CARDAN MOTION IN ELLIPTIC GEOMETRY

OENE BOTTEMA

1. Introduction. Cardan motion in Euclidean geometry may be defined as the motion of a plane Γ_{1} with respect to a coinciding plane Γ such that two points A_{1}, A_{2} of Γ_{1} move along two orthogonal lines a_{1}, a_{2} of Γ. The properties of this classical motion are well-known: the path of a point of Γ_{1} is in general an ellipse with its center at the intersection o of a_{1} and a_{2}; there are ∞^{1} points of Γ_{1} (their locus being the circle c_{1} with $A_{1} A_{2}=2 d$ as diameter) the paths of which are line segments. The moving polhode is the circle c_{1}, the fixed polhode is the circle $(o ; 2 d)$. We investigate here Cardan motion-defined in the same way-in the elliptic plane.
2. The fundamental relation. In Γ we introduce a coordinate system (x, y, z) such that the equation of the absolute Ω reads

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=0 \tag{2.1}
\end{equation*}
$$

o is chosen as $(0,0,1)$ and the equations of a_{1}, a_{2} are $y=0, x=0$ respectively. The distance $A_{1} A_{2}$ is equal to α.

If $\alpha=\pi / 2$ the only possible positions of Γ_{1} are: A_{1} at the point $B_{1}=$ $(1,0,0)$ and A_{2} anywhere on a_{2}, or A_{2} at $B_{2}=(0,1,0)$ and A_{1} anywhere on a_{1}; the motion is degenerated into the rotations about B_{1} and about B_{2}, the path of any point consists of two circles. We exclude this special case from now on and may suppose without loss of generality that $0<\alpha<\pi / 2$.

Let A_{1} be at $\left(u_{1}, 0,1\right), A_{2}$ at $\left(0, u_{2}, 1\right)$. A point Q on the line $l=A_{1} A_{2}$ is ($u_{1}, \lambda u_{2}, 1+\lambda$) and the intersections S_{1}, S_{2} of l and Ω are given by $\lambda_{1,2}=$ $(-1 \pm i W)\left(1+u_{2}{ }^{2}\right)^{-1}$, with $W^{2}=u_{1}{ }^{2} u_{2}{ }^{2}+u_{1}{ }^{2}+u_{2}{ }^{2}$.

As $2 i \alpha=\ln \left(\lambda_{1}, \lambda_{2}, 0, \infty\right)$ we obtain

$$
\begin{equation*}
u_{1}^{2} u_{2}^{2}+u_{1}^{2}+u_{2}^{2}=\tan ^{2} \alpha \tag{2.2}
\end{equation*}
$$

as the fundamental relation between the coordinates of A_{1}, A_{2}. It corresponds to a well-known trigonometric formula for the right-angled triangle $o A_{1} A_{2}$. If in (2.2) we put $u_{1}{ }^{2}=\tan ^{2} \alpha\left(1-s^{2}\right)$ we get $u_{2}{ }^{2}=s^{2} \sin ^{2} \alpha /\left(1-s^{2} \sin ^{2} \alpha\right)$. Therefore if $s=s n t$, the Jacobian elliptic function with modulus $k=\sin \alpha$, the relation is expressed parametrically by
(2.3) $\quad u_{1}=\tan \alpha \cdot c n t, u_{2}=\sin \alpha \cdot s n t / d n t$,
which proves already that the Cardan motion in elliptic geometry will appear to be of genus one. (In Euclidean geometry the analogue of (2.2) would be $u_{1}{ }^{2}+u_{2}{ }^{2}=4 d^{2}$ and the motion is rational.)

Received June 22, 1973.
3. The path of a point on l. If A_{1} is on a_{1}, A_{2} on a_{2} and we reflect the plane Γ_{1} into the coordinate axes $x=0, y=0$ or $z=0$ (or what is the same thing, into the points B_{1}, B_{2} or o, A_{1} remains on a_{1} and A_{2} on a_{2}. This implies that the path of any point of Γ_{1} is invariant for these reflections. Hence o, B_{1}, B_{2} are centers of any path and its equation will be a function of x^{2}, y^{2} and z^{2}. We consider first the path of a point $Q(\lambda)$ on $l . A_{1}$ and A_{2} correspond to $\lambda=0$ and $\lambda=\infty$ respectively, for S_{1}, S_{2} we have in view of (2.2): $\lambda_{1,2}=$ $(-1 \pm i \tan \alpha) .\left(1+u_{2}{ }^{2}\right)^{-1}$.

Hence the two midpoints M_{1}, M_{2} of $A_{1} A_{2}$, harmonically separated by A_{1}, A_{2} and by S_{1}, S_{2} as well, correspond to

$$
\begin{equation*}
\lambda=\mp a, \text { with } a=\left\{\cos \alpha \cdot\left(1+u_{2}^{2}\right)\right\}^{-1} \tag{3.1}
\end{equation*}
$$

We introduce on l a new parameter μ by

$$
\begin{equation*}
\mu=\tan \frac{1}{2} \alpha(\lambda-a) /(\lambda+a) \tag{3.2}
\end{equation*}
$$

from which it follows that $M_{1}, M_{2}, S_{1}, S_{2}, A_{1}, A_{2}$ correspond to $\mu=\infty$, $0,-i, i,-\tan \frac{1}{2} \alpha, \tan \frac{1}{2} \alpha$ respectively. Hence for $Q(\mu)$ we have $\mu=\tan M_{1} Q$, which implies that μ does not change if l moves.
(2.3) may be written as

$$
\cos ^{2} \alpha\left(1+u_{1}^{2}\right)\left(1+u_{2}^{2}\right)=1
$$

or (by means of (3.1)) as

$$
\begin{equation*}
\cos \alpha\left(1+u_{1}^{2}\right)=a, \quad \cos \alpha\left(1+u_{2}^{2}\right)=a^{-1} \tag{3.3}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
u_{1}^{2}=(a-\cos \alpha) / \cos \alpha, u_{2}^{2}=(1-a \cos \alpha) / a \cos \alpha \tag{3.4}
\end{equation*}
$$

The inverse of (3.2) reads

$$
\begin{equation*}
\lambda=-a\left(\mu+\tan \frac{1}{2} \alpha\right) /\left(\mu-\tan \frac{1}{2} \alpha\right) \tag{3.5}
\end{equation*}
$$

The coordinates of Q on l are therefore

$$
\begin{align*}
x=\left(\mu-\tan \frac{1}{2} \alpha\right) u_{1}, y=-a\left(\mu+\tan \frac{1}{2} \alpha\right) u_{2}, z=-a(& \left.\mu+\tan \frac{1}{2} \alpha\right) \tag{3.6}\\
& +\left(\mu-\tan \frac{1}{2} \alpha\right)
\end{align*}
$$

from which it follows by means of (3.4),

$$
\begin{align*}
& x^{2}=\left(\mu-\tan \frac{1}{2} \alpha\right)^{2}(a-\cos \alpha), y^{2}=\left(\mu+\tan \frac{1}{2} \alpha\right)^{2}(1-\cos \alpha) a, \\
& z^{2}=\left\{a\left(\mu+\tan \frac{1}{2} \alpha\right)-\left(\mu-\tan \frac{1}{2} \alpha\right)\right\}^{2} \cos \alpha . \tag{3.7}
\end{align*}
$$

Hence x^{2}, y^{2}, z^{2} are quadratic functions of a which acts now as a parameter. This implies that the path p of Q is a quartic curve. Its equation is quadratic in x^{2}, y^{2}, z^{2} as we could expect.

From (3.4) it follows that for real positions the inequalities

$$
\begin{equation*}
\cos \alpha \leqq a \leqq \sec \alpha \tag{3.8}
\end{equation*}
$$

hold. Any value of a corresponds to four positions of the moving plane. The equation of the path p will be obtained if we eliminate a in (3.7). This may be done as follows. We have

$$
\begin{align*}
& P_{1} \equiv x^{2}+y^{2}+z^{2}=4 a\left(\mu^{2}+1\right) \sin ^{2} \frac{1}{2} \alpha, \\
& P_{2} \equiv\left(\mu+\tan \frac{1}{2} \alpha\right)^{2} x^{2}+\left(\mu-\tan \frac{1}{2} \alpha\right)^{2} y^{2}=\left(\mu^{2}-\tan ^{2} \frac{1}{2} \alpha\right)^{2} \tag{3.9}\\
& \quad \times\left(-a^{2} \cos \alpha+2 a-\cos \alpha\right), \\
& P_{3} \equiv x^{2} y^{2}=\left(\mu^{2}-\tan ^{2} \frac{1}{2} \alpha\right)^{2} a\left(-\cos \alpha+a+a \cos ^{2} \alpha-a^{2} \cos \alpha\right) .
\end{align*}
$$

Hence a $P_{2}-P_{3}=\left(\mu^{2}-\tan ^{2} \frac{1}{2} \alpha\right)^{2} a^{2} \sin ^{2} \frac{1}{2} \alpha$ and we obtain for the equation of the path $p(\mu)$:

$$
\begin{align*}
& \left(\mu^{2}-\tan ^{2} \frac{1}{2} \alpha\right)^{2} \cos ^{2} \frac{1}{2} \alpha\left(x^{2}+y^{2}+z^{2}\right)^{2}-\left(\mu^{2}+1\right) \tag{3.10}\\
& \quad \times\left\{\left(\mu+\tan \frac{1}{2} \alpha\right)^{2} x^{2}+\left(\mu-\tan \frac{1}{2} \alpha\right)^{2} y^{2}\right\} \times\left(x^{2}+y^{2}+z^{2}\right) \\
& \quad+4\left(\mu^{2}+1\right)^{2} \sin ^{2} \frac{1}{2} \alpha \cdot x^{2} y^{2}=0 .
\end{align*}
$$

For $\mu= \pm i$ we obtain the paths of the points S_{1}, S_{2} of l, which are seen to be the absolute Ω counted twice. The path of A_{1}, with $\mu=-\tan \frac{1}{2} \alpha$ is given by $y^{2}\left(y^{2}+z^{2}\right)=0$ and consists therefore of a_{1}, counted twice, and the two isotripic lines through B_{1} (corresponding to singular Ω-displacements). If the intersections of a_{i} and Ω are denoted by $C_{i 1}, C_{i 2}(i=1,2)$ we see from (3.10) that the path is tangent to Ω at these four points.

By means of (3.6), (3.3) and (2.3) the coordinates of the points of the path p may be expressed as functions of the parameter t. We have $a \cos \alpha=d n^{2} t$, and

$$
\begin{align*}
& x=\left(\mu-\tan \frac{1}{2} \alpha\right) \sin \alpha c n t, y=-\left(\mu+\tan \frac{1}{2} \alpha\right) \sin \alpha \cdot \text { snt dnt }, \tag{3.11}\\
& z=-\left(\mu+\tan \frac{1}{2} \alpha\right) d n^{2} t+\left(\mu-\tan \frac{1}{2} \alpha\right) \cos \alpha .
\end{align*}
$$

Summing up we have: the path of an arbitrary point of the line l during the Cardan motion is a quartic curve of genus one, with three centers and four times tangent to the absolute.
4. The double points of the path. A quartic curve of genus one has two double points. In view of the symmetries of the path they can only be situated on a coordinate axis, and as a_{1}, a_{2} are equivalent, this must be $z=0$.

The intersections of this line and the path, according to (3.7), correspond to $a=\left(\mu-\tan \frac{1}{2} \alpha\right) /\left(\mu+\tan \frac{1}{2} \alpha\right)$ and this gives us for the coordinates of the double points D_{1} and D_{2} :

$$
\begin{equation*}
x^{2}: y^{2}=\left(\mu-\tan \frac{1}{2} \alpha\right)\left(\mu-\cot \frac{1}{2} \alpha\right):\left(\mu+\tan \frac{1}{2} \alpha\right)\left(\mu+\cot \frac{1}{2} \alpha\right) . \tag{4.1}
\end{equation*}
$$

Obviously the points $Q(\mu)$ and $Q\left(\mu^{-1}\right)$ have the same double points. As α has been supposed to be an acute angle it follows from (4.1) that D_{1}, D_{2} are real points if either $\mu \leqq-\cot \frac{1}{2} \alpha$, $-\tan \frac{1}{2} \alpha \leqq \mu \leqq \tan \frac{1}{2} \alpha$, or $\mu \geqq \cot \frac{1}{2} \alpha$.

Furthermore D_{1}, D_{2} correspond to real positions of the plane, according to (3.8), if

$$
\begin{equation*}
\cos \alpha \leqq\left(\mu-\tan \frac{1}{2} \alpha\right) /\left(\mu+\tan \frac{1}{2} \alpha\right) \leqq \cos ^{-1} \alpha, \tag{4.2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mu \leqq-\cot \frac{1}{2} \alpha, \quad \text { or } \quad \mu \geqq \cot \frac{1}{2} \alpha \tag{4.3}
\end{equation*}
$$

Hence: the double points D_{1}, D_{2} of the path of $Q(\mu)$ are nodes if $\mu^{2}>\cot ^{2} \frac{1}{2} \alpha$, cusps if $\mu^{2}=\cot ^{2} \frac{1}{2} \alpha$, (real) isolated points if $\mu^{2} \leqq \tan ^{2} \frac{1}{2} \alpha$ and conjugate imaginary points in the remaining cases.

The double points of the paths of $Q(\mu)$ and $Q\left(\mu^{-1}\right)$ are the same, but if they are real they are of different type.
5. The equations of the Cardan motion. So far we have only considered the path of a point Q on l. We investigate now that of an arbitrary point R of Γ_{1}. To that end we introduce in Γ_{1} a coordinate system $\left(x_{1}, y_{1}, z_{1}\right)$ with the vertices M_{1}, M_{2} and the point M_{3}, the pole of l with respect to $\Omega ; M_{1} M_{2} M_{3}$ is a self-polar triangle of the absolute.

We have $\mu=x_{1} / y_{1}$. The equation of l in the (x, y, z)-system is $u_{2} x+u_{1} y-$ $u_{1} u_{2} z=0$, hence $M_{3}=\left(u_{2}, u_{1},-u_{1} u_{2}\right)$, which implies that the path of M_{3} in Γ is given by

$$
\begin{equation*}
x=\cos \alpha \cdot s n t, \quad y=c n t, d n t, \quad z=-\sin \alpha \cdot s n t \cdot c n t . \tag{5.1}
\end{equation*}
$$

Eliminating t, this path is seen to be represented by the equation

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right) z^{2}-\tan ^{2} \alpha \cdot x^{2} y^{2}=0 \tag{5.2}
\end{equation*}
$$

Hence the path $p\left(M_{3}\right)$ is a quartic curve of genus one, with nodes at B_{1}, B_{2} and tangent to Ω at the four points $C_{i j}(i, j=, 2)$.
The path of $M_{1}(\mu=\infty)$ follows from (3.11):

$$
\begin{equation*}
x=-\sin \alpha \cdot c n t, \quad y=\sin \alpha \cdot s n t d n t, \quad z=d n^{2} t-\cos \alpha, \tag{5.3}
\end{equation*}
$$

and that of $M_{2}(\mu=0)$ is

$$
\begin{equation*}
x=\sin \alpha \cdot c n t, \quad y=\sin \alpha \cdot s n t d n t, \quad z=d n^{2} t+\cos \alpha \tag{5.4}
\end{equation*}
$$

We know now the paths of the vertices of the coordinate triangle $M_{1} M_{2} M_{3}$. From these follows the path of an arbitrary point $R\left(x_{1}, y_{1}, z_{1}\right)$ if proportionality factors are chosen in a suitable way. The values of the expression $x^{2}+y^{2}+z^{2}$ at M_{1}, M_{2} and M_{3} (see (5.3), (5.4), (5.1)) are $4 \sin ^{2} \frac{1}{2} \alpha \cdot d n^{2} t, 4 \cos ^{2} \frac{1}{2} \alpha \cdot d n^{2} t$ and $d n^{2} t$ respectively. Hence for normalized coordinates the equations

$$
\begin{align*}
& x=-\cos \frac{1}{2} \alpha \cdot \frac{c n t}{d n t} x_{1}+\sin \frac{1}{2} \alpha \cdot \frac{c n t}{d n t} y_{1}+\cos \alpha \cdot \frac{s n t}{d n t} z_{1}, \\
& y=\cos \frac{1}{2} \alpha \cdot s n t \cdot x_{1}+\sin \frac{1}{2} \alpha \cdot s n t \cdot y_{1}+c n t \cdot z_{1}, \tag{5.5}\\
& z=\frac{\cos \frac{1}{2} \alpha}{\sin \alpha} \cdot\left(d n t-\frac{\cos \alpha}{d n t}\right) x_{1}+\frac{\sin \frac{1}{2} \alpha}{\sin \alpha}\left(d n t+\frac{\cos \alpha}{d n t}\right) y_{1}-\sin \alpha \frac{s n t c n t}{d n t} z_{1}
\end{align*}
$$

give us the relation between the plane $\Gamma_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and the plane $\Gamma(x, y, z)$ if the former has Cardan motion with respect to the latter (with t as the parameter).

It is easy to verify that the matrix of the linear transformation (5.5) is indeed, for all values of t, an orthogonal matrix with determinant one; the absolute Ω is invariant for (5.5), which represents therefore a set of elliptic displacements. Furthermore, for $A_{1}=\left(-\sin \frac{1}{2} \alpha, \cos \frac{1}{2} \alpha, 0\right)$ we have $y=0$ and for $A_{2}=$ $\left(\sin \frac{1}{2} \alpha, \cos \frac{1}{2} \alpha, 0\right), x=0$. For $Q=\left(x_{1}, y_{1}, 0\right)$ the formulas give us the path of a point on l, in accordance with (3.11).

If x_{1}, y_{1}, z_{1} are arbitrary (5.5) represents the path in Γ of the general point R of Γ_{1}. After multiplication by $d n t$, the coordinates are seen to be quadratic functions of snt, cnt and dnt. In their common parallelogram of periods in the complex plane (with sides $4 K$ and $4 i K^{\prime}$ in the usual notation) they take any value four times. Hence a linear function of x, y, z has eight zeros. The conclusion is: the path of an arbitrary point of the moving plane is a curve of order eight and genus one.

We knew already that it is invariant for reflections into the three coordinate axes. From the properties of the Jacobian functions it follows that the three reflections correspond to the parameter transformations $t^{\prime}=t+2 K, t^{\prime}=$ $-t+2 i K^{\prime}$ and $t^{\prime}=-t+2 K+2 i K^{\prime}$. Furthermore (5.5) is singular either if $d n t=0$ or if $d n t$ (and snt and $c n t$) has a pole. This implies that for the intersections of Ω and the path we have either $x=0$ or $y=0$, which means that the path has a four-fold contact with the absolute at the four points $C_{i j}$.

The general path is of order eight but that for a point on l and for M_{3} is only four. This exceptional behavior could have been expected. Indeed, to a given position of l correspond two positions of Γ_{1}, one following from the other by reflection into l (or into M_{3}). This implies that during the complete motion any point on l and the point M_{3} pass twice through any point of their path, which is therefore a quartic curve counted twice. In other words: the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{1}, y_{1},-z_{1}\right)$ describe the same path. This, again, may be verified by means of the properties of snt, cnt and dnt: the first point is at the moment t at the same point of Γ as the second at the moment $t^{\prime}=t+2 K+$ $2 i K^{\prime}$.
6. The inverse motion. The motion of Γ with respect to Γ_{1} follows from (5.5) if we interchange the roles of (x, y, z) and $\left(x_{1}, y_{1}, z_{1}\right)$. As the inverse of an orthogonal matrix is identical with its transpose the expressions for x_{1}, y_{1}, z_{1} in terms of x, y, z are found by reflecting the matrix in (5.5) into the principal diagonal. The conclusion is: a point of Γ describes in Γ_{1} a curve which is in general of order eight and genus one; it is symmetric with respect to $z_{1}=0$. Furthermore: the four points $(x, y, z),(-x, y, z),(x,-y, z)$ and $x, y,-z)$ describe the same path in Γ_{1}. In particular: the path of a point on $x=0$, or $y=0$, or on $z=0$ is in general a quartic curve of genus one. Still more special are the paths of the vertices $o, \mathrm{~B}_{1}, B_{2}$, that of $o=(0,0,1)$, being given by

$$
\begin{align*}
& x_{1}=\cos \frac{1}{2} \alpha\left(d n^{2} t-\cos \alpha\right), y_{1}=\sin \frac{1}{2} \alpha\left(d n^{2} t+\cos \alpha\right) \tag{6.1}\\
& z_{1}=-\sin ^{2} \alpha \cdot \text { snt cnt }
\end{align*}
$$

is the conic

$$
\begin{equation*}
x_{1}{ }^{2} \cos ^{2} \frac{1}{2} \alpha-y_{1}{ }^{2} \sin ^{2} \frac{1}{2} \alpha+z_{1}{ }^{2} \cos \alpha=0 \tag{6.2}
\end{equation*}
$$

passing through A_{1}, A_{2} and with centers at M_{1}, M_{2}, M_{3}. This could be expected: the path is the locus of the vertex of a right angle the sides of which pass through two fixed points, a well-known configuration in elliptic geometry. The path of $B_{1}=(1,0,0)$ is the line $\sin \frac{1}{2} \alpha \cdot x_{1}+\cos \frac{1}{2} \alpha \cdot y_{1}=0$, that of $B_{2}=$ $(0,1,0)$ is the line $\sin \frac{1}{2} \alpha \cdot x_{1}-\cos \frac{1}{2} \alpha \cdot y_{1}=0$; both pass through M_{3} and their angle is α; they are the polar lines of A_{2} and A_{1} with respect to Ω. There is the following analogy between our Cardan motion and its inverse: at the former two points with distance α move along two lines with angle $\pi / 2$, at the latter two points with distance $\pi / 2$ move along lines with angle α.
7. The polhodes. The instantaneous center of rotation is the intersection of the perpendicular at A_{1} on a_{1} and that at A_{2} on a_{2}. Its coordinates in Γ are ($u_{1}, u_{2}, 1$). The fixed polhode is therefore (in view of (2.2)).

$$
\begin{equation*}
x^{2} y^{2}+\left(x^{2}+y^{2}\right) z^{2}-\tan ^{2} \alpha \cdot z^{4}=0 \tag{7.1}
\end{equation*}
$$

or by making use of (2.3),

$$
\begin{equation*}
x=\tan \alpha \cdot c n t d n t, y=\sin \alpha \cdot s n t, z=d n t . \tag{7.2}
\end{equation*}
$$

The fixed polhode of the Cardan motion is a quartic curve of genus one; it has (isolated) double points at B_{1} and B_{2}.

The parametric representation of the moving polhode follows from (7.2) if we transform the coordinates by means of the transpose of the matrix of (5.5). We obtain after some algebra

$$
\begin{equation*}
x_{1}=\cos \frac{1}{2} \alpha\left(\cos \alpha-d n^{2} t\right), y_{1}=\sin \frac{1}{2} \alpha\left(\cos \alpha+d n^{2} t\right) \tag{7.3}
\end{equation*}
$$

$$
z_{1}=\sin ^{2} \alpha \cos \alpha \cdot \text { snt cnt }
$$

or after eliminating t,

$$
\begin{equation*}
\cos \alpha\left(x_{1}^{2} \cos ^{2} \frac{1}{2} \alpha-y_{1}^{2} \sin ^{2} \frac{1}{2} \alpha\right)+z_{1}^{2}=0 \tag{7.4}
\end{equation*}
$$

Hence the moving polhode is a conic passing through A_{1}, A_{2}.
We could have determined the polhodes also by differentiating (5.5) with respect to t, making use of the derivatives of the elliptic functions. Then (7.3) follows from the conditions $\dot{x}=\dot{y}=\dot{z}=0$.
8. Final remarks. Cardan motion in hyperbolic geometry may be treated in a similar way. If $\Omega \equiv x^{2}+y^{2}-z^{2}=0$ and $A_{1} A_{2}=d$, the fundamental relation (2.2) changes into

$$
\begin{equation*}
-u_{1}^{2} u_{2}^{2}+u_{1}^{2}+u_{2}^{2}=\tanh ^{2} d \tag{8.1}
\end{equation*}
$$

or, if we introduce Jacobian functions with modulus $k=\tanh d$,
(8.2) $\quad u_{1}=k$ snt, $\quad u_{2}=k \mathrm{cnt} / d n t$.

Kinematics in the elliptic plane, as considered above, has of course much similarity with (Euclidean) spherical kinematics. If a three dimensional space moves about a fixed point o in such a way that two lines through o (with angle α) move in two orthogonal fixed planes we have a complete analogue with the Cardan motion treated in this paper.

Charlotte de Bourbonstraat 2, Delft, Holland

