ON NUMBER OF INTEGERS REPRESENTABLE AS SUMS OF UNIT FRACTIONS

BY HISASHI YOKOTA

ABSTRACT. Let N(n) be the set of all integers that can be written in the form $\sum_{i=1}^{n} \epsilon_i/i$, where $\epsilon_i = 0$ or 1. Then $|N(n)| \ge (1/2 - \epsilon(n)) \log n$, where $\epsilon(n) \to 0$ as $n \to \infty$, answering a question of P. Erdös and R. L. Graham.

- 1. **Introduction.** Let N(n) be the set of all integers that can be written in the form $\sum_{i=1}^{n} \epsilon_i/i$, where $\epsilon_i = 0$ or 1. It is easy to see that $|N(n)| \leq \log n + 1$, where |A| denotes the cardinality of the set A. We are interested in a question of the lower bound of |N(n)|, i.e., the maximum number of positive integers in N(n). This question was raised by P. Erdös and R. L. Graham [2]. It is known that $|N(n)| \leq \log \log n$. But it is not known whether $|N(n)| = 0(\log n)$. In this paper, we show that $|N(n)| = c \log n$, where $c \geq (1/2) \epsilon(n)$, $\epsilon(n) = \log_2 n/\log n \to 0$ as $n \to \infty$. Here and in the sequel, we let $\log_2 n$ denote $\log \log n$.
- 2. **Main theorems.** To improve the lower bound, we need the following theorems. Let S be the increasing sequence of positive integers of the form p^{2^k} , where $k \ge 0$ and p a prime. Let s_i be the *i*th element of S. Let $\{p_{t_i}\}$ be the increasing sequence of primes such that $p_{t_0} \le s_t < p_{t_1}$. Then we have

THEOREM 1. If $\sum_{d \leq p_{t_k}} 1/d < a < \sum_{d \leq p_{t_{k+1}}} 1/d$, where d's are divisors of $\prod_{1}^{t} s_i \prod_{1}^{k} p_{t_i}$, then $p_{t_k} \leq e^{(a-1)(1-1/\log s_t - 3/\log^2 s_t)^{-1}}$.

Now let t and k be chosen so that $s_t/2 < \sqrt{p_{t_k}} < 2s_t$ and denote $\log \log n = \log_2 n$. Then

THEOREM 2. If $(1 + 1/(\log_2 p_{t_k}) - 2/\sqrt{s_t}) \prod_1^t s_i \prod_1^k p_{t_i} < r < 2 \prod_1^t s_i \prod_1^k p_{t_i}$, then $r = \sum d_i$, where d_i 's are distinct divisors of $\prod_1^t s_i \prod_1^k p_{t_i}$ such that $d_i \ge \prod_1^t s_i \prod_1^k p_{t_i}/9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$.

Assuming Theorems 1 and 2, we show that every positive integer a is in N(n) if $a \le (1/2 - \log_2 n/\log n) \log n$ for n sufficiently large. Let a be a large integer and

Received by the editors November 16, 1988 and, in revised form, February 6, 1989. AMS (1980) Subject Classification: 11D85, 11D68.

[©] Canadian Mathematical Society 1988.

choose t so that $\sqrt{e^a} < s_t < 2\sqrt{e^a}$. Then

$$\sum_{d \le s_t} \frac{1}{d} < \log s_t + 1 < a.$$

Thus we can choose k so that

$$\sum_{d \le p_{t,i}} \frac{1}{d} < a < \sum_{d \le p_{t,i,i}} \frac{1}{d},$$

where $d|\prod_1^t s_i \prod_1^k p_{t_i}$. Then by Theorem 1, we have $p_{t_k} \leq e^{a+3/2}$. Now let d_0 be the largest divisors of $\prod_1^t s_i \prod_1^k p_{t_i}$ so that $\sum_{d \leq d_0} 1/d \leq a$. Then we have $p_{t_k} \leq d_0 < p_{t_{k+1}}$. Let $d^-(d_0)$, $d^+(d_0)$ denote the largest divisor of $\prod_1^t s_i \prod_1^k p_{t_i}$ less than d_0 and the smallest divisor of $\prod_1^t s_i \prod_1^k p_{t_i}$ greater than d_0 , respectively. Then

$$\sum_{d \le d^-(d_0)} \frac{1}{d} < \sum_{d \le d_0} \frac{1}{d} < a < \sum_{d \le d^+(d_0)} \frac{1}{d}.$$

Thus we have

$$\frac{1}{p_{t_{k+1}}} < \frac{1}{d_0} < a - \sum_{d \le d_0} \frac{1}{d} < \frac{1}{d_0} + \frac{1}{d^+(d_0)} < \frac{2}{p_{t_k}} \,.$$

Now we write

$$a - \sum_{d \le d^{-}(d_0)} \frac{1}{d} = \frac{r}{\prod_{i=1}^{t} s_i \prod_{i=1}^{k} p_{t_i}}.$$

Then we have

$$\frac{1}{p_{t_{k+1}}} < \frac{r}{\prod\limits_{i=1}^{t} s_i \prod\limits_{i=1}^{k} p_{t_i}} < \frac{2}{p_{t_k}}.$$

Let $q = [(2+1/\log_2 p_{t_k}) \prod_1^t s_i \prod_1^k p_{t_i}/r]^*$, where $[x]^*$ denotes the greatest integer less than x. Then

$$a - \sum_{d \le d^{-}(d_{0})} \frac{1}{d} - \frac{1}{q} = \frac{r}{\prod_{i=1}^{t} s_{i} \prod_{i=1}^{k} p_{t_{i}}} - \frac{1}{q}$$
$$= \frac{r^{*}}{q \prod_{i=1}^{t} s_{i} \prod_{i=1}^{k} p_{t_{i}}},$$

where

$$\left(1 + \frac{1}{(\log_2 p_{t_k})} - \frac{r}{\prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i}}\right) \prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i} < r^* < 2 \prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i}.$$

Thus

$$\left(1 + \frac{1}{(\log_2 p_{t_k})} - \frac{2}{\sqrt{s_t}}\right) \prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i} < r^* < 2 \prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i}.$$

Therefore by Theorem 2, $r^* = \sum d_i$, where $d_i \ge \prod_1^t s_i \prod_1^k p_{t_i}/9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$. Hence

$$a = \sum_{d \le d^-(d_0)} \frac{1}{d} + \frac{1}{q} + \frac{1}{q} \left(\sum \frac{1}{d_i^*} \right),$$

where $d_i^* \leq 9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$. Thus the largest denominator in this expansion of a is less than $9qp_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$. Since $q \leq (2+1/\log_2 p_{t_k}) \prod_{i=1}^t s_i \prod_{i=1}^k p_{t_i}/r < 5p_{t_k}$ and $p_{t_k} \leq e^{a+3/2}$, we have

$$qd_i^* \le 45(e^{a+3/2})^2 \log(e^{a+3/2})^3$$

 $\le ae^{2a+8}.$

Hence $a \in N(n)$ provided $ae^{2a+8} \le n$. But this implies that $a \le (1/2 - \log_2 n/\log n)$. Thus $|N(n)| \ge c \log n$ with $c \ge 1/2 - \epsilon(n)$, where $\epsilon(n) = \log_2 n/\log n \to 0$ as $n \to \infty$.

3. **Lemmata.** To prove Theorems 1 and 2, we need a few lemmas.

LEMMA 1. (i) $\prod_{i=1}^{t} s_{i}^{\epsilon_{i}}$, $\epsilon_{i} = 0$ or 1, are all distinct; (ii) if $1 \le a < s_{t}$, then $a = \prod_{i=1}^{t} s_{i}^{\epsilon_{i}}$, $\epsilon_{i} = 0$ or 1.

LEMMA 2. If $\prod_{i=1}^{k-1} p_i < N < \prod_{i=1}^{k} p_i$, then $p_k \leq \log N(1+2/\log_2 N)$ for N large and $p_k \leq 2 \log N/\log 2$ for $N \geq 2$.

LEMMA 3. If $\prod_{i=1}^{k-1} s_i < N < \prod_{i=1}^{k} s_i$, then $s_k \ge \log N(1 - 2/\log_2 N)$ for N large.

LEMMA 4. Let s_t be a prime such that $s_t \ge 5$. Then $D = \{d : \sqrt{s_t} < d < 2s_t \log s_t / \log 2, d | \prod_{i=1}^{t-1} s_i\} U\{0\}$ contains all residues modulo s_t .

LEMMA 5. If $(1-2/\sqrt{s_t}) \prod_1^t s_i \le r \le 2 \prod_1^t s_i$, $t \ge 3$, then there are distinct divisors d_i of $\prod_1^t s_i$ such that $r = \sum d_i$, with $d_i > \prod_1^t s_i/3s_t^2 \log s_t$.

Proofs of Lemmas 1 and 3 can be found in [4]. A proof of Lemma 2 is in [1]. Proofs of Lemmas 4 and 5 are in [5].

4. **Proof of Theorems.** We start with the proof of Theorem 1. Let d's be divisors of $\prod_{i=1}^{t} s_i \prod_{i=1}^{k} p_{t_i}$. Then we have

$$\sum_{d \leq p_{t_k}} 1/d = \sum_{i=1}^{p_{t_k}} \frac{1}{i} - \left\{ \frac{1}{2^{\alpha_1 + 1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{m_1} \right) + \dots + \frac{1}{p_i^{\alpha_i + 1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{m_i} \right) \right\}$$

$$= \sum_{i=1}^{p_{t_k}} \frac{1}{i} - \sum_{1 \leq p \leq s_t} \left(\frac{1}{p^{\alpha_p + 1}} \right) \left(1 + \frac{1}{2} + \dots + \frac{1}{m_{\alpha_p}} \right) ,$$

where m_{α_p} is the largest integer such that $m_{\alpha_p} p^{\alpha_p} \leq p_{t_k}$ and $p^{\alpha_p} \parallel \prod_{i=1}^t s_i$, yielding $p^{\alpha_p+1} \geq s_t$ by Lemma 1. Thus

$$\sum_{d \leq p_{t_t}} 1/d > \sum_{i=1}^{p_{t_k}} \frac{1}{i} - \pi(s_t) \left(\frac{1}{s_t}\right) (\log p_{t_k} - \log s_t + 1).$$

Since $\pi(x) \le x(1+3/2\log x)/\log x$ for x > 1 by [3], we have

$$\sum_{d \le p_{t_k}} 1/d > \log p_{t_k} \left(1 - \frac{1}{\log s_t} - \frac{3}{2(\log s_t)^2} \right) + 1.$$

Thus if $p_{t_k} > e^{(a-1)(1-1/\log s_t - 3/2\log^2 s_t)^{-1}}$, Then $\sum_{d \le p_{t_k}} 1/d > a$. Hence $p_{t_k} \le e^{(a-1)(1-1/\log s_t - 3/2\log^2 s_t)^{-1}}$.

PROOF OF THEOREM 2. Let $D_j = \{d : 1 \le d \le 3(\log p_{t_j})^2 \log_2 p_{t_j}, d \mid \prod_1^t s_i\}$. Let s_q be an element in S such that $s_q > 3(\log_2 p_{t_k})^2$. Then $s_q \le 6(\log_2 p_{t_k})^2 < s_t$. Define for j = 1, 2, ..., k,

$$D_j^* = \left\{ \frac{\prod\limits_{1}^t s_i \prod\limits_{1}^{j-1} p_{t_i}}{s_q \cdot d} : d \in D_j \right\}.$$

Note that if $d_i^* \in D_i^*$, then

$$\frac{\prod_{1}^{t} s_{i} \prod_{j=1}^{j-1} p_{t_{i}}}{3s_{q} (\log p_{t_{i}})^{2} \log_{2} p_{t_{i}}} \leq d_{j}^{*} \leq \frac{\prod_{1}^{t} s_{i} \prod_{1}^{j-1} p_{t_{i}}}{s_{q}}$$

We claim that

$$\left\{ \sum d_j^* \epsilon_j : \epsilon_j = 0 \quad \text{or} \quad 1, d_j^* \in D_j^* \right\} \equiv \{0, 1, 2, 3, \dots, p_{t_j} - 1\} \pmod{p_{t_j}}.$$

Let a be a residue modulo p_{t_i} . Let k be such that $\prod_{1}^{k-1} s_i < p_{t_i} < \prod_{1}^{k} s_i$. Then by Lemma 2, $s_k < \log p_{t_i} (1 + 2/\log_2 p_{t_i})$. Now consider

$$\frac{a}{p_{t_k}} = \frac{a \cdot \prod_{1}^{k} s_i}{p_{t_j} \cdot \prod_{1}^{k} s_i} = \frac{p_{t_j} s + r^*}{p_{t_j} \cdot \prod_{1}^{k} s_i},$$

where r^* is chosen so that $(1 - 2/\sqrt{s_k}) \prod_{i=1}^k s_i \le r^* < 2 \prod_{i=1}^k s_i$. Then by Lemma 5, $r^* = \sum d_i$, where d_i are distinct divisors of $\prod_{i=1}^k s_i$ and $d_i \ge \prod_{i=1}^k s_i/3s_k^2 \log s_k$. Thus

$$a \prod_{1}^{k} s_{i} \equiv r^{*}$$

$$\equiv \prod_{1}^{k} s_{i} \left(\frac{r^{*}}{\prod_{1}^{k} s_{i}} \right)$$

$$\equiv \prod_{1}^{k} s_{i} \left(\frac{\sum_{1}^{k} d_{i}}{\prod_{1}^{k} s_{i}} \right)$$

$$\equiv \prod_{1}^{k} s_{i} \left(\sum_{i=1}^{3s_{k}^{2} \log s_{k}} \frac{\epsilon_{i}}{i} \right) \pmod{p_{t_{j}}}.$$

Since $(\prod_{1}^{k} s_i, p_{t_k}) = 1$, $a \prod_{1}^{k} s_i$ runs through all residues modulo p_{t_i} except 0 as a runs through all residues except 0. Thus

$$\left\{ \prod_{1}^{k} s_{i} \left(\sum_{i=1}^{3s_{k}^{2} \log s_{k}} \frac{\epsilon_{i}}{i} \right) : \epsilon_{i} = 0 \text{ or } 1, \quad i \mid \prod_{1}^{k} s_{i} \right\}$$

contains all residues modulo p_{t_j} . Since $\left(\prod_{k=1}^t s_i \prod_1^{j-1} p_{t_i}/s_q, p_{t_j}\right) = 1$, we have $\left\{\sum d_j^* \epsilon_j : \epsilon_j = 0 \text{ or } 1, d_j^* \in D_j^*\right\} \equiv \{0, 1, 2, 3, \dots, p_{t_j} - 1\} \pmod{p_{t_j}}$. Thus $r \equiv \sum d_k^* \epsilon_k \pmod{p_{t_k}}$ and

$$\sum d_k^* \epsilon_k = \frac{\prod_{i=1}^{t} s_i \prod_{i=1}^{k-1} p_{t_i}}{s_q} \left(\sum_{i=1}^{t} \frac{\epsilon_i}{i} \right)$$

$$\leq \frac{\prod_{i=1}^{t} s_i \prod_{i=1}^{k-1} p_{t_i}}{s_q} [\log(3(\log p_{t_k})^2 \log_2 p_{t_k}) + 1]$$

$$\leq \frac{\prod_{i=1}^{t} s_i \prod_{i=1}^{k-1} p_{t_i}}{s_q} [3 \log_2 p_{t_k}].$$

Let $r_1 = (r - \sum d_k^* \epsilon_k) / p_{t_k}$, an integer. Then

$$r_1 \ge \left(1 + \frac{1}{(\log_2 p_{t_k})} - \frac{2}{\sqrt{s_t}} - \frac{3\log_2 p_{t_k}}{p_{t_k} \cdot s_q}\right) \prod_{1}^{t} s_i \prod_{1}^{k-1} p_{t_i}$$

and

$$r_1 < r/p_{t_k} < 2 \prod_{i=1}^{t} s_i \prod_{i=1}^{k-1} p_{t_i}.$$

Repeat the same argument k-1 times and note that

$$\sum_{p_{t_1}}^{p_{t_k}} \frac{1}{p} \le \log_2 p_{t_k} + B_1 + 1/(\log^2 p_{t_k}) - (\log_2 p_{t_1} + B_2 - 1/(2\log^2 p_{t_1}))$$

$$\le \log_2 2 + 3/\log^2 p_{t_k} \quad \text{by [3]}$$

and $s_q \ge 3(\log_2 p_{t_k})^2$. Then we have

$$r_{k} \ge \left(1 + \frac{1}{(\log_{2} p_{t_{k}})} - \frac{2}{\sqrt{s_{t}}} - \frac{3\log_{2} p_{t_{k}}}{s_{q}} \sum_{p_{t_{1}}}^{p_{t_{k}}} \frac{1}{p}\right) \prod_{1}^{t} s_{i}$$

$$\ge \left(1 + \frac{1}{(\log_{2} p_{t_{k}})} - \frac{2}{\sqrt{s_{t}}} - \frac{1}{(\log_{2} p_{t_{k}})}\right) \prod_{1}^{t} s_{i}$$

$$\ge \left(1 - \frac{2}{\sqrt{s_{t}}}\right) \prod_{1}^{t} s_{i}.$$

Also $r_k < 2 \prod_{i=1}^{t} s_i$. Thus

$$\left(1-\frac{2}{\sqrt{s_i}}\right)\prod_{1}^{t} s_i \leq r_k < 2\prod_{1}^{t} s_i.$$

Note that

$$r = p_{t_k} r_1 + \sum_{i} d_k^* \epsilon_k$$

$$= p_{t_k} (p_{t_{k-1}} r_2 + \sum_{i} d_{k-1}^* \epsilon_{k-1}) + \sum_{i} d_k^* \epsilon_k$$

$$= \prod_{i=1}^k p_{t_i} r_k + \prod_{i=2}^k p_{t_i} (\sum_{i} d_1^* \epsilon_1) + \dots + p_{t_k} (\sum_{i} d_{k-1}^* \epsilon_{k-1}) + \sum_{i} d_k^* \epsilon_k,$$

and $\prod_{j=1}^{k} p_{t_i} d_{j-1}^*$ are all distinct for $j=2,3,\ldots,k$. Note also that

$$\prod_{j+1}^{k} p_{t_i} d_j^* > \frac{\prod_{1}^{t} s_i \prod_{1}^{k} p_{t_i}}{3p_{t_j} s_q (\log p_{t_j})^2 \log_2 p_{t_j}}$$

$$> \frac{\prod_{1}^{t} s_i \prod_{1}^{k} p_{t_i}}{9p_{t_k} (\log p_{t_k})^2 (\log_2 p_{t_k})^3}$$

for $j=1,2,\ldots,k-1$. Thus to show $r=\sum d_i$, where d_i are distinct divisors of $\prod_1^t s_i \prod_1^{j-1} p_{t_i}$ and $d_i \ge \prod_1^t s_i \prod_1^{j-1} p_{t_i}/9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$, it suffices to show $r_k=\sum d_i'$, where d_i' are distinct divisors of $\prod_1^t s_i$ and $d_i' \ge \prod_1^t s_i/9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$. Since

$$\left(1-\frac{2}{\sqrt{s_t}}\right)\prod_{i=1}^{t}s_i \leq r_k < 2\prod_{i=1}^{t}s_i,$$

by Lemma 5, we have $r_k = \sum d_i'$, where d_i' are distinct divisors of $\prod_1' s_i$ and $d_i' \ge \prod_1' s_i/3s_t^2 \log s_t$. Also $s_t/2 < \sqrt{p_{t_k}}$. Thus we have $d_i' > \prod_1' s_i/3s_t^2 \log s_t > \prod_1' s_i/9p_{t_k}(\log p_{t_k})^2(\log_2 p_{t_k})^3$ for P large.

REMARK. Erdös and Graham [2] also asked size of the smallest integer not in N(n). From the above result, it is at least $\log n(1/2 - \epsilon(n))$, where $\epsilon(n) \to 0$ as $n \to \infty$.

REFERENCES

- 1. M. N. Bleicher and P. Erdös, *Denominators of Egyptian Fractions II*, Illinois J. Math. **20** (1976), 598–613.
- 2. P. Erdös and R. L. Graham, *Old and new problems in combinatorial number theory*, L'Enseignement Mathématique, Université de Geneve, Imprimerie Kundig Geneve, 1980.
- 3. J. Rosser and L. Schoenfeld, Approximate formula for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
 - 4. H. Yokota, Denominators of Egyptian Fractions, J. Number Theory 28 (1988), 258-271.
 - 5. ——, On a problem of Bleicher and Erdös, J. Number Theory 30 (1988), 198-207.

Hiroshima Institute of Technology Itsukaichi, Hiroshima, Japan