(\prod_{1}^{k} s_{i}, p_{t_{k}}\right)=1, a \prod_{1}^{k} s_{i}$ runs through all residues modulo $p_{t_{j}}$ except 0 as a runs through all residues except 0 . Thus

$$
\left\{\prod_{1}^{k} s_{i}\left(\sum_{i=1}^{3 s_{k}^{2} \log s_{k}} \frac{\epsilon_{i}}{i}\right): \epsilon_{i}=0 \text { or } 1, \quad i \mid \prod_{1}^{k} s_{i}\right\}
$$

contains all residues modulo $p_{t_{j}}$. Since $\left(\prod_{k+1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}} / s_{q}, p_{t_{j}}\right)=1$, we have $\left\{\sum d_{j}^{*} \epsilon_{j}: \epsilon_{j}=0\right.$ or $\left.1, d_{j}^{*} \in D_{j}^{*}\right\} \equiv\left\{0,1,2,3, \ldots, p_{t_{j}}-1\right\}\left(\bmod p_{t_{j}}\right)$. Thus $r \equiv \sum d_{k}^{*} \epsilon_{k}$ $\left(\bmod p_{t_{k}}\right)$ and

$$
\begin{aligned}
\sum d_{k}^{*} \epsilon_{k} & =\frac{\prod_{1}^{t} s_{i} \prod_{1}^{k-1} p_{t_{i}}}{s_{q}}\left(\sum \frac{\epsilon_{i}}{i}\right) \\
& \leqq \frac{\prod_{1}^{t} s_{i} \prod_{1}^{k-1} p_{t_{i}}}{s_{q}}\left[\log \left(3\left(\log p_{t_{k}}\right)^{2} \log _{2} p_{t_{k}}\right)+1\right] \\
& \leqq \frac{\prod_{1}^{t} s_{i} \prod_{1}^{k-1} p_{t_{i}}}{s_{q}}\left[3 \log _{2} p_{t_{k}}\right]
\end{aligned}
$$

Let $r_{1}=\left(r-\sum d_{k}^{*} \epsilon_{k}\right) / p_{t_{k}}$, an integer. Then

$$
r_{1} \geqq\left(1+\frac{1}{\left(\log _{2} p_{t_{k}}\right)}-\frac{2}{\sqrt{s_{t}}}-\frac{3 \log _{2} p_{t_{k}}}{p_{t_{k}} \cdot s_{q}}\right) \prod_{1}^{t} s_{i} \prod_{1}^{k-1} p_{t_{i}}
$$

and

$$
r_{1}<r / p_{t_{k}}<2 \prod_{1}^{t} s_{i} \prod_{1}^{k-1} p_{t_{i}}
$$

Repeat the same argument $k-1$ times and note that

$$
\begin{aligned}
\sum_{p_{t_{1}}}^{p_{t_{k}}} \frac{1}{p} & \leqq \log _{2} p_{t_{k}}+B_{1}+1 /\left(\log ^{2} p_{t_{k}}\right)-\left(\log _{2} p_{t_{1}}+B_{2}-1 /\left(2 \log ^{2} p_{t_{1}}\right)\right) \\
& \leqq \log 2+3 / \log ^{2} p_{t_{k}} \quad \text { by }[3]
\end{aligned}
$$

and $s_{q} \geqq 3\left(\log _{2} p_{t_{k}}\right)^{2}$. Then we have

$$
\begin{aligned}
r_{k} & \geqq\left(1+\frac{1}{\left(\log _{2} p_{t_{k}}\right)}-\frac{2}{\sqrt{s_{t}}}-\frac{3 \log _{2} p_{t_{k}}}{s_{q}} \sum_{p_{t_{1}}}^{p_{t_{k}}} \frac{1}{p}\right) \prod_{1}^{t} s_{i} \\
& \geqq\left(1+\frac{1}{\left(\log _{2} p_{t_{k}}\right)}-\frac{2}{\sqrt{s_{t}}}-\frac{1}{\left(\log _{2} p_{t_{k}}\right)}\right) \prod_{1}^{t} s_{i} \\
& \geqq\left(1-\frac{2}{\sqrt{s_{t}}}\right) \prod_{1}^{t} s_{i} .
\end{aligned}
$$

Also $r_{k}<2 \prod_{1}^{t} s_{i}$. Thus

$$
\left(1-\frac{2}{\sqrt{s_{t}}}\right) \prod_{1}^{t} s_{i} \leqq r_{k}<2 \prod_{1}^{t} s_{i}
$$

Note that

$$
\begin{aligned}
r & =p_{t_{k}} r_{1}+\sum d_{k}^{*} \epsilon_{k} \\
& =p_{t_{k}}\left(p_{t_{k-1}} r_{2}+\sum d_{k-1}^{*} \epsilon_{k-1}\right)+\sum d_{k}^{*} \epsilon_{k} \\
& =\prod_{1}^{k} p_{t_{i}} r_{k}+\prod_{2}^{k} p_{t_{i}}\left(\sum d_{1}^{*} \epsilon_{1}\right)+\ldots+p_{t_{k}}\left(\sum d_{k-1}^{*} \epsilon_{k-1}\right)+\sum d_{k}^{*} \epsilon_{k},
\end{aligned}
$$

and $\prod_{j}^{k} p_{t_{i}} d_{j-1}^{*}$ are all distinct for $j=2,3, \ldots, k$. Note also that

$$
\begin{aligned}
& >\frac{\prod_{1}^{t} s_{i} \prod_{1}^{k} p_{t_{i}}}{9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}}
\end{aligned}
$$

for $j=1,2, \ldots, k-1$. Thus to show $r=\sum d_{i}$, where d_{i} are distinct divisors of $\prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}}$ and $d_{i} \geqq \prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}} / 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$, it suffices to show $r_{k}=$ $\sum d_{i}^{\prime}$, where d_{i}^{\prime} are distinct divisors of $\prod_{1}^{t} s_{i}$ and $d_{i}^{\prime} \geqq \prod_{1}^{t} s_{i} / 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$. Since

$$
\left(1-\frac{2}{\sqrt{s_{t}}}\right) \prod_{1}^{t} s_{i} \leqq r_{k}<2 \prod_{1}^{t} s_{i}
$$

by Lemma 5, we have $r_{k}=\sum d_{i}^{\prime}$, where d_{i}^{\prime} are distinct divisors of $\prod_{1}^{t} s_{i}$ and $d_{i}^{\prime} \geqq \prod_{1}^{t} s_{i} / 3 s_{t}^{2} \log s_{t}$. Also $s_{t} / 2<\sqrt{p_{t_{k}}}$. Thus we have $d_{i}^{\prime}>\prod_{1}^{t} s_{i} / 3 s_{t}^{2} \log s_{t}>$ $\prod_{1}^{t} s_{i} / 9 p_{t_{k}}\left(\log p_{t_{k}}\right)^{2}\left(\log _{2} p_{t_{k}}\right)^{3}$ for P large.

Remark. Erdös and Graham [2] also asked size of the smallest integer not in $N(n)$. From the above result, it is at least $\log n(1 / 2-\epsilon(n))$, where $\epsilon(n) \rightarrow 0$ as $n \rightarrow \infty$.

References

1. M. N. Bleicher and P. Erdös, Denominators of Egyptian Fractions II, Illinois J. Math. 20 (1976), 598-613.
2. P. Erdös and R. L. Graham, Old and new problems in combinatorial number theory, L'Enseignement Mathématique, Université de Geneve, Imprimerie Kundig Geneve, 1980.
3. J. Rosser and L. Schoenfeld, Approximate formula for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
4. H. Yokota, Denominators of Egyptian Fractions, J. Number Theory 28 (1988), 258-271.
5. - On a problem of Bleicher and Erdös, J. Number Theory 30 (1988), 198-207.

Hiroshima Institute of Technology
Itsukaichi, Hiroshima, Japan

[^0]: Received by the editors November 16, 1988 and, in revised form, February 6, 1989.
 AMS (1980) Subject Classification: 11D85, 11D68.
 © Canadian Mathematical Society 1988.

