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We propose a novel conditional quantile prediction method based on complete
subset averaging (CSA) for quantile regressions. All models under consideration
are potentially misspecified, and the dimension of regressors goes to infinity as the
sample size increases. Since we average over the complete subsets, the number
of models is much larger than the usual model averaging method which adopts
sophisticated weighting schemes. We propose to use an equal weight but select
the proper size of the complete subset based on the leave-one-out cross-validation
method. Building upon the theory of Lu and Su (2015, Journal of Econometrics 188,
40-58), we investigate the large sample properties of CSA and show the asymptotic
optimality in the sense of Li (1987, Annals of Statistics 15, 958-975) We check the
finite sample performance via Monte Carlo simulations and empirical applications.

1. INTRODUCTION

Quantile regression (QR) has emerged as an essential tool since Koenker and
Bassett (1978) (see, e.g., Koenker, 2005). QR estimates the response of conditional
quantiles of outcome variables with respect to changes in the covariates. The
entire response distribution of outcome variables in economic models provides
a broader insight than the classical mean regression. Moreover, in many economic
applications, tail quantiles have highly valuable information. See, for example,
wage distribution in labor economic applications (Buchinsky, 1998) and stock
return quantiles (Value-at-Risk) in financial market analysis (Duffie and Pan,
1997). Recently, policymakers have begun to pay attention to the left tail quantiles
of GDP growth (Growth-at-Risk) as a measure of downside risks associated with
tight financial conditions (Adrian, Boyarchenko, and Giannone, 2019). There has
also been an increasing interest in climate change, in particular, more frequent and
intense extreme weather conditions. A tail quantile is the main object of interest

‘We would like to thank the Editor, Peter Phillips, the Co-Editor, Arthur Lewbel, and three anonymous referees for
helpful comments and suggestions, which have led to substantial improvements. We would also like to thank Xun
Lu and Liangjun Su for helpful discussion and sharing their codes. Shin is grateful for partial support by the Social
Sciences and Humanities Research Council of Canada (SSHRC-435-2018-0275). This work was made possible by
the facilities of WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca).

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, 146
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided

the original work is properly cited.

https://doi.org/10.1017/50266466621000402 Published online by Cambridge University Press


https://www.doi.org/10.1017/S0266466621000402
http://www.westgrid.ca
http://www.computecanada.ca
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0266466621000402

COMPLETE SUBSET AVERAGING FOR QUANTILE REGRESSIONS 147

in this analysis (Bhatia et al., 2019). Estimation, inference, and prediction of the
conditional quantiles are thus important but require a careful econometric analysis
due to their nonlinear structure and nonstandard limit theory.

In this paper, we propose a novel prediction method based on complete subset
averaging (CSA) for QRs. Following Lu and Su (2015), we work on the framework
such that all models under consideration are potentially misspecified and that the
dimension of regressors goes to infinity as the sample size increases. The CSA
method that we propose works as follows. First, pick the numbers of regressors
k out of all regressors K available in the data. Then, there exist K! /(k! (K —k)!)
complete subsets of size k. Second, estimate all the QR models and save all the
conditional quantile predictors from each model. Finally, the conditional quantile
predictor is constructed as the average of all the quantile predictors estimated in
Step 2. Since we average over the complete subsets, the number of models is much
larger than the usual model averaging methods selecting the weight of each model.
We propose to use an equal weight but select the optimal size of the complete subset
k* based on the leave-one-out cross-validation method.

The CSA approach has a couple of advantages over the existing model averaging
method which adopts sophisticated weighting schemes. First, it may produce
better forecasts in practice, because there is no sampling variance from the weight
estimation. This result is already reported both in the forecasting and machine
learning literature in the mean regression setup (see, e.g., Clemen, 1989; Breiman,
1996; Stock and Watson, 2004; Smith and Wallis, 2009; Elliott, Gargano, and
Timmermann, 2013). Second, it does not ask a researcher to choose the initial set
of models and the order of each model. In practice, the model averaging methods
with different weights usually construct the set of models in an encompassing
way, and the forecasting performance could depend on the researcher’s discretion.
Third, CSA averages over a larger number of submodels, and one could expect an
additional noise reduction from it. However, CSA is possibly more demanding in
computation, and we will discuss this issue in detail later.

The contribution of this paper is twofold. First, building upon the theory of
Lu and Su (2015), we show that the complete subset quantile regression (CSQR)
estimator converges the pseudo-true value and satisfies asymptotic normality under
mild regularity conditions. The uniform convergence property of CSQR is also
provided. Based on these pointwise and uniform limit theories, we prove the
asymptotic optimality of % in the sense of Li (1987). Second, we implement the
CSA method and show that it performs quite well both in simulations and real
datasets. Especially, we show that the performance is still satisfactory when we
use a fixed number of subsets randomly drawn from the complete subsets when
the time budget does not allow estimating the QRs of the whole subsets. We also
provide regularity conditions on the choice of the fixed number of subsets. Finally,
we provide a theory that compares the performance of equal weighting and optimal
weighting in QR. This result justifies our intuition such that optimal weighting
forecasts poorly when the number of models increases and extends the existing
result in mean regression.
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Finally, we summarize related literature. Lu and Su (2015) and Elliott et al.
(2013) are closely related to this paper. The former proposes the jackknife model
averaging (JMA) method for the quantile prediction problem and derives the
nonstandard asymptotic properties of the estimator. Our approach is different from
theirs in that we use complete subsets for models to be averaged and that we choose
a scalar k from the cross-validation method instead of a weighting vector . The
latter proposes the CSA method in the mean prediction problem and shows by
simulation studies that the CSA predictor outperforms alternative methods like
bagging, ridge, lasso, and Bayesian model averaging. However, they do not show
any optimality result of the estimator. Hansen (2007) and Hansen and Racine
(2012) show the optimality of model averaging based on the Mallows criterion
and that of the JMA, respectively. Ando and Li (2014) propose a model averaging
method in a high-dimensional setting and show the optimality result. Komunjer
(2013) provides a great review on the quantile prediction problem of time-series
data. Meinshausen (2006) proposes a quantile prediction method based on random
forest. Lee (2016) studies the inference problem of the predictive QR when the
regressors are persistent. In the empirical finance literature, Meligkotsidou et al.
(2019, 2021) apply CSQR to forecast realized volatility and the risk premium.

The rest of the paper is organized as follows. Section 2 introduces the model and
the CSQR estimator. Section 3 presents the asymptotic properties of the CSQR
estimator and the asymptotic optimality. The Monte Carlo simulation results
are reported in Section 4. Section 5 investigates two empirical applications and
illustrates the advantage of the proposed method. Section 6 concludes. All the
proofs are deferred to the Appendix.

We use the following notation. For a matrix A, ||-|| represents its Frobenius
norm ||A|| = +/tr(AA’). Let Amin (A) and Ak (A) denote the smallest and largest
eigenvalues of A. We use the notation x, ~ y, to denote x,, =y, +0,(1),and a, < b,
to denote a,, = o(b,,).

2. MODEL AND ESTIMATOR

In this section, we lay out the model under study and propose the CSA quantile
predictor. We also discuss the choice of the subset size based on the cross-
validation method.

2.1. CSA Quantile Predictor

Consider a random sample {(y;,x})}, fori =1, ...,n, where the dimension of x; can
be countably infinite. Following Lu and Su (2015), we assume that {(y;,x})}\_, is
generated from the following linear QR model: for 7 € (0, 1),

oo
Vi=pitei= Zgjxij +&i, @)

J=1
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where ;= pi(t) 1= 3.2, 0%, 0; = 6;(7), & = &i(7) :=y; — Oy (t|x;), and Oy (z|x)
is the tth conditional quantile function of y given x. Note that we drop 7 from
each expression for notational simplicity and that ¢; satisfies the quantile restriction
P(gi(t) < Olx;) = 7. Equivalently, we can also express Qy (t|x;) := Zfi] 0;(7)x;
as is often done in the QR literature.

We consider a sequence of covariates available, which approximate the above
QR model:

Kn
i= Y 6(0x;+bi(r) +&:(7),

j=1

where b; = b;(t) := ui(t) — Zj’(:"l 0;(t)x;; is the approximation error and K, is
the total number of available regressors that may increase as the sample size n
increases. Thus, we presume that all models are misspecified in a finite sample as
in Hansen (2007).!

Given K, regressors, we consider a model composed of k regressors, where
k e {l1,2,...,K,}. There are #’lk), different ways to select k regressors out

of K,. Therefore, a subset of size k is composed of M, xy = ﬁ different
elements, and a model is defined as a single element of them. We use index
M,k € {1,2,...,Mk, 1} for each model. For example, consider that we have
K, = 3 regressors {x;1, X, X;3} and construct a subset of size k = 2. Then, we have
M) = 3 different ways to choose a model as follows: (x;1,xi2), (xi1,xi3), and
(xi2,x:3). Each model is indexed by m 3,2 € {1,2, 3}. For succinct notation, we drop
all subscripts from K,,, Mk, k), and mx, ), and denote them as K, M, and m unless
there is any confusion.

We now consider a QR model with regressors in a complete subset. Let model
m with a size k be given. For observation i, let x;i, r) be a k-dimensional vector of
regressors corresponding to model m, i.€., x;j¢2,2) = (i1, x;3) in the above example.
We can construct a linear QR model with regressors x;, r):

Vi = X, 1y O, + Dicm 1y + i, &)

where b k) = Wi —xl’.(m, 1 @k 1s again the approximation error when we use
only X;im, k) regressors. The model in (2) is estimated by the standard method in

linear QR:
n
O(m k) = arg mianr (Vi = Xy Oy 3
G)(/n,k)E@ i=1
:=arg minQ, (Oup) )
("‘)(mY k) €O

lUsing quantile crossings, Phillips (2015) also shows that QR is always at the risk of model misspecification unless
the parameters are local to constant over 7.

https://doi.org/10.1017/50266466621000402 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466621000402

150 JIHYUNG LEE AND YOUNGKI SHIN

where © is a parameter space and p, (1) := u(t — 1{u < 0}) is the check function.
Note that the estimator @(m, & 1s defined for each subset size k and for each model
m with k regressors. As noted above, we can think of M different models and
corresponding estimators that have k regressors.

We have a few remarks here. First, we use the subscript (i, k) to denote a generic
model with k regressors. However, the index set {1,...,M, k) } itself is defined
in terms of k, which implies that m is also determined by k. Recall the original
notation m, xy above. Therefore, model m € {1, ..., M, i} has the same number
of regressors k, and we cannot choose m and k in an arbitrary way. Second, we
allow that the subset size k goes to infinity as n increases. In other words, there
exists a sequence of subset sizes {k(n)} that diverges. This setting is natural as the
upper bound K,, goes to infinity as n increases. Note that the number of regressors
in each model (k,, in their notation) is also allowed to diverge in Lu and Su (2015).
Both approaches allow more complex models to be averaged as n grows, which is
measured by k and k,,, respectively. However, Lu and Su (2015) require controlling
the growth rates of M and max,, k,,, separately. The proposed method constructs
submodels based on the complete subsets, and M is tightly related to K and k. As a
result, the regularity condition on the complexity of the models is expressed only
in terms of K,, (see Assumption 3 in Section 3).

We finalize this subsection by defining the CSA quantile predictor. Let the size
of the complete subset k be given. For each model, we estimate the parameter @(m, P
by (3) and construct the linear index x;m, k)/@(m, 1- The CSA quantile predictor of y
given x is defined as a simple average of those indices over M different models:

M
N 1 =
y(k) = M Z‘x/(m,k)®(m»k)'
m=1

The CSA quantile predictor is different from the JMA quantile predictor of Lu
and Su (2015) in two respects. First, we do not select the set of models to be
averaged, since we average over the complete subsets of size k. Second, CSA does
not estimate the weights over different models. The idea of averaging over the
complete subsets was first introduced by Elliott et al. (2013) in the conditional
mean prediction setup. Heuristically speaking, since the weights can be seen as
additional parameters to be estimated in the model, the equal weight could perform
better in a finite sample when the number of models (i.e., the dimension of a weight
vector) is large.

2.2. Choice of Subset Size k

We propose to choose the subset size k using the leave-one-out cross-validation
method. We will show in the next section that the subset size k chosen by this
method is optimal in the sense that it is asymptotically equivalent to the infeasible
optimal choice.
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Fork=1,...,K, we define a cross-validation objective function as follows:
1< 1 &
CValhy =~ ; pe (y,- - ;xi(m,,q@i(m, k>> (5)

1 n .
=~ pr0i=3ih)), (6)
i=1

where @i(m,k) is the jackknife estimator for @mk), which is estimated by (3)
without using the ith observation (x;,y;), and y;(k) is a corresponding jackknife
CSA quantile predictor for the ith outcome variable y;. The prediction error is
measured by the check function p; (-). Then, we can choose the complete subset
size k that minimizes the cross-validation objective function as follows:

%= arg min = CV, (k). ™

1<k<K

After choosing the complete subset size, the CSA quantile predictor is finally

defined as
LM
30 =D X Oy ®)
m=1

where the plugged-in’l;is chosen by (7).

We finalize this subsection by adding some remarks on computation. First, we
propose to use a fixed number M,,,,, of random draws of models when M is too large
to implement the method. Since M = K! /(k! (K —k)!), it can be quite large when
the model has large potential regressors. The simulation studies in Section 4 reveal
that the CSA quantile predictor still performs well with a feasible size of submodels
randomly drawn from the complete subsets. We also provide regularity conditions
that assure the asymptotic equivalence between using M and M,,,, in Section 3.
Second, the proposed jackknife method can be immediately extended to the b-fold
cross-validation method, where b is the partition size of the sample. Algorithm 1
below summarizes the leave-one-out cross-validation method for choosing’k\.

3. ASYMPTOTIC THEORY

In this section, we investigate the asymptotic properties of the CSQR estimator. We
first provide the pointwise and uniform convergence results of @(m, © and @,-(m, 0>
respectively. Then, we show the optimality of CSA in the sense of Li (1987), which
implies that & is asymptotically equivalent to the infeasible optimal choice of the
subset size.

In addition to the model described in Section 2, we define some notation for
latter use. Let fy.(-|x) be a conditional probability density function for generic
random variables x and y. Since all models are potentially misspecified in the
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Algorithm 1: Cross-validation for CSA
Input: {(y;,x;) :i=1,...,n}, My
Output: k

1 Set K = dim(x;);

2 fork=1to K do

3 Set & = {all combinations with & regressors out of x;};

4 SetM = |X;klo=K!/(k!(K—k)!);

5 if M < M,,,, then

6 form=1toM do

7

8

9

Set X, k) = (the mth element of X ) fori=1,...,n;
fori=1tondo
Estimate the jackknife estimator @,-(m, o
n
Oj(m.1) = argmin Z Pr (Y = Xy @m0 )
@(m,k)e@j:l#i
10 end
1 end
12 Set Fi(k) = 7 > m 1 X1 Oitmbo:
13 Set CV,,(k) = 3 2oy oo (i = 3i(k));
14 end
15 if M > M, then
16 for m =1to M,,,, do
17 Set X,y = (a random element of X ;) fori=1,...,n;
18 fori=1tondo
19 ‘ Estimate the jackknife estimator @,-(m_ & using (9);
20 end
21 end
2 Set 3 (k) = 2 X omt Xty Oitm b3
2 Set CV,,(k) = 3 2oy oo (i = 3i(k));
24 end
25 end

26 Setk = argmin, CV,,(k);

model averaging literature, we define the pseudo-true parameter value for any
given (m, k):

O = arg minE[ pe (Vi — X 1) Omiy) ] -
6(,,,,,()6@

Let . (c¢) := 7 — I{c < 0}. For any (m,k) suchthatm=1,....Mandk=1,... K,
we define
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Ay 1= E [fygx (O im0 1X7) Xicm )X ]
By :=E [Wr (yi— @?ﬁn,@xi(m,k))zxi<m,k)x§(m,k>] ;
and

Vit = A o BnoAgn -

We need the following regularity conditions.

Assumption 1.
(1) (yi,x;) is i.i.d. generated by (1).
(ii) P(gi(t) <0|x;)) =7 as.
(iii) E[u}] < 0o and sup;.; E[x}] < c,, for some ¢, < 00,
Assumption 2.
(i) fyx(-|x;) is bounded above by ¢; < oo and continuous over its support a.s.
(ii) There exist constants ¢4, r, and caom k) such that 0 < ¢, ) < Amin (A(,,L k)) <
)"max (A(m.k)) =< Cf)"max (E I:xi(m,k)x;(m,k)]> =< EA(m,k) < Q.
(iii) There exist constants cg,, ;) and Cgm iy such that 0 < ¢z, ) < Amin (Bon) <
Amax (Boniy) < Coom iy < 00.
(iv) (EA(m,k) +EB(m,k)) /k=0 (g.i(m,k))‘

Assumption 3. Letc, :=min| <x<x Min| <;y<ps Camky CB = ming <x<g Minj <<y
CB(m.ky» CA *= MAX | <k<k MAX| <u<M CA(m,k)> AN Cp = MAX | <k<k MAX] <m<M CA(m,k)-

(i) K:A =o(1) and KAL%” —o(1).

(i) % — O(1) and (logn)K+'n=Ke/@ep) — o(1).

Conditions (i) and (ii) in Assumption | are the standard i.i.d. and the quantile
restrictions. Assumption 1(iii) requires some finite moment restrictions to achieve
the probability bounds of various sample mean objects in the proof. Assumption 2
allows conditional heteroskedasticity. Note that the eigenvalues of A, and
B,k are bounded and bounded away from zero for a given (m, k). However,
these bounds (¢4 1)» C(m.ky» CAGm. k) CBGm.k)) €an converge to zero or diverge to
infinity as n increases. The speed of convergence is restricted by Assumption 2(iv).
These bounded eigenvalue restrictions are commonly imposed in the literature that
studies the increasing dimension of parameters (see, e.g., Portnoy, 1984, 1985).
Assumptions 1 and 2 are standard and similar to those in Lu and Su (2015). See
the additional remarks therein. Assumption 3 imposes some regularity conditions
on the number of potential regressors K, and the sequence of the uniform bounds
(¢4, Cp» Ca, ). Different from the regularity condition of JMA in Lu and Su (2015),
we need not restrict the growth rate of potential models M directly, since Mk, i)
is determined by K,,. However, M, i) increases very quickly at a factorial rate of
K,, and we need a stronger restriction on K,. As noted in Assumption 3(ii), K,
can increase at most the logarithmic rate of n. In the case of JMA, the number
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of regressors can increase at the polynomial rate if we set k = ky; = M in their
notation. This is a trade-off in proving the uniform convergence results over a larger
index set than that of JMA. We discuss this point in detail below in Theorem 2.
The second part of Assumption 3(ii) holds if gf, /cacp is bounded away from zero
or converges to zero at the slower rate than log(logn)/logn when K increases at
the rate of logn.

First, we prove the convergence rate and the asymptotic normality of @(m, 3
when the dimension of parameter k increases.

THEOREM 1. Suppose that Assumptions 1, 2, and 3(i) hold. Let C,, ) denote
an I,y X k matrix such that Co := limy,—, oo Cin, k) C;m, 8 exists and is positive
definite, where Lo, 1 € [1,k] is a fixed integer. Then,

(1) H@(m.k) —Ohup H =0 <\/§)

.. —12[A . d
i) VCon0 Vs | Bomtr = Oy | > N0, Co).

This theorem provides an asymptotic theory for the QR estimator when the
model is misspecified and the number of parameters diverges to infinity as
similarly seen in Lu and Su (2015). The convergence rate in (i) is a standard
result when k diverges as n increases. To show the asymptotic normality with a
diverging number of parameters, we also consider an arbitrary linear combination
of @<m, 1 represented by C,, ). The difference between two estimators, CSA and
JMA, originates from the fact that CSA chooses the total number of the regressors
K, first and the number of complete subset models Mk, ) follows automatically
foreachk=1,..., K, whereas JMA selects the set of models M,, (in their notation)
in advance. Then, the size of regressors k,, in case of JMA is determined by the
sequence of models m =1, ..., M), chosen by a researcher. Although there are slight
differences in the definition of ca(y k) and cpon k) and their bounds from those in
Lu and Su (2015), the proof of Theorem 1 is identical to theirs, so is omitted.

We next turn our attention to the uniform convergence results of @,-(m, o and
@(m, & In addition to its own interest, the uniform convergence rates in the next
theorem are required to prove to the asymptotic optimality of %

THEOREM 2. Suppose that Assumptions 1, 2, and 3(ii) hold. Then,

6)) maxj<j<p, MaXj<x<x MaXj<u<m H@i(m’k) — ®>(km.k) H = OP (w/nflKlogn),

(i) max<x<x Max|<m<ym H@(m’k) —O%.0 H =0, ( n—'Klogn).

Since CSA is defined on the index sets of m and k, the uniform convergence
rates are defined over those sets, m € {1,...,M} and k € {l1,...,K}. In case of
e} i(m.k)» we need additional uniformity overi € {1, ..., n}. As aresult, the regularity
conditions that control the growth rates of K, and M, 1) are different from those
of JIMA in Assumption 3(ii). As discussed before, since the number of complete
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subsets increases at the factorial rate of K,,, we need a restriction on K, slightly
stronger than that of JMA. We follow the proof strategy in Lu and Su (2015) which
extends the results of Rice (1984) by using the inequality in Shibata (1981, 1982).
To handle the different growth rates, we provide new technical lemmas. The proof
of Theorem 2 as well as these lemmas are provided in the Appendix. Finally, the
uniform convergence rates are expressed in terms of the sample size n and the total
number of regressors K that goes to infinity as n increases.

We next prove the prediction equivalence when we replace M with M,,,,. Let
Muax be a subset of {1,...,M} such that M, elements are randomly drawn.
Define y(k) to be the CSA quantile predictor using only M,,,, models:

~ 1 A
Y(k) = Z X 1y O -

/
m' e Mpax

Let yj :=limpy oo M ™! er\::l E [x’(m’ 0O, k)] < 00. We show the validity of M.,
in the following theorem.

THEOREM 3. Suppose that Assumptions 1-3 hold. Let M,,,, — oo and
K/Myo — 0 as n — oo. Furthermore, we assume that

M
—1 / *

gka}KM § Xom oy Oy = Y& = 0p(1),

- m=1

max max ||xg,xll = 0,(1).
1<k<Kl1<m=<M

Then, we have

max [5(0) ~5(k)| = 0,(1).

The rate requirement for M,,,, is mild, and M,,,, = O(n'/?) would work given
K = O(logn). The uniform boundedness assumption on [|x, k) || is weak and holds
easily in most applications. We have some remarks on the uniform convergence
assumption of the model average with the pseudo-true parameter ©F, . Let
k) = Xy Ofmiy — ElX(. 19Oy ]- Note that k is discrete and the functional
class size over k is small. Thus, it depends on the dependent structure of z(,, i
to hold the uniform law of large numbers. For example, consider the following

kBl
sufficient condition for the uniform convergence is max;<x<x E [ZZZI Zmi)? /M =
O(1).If zm, k) 1s covariance stationary over m for all &, then the sufficient condition

maximal inequality: for § > 0,
M M
—1 -1
P (Lglk%( M ZZ('"”‘) = 5) = KlrsnkasXKP ( M ZZ(’””‘) = 5)
m=1 m=1
~ M i<k<k Ms§?
where the second line holds from the Markov inequality. Since K/M = o(1), a

)

https://doi.org/10.1017/50266466621000402 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466621000402

156 JIHYUNG LEE AND YOUNGKI SHIN

becomes the absolute summability condition max; <x<x Z;io \E[z(m, 102 (m+, k)]| <
0. See, e.g., Fazekas and Klesov (2001) for more general conditions on the partial
sums in a different dependent structure.

We now prove the asymptotic optimality of % in the sense of Li (1987).
Following Lu and Su (2015), we use the final prediction error (FPE, or the
out-of-sample quantile prediction error) as a criterion to evaluate the prediction

performance:
| M
FPE,(k) :=E |:pr (y— M;Xém.@@(m,k)) |Dnj| ,
where D, := {(y;,x;) : i = 1,...,n} is a sample. The next theorem shows that % is

asymptotically equivalent to the infeasible best subset size choice that is defined
as a minimizer of FPE(k).

THEOREM 4. Suppose that Assumptions -3 hold. Then,

FPEG)
.— ﬁ 1’
infyexc FPE(K)

where K :={1,...,K,}.

A similar optimality concept has been adopted in the context of the weighted
average estimator (e.g., Hansen, 2007; Hansen and Racine, 2012; Lu and Su,
2015) and in the context of the instrumental variable (IV) estimator (e.g., Donald
and Newey, 2001; Kuersteiner and Okui, 2010; Lee and Shin, 2020). Different
from JMA, CSA considers the complete subsets given (K, k) and does not require
the preselection of models to be considered nor the order of models. Thus, the
optimality result is also independent of the initial model selection/ordering issue
once the total number of regressors is given. The index set IC of CSA is discrete
while that of JMA or the JMA in Hansen and Racine (2012) is compact. All require
the finite moment condition similar to Assumption (A.1) in Li (1987), which is
assured by Assumption 1(iii) above. The idea of CSA has been adopted in the
forecasting literature (e.g., Rapach, Strauss, and Zhou, 2010; Elliott et al., 2013,
2015). This is the first formal result to show the optimality of the subset size
selection.

Finally, we compare the performance of the nonstochastic equal weight with
that of the optimal weight. In the mean prediction context, it has been observed
that a simple arithmetic mean, i.e., the equal weight, outperforms the estimated
optimal weight. This empirical phenomenon is known as the “forecast combination
puzzle,” and some formal explanations under the mean squared error are provided
by Smith and Wallis (2009), Elliott (2011), and Claeskens et al. (2016), to name
a few. Heuristically speaking, it happens when the estimation error of the optimal
weight is large enough to dominate the efficiency loss caused by the equal weight.
We extend this result to the class of smooth expected loss functions. This is crucial
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in our analysis, since the check function p (-) does not give a closed-form solution,
which is different from the mean squared error used in the existing literature.

We consider the following simplified framework to focus on the main idea.
Let be y1,...,yy be predictors for y based on M different models. For example,
we can think of y,, = XEm, k)@(m © for any given k. Let w be an M-dimensional
weight vector combining the M predictors. We consider only positive weights with
13,w = 1, where 1 is an M-dimensional unit vector. Let y := (4, ...,Jy)" and
em =y — Y be the prediction error of 3, and e := (ey,...,ey)’ be a vector of
these prediction errors. We define the prediction error of the combined predictor
as e.(w) :=y—wy=w'(l);-y—3y) = w'e. Then, we can define an optimal weight
w* as

w* = arg min F(w),
weAM—1

where AM~! is the standard (M — 1)-simplex and F(w) := E[L(w;e.)] is an
expected loss function. For example, the mean squared error in Elliott (2011) can
be written in terms of the quadratic loss function: F(w) = E[e%] = E[wee'w] =
w' Xw, where ¥ = E[ee’]. The quantile prediction error adopted in this paper can
be written in terms of the check function: F(w) = E[p;(e.)] = E[p. (y — W'P)].
Let w := M~'1,, be an equal-weight vector and W be an estimator for w* with
n := w—w*. To illustrate our main point, we further impose that E[7] = 0 and
max,, Var(f,,) = 6,]2 > 0.

THEOREM 5. Suppose that F(w) is twice differentiable on AM=1 and that
sup,,cam—1 [|VoF(W)|| < C < oo uniformly in M. Let Aypgqy := limsup,, sup,, Apax
(V2F(w)).

(i) [FOW) = FW*)| <27 Apnar (143M71).
(i) E[F(W) — Fw)| < 27" XM,

We have some remarks. First, it shows that the equal weight w may work better
than the estimated optimal weight w when we average many models, i.e., when
M is large. Compared to the optimal prediction error F'(w*), the efficiency loss
by w is bounded by 27X, (1 +3M~"), which converges to 27!, for large
enough M. On the contrary, the upper bound of the mean efficiency loss by w
diverges as M increases. We admit that these upper bounds only reflect the worst
case scenario. However, it confirms the intuition formally that the equal weight
can outperform the estimated optimal weight under the class of smooth expected
loss functions. Second, the prediction error of w under a quadratic loss function
converges to the optimal prediction error as M increases. The same result is also
proved in Proposition 1 in Elliott (2011). Different from his result, it does not
require decomposing the prediction error into the common component and the
idiosyncratic component. This result is summarized in Corollary 6 below. Third,
to achieve the optimality, the estimation errors of the weight w, {7,,}, should
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vanish fast enough. Let 5,72 = O(c,). A sufficient condition for the optimality is
cn =0M,; 1. For example, if ¢, is a parametric rate, n~ Y2 then M, should be
bounded by o(n'/?). When M,, = O(logn), for example, this condition is satisfied.
However, if M, increases too fast, then M,lc"rﬂ2 will diverge and w may work

worse than w.” Fourth, | V2F(w)|| = (Zf;’zlki)l/z, where {A,,} are eigenvalues
of V,F(w), since Vo F(w) is symmetric. Thus, the uniform bound C exists if {1,,}
is absolutely summable, Z;’le |An| < oo. Fifth, if we restrict our attention to
the expected check function adopted in this paper, F(w) is twice differentiable
if the conditional density f(y|y) is smooth for all y. From Theorem 1 in Angrist,

Chernozhukov, and Fernandez-Val (2006), we have
F(w) = E[@: G, w) (W5 — 0: 0I9)?]. (10)

where Q. (y|y) is the conditional quantile function of y given ¥ and &, (,w) :=
fol A—=u)-fu-wy+ A —u)-Q:(yP)|y)du. Thus, the smoothness of F(w) is
implied by the twice differentiability of f(y|y). Finally, equation (10) shows that
CSA would not work well if we include many irrelevant models. Similar to the QR
specification error in Angrist et al. (2006), we call (w’ v — Q,(y|§))) the quantile
prediction specification error. If there are many irrelevant models, the optimal
weight w* would be sparse, i.e., many elements of w* would be zeros. In such a
case, CSA with @ = M~'1, results in a larger quantile prediction specification
error given M and n. For example, if there is only one relevant regressor and
all other coefficients 0;(t) equal zero besides one, the complete subsets will be
composed of many irrelevant models. As we will see in the simulations studies
in the next section, CSA does not perform well under this situation. Therefore, a
prescreening process is desirable to achieve a satisfactory result of CSA.

COROLLARY 6. Suppose that we have a quadratic loss function, L(w;e.) =
(e.(W))?, and that k. (X) < oo uniformly in M, where % := E[ee’]. Then, we have

|[F(W) — F(w*)| = 0 as M — oc.

4. MONTE CARLO SIMULATIONS

In this section, we investigate the finite sample performance of the proposed
estimator in simple Monte Carlo experiments. We consider two categories of the
simulation designs: (i) all candidate models are misspecified, and (ii) candidate
models include the true model.

First, we adopt the following data generating process (DGP):
1000

yi=0) j  xy+e (11)
j=1

2We thank an anonymous referee and the Co-Editor for pointing out this intuition. Furthermore, note that it is one
sufficient condition. It is still possible that there exists a different set of conditions that guarantee the optimality.
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where x;; = 1 and (xp,...,Xj1000) follows a multivariate normal distribution,
N(0, %) with Xy = px if j # k and 1 if j = k. Therefore, the regressors are
possibly dependent on each other, which is a more general feature of the design
than the existing literature (see, e.g., Hansen, 2007; Lu and Su, 2015 ). The term
¢; follows N(0,1) independent of x;;. The sample is i.i.d.over i. The population

= (Var(y;) — Var(g;))/Var(y;) is controlled by 6. We consider two sample
sizes, n = 50,150. The number of potential regressors is set to K = 4log(n),
which is 15 and 20, respectively. Note that all candidate models are misspec-
ified, since there remain many missing regressors in the sample. We consider
various DGPs by combining different R* = {0.1,...,0.9}, ¢ = {0.1,...,0.9}, and
px =1{0.0,0.1,0.2,...,0.9}. We consider 38 different DGPs in total and estimate
74 different quantile models.

We compare the performance of the proposed CSA estimator with the JMA
estimator in Lu and Su (2015), the £;-penalized quantile regression (L1QR) in
Belloni and Chernozhukov (2011), the bootstrap aggregating (BAG) methods in
Breiman (1996), and ¢,-penalized quantile regression (L2QR). L1QR and L2QR
are also called the lasso and the ridge regression in the mean regression setup.
The set of models used for JMA is constructed in an encompassing way, e.g.,
{xit}, {xit, xin}, ... {xi1, ..., Xino}. For CSA, we set the maximum submodels to
M0 = 100. Thus, we draw 100 models randomly from the complete subsets of
size kif M = K! /(k! (K —k)!) is bigger than 100. Furthermore, we reduce some
computational burden by applying 10-fold cross-validation when n = 150. The tun-
ing parameter of L1QR is chosen by equation (2.7) in Belloni and Chernozhukov
(2011). The bootstrap size of BAG is set to be 1,000. The tuning parameter of
L2QR is chosen by 10-fold cross-validation over the set {0.01,0.05,0.1,0.5, 1.0},
which is constructed after some presimulation studies.

To compare the performance, we first compute FPE(r) for each replication

r=1,...,R as follows. After estimating the model with n in-sample observations,
we generate additional 100 out-of-sample observations. Then, FPE(r) is calculated
by

100
FPE(r) := mOZp, s=95)s

where y, is a predicted value by each method. Then, we construct the following

three comparison measures:
R

Average FPE, := R~ ) "FPE(r)a.

r=1

R
Winning Ratio, := R~ Z I{FPE(r)4 < FPE(r)g, ..., FPE(r)4 < FPE(r)g},

r=1

R
Loss to CSA4 :=R™" Y " I{FPE(r)csa < FPE(r)a},

r=1
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FIGURE 1. Prediction errors over RZ.

where each subscript denotes generic notation for a forecasting method. Note that
the loss to CSA ratio provides more direct binary comparison of each method to
CSA. We set the total number of replications R = 1, 000.

Figures 1-3 and Tables 1-4 summarize the simulation results over all designs.
Overall, the performance of CSA compared to the alternative is quite satisfactory.
We first direct our attention to Figure 1 and Tables 1 and 2. In these simulation
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FIGURE 2. Prediction errors over various quantiles.
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F1GURE 3. Prediction errors over various py.

designs, we vary R? over {0.1,0.2,...,0.9} while setting p, = 0.9. We consider
two quantiles, T = 0.1 and 0.5, respectively. From the four graphs in Figure 1, we
confirm that CSA outperforms the alternative uniformly over R*’s in terms of FPE
in both quantiles. The prediction performance of CSA is better when the sample
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TABLE 1. Simulation results over various R%: 7 = 0.5

n =50 n=150
R* CSA JMA LIQR BAG L2QR CSA JMA LIQR BAG L2QR
Average FPE
0.1 0419 0438 0420 0426 0427 0405 0415 0415 0418 0.408

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(0.043) (0.047) (0.037) (0.035) (0.048)
0420 0439 0421 0.429 0435
(0.042) (0.046) (0.036) (0.035) (0.051)
0420 0440 0421 0.430 0.439
(0.041) (0.045) (0.036) (0.035) (0.053)
0421 0442 0424 0430 0437
(0.042) (0.047) (0.035) (0.035) (0.049)
0422 0445 0425 0432 0441
(0.042) (0.046) (0.035) (0.035) (0.053)
0423 0447 0427 0.436 0.443
(0.041) (0.045) (0.035) (0.036) (0.055)
0423 0451 0429 0.440 0.443
(0.043) (0.046) (0.036) (0.036) (0.052)
0424 0455 0434 0455 0.447
(0.042) (0.046) (0.036) (0.038) (0.051)
0.430 0470 0.449 0.495 0.459
(0.043) (0.048) (0.038) (0.049) (0.055)

(0.033) (0.035) (0.033) (0.033) (0.033)
0.404 0415 0415 0.419 0.409
(0.032) (0.034) (0.033) (0.033) (0.033)
0.403 0415 0414 0418 0.409
(0.032) (0.033) (0.033) (0.032) (0.032)
0.403 0416 0414 0418 0.408
(0.032) (0.034) (0.033) (0.032) (0.031)
0.405 0418 0416 0.419 0.409
(0.032) (0.034) (0.033) (0.032) (0.032)
0.407 0421 0418 0.420 0411
(0.032) (0.034) (0.033) (0.032) (0.033)
0.407 0422 0419 0421 0.410
(0.031) (0.033) (0.033) (0.032) (0.032)
0.407 0425 0421 0427 0413
(0.031) (0.033) (0.033) (0.032) (0.032)
0413 0432 0428 0.442 0418
(0.033) (0.035) (0.034) (0.035) (0.033)

Winning Ratio

278% 8.6% 149% 195% 292% 342% 10.1% 6.8% 11.3% 37.6%
29.6% 17% 172% 19.7% 258% 359% 10.1% 7.7% 11.8% 34.5%
33.6% 6.9% 162% 209% 224% 394% 89% 79% 10.9% 32.9%
343% 6.4% 144% 21.0% 239% 38.5% 74% 7.7% 12.5% 33.9%
358% 59% 163% 18.0% 24.0% 38.4% 88% 72% 13.4% 32.2%
36.6% 7.1% 15.6% 17.7% 23.0% 40.1% 7.4% 75% 13.0% 32.0%
388% 4.4% 155% 16.0% 253% 404% 63% 7.1% 123% 33.9%
472% 4.4% 12.7% 11.1% 24.6% 432% 6.7% 62% 10.0% 33.9%
541% 42% 99% 3.6% 282% 43.0% 53% 6.1% 6.7% 38.9%
Loss to CSA
NA 773% 59.6% 57.0% 55.6% NA 77.8% 81.8% 654% 52.5%
NA 77.8% 59.4% 58.4% 59.8% NA 79.1% 82.6% 64.2% 552%
NA 79.8% 622% 61.1% 61.5% NA 804% 82.8% 66.3% 57.3%
NA 793% 651% 60.0% 62.3% NA 82.8% 83.2% 652% 54.2%
NA 80.7% 65.6% 61.6% 62.1% NA 81.9% 81.8% 65.5% 55.5%
NA 824% 672% 64.3% 64.7% NA 827% 824% 66.1% 57.1%
NA 84.7% 69.8% 64.5% 62.3% NA 858% 829% 652% 54.8%
NA 86.4% 755% 73.2% 65.4% NA 85.6% 854% 69.5% 56.5%
NA 89.2% 82.6% 86.0% 68.0% NA 872% 84.6% 74.5% 54.3%

Note: The standard error of the average FPE is denoted inside the parentheses.

https://doi.org/10.1017/50266466621000402 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466621000402

COMPLETE SUBSET AVERAGING FOR QUANTILE REGRESSIONS

163

TABLE 2. Simulation results over various R%: 7 = 0.1

n =50 n=150
R* CSA JMA LIQR BAG L2QR CSA JMA LIQR BAG L2QR
Average FPE
0.1 0.191 0.204 0.215 0.194 0.225 0.182 0.188 0.195 0.188 0.198

(0.028) (0.036) (0.040) (0.023) (0.046)
02 0.191 0205 0215 0.196 0.226
(0.027) (0.035) (0.039) (0.024) (0.050)
0.191 0207 0217 0.198 0.229
(0.029) (0.036) (0.040) (0.025) (0.049)

0.3

(0.019) (0.021) (0.025) (0.020) (0.026)
0.181 0.188 0.194 0.188 0.198
(0.019) (0.021) (0.024) (0.021) (0.027)
0.181 0.189 0.195 0.187 0.196
(0.019) (0.021) (0.025) (0.020) (0.025)

04 0.192 0.209 0.218 0.196 0.224 0.181 0.189 0.194 0.188 0.197

(0.028) (0.037) (0.039) (0.023) (0.047) (0.019) (0.021) (0.024) (0.021) (0.027)
0.5 0.192 0.211 0.219 0.197 0.225 0.182 0.189 0.194 0.188 0.196

(0.029) (0.036) (0.040) (0.023) (0.046) (0.019) (0.021) (0.025) (0.020) (0.026)
0.6 0.193 0.212 0.220 0.199 0.225 0.182 0.191 0.196 0.190 0.197

(0.029) (0.037) (0.042) (0.024) (0.047) (0.018) (0.021) (0.024) (0.020) (0.026)
0.7 0.194 0.214 0.220 0.201 0.224 0.182 0.192 0.196 0.190 0.195

(0.032) (0.038) (0.040) (0.025) (0.046) (0.018) (0.021) (0.024) (0.021) (0.025)
0.8 0.194 0.216 0.225 0.208 0.223 0.183 0.193 0.197 0.193 0.195

(0.028) (0.035) (0.041) (0.027) (0.046) (0.018) (0.022) (0.025) (0.020) (0.024)
09 0.196 0.223 0.235 0.233 0.224 0.184 0.197 0.200 0.200 0.194

(0.027) (0.035) (0.041) (0.032) (0.046) (0.018) (0.022) (0.025) (0.021) (0.023)

Winning Ratio
0.1 38.8% 10.0% 8.0% 342% 9.0% 384% 128% 83% 26.7% 13.8%
02 412% 12.5% 85% 312% 6.6% 37.0% 12.8% 88% 28.0% 13.4%
03 43.0% 95% 81% 325% 69% 375% 11.1% 88% 27.4% 152%
04 420% 79% 7.8% 323% 10.0% 412% 112% 82% 26.0% 13.4%
05 43.7% 77% 89% 31.5% 82% 38.6% 10.7% 92% 26.7% 14.8%
06 451% 78% 79% 27.7% 11.5% 405% 113% 87% 23.9% 15.6%
0.7 449% 68% 94% 27.6% 113% 41.6% 11.0% 67% 22.6% 18.1%
0.8 471% 85% 87% 187% 17.0% 424% 92% 84% 19.4% 20.6%
09 571% 54% 73% 7.1% 231% 449% 84% 89% 112% 26.6%
Loss to CSA

0.1 NA 744% 829% 558% 75.9% NA 738% 84.4% 61.2% 70.0%
02 NA 755% 832% 59.4% 79.0% NA 73.1% 83.3% 60.4% 70.8%
03 NA 79.7% 84.0% 59.8% 80.3% NA 763% 83.8% 58.7% 69.9%
04 NA 80.8% 84.2% 572% 76.3% NA 762% 83.9% 62.5% 69.7%
05 NA 82.6% 84.6% 589% 77.4% NA 75.0% 82.6% 60.7% 68.8%
06 NA 81.8% 84.6% 60.7% 74.6% NA 789% 83.5% 63.5% 70.2%
0.7 NA 833% 83.6% 62.4% 75.8% NA 80.5% 86.9% 62.4% 66.9%
08 NA 83.1% 84.8% 67.9% 74.5% NA 81.5% 83.9% 65.8% 66.8%
09 NA 883% 88.5% 83.7% 72.0% NA 84.1% 85.0% 763% 64.8%
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TABLE 3. Simulation results over various quantiles

n=>50

n =150

t CSA JMA LIQR BAG L2QR

CSA JMA LIQR BAG L2QR

Average FPE

0.1 0.192 0.211 0.219 0.197 0.225
(0.029) (0.036) (0.040) (0.023) (0.046)
0.2 0300 0320 0.315 0307 0.331
(0.038) (0.044) (0.039) (0.029) (0.053)
03 0371 0392 0379 0.378 0.393
(0.038) (0.043) (0.037) (0.033) (0.051)
04 0409 0432 0413 0419 0428
(0.040) (0.044) (0.036) (0.035) (0.053)
0.5 0422 0445 0425 0432 0441
(0.042) (0.046) (0.035) (0.035) (0.053)
0.6 0410 0432 0414 0419 0433
(0.042) (0.045) (0.037) (0.035) (0.053)
0.7 0369 0391 0375 0.378 0.401
(0.041) (0.045) (0.036) (0.033) (0.053)
0.8 0300 0320 0.310 0.307 0.334
(0.036) (0.043) (0.035) (0.030) (0.052)
09 0.191 0.209 0.212 0.197 0.231
(0.029) (0.034) (0.036) (0.024) (0.047)

0.182 0.189 0.194 0.188 0.196
(0.019) (0.021) (0.025) (0.020) (0.026)
0.287 0.298 0.299 0.296 0.296
(0.024) (0.027) (0.028) (0.026) (0.030)
0.353 0364 0365 0366 0.361
(0.029) (0.032) (0.031) (0.030) (0.032)
0.394 0406 0.405 0.405 0.397
(0.031) (0.034) (0.033) (0.032) (0.032)
0.405 0418 0416 0.419 0.409
(0.032) (0.034) (0.033) (0.032) (0.032)
0.393 0405 0.404 0.406 0.400
(0.032) (0.033) (0.033) (0.031) (0.032)
0.354 0367 0366 0.366 0.365
(0.029) (0.031) (0.031) (0.029) (0.031)
0.286 0.297 0.298 0.296 0.300
(0.025) (0.027) (0.027) (0.026) (0.029)
0.181 0.190 0.195 0.188 0.199
(0.019) (0.022) (0.025) (0.020) (0.027)

Winning Ratio

0.1 43.7% 7.7% 89% 31.5% 82% 38.6% 10.7% 92% 206.7% 14.8%
02 419% 7.1% 11.9% 25.0% 14.1% 385% 102% 7.8% 18.7% 24.8%
0.3 37.0% 6.0% 13.9% 233% 19.8% 37.0% 103% 8.7% 152% 28.8%
04 340% 50% 157% 22.0% 233% 359% 7.8% 83% 123% 357%
0.5 357% 59% 163% 18.1% 24.0% 383% 88% 72% 13.5% 322%
0.6 36.5% 6.6% 152% 239% 17.8% 383% 84% 80% 15.6% 29.7%
0.7 38.1% 8.1% 147% 259% 132% 423% 85% 73% 18.5% 23.4%
0.8 41.0% 72% 11.6% 28.1% 12.1% 40.5% 9.7% 8.0% 23.2% 18.6%
09 433% 8.6% 9.6% 30.7% 7.8% 41.5% 11.6% 7.6% 2065% 12.8%
Loss to CSA
0.1 NA 826% 84.6% 58.9% T77.4% NA 75.0% 82.6% 60.7% 68.8%
02 NA 82.1% 78.0% 63.3% 71.6% NA 783% 83.2% 62.5% 61.6%
03 NA 81.6% 70.8% 59.4% 64.0% NA 799% 83.9% 63.2% 58.4%
04 NA 814% 65.7% 582% 59.4% NA 81.9% 80.0% 62.9% 53.0%
05 NA 807% 656% 61.1% 62.1% NA 81.9% 81.8% 65.6% 55.3%
0.6 NA 80.1% 67.9% 59.8% 66.9% NA 802% 80.5% 63.1% 56.9%
07 NA 789% 71.4% 60.9% 71.1% NA 825% 84.1% 64.4% 62.3%
0.8 NA 826% 743% 60.1% 72.5% NA 81.5% 82.1% 63.4% 65.3%
09 NA 80.1% 81.6% 61.2% 81.0% NA 77.1% 852% 622% 73.1%
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TABLE 4. Simulation results over various p,

n=>50 n =150
pr CSA JMA LIQR BAG L2QR CSA JMA LIQR BAG L2QR
Average FPE
0.0 0493 0488 0.503 0.516 0.530 0449 0447 0455 0484 0.458

(0.047) (0.050) (0.052) (0.042) (0.065)
0.484 0506 0.507 0.498 0.528
(0.046) (0.049) (0.049) (0.040) (0.060)
0.2 0461 0490 0487 0474 0.500
(0.045) (0.049) (0.045) (0.039) (0.053)
0.3 0448 0479 0473 0459 0487
(0.044) (0.049) (0.042) (0.037) (0.054)
04 0440 0471 0464 0449 0474
(0.042) (0.046) (0.042) (0.036) (0.052)
0.5 0433 0464 0457 0440 0.464
(0.043) (0.047) (0.042) (0.035) (0.053)
0.6 0428 0458 0450 0435 0457
(0.042) (0.047) (0.041) (0.033) (0.053)
0.7 0426 0454 0442 0433 0453
(0.041) (0.046) (0.038) (0.034) (0.053)
0.8 0423 0449 0435 0430 0443
(0.040) (0.046) (0.038) (0.034) (0.052)
0422 0445 0425 0432 0.441
(0.042) (0.046) (0.035) (0.035) (0.053)

0.1

0.9

(0.037) (0.036) (0.037) (0.038) (0.038)
0.446 0459 0461 0470 0.456
(0.036) (0.038) (0.037) (0.037) (0.038)
0429 0445 0447 0446 0.442
(0.034) (0.036) (0.037) (0.035) (0.036)
0420 0438 0440 0434 0432
(0.034) (0.035) (0.036) (0.032) (0.035)
0418 0434 0437 0427 0.429
(0.032) (0.034) (0.034) (0.032) (0.034)
0.405 0418 0416 0424 0.426
(0.032) (0.034) (0.033) (0.033) (0.035)
0411 0428 0.430 0420 0.420
(0.032) (0.034) (0.034) (0.032) (0.034)
0.409 0425 0.427 0418 0418
(0.033) (0.033) (0.034) (0.032) (0.033)
0408 0423 0424 0420 0.414
(0.031) (0.034) (0.033) (0.033) (0.034)
0.405 0418 0416 0419 0.409
(0.032) (0.034) (0.033) (0.032) (0.032)

Winning Ratio

0.0 202% 33.9% 143% 15.6% 16.0% 23.0% 31.1% 87% 6.7% 30.5%
0.1 384% 11.9% 10.5% 26.6% 12.6% 40.0% 11.5% 6.4% 11.6% 30.5%
02 443% 77% 79% 284% 11.7% 43.4% 9.1% 69% 162% 24.4%
03 454% 64% 65% 294% 123% 445% 7.1% 54% 19.1% 23.9%
04 46.0% 66% 62% 286% 12.6% 43.4% 81% 54% 21.2% 21.9%
0.5 425% 53% 71% 31.7% 13.4% 46.6% 102% 8.6% 183% 163%
0.6 444% 48% 63% 271% 174% 43.7% 58% 42% 21.4% 24.9%
0.7 41.1% 68% 77% 27.0% 174% 445% 57% 33% 20.1% 26.4%
0.8 387% 6.7% 103% 223% 22.0% 38.7% 79% 43% 17.5% 31.6%
09 358% 59% 163% 18.0% 24.0% 385% 87% 712% 13.5% 32.1%
Loss to CSA
00 NA 404% 63.0% 63.9% 683% NA 44.0% 67.7% 73.5% 58.0%
0.1 NA 737% 77.0% 61.5% 73.7% NA 76.6% 82.7% 70.1% 59.0%
02 NA 791% 81.0% 61.3% 73.9% NA 814% 86.5% 657% 62.9%
0.3 NA 838% 829% 588% 73.2% NA 849% 88.7% 63.3% 61.7%
04 NA 839% 82.6% 59.5% 72.1% NA 82.6% 879% 61.4% 61.7%
0.5 NA 87.1% 82.5% 558% 70.2% NA 81.9% 81.8% 67.3% 70.2%
0.6 NA 857% 82.7% 58.4% 68.6% NA 853% 88.6% 59.3% 59.1%
0.7 NA 843% 79.1% 57.4% 67.7% NA 852% 88.8% 58.8% 58.9%
0.8 NA 813% 745% 59.3% 63.1% NA 833% 87.8% 61.7% 53.9%
09 NA 80.7% 65.6% 61.6% 62.1% NA 81.9% 81.8% 65.6% 55.4%
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size is small, n = 50, and the gap decreases as the sample size increases to n = 150.
At T = 0.5, L1QR performs the second when n = 50, but L2QR does the second
when n = 150. Thus, the performance order next to CSA is not stable. AT t = 0.1,
BAG performs the second overall, but it is deteriorated when R? is very high, e.g.,
R? = 0.9. We also note that the performance of CSA is relatively stable over R?
while that of the alternative increases steeply for larger R> when n = 50. The same
results are confirmed in Tables 1 and 2. CSA shows the highest winning ratios over
all designs except T = 0.5 and R*> = 0.1, where that of L2QR is slightly higher.
When we conduct the binary comparison (loss to CSA), all methods lose more
than 50% to CSA over all designs and more than 80% in some designs. Therefore,
we conclude that both the winning ratio and the loss to CSA are more favorable to
CSA in this set of simulation designs.

In the next simulation, we study the performance over a wider range of quantiles.
We vary the quantile T = {0.1,0.2, ..., 0.9} while setting R* = 0.5 and p, = 0.9. The
results are summarized in Figure 2 and Table 3. In Figure 2, CSA outperforms the
alternative uniformly over all quantiles in both sample sizes followed by BAG and
L2QR. Again, the gap decreases as the sample size increases. It is also interesting
that all estimators predict better at the tail distributions and they show the largest
prediction errors at the median. The winning ratio and the loss to CSA in Table 3
are also satisfactory.

Third, we check the performance over different levels of dependency among
the predictors. We vary p, = {0,0.1,0.2,...,0.9} while setting R> = 0.5 and
7 =0.5. Since (xj, ..., X;1000) are generated from the multivariate normal distribu-
tion, they are independent when p, = 0. Figure 3 reveals an interesting point. CSA
performs better than the alternative when there exists any correlation between the
predictors, i.e., p, > 0. Recall that most simulation studies in the literature consider
independent predictors. As we can see from the empirical applications in the next
section, however, the predictors are usually correlated with each other. Therefore,
it is promising that CSA performs better when there is any correlation among
predictors. Elliott et al. (2013) also report in the conditional mean prediction
settings that the CSA approach performs better when predictors are correlated
with each other. In Table 4, both the winning ratio and the loss to CSA statistics
improve dramatically when p, is away from zero, where JMA performs the
best.

We next consider the second category of simulation designs, where the candidate
models include the true DGP. The new simulations are based on the following
model:

K
yi=0 Zﬁ,‘xi]‘ +é&is

J=1

where we observe all K predictors in the sample. We consider K = 5,15 when
n =50 and K = 10,20 when n = 150. Similar to the previous simulations, the
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TABLE 5. Correct specification: Decreasing signal

n=>50
CSA IMA L1QR BAG L2QR

Average FPE
K=5 0.415 0.424 0.419 0.430 0.419

(0.033) (0.036) (0.034) (0.036) (0.035)
K=15 0.420 0.443 0.424 0.426 0.427

(0.039) (0.044) (0.034) (0.035) (0.047)
Winning Ratio
K=5 28.5% 11.1% 13.2% 12.5% 34.7%
K=15 32.7% 5.4% 11.1% 21.7% 29.1%
Loss to CSA
K=5 NA 73.6% 66.2% 62.7% 53.7%
K=15 NA 81.8% 70.1% 56.7% 54.4%

n=150
CSA IMA L1QR BAG L2QR

Average FPE
K=10 0.406 0.412 0.411 0.422 0.406

(0.032) (0.033) (0.032) (0.034) (0.031)
K=20 0.407 0.419 0.419 0.417 0.408

(0.032) (0.034) (0.033) (0.032) (0.032)
Winning Ratio
K=10 30.6% 10.8% 8.6% 8.7% 41.3%
K=20 35.2% 9.2% 6.5% 13.0% 36.1%
Loss to CSA
K=10 NA 71.6% 72.7% 65.0% 49.0%
K =20 NA 77.9% 82.9% 61.6% 50.9%

population R? is controlled by 8. We set R> = 0.5, T = 0.5, and p, = 0.9. Instead
of varying R2, 7, and px, we consider three signal structures in this simulation:
Decreasing signal : g =",
Constant signal : 8; =1, for all j,
S ional : p lifj=1,2
arse signal : B; =
P g T oifj>2

Therefore, we consider 12 new DGPs in total.

Tables 5—7 summarize the simulation results. First of all, we take a look at the
loss to CSA ratio in the second column (JMA) in these tables. Note that the loss
ratio increases as K increases over all different designs, which is expected by the
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TABLE 6. Correct specification: Constant signal

n=>50
CSA IMA L1QR BAG L2QR

Average FPE
K=5 0.414 0.426 0.419 0.429 0.415

(0.033) (0.036) (0.034) (0.035) (0.034)
K=15 0.418 0.443 0.422 0.429 0.429

(0.040) (0.046) (0.036) (0.034) (0.049)
Winning Ratio
K=5 30.3% 7.0% 12.6% 12.4% 37.7%
K=15 33.1% 4.7% 14.5% 16.9% 30.8%
Loss to CSA
K=5 NA 80.6% 68.0% 61.6% 50.6%
K=15 NA 85.0% 65.8% 60.2% 56.0%

n=150
CSA IMA L1QR BAG L2QR

Average FPE
K=10 0.406 0.414 0.411 0.422 0.406

(0.031) (0.032) (0.032) (0.032) (0.032)
K=20 0.406 0.419 0.416 0.420 0.410

(0.033) (0.034) (0.034) (0.033) (0.032)
Winning Ratio
K=10 31.2% 6.2% 11.4% 8.4% 42.8%
K=20 40.3% 6.6% 8.8% 11.9% 32.4%
Loss to CSA
K=10 NA 78.3% 73.7% 67.4% 47.8%
K =20 NA 82.2% 81.8% 65.3% 56.3%

theoretical results in Theorem 5. Second, CSA performs worse in the sparse signal
models compared to the other two designs. As discussed under equation (10), this
is expected from the theory in Section 3, since the sparse design generates many
subsets with totally irrelevant predictors. Third, it is interesting that JMA does not
particularly outperform in this setup, where the candidate models include the true
one. Furthermore, note that LIQR does not particularly outperform in the sparse
signal model. In fact, L2QR performs well over all three signal designs. Given that
L2QR is understudied in the literature, this would be an interesting topic for future
research.

In sum, we confirm that CSA shows satisfactory finite sample properties via
Monte Carlo simulation studies. Related to the forecast combination puzzle, we
observe a similar phenomenon in quantile forecasting and confirm some theoretical
predictions developed in Section 3.
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TABLE 7. Correct specification: Sparse signal

n=>50
CSA IMA L1QR BAG L2QR

Average FPE
K=5 0.422 0.422 0.420 0.430 0.421

(0.034) (0.036) (0.035) (0.036) (0.035)
K=15 0.437 0.442 0.431 0.430 0.439

(0.042) (0.046) (0.038) (0.035) (0.049)
Winning Ratio
K=5 13.5% 20.9% 20.3% 12.7% 32.6%
K=15 14.7% 16.9% 18.3% 25.6% 24.5%
Loss to CSA
K=5 NA 47.2% 41.9% 57.2% 50.4%
K=15 NA 52.3% 44.9% 45.5% 48.8%

n=150
CSA IMA L1QR BAG L2QR

Average FPE
K=10 0.414 0.410 0.411 0.423 0.411

(0.032) (0.032) (0.032) (0.032) (0.031)
K=20 0.418 0.416 0.419 0.422 0.415

(0.033) (0.034) (0.034) (0.031) (0.032)
Winning Ratio
K=10 13.3% 22.8% 15.5% 12.3% 36.1%
K=20 13.9% 24.9% 12.6% 17.4% 31.2%
Loss to CSA
K=10 NA 38.2% 39.5% 58.0% 45.2%
K =20 NA 41.0% 51.0% 52.3% 45.9%

5. EMPIRICAL ILLUSTRATION

In this section, we investigate the performance of the proposed method with real
datasets. Specifically, we revisit two empirical applications in Lu and Su (2015):
(i) quantile forecast of excess stock returns; and (ii) quantile forecast of wages.
Following the simulation studies in Section 4, we compare the performance of the
CSA method to the JIMA, the L1QR, the BAG method, and the L2QR.

5.1. Stock Return

The same dataset is composed of monthly observations of the US stock market
from January 1950 to December 2005 (7' = 672). The dependent variable is the
excess stock return. We use the following 12 regressors: default yield spread,
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TABLE 8. Out-of-sample R? for the excess stock return data

T T CSA IMA LIQR BAG L2QR  E[k] Med[k]

0.05 48 —0.071(2) —0.117(4) —0.088 (3) 0.031(1) —4.331(5) 74
60 —0.063 (3) —0.1254) —0.038(2) 0.009 (1) —4.395(5) 8.1 8
72 —0.001 (2) —0.023 (4) —0.005(3) 0.020(1) —3955(5) 82 9
96 0.055 (1) —0.020 (4) —0.012(3) 0.027 (2) —4.010(5) 8.1 9
9
9

120 0.104(1) 0.053(2) 0.028(4) 0.033(3) —3.655(5) 8.7

144 0.082(1) 0.045(2) 0012(4) 0.0193) —3.735(5) 9.1

180 0.039(1) 0.033(2) 0.023@3) —0.011(@4) —2311(5) 96 10
05 48  0.103(1) 0.076(2) —0.040 (4) —0.016 (3) —2.341(5) 9.8 10

60  0.089(1) 0.079(2) —0.036(4) —0.013(3) —2.078(5) 9.9 10

72 0.057(2) 0.067 (1) —0.003(3) —0.009 (4) —1.953(5) 10.0 10

96  0.049(2) 0.053(1) —0.013(3) —0.014 (4) —2.206(5) 103 11

120 0.003(2) 0013(1) 0.003(3) —0.011(4) —1.882(5) 105 11

144  —0.012(3) —0.002 (1) —0.006(2) —0.022 (4) —1.648(5) 10.6 11

180  0.032(2) 0.034(1) 0018(3) —0.012(4) —1.031(5) 105 11

Note: The number in the parentheses denotes the performance ranking among the five different
methods.

treasury bill rate, net equity expansion, term spread, dividend price ratio, earnings
price ratio, long-term yield, book-to-market ratio, inflation, return on equity,
lagged dependent variable, and smoothed earnings price ratio. See Campbell and
Thompson (2007) and Lu and Su (2015) for the details of the dataset. Note that
JMA needs to select the order of important regressors, but we do not need such
a selection for CSA, BAG, and L2QR. L1QR would select important regressors
automatically by the £;-penalty.

We forecast the one-period-ahead excess stock returns at 0.5 and 0.05 quantiles
using various fixed in-sample sizes, 7| = 48,60,72,96,120, 144, and 180. The
forecast performance is measured by the out-of-sample R? defined as

T—1 ~
> =1, Pr Q1 = Ve1)

RP=1 = —,
Z,:Tl Pz (Vig1 _)71+1|z)

where Y1), the one-period-ahead t-quantile prediction at time ¢ using the data
from the past T periods, and y,1); is the unconditional t-quantile for the same
T, periods. The out-of-sample R> measures the relative performance of a forecast
method compared to the unconditional historical quantile. The higher values of R?
imply better forecasting performance.

Table 8 summarizes the forecasting results. In addition to R?, we report the
ranking of each forecasting method, the mean of %, and the median of k. The
upper panel of Table 8 reports the results when T = 0.05. The R? of CSA is better
than that of IMA uniformly over different sample sizes (7). The gap between two
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R*’s is substantial except T = 180. BAG performs well when T; is small. The
performance of L2QR is not satisfactory over all in-sample sizes. We next turn
our attention to the lower panel when t = 0.5. Again, CSA performs the best or
second best except when 7| = 144. CSA performs better when 7 is small, while
JMA does better when T is larger. Overall, the gap between R*’s is small when
7 =0.5. As we have observed from the simulation studies, the performance of the
two estimators becomes similar as the sample size increases in both panels. It is
also noticeable that the selected k of CSA increases as the sample size increases
and that CSA selects relatively large’l;across all 7} and 7. Different from t = 0.05,
BAG performs poorly when v = 0.5. L2QR also shows poor performance.

In sum, the performance of CSA is satisfactory in this forecasting exercise. It is
quite stable over different in-sample sizes (T}) and different quantiles in terms of
the performance ranking. Among the alternative, BAG and JMA perform well in
certain quantiles (0.05 and 0.5, respectively), but they do poorly when we apply
them in different quantiles.

5.2. Wage

In this subsection, we conduct the quantile forecast exercises using the Current
Population Survey data in 1975. The same dataset is also used by Lu and Su
(2015) and Hansen and Racine (2012) for quantile and mean forecast exercises,
respectively. The sample size is n = 526, and we use the logarithm of the average
hourly wage as the dependent variable. We use the following 10 regressors:
professional occupation, years of education, years with current employer, female,
service occupation, married, trade, standard metropolitan statistical area (SMSA),
services, and clerk occupation.

We split the sample into the estimation sample randomly drawn n; observations
and the evaluation sample of n —n; observations. The estimation sample size varies
n; =50, 100, 150, and 200, and the random splitting is repeated 200 times for each
n;. The out-of-sample R? is defined as

Z?i] oz (Vs —Vs)

Z’;i] Pz (ys _)_)s) 7

where y; is the tth conditional quantile predictor and y, is the unconditional t-
quantile estimate from the estimation sample. Again, R?> measures the prediction
performance relative to the unconditional quantile estimate.

Table 9 summarizes the exercise results.” We confirm that CSA shows good
and stable quantile prediction performance. In this application, BAG shows quite a
similar performance to CSA. Similar to the stock return application, CSA performs
better than BAG when 7 = 0.5, and BAG does when t = 0.05. The prediction
results of JIMA, L1QR, and L2QR are worse than CSA and BAG. The performance

RP=1-

3R2’s of IMA are different from the numbers reported in Table 5 in Lu and Su (2015), because they implemented
the level of wage as a dependent variable which is supposed to be log(wage). We use log(wage) in this empirical
illustration.
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TABLE 9. Out-of-sample R? for the wage data

T om CSA IMA LIQR BAG L2QR E[k] Med[k]

0.05 50  0.066(2) —0.034(3) —0.035(4) 0.104(1) —0.139(5) 3.9 4
100 0.122(2) 0.073(4) 0.078(3) 0.133(1) 0.020(5) 5.5
150 0.138(2) 0.112(4) 0.113(3) 0.144(1) 0.076(5) 6.1
200 0.158(1) 0.125(@4) 0.132(3) 0.154(2) 0.111(5) 66
05 50 0252(1) 0233(3) 0.198(5 0248(2) 0212(4) 65
100 0287(1) 0276(3) 0.233(5) 0.285(2) 0.260(4) 7.7
150 0302(1) 0.293(3) 0.253(5) 0301(2) 0290(4) 82
200 0307(2) 0302(3) 0267() 0312(1) 0302(4) 84

O 0 00 AN 3 N

Note: The number in the parentheses denotes the performance ranking among the five different
methods.

gaps are larger when the sample size () is small and they narrow as n increases.
As predicted by the theory and also confirmed in the stock return application, the
selected k increases as n; increases.

6. CONCLUSION

In this paper, we propose a novel conditional quantile prediction method based
on CSA of QRs. We show the asymptotic properties of the estimator when the
dimension of regressors diverges to infinity as the sample size increases. The size
of the complete subset is chosen by the leave-one-out cross-validation method.
We prove that the subset size chosen by this method is optimal in the sense that
it is asymptotically equivalent to the infeasible optimal size minimizing the FPE.
The prediction performance in the simulation studies and empirical applications is
satisfactory.

We conclude with two potential extensions of the proposed method. First, we can
think of a different approach in choosing the complete subset size. Recently, Hirano
and Wright (2021) have proposed a Laplace cross-validation method, where the
tuning parameter of interest is chosen by the pseudo-Bayesian posterior mean,
and showed that it works better than the standard cross-validation method when
the risk function is asymmetric. It would be interesting to check how it performs in
the CSA quantile prediction. Second, it will be useful if one can extend the results
into the time-series data possibly including persistent regressors (e.g., Fan and Lee,
2019). We leave them for future research.

APPENDIX

In this appendix, we provide all necessary lemmas and technical proofs of the main text.

LEMMA 1. Let e, := (nMK%)!/*. Suppose that K /log(n) = O(1). Then, we can show
the following rate conditions:
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(i) M =005,
(i) KlogM/n =o(1),
(i) (enlogM)/n =o(1).

Proof of Lemma 1. (i) Recall the dependency of M on K and k. By construction,
Mg i = (¥). Then, the result follows from 2K = K (K)_(ii) Note that

n n

2
—0 <1ng. (loi”) ) =o(1).

(ii1) Note that

KlogM 0 (logn(logzl"g”))

enlogM _ (nMK2)1/4 log M

n n

B (MK2 (logM)4) 1/4

n3

—0 (Zlog")l/4 o <(lc>gn)2>1/4 0 ((longog")2)1/4
n n n

It is enough to show that 21°8” /n = o(1). Let ¢}, = 21°¢" /n. Then,

logcy, =logn(log2 —1) - —oo.
Therefore, ¢y, = 0o(1), and the desired result is established. O

LEMMA 2. Suppose that (i) Sup;> | E[x ] < ¢x with ¢y < 00, and (ii) E[p,z] < oc. Then,

12KZK 1 e 1 Z i = 0p K.

Proof of Lemma 2. The triangle inequality implies that

max  max Z ||x,(m 0 H

I1<k<Kl<m=Mn
1 n
= | max  max o ZE rion o |+ max | max |- 2; (i, 10 | = E xicm 0 1)
=

=A| +Aj.

We first investigate Ay :
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1/2
Al = E[ ]
= 1I<nka§1( 1 fﬂ(M n Z Xi(m, k) Xi(m, k)

< mox ma li(E[/ o))"
|ZK2K 1 <m=M n = Fim, loti(m. k)

172
< max max E (kcy)
1<k<K1<m<M n

< max

< K12 C)IC/Z
1<k<K

<k'2c? =o'

We next turn our attention to Ap. Let vigy r) := Hx,'(m,k) ” - E||x,~(m,k) H Note that
Var(vign,k)) < CK for some generic constant C > 0. Let e, := (nMK?)1/* We have

1
P(Ay) >2¢) =P| max max |— Vi > 2¢
(A2 22¢) 1<k<K l1<m<M n; im k)| =

<P| max max % > 2¢
- 1<k<K1<m<MnZ"('”k)’

<P| max  max o Z [vien o |1 ([vien k)| < en) = &

+P lg}cajklg;sz " Z |v,(m k)’ 1 (|v,(m k)| > en) >e
=Ap +Ap.

Boole’s and Bernstein inequalities imply that

l n
Ayl < KM  max  max P ;Z|Vi(m,k)|l(|vi(m,k)| <en)>¢

1<k<K1<m<M 1
1=

<2KM e’
X _——
= P\ T 2ck 1 26en/3

2
ne
—dexp|——" _ {logM+logk
exP( 20K 1 206,53 | 08MHlog )

CK +2¢ge, /3

—ne? 2CK(logM +1logK) + (2/3)ee,(logM +1ogK)
=2exp 5 1- 5 =o(1).
ne

The convergence result follows from K = o(M) by Lemma 1(i), (KlogM)/n = o(1) by
Lemma 1(ii), and e, logM /n = o(1) by Lemma 1(iii).
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Finally, we show that Ay» = o(1).

Ay =P ]g}ixKlgnai(MnZ’v,(mkﬂ1(|v,(mk)’>en >¢

< (s, mas, o b1 (i | = n) = )

IA

P( max max max 1(|v,(m k)} > e,,))

1<k<K1<m=<M1<i<n

M
Z Z |Vt(m k)| > en)

ZE(\Vi(m,k)|4) = %1) =o(l).
i=1

=)

k_

K

=

EMR |

:-u‘ -

|

Proof of Theorem 2. The proof is similar to Lu and Su (2015, Theorem 3.2)
except the last part that shows the convergence of the maximal inequality bound.

Let 8, := Ly/n~1Klogn for some large constant L < 0o. Let Qi) (Omp)) =
E[Pr (y,' —x;(m 1o ©m, k))]~ We also define

D@y = _inf L [ CI B Crmmy |
= =00 H>5,,

SniyGn) = {Owm.p) : [Om.ty = O ety | > 8. | Omt) — O iy | = 0D}

The same arguments in Lu and Su (2015) imply that, for any O, k) € S, k) (On),

mk) (Om)) = Cum k) (O m 1)
E[pe (i =¥ itm, k)O(m ) =Pt (i =¥ im0 O% m i) |
E[,O &+ Uigm k) =X itm k) [Om k) — O .y ]) — pr (85 — tigm, 1)) ]

* iom ) [Om by —OF m.10 ]
=F () 1{5i+ui(m,k) 53}—1{5,-—}—14,'(,,,’/() 50}](1_9
X itm ) [Om by —OF . ]
=E 0 [F (—tiom, k) +51%:) = F (—tim, 1 [xi) | ds
1 % cadi
~ > (O =% ] Amb [Oumi) = O mp] = =5

The claim in (i) is established by showing that the following maximal inequality converges
to zero:

P(max max  max H im k) — o* (m,k) H >6n> =op(1).

1<i<nl1<k<K1<m<M
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We first derive the upper bound of it:

P( max max max H@i(m,k) —O* | = 6n>

1<i<nl1<k<K1<m<M

<nKM max max max P(”@i(m,k) _®*(m,k) || > Bn)

1<i<nl<k<Kl1<m<M

<nKM max max max P(Q(m,k) (®(m,k)) — Q(m’ o) (®*(m,k)) > D(B,,))

1<i<nl<k<K1<m<M

~nkKM max max max P(Wig, gy >2nD(8p)),

1<i<n1<k<K1<m<M

where Wiy k) == n[Ogn k) _®*(m,k)]/A(m,k) [©(n.k) — O*(m.ky]- We apply similar
arguments in the proof of Theorem 3.2 of Lu and Su (2015) to show that

2

Wign, k) < (EAEB/QZ\> |Biom i |
~ - 1/2 —1 /2 o~ d

where B, k) == «/ﬁ[C(m’ k) C/(m, k)] Can, k) V(m, % [®i(m,k) — ®*(m,k)] —N (O’Il(m,k))'

Letcpp := EAEB/Q% and [ := max| <k<k Max|<m<m lm, k)- Then, the above inequality for

Wi(m, k) and the corrected version of Lemma 2.1 of Shibata (1981, 1982) imply that

nKM max max max P(W,‘(m,k) 22nD(6n))

1<i<nl<k<K1<m<M

<nKM max max max P(”Ei(m,k) ||2 > 2nD(5n)/cAB)

1<i<nl<k<K1<m<M

<limsupnKM max max P(Xz(l(m,k))z2nD(6n)/cAB)

=00 1<k<K 1 <m=<M

<limsupnKMP ()(2(7) > 2nD(5n)/CAB)

n— oo

< limsupnKMP ()(2(7) >+ (né,%gA/cAB —7))

n—oo

<lim suanMexp(—o.s (n8,2,gA Jcap — 7) (1 —log(n82c, /(eap))/ (n82c, /(ean) — 1)))

n— o0

=o(1).

For the last equality, note first that log(nS,%gA/(7CAB))/(n8,21gA/(icA3) —1) = o(1) by
Assumption 3(ii). The leading term becomes

nkMexp (‘0-5 (narleA/CAB>) — nKMn—0-5(LPKE) /@)
« KK1n!—05(L?Kc} /@atp))
« KKK 1=05(LKc}/@acs))
— gK+1,1-0.5(L*Kc} /(@acp))
< C(logn)K+1 1 =0.5(LKc} / @atp)
=o(1)
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where C < oo is a generic constant. The second line holds by the definition of M, the third
line holds by the fact that K! < KX the fifth line holds by Assumption 3(ii), and the last
convergence result holds by Assumption 3(ii) and by taking some large L.

Therefore, we establish the result in (i). Analogously, we can prove the result in (ii). O

Proof of Theorem 3. Using the definition of y(k) and y(k) and the triangular inequality,
we have

| max [Y(k) =y (&)l
~ 1

;A
mbOumb =3 — 2o Oy
m=1 MY 1 € Mo

2

A

=
N
M=
U

1y . 1 N
T 1Skek | M 2 (xzm»@@('"*k) _y*) " Mpax > (xém/,b@(m’»k) _y*)

m=1 m' e Minax

M
1 / S *
= | maxe | > (x(m,lo@(m,k) -y )

1 o
O 1y — *)
0 M Z (x(m,lo (m' k) =Y

= max EQ;|+ mkax EQ».

1<k<K

We first investigate EQ1:

M
1
EO; < 2 ( N *)
B P01 = w37 2 (Komio Oy
| M
/ ) *
+max > Xmy <®(m,k> - ®(m,k)>

3
il

M
1 / * *
= WX > <x(m,k)®(m,k) —yk>

m=

—_

®(m k) H

M
+ max —
1<k<KM Z

M
]‘ / * k
= 5% |\m Z_: (X @ = %)

_ *
(1?]21(13?3114 xon.t H) <II§r}ca§XKl§n:r?éM O om0 H)
=0p(1) +O0p(1) - 0p(1)

= op(1).
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The first inequality holds from the triangular inequality and the second one from the
Cauchy—Schwartz inequality. The final inequality holds from the uniform convergence
and boundedness assumptions, and Theorem 2(ii) above. Similarly, we can show EQ, =
op(1). a

Proof of Theorem 4. It suffices to show that, with IC := {1, ..., K,,},

CUb-FPED)_ 0 a2)

sup ‘
kel FPE,; (k)
We first expand the numerator by applying Knight’s identity repeatedly.

CVy, (k) — FPE, (k)
1 & M
= 72 Pr yi—M_lzx;(m,k)G)i(m,k) —p (&)

nt
i=1 m=1

n

1
—{FPE,(k) = Elpr (&)1} + = > _{pr () — Elpz (&)1}
" i=1

1< M
:ZZ Hi_M_le:'(m,k)@i(m,k) MED)
i=1

m=1

—1yM Y
M Zm:l x;(m. k) Gi(m- k)~ i

+%Z/ [1{e; <s}—1{e; <0}]ds
i=170

m~! ZZ:I xém,k)@(msk)iﬂ
—E / [1{e <s}—1{e <0}1ds|Dy,
0

1 n
+= 3 loce) —Elpe ()}
i=1

1 n M
:;Z Mi—M”fo-(,n,k)@i(m,k) V(&)

i=1 m=1

1 M X i Oty — 1
) [1{ei < 5} — 1{es = 0) — Flslx) + FOlxy)1ds
" i=1 0

— M S
M Zm:l x;(nn k) Oi(m, k) —Hi

1 n
a2 ([ [F(sb) — F(Obxy)]ds
[ M Y0 X 1y Oy —Hi
— Ey, / [F(ski) — FOLx)1ds |}
0

M’lz%= X @,—m, —i
+%Z{Ex { [ [F(s|x)—F(0|x>]ds}

i=1
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|: Mt Z%:lxém.k)é(msk)iu }
—Ex / [F(slx) — F(Olx)]ds }
0

1 n
+- ;{pr(e» —E[p: ()]}

=CVy, +CVp +CV3,, +CVyy + CVsyy.

It is straightforward to derive all terms except CVy,,. We need the following two results to
get CVy,. Let Ex be an expectation with respect to a random variable x.

1 1 M-! Zm:l x;(m, k)(:)i(nn k) — i
- Ey /O [F(slx;) — F(O}x;))ds
i=1

1 n M_l ZAW/,Izl meém_k) éi(m.k)711
=Y u|f [F(sl) — FOLoJds |. a3)
i=1 0
M Z%:]JC;m,k)é(m»k)_ﬂ
E / [1{e < s} —1{e < 0}]ds|Dy,
0
14

|: M~ ZAH/{ZIXZm_k)(:)(mk)_M :|
E; / [F(s|x)—F(Olx)]ds | .
0

The identity (13) follows from the fact that (:),-(m) does not depend on the ith observation.

The second result (14) comes from

M= Y X 1y Otmbo =1
E / [1{e < s} —1{e < 0}1ds|Dy,
0
MY xém,k)é)(m,k)—ﬂ
= / / [1{e < s} —1{e < 0}1dsf(x,e|Dy)dxde
(x,e) JO
MY xém,k)(:)(m~k)_#
= / / [1{e < s} —1{e < 0}]dsf(x, e)dxde
(x,€) /0
m! Z%:I xém, k)é)(mv ky—H
- / / / [1{e <) — 1{e < O/ (elx)f (x)dedxds
xJ0 &

MUY xém,k)@(m,k)*ﬂ
:// [F(s]x) — F(O|x)]f (x)dxds
xJ0

MY x/(m,k)é)('ﬂk) 1
E, / [F(s|x) — F(Olx)]ds |.
0
The second equality holds by the independence of the sample {x;, ¢;} and the generic random

variable (x, ¢).
We are now ready to prove (12). We first show that the denominator of (12) is uniformly
bounded above zero and show the uniform convergence of CVy,,...,CVs,.
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Claim 1: mingeg FPEy (k) > E[p(e)] — 0p(1). This results shows that the denominator

of the LHS in (12) is bounded above zero. Let uy := pu — M~ Zﬁf:] xém k)®?m o
FPE, (k) — E[pr (e + up)]
M
=E|pr|etu -m! Z x/(m,k) <®(m,k) - G?m,k)) —pr (e+ug)|Dn
m=1

Mty X k) (@w,k)—@fm,k))
=F [1{e+uy <s}—1{e+u, <0}1ds|D,
0

— M o) *
M Zm:l x/(m,k) <®(mvk) _®(m,k))
Ex A [F(s — ug|x) — F(—ug|x)] ds

M- Zﬁ;’:l x/(m,k) (6(%1() _@’(km,k))
E, Sf(—ug|x)sds | +op(1)
0

2

M
=27 B | ) | M7 Y Ky (Bt = Oy ) | | +0p D)
m=1
- . 2
<27 B | £cudoM ™Y 3 (Bimiy = OFiy) | | +opD
m=1
M /!
=271 MY (B = O p)) B [f (_uk|x)x(m,k)x/(m,k):| (Bini)— O
m=1
+op(1)
CA

o) 2
o max max 1Ok — O ll” +op(D) = op(D).

Claim 2: supycic [CVy, (k)| = op(1).

1 n B M
CV[,,(k)z;Z mi—M l2:x;'(m,k)®;k(m,k) Ve (&)

i=1 m=1

1| Y ~
- Z M Z x;(m’ k) (®i(m, k) — ®;k(m, k)) Yr(g)
i=1 m=1

=CVip1 +CVipo.

We first show that supgcxc CViy, 1 = 0p(1). Let bjgy k) = 14 —x;(m’k)G);.k(m’k) and e, =
(MnK?)1/4 . Note that
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P CVinil =2
(1235)%‘ 1] 2 8)

<P 12}?3]{@2 Z ’bt(m k)‘ > 2¢

i=1m=1

<P| max —Z Z ’bz(m k)| 1 ‘bz(m k)| = e”)

i=1m=1

+P x;(m,k)(“);k(m,k)‘ 1(|bigm.ky| > en) = ¢

1<k<l< nM
=CVip 11+ CVln, 12
We next show that CVy,, 11 = o(1) and CV1,, 12 = o(1), respectively.
n M

1
CVip 11 < KlrﬁnkaéKP Y 21 2:1 |biom | 1 (|Pigm, i | < en) > &
1 m=

<K nMe?
expl ™M
= SRR\ TR T 26en/3

nMe?
<2exp| —z=—=—=———= +1logkK

2KC+2¢ge,/3
nMe? (2KC +2¢en/3)logK
=2exp| — 1-— =o(1).
2KC+2¢e,/3 nMe?
The last convergence result follows from the order conditions in Assumption 3.
cv <P| max max max |b >e
In12 = (1<k<K1<1<nl<m<M| i(m, k)| n)
K n
= ZZ ZP |bl(m k)| > en)
k=1i=1m=1
1 K
=3 > Z Z E[|bi<m,k>!41 (|bi(m,k> 4> eﬁ)] =o(D).
nk=1i=1m=1

We next turn our attention to CV1,, 2:

sup |CV1,, 2| < sup —Z Z

Xi(m, k) ( i(mk) — ®;‘k(m, k)) Y (g))

i=1m=1
<::w§,§ ot (Bunr = Olms)|

1 _
= sup ;mg i io | |Bicn b = O 0|
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T ] LTSN
sup Mmg nlgﬂxwm,k)ﬂ im0 = Ol by
[ S
= sup 37 2152 il (fgaj |Bicm0 = Oty H)
LT m=1 " i=1
— sup - f: (max H@ o* H) 12n:||x. ||
kel%Mmzl [Rax | Piom k) = Pign, n i(m, k)
1 I . 1
zsup o 3 max (s [Bii =0 ]) 3 2 Pl
ek m=1 == i=1

_ 1 1
Oitm. ) = Ofm, by H) =2 ool {37 21
i=1

= sup max ( max
m=1

ke)c 1sm=<M 1<i<n

= sup max ( max

~ 1<
Oim.k) = O, H) =2 inn |
i=1

ke 1sm=M 1<i<n
su max max @ H max X
{kel%1<’<"1<M<M” im )~ Ofim, 1y } K1<m<MnZ|| im0 |

-0, (Jn‘”(logn) 0p (VK) = 0p(1).

The convergence results follow from Theorem 2, Lemma 2, and Assumption 3.
Claim 3: supcc |CV2, (k)| = op(1).

|CVa (k)| < |CVap 1 (k)| + [ CVap 2 (0|
where

1 Mﬁl Zf:’=1 xz/’(m.k) ®>(.<771.k)_l“
CVan 1 ==3" A [1{e; < s} — l{e; < 0} — F(slx;) + F(Olx))1ds
i=1
and
MY Xy Oy — i

1
CVop,2(k) =*Z/ M . [1{e; < s} — He; < 0} — F(slx;) + F(Olx;)] ds.
n i=1 M- Zm:lxi(nuk)@(m,k)_ui

Since 1{¢; < s} —1{e; <0} — F(s|x;) + F(O]x;) <2, we have

M
2
|CV2n 1(k) = 722 Xi(m, k)®(m k) — M-
i=1m=1

Thus, supgeic ‘ CVap,1(k) ] = 0p(1) follows from the same arguments used for CVy,, 1 above.
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We next investigate CV»,, 2. We have

sup |CV2n 2(k)| < sup —Z Z

i=lm=1

Z Z i om0 || Bicm. = O |

l 1m=1

X, oty O k) = O, k)))

<?2sup max max H@ -0 H sup max X;
ke;%1<l<n1<m<M i{m, k) (m.k) ke ]Iél<m<M n Z “ i, (m. k) H

=0p (,/n_ll{logn> -Op (ﬁ) =op(1).
Claim 4: supycic |CV3, (k)| = op(1).

|CV3n (k)| <

where

n

1 Mty Km0y O on, by —Hi
CVa 1) ==Y { f [F(slx)) — F(Olx;)]ds
n 0

i=1
7D S Xim, b @l py ~Hi
—E, /0 [F(slxp) — FOlxp) ] ds
and
1 n M71 Z%=| x;(m, ) @i(m, k) —Mi
CVano() ==Y f u [F(s|x}) — F(Olx;)]ds
ne e WMy Xy Oy — M

MY X,’-(m,k)@i(m.k) —Hi
—Ex; / [F(slx;)) — FOlx;)]ds }

—1\M .
M Zm:l x;(m. k) ®)(km. k) —Hi

The proof of supycjc [CV3,, 1] = 0p(1) is similar to that of supgcxc [CVyy, 1| = 0p(1) in
Claim 2 and is omitted. Note that

|CVan2 (k)| < ~ Z - sz(m k) ( i(m,k) _®>(km,k)>

l 1

1 n B M .
- D Eq MY X, <®i(m,k) - ®>(km,k))
i=1 m=1

= CV3y,21 (k) + CV3y 22 (k).
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The proof of supicic ICV3,,21] = 0p(1) is similar to that of supgcic |CV2y,, 2] = 0p(1) in
Claim 3 and is also omitted. It remains to show that supzcic |CV3, 22| = 0p(1). Note that

sup CV3y, 22 (k)

kelC
<§upf Ey; |x Oitm. k) — OF, )’
ek nM 121:,"2:1 z(m k) ( im (m, k)

R , R 172
= sup Z Z Ey; [((“)i(m, 9% (H))(km,k)) Xim, ) X ) <®i(m,k) - (”)ka,k))]
ket l 1 m=1

, _ 12
* / k
< sup —— Z Z [( i(m.k) — ®(m,k)) Ey; [xi<m,k)xi(m, k)] <®i(m,k) —Om, k))]
ket l 1m=1
12~ .
=ik 7 Z Z [ (B [simioin )] [@in = O

IA

(2’5’5 lgnr]na;(M I:)\max (Exi [xi(m, k)x;'(m, k)]>]1/2>

x [ max max max |®©; — O H
<1§i§n keK 1<m<M H im, ) (m. k)
Op(l)

by the triangle inequality, |x| = (x*)1/2, Jensen’s inequality, A’BA < Amax(B)A’A for any
real symmetric matrix B.
Claim 5: supycc |CVin (k)| = 0p(1).

1 n M71 Z%:Ix;m,k)éi(mvk)_ﬂ
|CVap ()| = *ZEx /M . [F(slx) — F(Olx)]ds

M
i=1 ! Zm:lxém,k)(a(m,k)*ﬂ

1 M Z%zlx/m‘ @i(m,k)_“
<-YE [/ ol [F(s|x) — F(Ox)]ds
n -

— M
M1y e Xy Oty —

M M
1 —1 / = —1 / oy
= ZEX M Z Xom b Citmiy = | = | M Z X 1o Om k) — 1

i=1 m=1 m=1
M
1 5 —1 ’ =~ =
=2 Ex M7 Y %1y Bitmt ~ Opmi)
i=1 m=1
=op(1)

by the triangle inequality, F'(s|x) — F(0]x) < 1, and the similar arguments in the proof of

SUPinkC 1CV3n,22(k)| = 0p(1).
Claim 6: CVs5, = op(1). Since CVs,, does not depend on k, this result follows from the
weak law of large numbers. (]
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Proof of Theorem 5. (i) There exists w between w and w* such that
F(W) = F(w*) + Vi FW*) (W —w*) + %(VV —w*) Vo F (W) (w —w™)
= FO) =T T4y (8 =) 3 0w TG0 (0 — )
= FO)+ 5 (W) TaF ) = ),
where X is a Lagrange multiplier from the constraint optimization problem:

w* = arg max F(w) + A - (1},w — 1). 1s)
weRM

Note that the second equality above comes from the first-order condition for w* and that
the third equality holds by the normalization, lgww = 1, for any weight w. We investigate
the upper bound of the quadratic term:

1

3 (W —w*) Vo F (W) (W — w*) = 27 (W Vo F () — 20 Vo F () w* +w* Vo F (i) w*)
=2" a1+ .

Since Vo F(W) is an M x M symmetric matrix, we can factorize it as SAS’, where A is a

diagonal matrix composed of the eigenvalues {1,,} and S is composed of the corresponding
orthonormal eigenvectors {s;,}. Note that

I=M21),VaF(W) 1y

M
=M_21§w Z)‘msmS;n 1y

m=1
<M maxl 1y
=M nax
I < 2|W Vo F(w)w*|

M
=M~ |1, Z)\msms;n w*

m=1
< 2M ™ Vi |1 W

=2M" ! Xmax7
M
mr=w* Z AmSmSh, | w*
m=1

Y 2
< Amaxlw*|l

by 2
= )hmaxllw*”l

Il
>

maxs
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where || - |1 denotes £{-norm. Therefore, we have
1 _
5 =) V2 F () (5 =) =27 Ry (1+3m71),

which establishes the desired result.
(ii) Using the similar arguments above, we have

F(W) = FW*) + 271§/ Vo F (W)
M
=FW) +27 1 | D Sy, |
m=1

= F(W*)+2_15~max ||7A)| 27

where 7}, W, Am, and 5, are all random objects in the second equality. The third inequality
holds almost surely by the definition of A;;,x. We establish the desired result by noting that
E|i]]2 < Ma2 0

Proof of Corollary 6. Following similar arguments in Theorem 5, we only need to
show that w* ¥w* — 0 as M — oo. Note that we have a closed-form solution w* =
(1;‘42_1 1M)_1 =1 137 for the optimization problem in (15). Then, we have

w’Ew* = (1), = L

Abusing notation on eigenvalues/eigenvectors, we have
M
U2y =1, | D 0 sy | I
m=1

71 2
> Apax Iyl

T—1
= MnaxM,
which diverges to infinity as M increases. Therefore, (IME_1 1 M)_l < AmaxM 1 5 0as
M — oo. O
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