Bull. Austral. Math. Soc. Vol. 55 (1997) [239-248]

A KOROVKIN TYPE THEOREM FOR WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

WALTER ROTH

We prove a Korovkin type approximation theorem for positive linear operators on weighted spaces of continuous real-valued functions on a compact Hausdorff space X. These spaces comprise a variety of subspaces of C(X) with suitable locally convex topologies and were introduced by Nachbin 1967 and Prolla 1977. Some early Korovkin type results on the weighted approximation of real-valued functions in one and several variables with a single weight function are due to Gadzhiev 1976 and 1980.

1. WEIGHTED SPACES OF FUNCTIONS

Throughout this paper, let X be a locally compact Hausdorff space. A real-valued function f on X is said to vanish at infinity if for every $\varepsilon > 0$ the set $\{x \in X \mid |f(x)| \ge \varepsilon\}$ is relatively compact. As usual, we denote by

- C(X) the space of all continuous real-valued functions on X,
- $C_B(X)$ the space of all bounded functions in C(X),
- $C_0(X)$ the space of all functions in C(X) that vanish at infinity,
- $C_{c}(X)$ the space of all functions in C(X) with compact support.

A variety of norms and seminorms may be considered on these spaces. The supremum norm is generally available for $C_B(X)$, $C_0(X)$ and $C_c(X)$. Korovkin type approximation theorems have been developed for $C_0(X)$ endowed with the supremum norm, by Bauer and Donner [2] and other authors. In the following we shall present a general approach that deals simultaneously with a variety of subspaces of C(X), carrying different locally convex topologies. We shall use the concept of weighted spaces of functions as developed by Nachbin. We give a short introduction to the general theory. For details and proofs we globally refer to Nachbin's [5] fundamental work and the monograph by Prolla [6].

A family W of non-negative upper semicontinuous functions on X is called a *family* of weights if for all $w_1, w_2 \in W$ there are $w_3 \in W$ and $\rho > 0$ such that

 $w_1 \leqslant \rho w_3$ and $w_2 \leqslant \rho w_3$.

Received 4th April, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

W. Roth

With any family of weights \mathcal{W} we associate the subspace of C(X)

 $C_{\mathcal{W}}(X) = \{f \in C(X) \mid wf \text{ vanishes at infinity for all } w \in \mathcal{W}\}.$

Together with the locally convex topology generated by the seminorms

$$p_w(f) = \sup \left\{ |wf(x)| \mid x \in X
ight\}$$

for $w \in W$ and $f \in C_{\mathcal{W}}(X)$ we call $C_{\mathcal{W}}(X)$ a weighted space of functions. If for every $x \in X$ there is some $w \in W$ such that $w(x) \neq 0$, then the topology of $C_{\mathcal{W}}(X)$ is obviously Hausdorff. We shall mention some examples for weighted spaces of functions.

EXAMPLE 1.1.

- (a) If \mathcal{W} consists of the constant function $w \equiv 1$, then $C_{\mathcal{W}}(X) = C_0(X)$, and p_w is the supremeum norm.
- (b) If $\mathcal{W} = C_0^+(X) = \{w \in C_0(X) \mid w \ge 0\}$, then $C_{\mathcal{W}}(X) = C_B(X)$, but the weighted topology (called the *strict* topology) is generally coarser than the supremum norm topology on $C_B(X)$.
- (c) If \mathcal{W} consists of the characteristic functions of all compact subsets of X, then $C_{\mathcal{W}}(X) = C(X)$ with the topology of compact convergence.
- (d) If \mathcal{W} consists of the characteristic functions of all finite subsets of X, then $C_{\mathcal{W}}(X) = C(X)$ with the topology of pointwise convergence.
- (e) If $\mathcal{W} = C^+(X) = \{w \in C(X) \mid w \ge 0\}$, then $C_{\mathcal{W}}(X) = C_c(X)$. The weighted topology is generally finer than the supremum norm but coarser than the inductive limit topology on $C_c(X)$.

Example 1.1(d) shows in particular that weighted spaces of functions need not be complete. Note that $C_c(X)$ is a dense subspace of $C_{\mathcal{W}}(X)$ for any choice of the family of weights \mathcal{W} .

The following characterisation of the dual of a weighted space of functions may be found in Prolla's monograph [6]. By $M_B(X)$ we denote the space of all finite regular Borel measures on X, and by $M_B^+(X)$ the positive cone in $M_B(X)$. The norm of $\mu \in M_B(X)$ is defined as $\|\mu\| = |\mu|(X)$. By the Riesz Representation Theorem every bounded linear functional on $C_c(X)$ endowed with the supremum norm, may be uniquely represented as a measure $\mu \in M_B(X)$. For weighted spaces in general, every continuous linear functional on $C_W(X)$ is seen to be continuous with respect to the inductive topology of the subspace $C_c(X)$, hence may be represented for the functions in $C_W(X)$ by a (not necessarily bounded) Borel measure on X.

For all $f \in C_{\mathcal{W}}(X)$ and $w \in \mathcal{W}$, the function wf is integrable with respect to every $\mu \in M_B(X)$. Thus by $w\mu$ we denote the linear functional

$$f\mapsto \mu(wf):C_{\mathcal{W}}(X)\to\mathbb{R}$$

240

As $|w\mu(f)| \leq ||\mu|| p_w(f)$, the functional $w\mu$ is in the dual of $C_W(X)$. Moreover, it may be seen that the functionals of this type constitute the whole dual of $C_W(X)$. For the proof of this fact we refer to Prolla [6, Theorem 5.42]:

THEOREM 1.2. The dual of $C_{\mathcal{W}}(X)$ may be identified with the space of all functionals $w\mu$, where $w \in \mathcal{W}$ and $\mu \in M_B(X)$; more precisely: For $w \in \mathcal{W}$ the polar of the 0-neighbourhood $V = \{f \in C_{\mathcal{W}}(X) \mid p_w(f) \leq 1\}$ is given by

$$V^{\circ} = \{w\mu \mid \mu \in M_B(X), \ \|\mu\| \leqslant 1\}.$$

Positive linear functionals on $C_{\mathcal{W}}(X)$ are represented by positive measures $\mu \in M_B^+(X)$.

Reviewing some of our Examples 1.1, we realise that in (a) the dual of $C_{\mathcal{W}}(X)$ consists of $M_B(X)$, in (c) of those measures in $M_B(X)$ having compact support, and in (d) of the linear combinations of point evaluations (called *simple* measures).

2. THE MAIN APPROXIMATION THEOREM

The weighted spaces $C_{\mathcal{W}}(X)$ are endowed with the pointwise order for functions, and a linear operator $T: C_{\mathcal{W}}(X) \to C_{\mathcal{W}}(X)$ is said to be *positive* if $T(f) \ge 0$, whenever $f \ge 0$. A family \mathcal{T} of linear operators on $C_{\mathcal{W}}(X)$ is *equicontinuous* if for every $w \in \mathcal{W}$ there are $w' \in \mathcal{W}$ and $\rho > 0$ such that for the corresponding seminorms

$$p_{\boldsymbol{w}}(T(f)) \leqslant \rho \, p_{\boldsymbol{w}'}(f)$$

holds for all $f \in C_{\mathcal{W}}(X)$ and $T \in \mathcal{T}$.

Korovkin type theorems deal with approximation processes modelled by equicontinuous nets $(T_{\alpha})_{\alpha \in \mathcal{A}}$ of positive linear operators. We write $T_{\alpha}(f) \to f$ if the net $(T_{\alpha}(f))_{\alpha \in \mathcal{A}}$ converges to f in the topology of $C_{\mathcal{W}}(X)$.

For a subset \mathcal{M} of $C_{\mathcal{W}}(X)$, the Korovkin closure $\mathcal{K}(\mathcal{M})$ of \mathcal{M} consists of all functions $f \in C_{\mathcal{W}}(X)$ such that $T_{\alpha}(f) \to f$ whenever $(T_{\alpha})_{\alpha \in \mathcal{A}}$ is an equicontinuous net of positive linear operators on $C_{\mathcal{W}}(X)$ and $T_{\alpha}(g) \to g$ holds for all $g \in \mathcal{M}$. A Korovkin system for $C_{\mathcal{W}}(X)$ is a subset $\mathcal{M} \subset C_{\mathcal{W}}(X)$ such that $\mathcal{K}(\mathcal{M}) = C_{\mathcal{W}}(X)$. By span (\mathcal{M}) we denote the linear span of \mathcal{M} ; that is, the subspace of $C_{\mathcal{W}}(X)$ generated by \mathcal{M} .

Now we are ready to formulate our main result. For the special case of $C_0(X)$ with the supremum norm, that is, the case of our Example 1.1(a), it is due to Bauer and Donner [2].

THEOREM 2.1. Let X be a locally compact Hausdorff space, and let W be a family of weight functions on X. Let \mathcal{M} be a subset of $C_{\mathcal{W}}(X)$. For a function $f \in C_{\mathcal{W}}(X)$ the following are equivalent:

(a) $f \in \mathcal{K}(\mathcal{M})$.

(b) For every x ∈ X such that w(x) > 0 for at least one weight function w ∈ W,

$$egin{aligned} f(x) &= \sup_{\substack{w \in \mathcal{W} \\ arepsilon > 0}} \inf\{g(x) \mid g \in \operatorname{span}\left(\mathcal{M}
ight), \quad wf \leqslant wg + arepsilon\} \ &= \inf_{\substack{w \in \mathcal{W} \\ arepsilon > 0}} \sup\{g(x) \mid g \in \operatorname{span}\left(\mathcal{M}
ight), \quad wg \leqslant wf + arepsilon\}. \end{aligned}$$

(c) For every $x \in X$ such that w(x) > 0 for at least one weight function $w \in \mathcal{W}$, and for every $\mu \in M_B^+(X)$ and $w \in \mathcal{W}$

$$\mu(wg) = g(x) \quad \text{for all } g \in \mathcal{M} \quad \text{implies} \quad \mu(wf) = \mathbf{Y}(x).$$

PROOF: (a) \Rightarrow (c): Let us assume that (c) fails for the function $f \in C_{\mathcal{W}}(X)$, the point $x \in X$, the measure $\mu \in M_B^+(X)$ and the weight function $w \in \mathcal{W}$; that is, we have

$$\mu(wg)=g(x) \quad ext{for all } g\in \mathcal{M}, \quad ext{but} \quad \mu(wf)
eq f(x).$$

We shall show that (a) fails as well: Let U_0 be a fixed compact neighbourhood for x and let \mathcal{U} be a basis of open neighbourhoods of x that are all subsets of U_0 . By Urysohn's Lemma, for all $U \in \mathcal{U}$ there are functions $\phi_U \in C_c(X)$ such that

$$0 \leqslant \phi_U \leqslant 1$$
, $\phi_U(x) = 1$, and $\phi_U \equiv 0$ on $X \setminus U$.

Using those functions we define operators T_U on $C_W(X)$ by

$$T_U(h) = h(1-\phi_U) + \mu(wh) \, \phi_U$$

for $h \in C_{\mathcal{W}}(X)$. Clearly $T_U(h) \in C_{\mathcal{W}}(X)$, and the operators T_U are linear and positive. Equicontinuity is easily checked: Given $w' \in \mathcal{W}$, choose $w'' \in \mathcal{W}$ and $\rho > 0$ such that both

 $w \leq \rho w''$ and $w' \leq \rho w''$.

With an upper bound $\sigma > 0$ for the upper semicontinuous function w' on U_0 , we compute for all $y \in X$ and $U \in U$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Thus $p_{w'}(T_U(h)) \leq \rho(1+\sigma ||\mu||) p_{w''}(h)$. Ordered by reverse inclusion (that is, $U \leq V$ if $U \supset V$), the neighbourhood system \mathcal{U} serves as the index set of the net $(T_U)_{U \in \mathcal{U}}$. For every function $g \in \mathcal{M}$ we observe that

$$T_U(g)(y)=g(y) \quad ext{for all } y\in X\setminus U.$$

For $y \in U \subset U_0$ on the other hand, and for $w' \in W$ and $\sigma > 0$ an upper bound for w'on U_0 , we verify

$$egin{aligned} ig|T_U(g)(y) - g(y)ig|w'(y) &= ig|ig(g(y)(1-\phi_U(y)) + \mu(wg)\,\phi_U(y)ig) - g(y)ig|w'(y) \ &\leqslant \ \phi_U(y)\ |g(x) - g(y)|\ w'(y) \ &\leqslant \ \sigma\ |g(x) - g(y)|\,. \end{aligned}$$

Thus $p_{w'}(T_U(g) - g) \leq \varepsilon$ for all $U \in \mathcal{U}$ such that $|g(x) - g(y)| \leq \varepsilon/\sigma$ for all $y \in U$. This shows that $T_U(g) \to g$ for all $g \in \mathcal{M}$. But for the given function f and the point $x \in X$ we have $T_U(f)(x) = \mu(wf) \neq f(x)$. By assumption (c) there exists at least one weight function $w' \in W$ that does not vanish at x. This shows $p_{w'}(T_U(f) - f) \neq 0$, hence $T_U(f) \neq f$, contradicting (a).

(c) \Rightarrow (b): Suppose that the function $f \in C_{\mathcal{W}}(X)$ satisfies (c), and let $x \in X$ be such that w(x) > 0 for some $w \in \mathcal{W}$. We shall prove that the first equality in (b) holds. The second one may be verified in an analogous way. The inequality

$$\sup_{\substack{w \in \mathcal{W} \\ \varepsilon > 0}} \inf \{ g(x) \mid g \in \operatorname{span}(\mathcal{M}), \ wf \leqslant wg + \varepsilon \} \ge f(x)$$

holds in any case, as for $w \in W$ such that w(x) > 0 and $\varepsilon > 0$ we realise that

$$\inf\{g(x) \mid g \in \operatorname{span}(\mathcal{M}), \ wf \leqslant wg + \varepsilon\} \ge f(x) - \varepsilon/w(x).$$

For the converse inequality, it suffices to show that for any $w \in W$ and $\varepsilon > 0$ we have

$$\inf\{g(x) \mid g \in \operatorname{span}(\mathcal{M}), wf \leqslant wg + \varepsilon\} \leqslant f(x).$$

As the infimum on the left hand side of the last inequality increases, if we replace $w \in W$ by a larger weight function $w' \in W$, and as W is directed upward, we may assume that w(x) > 0. Next we define a functional p on $C_{\mathcal{W}}(X)$ by

$$p(h) = \inf\{g(x) + 2\delta/w(x) \mid \delta \ge 0, \ g \in \operatorname{span}(\mathcal{M}), \ wh \le wg + \delta\}.$$

As $h(x) \leq p(h) \leq (2/w(x)) p_w(h)$, the functional p is real-valued on $C_W(X)$. It is easily checked to be sublinear, and for $g \in \text{span}(\mathcal{M})$ we realise that p(g) = g(x). Thus, by the Hahn-Banach theorem there is a linear functional Φ on $C_W(X)$ satisfying

$$\Phi(h) \leq p(h)$$
 for all $h \in C_{\mathcal{W}}(X)$ and $\Phi(f) = p(f)$

W. Roth

for the given function $f \in C_{\mathcal{W}}(X)$. As $\Phi(h) \leq p(h) \leq 0$, whenever $h \leq 0$, the functional Φ is positive and continuous with respect to the topology of $C_{\mathcal{W}}(X)$, thus may be represented as $w\mu$, where $\mu \in M_B^+(X)$. By the above, this means $\mu(wg) = g(x)$ for all $g \in \mathcal{M}$, and therefore by (c)

$$egin{aligned} f(m{x}) &= \mu(wf) = \Phi(f) = p(f) \ &= \inf\{g(m{x}) + 2\delta/w(m{x}) \mid \delta \geqslant 0, \ g \in \mathrm{span}\left(\mathcal{M}
ight), \ wf \leqslant wg + \delta\} \end{aligned}$$

Thus for any choice of $0 < \epsilon' \leq \epsilon/w(x)$ we may find $\delta \ge 0$ and $g \in \text{span}(\mathcal{M})$ such that

$$wf\leqslant wg+\delta \quad ext{and} \quad g(x)+2\delta/w(x)\leqslant f(x)+arepsilon'\leqslant g(x)+\delta/w(x)+arepsilon',$$

whence $\delta/w(x) \leq \varepsilon' \leq \varepsilon/w(x)$ and $\delta \leq \varepsilon$. Summarising, this shows

$$wf\leqslant wg+arepsilon ext{ and } g(x)\leqslant f(x)+arepsilon',$$

hence

$$\inf\{g(x) \mid g \in \operatorname{span}(\mathcal{M}), \ wf \leqslant wg + \varepsilon\} \leqslant f(x)$$

as desired.

(b) \Rightarrow (a): Let us assume that (b) holds for the function $f \in C_{\mathcal{W}}(X)$, but that (a) is false. Then there is an equicontinuous net $(T_{\alpha})_{\alpha \in \mathcal{A}}$ of positive linear operators on $C_{\mathcal{W}}(X)$ such that

$$T_{\alpha}(g) \rightarrow g$$
 for all $g \in \mathcal{M}$, but $T_{\alpha}(f) \not\rightarrow f$;

that is, $p_w(T_\alpha(f) - f) \neq 0$ for some weight function $w \in \mathcal{W}$. There are $\delta > 0$, a subnet $(T_\beta)_{\beta \in \mathcal{B}}$ of $(T_\alpha)_{\alpha \in \mathcal{A}}$ and points $z_\beta \in X$ such that

$$w(x_{oldsymbol{eta}})\left|T_{oldsymbol{eta}}(f)(x_{oldsymbol{eta}})-f(x_{oldsymbol{eta}})
ight|\geqslant\delta\quad ext{for all }oldsymbol{eta}\in\mathcal{B}.$$

We may assume (after selecting another subnet) that either

$$w(x_eta)\left(T_etaig(fig)(x_eta)-f(x_eta)ig)\geqslant\delta \quad ext{or}\quad w(x_eta)\left(T_etaig(fig)(x_eta)-f(x_eta)ig)\leqslant-\delta$$

holds for all $\beta \in \mathcal{B}$. We assume the first case, as we continue with our argument. The second case is similar. Let us recall that the operators $(T_{\beta})_{\beta \in \mathcal{B}}$ were supposed to be equicontinuous. For the given weight function $w \in \mathcal{W}$ from above there are $w' \in \mathcal{W}$ and $\rho > 0$ such that

$$p_w(T_{\beta}(h)) \leqslant \rho p_{w'}(h)$$

for all $h \in C_{\mathcal{W}}(X)$ and $\beta \in \mathcal{B}$. Next we observe that the net $(x_{\beta})_{\beta \in \mathcal{B}}$ permits the selection of a further subnet $(x_{\gamma})_{\gamma \in \mathcal{C}}$ that converges to some $x_0 \in X$ or to $x_0 = \infty$. (The latter refers to the one-point compactification on X). We continue our argument with this subnet. Following condition (b), for any choice of $\varepsilon > 0$ and the weight function $w' \in W$ from above there is $g \in \text{span}(\mathcal{M})$ such that

$$w'f\leqslant w'g+arepsilon/
ho, \quad ext{and} \quad w(x_0)g(x_0)\leqslant w(x_0)f(x_0)+arepsilon.$$

(The second condition is void for $x_0 = \infty$ or for $w(x_0) = 0$. But our assumption that (a) fails for the function f implies in particular that \mathcal{W} contains a non-zero weight function and that the equalities in (b) hold for at least one point $x \in X$. Thus we may always find a function $g \in \text{span}(\mathcal{M})$ fulfilling the first condition.) With $h = (f - g)^+ = \sup\{(f - g), 0\} \in C_{\mathcal{W}}(X)$ we have

$$0\leqslant w'h\leqslant arepsilon /
ho \ \ ext{and} \ \ f\leqslant g+h.$$

Thus $p_{w'}(h) \leq \varepsilon/\rho$ and $p_w(T_{\gamma}(h)) \leq \varepsilon$ for all $\gamma \in C$ by the above. This shows

 $T_{\gamma}(f)\leqslant T_{\gamma}(g)+T_{\gamma}(h), \hspace{1em} ext{hence} \hspace{1em} w \hspace{1em} T_{\gamma}(f)\leqslant w \hspace{1em} T_{\gamma}(g)+arepsilon.$

But we have $T_{\gamma}(g) \to g$, as $g \in \text{span}(\mathcal{M})$. There is $\gamma_0 \in \mathcal{C}$ such that $p_w(T_{\gamma}(g)-g) \leq \varepsilon$ for all $\gamma \geq \gamma_0$. Summarising, we obtain for those γ

$$w T_{\gamma}(f) \leqslant w T_{\gamma}(g) + \varepsilon \leqslant wg + 2\varepsilon,$$

and using the selected the points $x_{\gamma} \in X$,

$$w(x_{\gamma})f(x_{\gamma}) + \delta \leqslant w(x_{\gamma})T_{\gamma}(f)(x_{\gamma}) \leqslant w(x_{\gamma})g(x_{\gamma}) + 2\varepsilon.$$

To obtain the desired contradiction, now we have to separate our cases:

If $x_0 = \infty$, then both

[7]

$$w(x_{oldsymbol{\gamma}})f(x_{oldsymbol{\gamma}}) o 0 \quad ext{and} \quad w(x_{oldsymbol{\gamma}})g(x_{oldsymbol{\gamma}}) o 0,$$

a contradiction to our last inequality, if we choose $\varepsilon < \delta/2$.

If $x_0 \in X$, but $w(x_0) = 0$, then $w(x_\gamma) \to 0$, as w is non-negatiave and upper semicontinuous. Again, with $\varepsilon < \delta/2$ we obtain a contradiction.

Finally, if $x_0 \in X$, and $w(x_0) > 0$, we may use the second condition for the choice of the function $g \in \text{span}(\mathcal{M})$ and the continuity of f and g in x_0 : There is $\gamma_1 \ge \gamma_0$ such that for all $\gamma \ge \gamma_1$

$$|f(x_{oldsymbol{\gamma}})-f(x_0)|\leqslant arepsilon \quad |g(x_{oldsymbol{\gamma}})-g(x_0)|\leqslant arepsilon$$

holds. Furthermore we may assume that $w(x_{\gamma}) \leq \sigma$ for some $\sigma > 0$. (The function w is bounded above on a compact neighbourhood of x_0 .) Thus for all such $\gamma \geq \gamma_1$

$$egin{aligned} &w(x_{\gamma})g(x_{\gamma})\leqslant \ w(x_{\gamma})g(x_{0})+arepsilon\sigma\ &\leqslant \ w(x_{\gamma})f(x_{0})+arepsilon+arepsilon\sigma\ &\leqslant \ w(x_{\gamma})f(x_{\gamma})+arepsilon(1+2\sigma)\ &\leqslant \ w(x_{\gamma})g(x_{\gamma})+arepsilon(3+2\sigma)-\delta, \end{aligned}$$

and $\delta \leq \epsilon(3+2\sigma)$, a contradiction if we choose ϵ sufficiently small, thus completing our proof.

An application of Theorem 2.1 yields a Stone-Weierstrass theorem for weighted spaces. The result is well-known for the special case of $C_0(X)$ with the supremum norm (see [1, Chapter 4.4]).

COROLLARY 2.2. Let X be a locally compact Hausdorff space, and let W be a family of weight functions on X. If $\mathcal{M} \subset C_{\mathcal{W}}(X)$ is a Korovkin system for $C_{\mathcal{W}}(X)$, then the vector sublattice generated by \mathcal{M} is dense in $C_{\mathcal{W}}(X)$.

PROOF: Let \mathcal{M} be a Korovkin system for $C_{\mathcal{W}}(X)$. To prove our claim, it suffices to show that every positive function $f \in C_{\mathcal{W}}(X)$ may be approximated in the topology of $C_{\mathcal{W}}(X)$ by functions in the vector sublattice generated by \mathcal{M} : Let $w \in \mathcal{W}$ be any weight function. Given $\varepsilon > 0$, the set

$$Y = \{y \in X \mid w(y)f(y) \ge \varepsilon\}$$

is closed in X because the function wf is upper semicontinuous, hence Y is compact by the definition of $C_{\mathcal{W}}(X)$. Let $\sigma > 0$ be an upper bound for w on Y. For every $y \in Y$ there is by Theorem 2.1(b) a function $g_y \in \text{span}(\mathcal{M})$ such that

$$wg_y \leqslant wf + \varepsilon$$
 and $g_y(y) > f(y) - \varepsilon/\sigma$.

The latter inequality holds even on an open neighbourhood U_y of y, and by the compactness of Y, finitely many of those neighbourhoods, say U_{y_1}, \ldots, U_{y_n} cover all of Y. Now we choose the function

$$g = g_{y_1} \vee \ldots \vee g_{y_n} \vee 0$$

in the vector sublattice generated by $\mathcal{M} \subset C_{\mathcal{W}}(X)$. Then we have $wg \leq wf + \epsilon$ and $g(y) \geq f(y) - \epsilon/\sigma$ for all $y \in Y$. On multiplying by w, the latter yields $w(y)g(y) \geq w(y)f(y) - \epsilon$ for all $y \in Y$. But for $x \in X \setminus Y$ we observe that $w(x)g(x) \geq 0 \geq w(x)f(x) - \epsilon$ holds as well. Summarising, this yields

$$|w(x)|f(x)-g(x)|\leqslant \varepsilon \quad ext{for all} \quad x\in X,$$

hence $p_w(f-g) \leq \varepsilon$.

The following is a useful tool to identify Korovkin systems in $C_{\mathcal{W}}(X)$:

0

COROLLARY 2.3. Let \mathcal{M} be a subset of $C_{\mathcal{W}}(X)$. Suppose that for every $x \in X$ such that w(x) > 0 for at least one weight function $w \in \mathcal{W}$,

- (i) there is $g_x \in \mathcal{M}$ such that $g_x(x) \neq 0$,
- (ii) for every $x \neq y \in X$ there is $g_{x,y} \in \text{span}(\mathcal{M})$ such that

$$g_{x,y} \ge 0$$
, $g_{x,y}(x) = 0$ and $g_{x,y}(y) > 0$.

Then \mathcal{M} is a Korovkin system for $C_{\mathcal{W}}(X)$.

PROOF: It is obvious how the criterion in Corollary 2.2 implies condition (c) of Theorem 2.1 for every function $f \in C_{\mathcal{W}}(X)$: Let $x \in X$ such that w(x) > 0 for at least one weight function $w \in \mathcal{W}$ and let $\mu \in M_B^+(X)$ and $w \in \mathcal{W}$ be such that $w\mu(g) = g(x)$ for all $g \in \mathcal{M}$. For any $x \neq y \in X$ there is a function $g_{x,y} \in \text{span}(\mathcal{M})$ as in (ii); that is, $w\mu(g_{x,y}) = 0$, and the point y cannot be contained in the support of the positive Borel measure $w\mu$. This shows that $w\mu$ is in fact a multiple of the point evaluation in x, and the point evaluation itself, as by our assumption (i) there is a function $g_x \in \mathcal{M}$ that does not vanish in x. Thus we have $w\mu(f) = f(x)$ for all $f \in C_{\mathcal{W}}(X)$, indeed. \square

In their original work, Bauer and Donner [2] provide several examples for Korovkin systems in $C_0(X)$. Many more applications for approximation processes modelled by sequences of positive operators can be found in [1]. We shall conclude this paper with two elementary examples of Korovkin systems for weighted spaces different from $C_0(X)$.

EXAMPLE 2.4. (a) Let X be a locally compact Hausdorff space. If C(X) contains a one-to-one function f, then for every strictly positive function $g \in C(X)$ the set $\mathcal{M} = \{g, gf, gf^2\}$ fulfils the criterion of Corollary 2.3: Clearly $g \in \mathcal{M}$ satisfies (i), and for a fixed $x \in X$ the function

$$y \longmapsto g(y)(f(y) - f(x))^2$$

is contained in span (\mathcal{M}) , non-negative, vanishes at x but is positive at all $y \neq x$, hence satisfies (ii). Thus, for any choice of a family of weights \mathcal{W} on X such that \mathcal{M} is contained in $C_{\mathcal{W}}(X)$, the subset \mathcal{M} is a Korovkin system for $C_{\mathcal{W}}(X)$.

(b) Let $X = [0, +\infty)$, and let W consist of the functions $w_{\alpha}(x) = e^{-\alpha x}$ for all $\alpha > 0$. Following part (a), the subset

$$\mathcal{M} = \{f_k \mid f_k(x) = x^k \quad \text{for } k = 0, 1, 2\}$$

is a Korovkin system for $C_{\mathcal{W}}(X)$: Let us illustrate this example with an approximation process modelled by a modified version of the classical Bernstein operators. For a function $f \in C_{\mathcal{W}}(X)$ define

$$T_n(f)(x) = \begin{cases} \sum_{k=0}^{n^2} \binom{n^2}{k} f\left(\frac{k}{n}\right) \left(\frac{x}{n}\right)^k \left(1-\frac{x}{n}\right)^{n^2-k}, & \text{for } x < n \\ f(n), & \text{for } x \ge n \end{cases}$$

W. Roth

[10]

These operators T_n are clearly linear and positive on $C_{\mathcal{W}}(X)$. With some straight forward computations one may check the following:

$$egin{array}{lll} T_nig(f_0ig)(x) &=& 1 & ext{for all } x\in[0,+\infty)\,, \ T_nig(f_1ig)(x) &=& x & ext{for all } x< n, \ T_nig(f_2ig)(x) &=& rac{n^2-1}{n^2}\,x^2+rac{1}{n}\,x & ext{for all } x< n. \end{array}$$

This shows in particular that $T_n(f_k) \to f_k$ for k = 0, 1, 2 in the topology of $C_{\mathcal{W}}(X)$. Furthermore, one may check that the sequence $(T_n)_{n \in \mathbb{N}}$ is indeed equicontinuous, as for any $f \in C_{\mathcal{W}}(X)$ and $\alpha > 0$

$$|f| \leqslant e^{lpha x}$$
 implies that $|T_n(f)| \leqslant e^{(elpha) x};$
that is $p_{w_{lpha}}(T_n(f)) \leqslant p_{w_{(lpha/e)}}(f)$

for all $f \in C_{\mathcal{W}}(X)$ and $n \in \mathbb{N}$. Thus Theorem 2.1 applies, and we may conclude that $T_n(f) \to f$ for all $f \in C_{\mathcal{W}}(X)$.

References

- F. Altomare and M. Campiti, Korovkin type approximation theory and its applications, de Gruyter Studies in Mathematics 17 (Walter de Gruyter, Berlin, New York, 1994).
- [2] H. Bauer and K. Donner, 'Korovkin approximation in $C_0(X)$ ', Math. Ann. 236 (1978), 225-237.
- [3] A.D. Gadzhiev, 'Theorems of Korovkin type', Math. Notes 20 (1976), 995-998.
- [4] A.D. Gadzhiev, 'Positive linear operators in weighted spaces of functions in several variables', (in Russian), Izv. Akad. Nauk. Azerbaidzan SSSR ser. Fiz.-Tekhn. Mat. Nauk 4 (1980), 32-37.
- [5] L. Nachbin, Elements of approximation theory (D. Van Nostrand Co., Princeton, NJ, 1967).
- [6] J.B. Prolla, Approximation of vector-valued functions, Mathematical Studies 25 (North Holland, 1977).

Department of Mathematics University of Bahrain PO Box 32038 Bahrain e-mail: roth@sci.uob.bh