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ARROW’S THEOREM, ULTRAFILTERS,
AND REVERSE MATHEMATICS

BENEDICT EASTAUGH

Department of Philosophy, University of Warwick

Abstract. This paper initiates the reverse mathematics of social choice theory, studying
Arrow’s impossibility theorem and related results including Fishburn’s possibility theorem and
the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise
fundamental notions of social choice theory in second-order arithmetic, yielding a definition
of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann
analysis of social welfare functions can be carried out in RCA0. This approach yields a proof
of Arrow’s theorem in RCA0, and thus in PRA, since Arrow’s theorem can be formalised as
a Π0

1 sentence. Finally we show that Fishburn’s possibility theorem for countable societies is
equivalent to ACA0 over RCA0.

§1. Introduction. Arrow’s 1950 impossibility theorem [3, 4] is a foundational
result in social choice theory. If a society contains only finitely many voters, then
any aggregation of individual preference orderings (called a social welfare function)
respecting Arrow’s conditions of unanimity and independence of irrelevant alternatives
is dictated by a single voter. The theorem therefore appears to place substantial limits on
the existence of methods for social decision-making that are fair, rational, and uniform.
It has a wide range of applicability including the problems of selecting candidates in
elections, deciding on public policies, and choosing between rival scientific theories.
As such it has exerted a substantial influence on economics [19, 45], political science
[41], and philosophy [25, 37].

Although Arrow’s theorem is essentially a result in finitary combinatorics, later
developments in social choice theory in the 1970s brought in more powerful methods
such as non-principal ultrafilters, which Fishburn [14] used to show that infinite
societies have non-dictatorial social welfare functions. This result and others like it
have led mathematical economists to grapple with non-constructivity and applications
of the axiom of choice [33]. However, for economically and philosophically relevant
models such as societies which are countable or continuous, reverse mathematics offers
a more appropriate framework for gauging where (and what) non-constructive set
existence axioms are actually necessary in social choice theory.

This paper initiates the reverse mathematics of social choice theory, studying Arrow’s
impossibility theorem and related results including Fishburn’s possibility theorem
within the framework of reverse mathematics. By defining fundamental notions of
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2 BENEDICT EASTAUGH

social choice theory in second-order arithmetic, we show that an influential analysis
of social welfare functions in terms of ultrafilters by Kirman and Sondermann [29]
can be carried out in RCA0. This allows us to establish that Arrow’s theorem, when
formalised as a statement of first-order arithmetic, is provable in primitive recursive
arithmetic. Fishburn’s possibility theorem, on the other hand, uses non-constructive
resources in an essential way, and we prove that its restriction to countable societies is
equivalent to ACA0.

In the classical Arrovian framework, a society S consists of a set V of voters,
a set X of alternatives (or candidates), together with the set W of all weak
orders of X (representing the different ways in which the set of alternatives can
be rationally ordered), a set A of coalitions of voters, and a set F of profiles,
i.e., functions f : V →W representing different elections or voting scenarios. In
Arrow’s framework, A and F satisfy a condition known as unrestricted domain (or
universal domain), meaning that A = P(V ) and F =WV , the set of all functions
f : V →W .

Given alternatives x, y ∈ X , a profile f : V →W , and a voter v ∈ V , we write

x �f(v) y

to mean that voter v ranks x at least as highly y under profile f, and

x <f(v) y

to mean that voter v strictly prefers x to y under profile f. A social welfare function � for a
societyS maps profiles inF to weak orders in W, and represents one way of consistently
aggregating individual preference orderings into an overall social preference ordering.
We write

x ��(f) y

to mean that the social welfare function � ranks x at least as highly as y under profile
f, and similarly for x <�(f) y. If R is a weak ordering and Y ⊆ X , we write R�Y to
mean R ∩ Y 2. This lets us state Arrow’s conditions more precisely.

(1) Unanimity: If x <f(v) y for all v ∈ V , then x <�(f) y.
(2) Independence of irrelevant alternatives: Iff(v)�{x,y} = g(v)�{x,y} for all v ∈ V

then �(f)�{x,y} = �(g)�{x,y}.
(3) Non-dictatoriality: There is no d ∈ V such that for all f ∈ F , if x <f(d ) y

then x <�(f) y.

Theorem 1.1 (Arrow’s impossibility theorem). Suppose S = 〈V,X,A,F〉 is a society
satisfying unrestricted domain such that V is a nonempty and finite set of voters, and X
is a finite set of alternatives with |X | ≥ 3. Then there exists no social welfare function
� : F →W satisfying unanimity, independence, and non-dictatoriality.

Fishburn [14] offered a way out of Arrow’s impossibility result, showing that Arrow’s
conditions are consistent if we drop the requirement that V is finite.1

1 The result was apparently already known to Julian Blau in 1960, although Blau never
published his proof [15, p. 16]. It should therefore perhaps be called the Blau–Fishburn
possibility theorem, as suggested in [42, p. 283].
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ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS 3

Theorem 1.2 (Fishburn’s possibility theorem). Suppose S = 〈V,X,A,F〉 is a society
satisfying unrestricted domain such that V is an infinite set of voters, and X is a finite
set of alternatives with |X | ≥ 3. Then there exists a social welfare function � : F →W
satisfying unanimity, independence, and non-dictatoriality.

Infinite societies are widely used in mathematical economics [5, 20–22].2 Fishburn’s
theorem is therefore of antecedent interest in its application domain, despite the prima
facie implausibility of infinite ‘societies’.

On a mathematical level, Fishburn’s possibility theorem is best understood in the
context of an influential analysis by Kirman and Sondermann [29] which shows
that social welfare functions satisfying unanimity and independence correspond to
ultrafilters. Arrow had already introduced the notion of a �-decisive coalition for a
social welfare function �: a set C ⊆ V such that if x <f(v) y for every v ∈ C , then
x <�(f) y. Kirman and Sondermann established that the collection of all �-decisive
coalitions forms an ultrafilter which is principal if and only if � is dictatorial.

Theorem 1.3 (Kirman–Sondermann theorem). Suppose S = 〈V,X,A,F〉 is a society
satisfying unrestricted domain such that V is a nonempty set of voters, and X is a finite
set of alternatives with |X | ≥ 3. For any social welfare function � : F →W satisfying
unanimity and independence, the set

U� = {C ∈ A : C is �-decisive},
forms an ultrafilter on A which is principal if and only if � is dictatorial.

Arrow’s theorem is an immediate consequence of the Kirman–Sondermann theorem:
as every ultrafilter on a finite set is principal and hence generated by a singleton {d},
any social welfare function for a society with a finite set V of voters must be dictatorial.
The Kirman–Sondermann theorem also provides us with our first reverse mathematics-
style result. Since it is provable in ZF, any non-dictatorial social welfare function � for
a society with an infinite set V of voters will give rise to a non-principal ultrafilter U�
on P(V ).

Theorem 1.4. Fishburn’s possibility theorem is equivalent over ZF to the statement that
for every infinite set V there exists a non-principal ultrafilter on P(V ).

The existence of non-principal ultrafilters is unprovable in ZF [6], but is (strictly)
implied by the axiom of choice [26, 40]. Many therefore consider Fishburn’s possibility
theorem to be highly non-constructive [8–10, 36]. At least prima facie, this is a
substantial problem for any genuine application of Fishburn’s possibility theorem
in social choice theory, a field which is supposed to apply to everyday social decision-
making processes such as national elections or votes in a hiring committee.3 This kind
of concern with applicability lies behind a wide range of studies of Arrow’s theorem
using tools from computability theory and computational complexity theory. Amongst

2 Schmitz [44, p. 193] writes that “measure spaces (V,V , �) of infinitely many agents with
�-atoms [are] of some interest since these spaces can serve as models for large economies
with preformed coalitions (e.g., religious, regional or social groups) and/or with powerful
companies or political parties”. See also the introductory discussion of countably infinite
societies in [35], and the references on population ethics for infinite societies in Section 7.4
of [13].

3 For a detailed discussion in this vein, see Sections 2 and 3 of [33].
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4 BENEDICT EASTAUGH

the former are the work of Lewis [32] in the 1980s and Mihara [35, 36] in the 1990s,
while the latter is the preserve of the flourishing field of computational social choice
theory [7, 11].

Lewis [32] worked principally with a notion of “recursively enumerable society” in
which V = �, the algebra of coalitions A is restricted to include only computably
enumerable sets, and the set F of profiles is restricted to include only computable
functions. The set X of alternatives must be have at least three elements, and be at
most countably infinite. Lewis proved a weak version of Arrow’s theorem for such
societies, showing that if � is a computable social welfare function for a recursively
enumerable society S, then for each profile f ∈ F there exists a ‘dictator’ d such that
for all x, y ∈ X , if x <f(d ) y, then x <�(f) y. This ‘dictator’ is not necessarily unique
across all profiles, and hence not a dictator in Arrow’s original sense.4

Mihara’s approach in [35] is somewhat different, working with a single society S in
which V = �, and the coalition algebra A is precisely the set REC of all computable
sets. Mihara allows a broader range of profiles inF , namely those which are measurable
by sets in REC.5 The set of alternatives X can be any set with at least three elements,
although the computability requirements mean that only countably many alternatives
will actually end up being considered by any given social welfare function. Unlike
Lewis, Mihara defines a dictator as Arrow does: a single individual whose preferences
determine the social ordering across all profiles. Mihara proves that any computable
non-dictatorial social welfare function for the society based on the coalition algebra
REC must compute 0′. The recursive counterexample which we give to Fishburn’s
possibility theorem at the end of Section 5 improves on Mihara’s result by constructing
a countable society which does not contain all computable sets as coalitions, and can
be coded as a single computable set, but all of whose non-dictatorial social welfare
functions compute 0′. In [36], Mihara shows that there exist non-dictatorial social
welfare functions for this society which are computable relative to 0′′.6

The aim of this paper is to provide a more nuanced analysis of the situation
regarding Arrow’s theorem, Fishburn’s theorem, and their relative (non-)constructivity
in terms of the hierarchy of subsystems of second-order arithmetic studied in
reverse mathematics. After briefly introducing the relevant background from reverse
mathematics and social choice theory in Section 2, we present a canonical sequence
of definitions in Section 3 for investigating the proof-theoretic strength of theorems in
social choice theory. This investigation begins with Arrow’s impossibility theorem and
Fishburn’s possibility theorem, but the framework is sufficiently general and flexible to
accommodate future research on other landmark results in social choice theory such
as the Gibbard–Satterthwaite theorem [17, 43].

The central definition is that of a countable society: a structure S = 〈V,X,A,F〉 in
whichV ⊆ N, and the algebra of coalitions A ⊆ P(V ) and the set of profiles F ⊆WV

are both countable. Key to this definition and to the results in the paper are conditions
onA andF called uniform measurability and quasi-partition embedding that ensure their

4 For a more detailed appraisal of Lewis’s framework and results, see appendix F of Mihara’s
dissertation [34].

5 Measurable profiles are introduced at the start of Section 3.
6 A natural question left open by [36, p. 270] is whether there exist non-dictatorial social

welfare functions for Mihara’s society which are computable relative to 0′. A generalisation
of this question is discussed at the end of Section 5.

https://doi.org/10.1017/S1755020324000054 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020324000054


ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS 5

richness and relative compatibility, and which are substantially weaker than previously
proposed alternatives to Arrow’s unrestricted domain condition. Using this framework
we prove the following results.

Theorem 1.5. Arrow’s impossibility theorem is provable in RCA0.

In Section 4 we establish that the Kirman–Sondermann analysis of social welfare
functions for countable (and hence finite) societies in terms of ultrafilters of decisive
coalitions can be formalised in RCA0. It follows that Arrow’s impossibility theorem
is also provable in RCA0. Moreover, by replacing finite sets with their codes, Arrow’s
theorem can be formalised as a Π0

1 sentence which is provable in PRA.

Theorem 1.6. Fishburn’s possibility theorem for countable societies is equivalent over
RCA0 to the axiom scheme of arithmetical comprehension.

This shows that Fishburn’s possibility theorem requires the same set existence
principles for its proof as theorems of classical analysis like the Bolzano–Weierstrass
theorem, and combinatorial principles like König’s infinity lemma or Ramsey’s theorem
RTnk for n ≥ 2 and k ≥ 3. Section 5 is devoted to proving this equivalence, which can
be seen as an analogue in second-order arithmetic of theorem 1.4 above. This result can
also be understood as generalising the results of Lewis and Mihara discussed above to
the broader class of countable societies introduced in Section 3.

§2. Preliminaries. This section provides a brief overview of subsystems of second-
order arithmetic (Section 2.1), ultrafilters on countable algebras of sets (Section 2.2),
and weak orders in social choice theory (Section 2.3).

2.1. Subsystems of second-order arithmetic. Reverse mathematics is a subfield of
mathematical logic devoted to determining the set existence principles necessary
to prove theorems of ordinary mathematics, including real and complex analysis,
countable algebra, and countable infinitary combinatorics. This is done by formalising
the theorems concerned in the language of second-order arithmetic, and proving
equivalences between those formalisations and systems located in a well-understood
hierarchy of set existence principles. The equivalence proofs are carried out in a weak
base theory known as RCA0, which roughly corresponds to computable mathematics
and is briefly described below. For details of the material in this subsection, we refer
readers to Simpson’s reference work Subsystems of Second Order Arithmetic [48],
Dzhafarov and Mummert’s textbook Reverse Mathematics [12], and Hirschfeldt’s
monograph Slicing the Truth [23].

Second-order arithmetic L2 is a two-sorted formal language, with number variables
x1, x2, ... whose intended range is the natural numbers N, and set variables X1, X2, ...
whose intended range is the powerset of the natural numbers P(N). The non-logical
symbols are those of Peano arithmetic (0, 1,+,×, <) plus the ∈ symbol for set
membership. The atomic formulas of L2 are those of the form t1 = t2, t1 < t2, and
t1 ∈ X1, where t1, t2 are number terms and X1 is a set variable. As well as the usual
logical connectives, it contains both number quantifiers (sometimes called first-order
quantifiers) ∀x and ∃x, and set quantifiers (sometimes called second-order quantifiers)
∀X and∃X . Formulas ofL2 are built up from atomic formulas using logical connectives
and set and number quantifiers.
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6 BENEDICT EASTAUGH

The base theory RCA0 has three sets of axioms: the basic arithmetical axioms,
the Σ0

1 induction scheme, and the recursive comprehension axiom scheme. The basic
arithmetical axioms are those of Peano arithmetic, minus the induction scheme: in
other words, the axioms of a commutative discrete ordered semiring. The Σ0

1 induction
axiom scheme consists of the universal closures of all formulas of the form

(ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n + 1))) → ∀nϕ(n), (Σ1
0-Ind)

where ϕ is a Σ0
1 formula, i.e., one of the form ∃k�(n, k) where � contains only bounded

quantifiers. Finally, the recursive or Δ0
1 comprehension axiom scheme consists of the

universal closures of all formulas of the form

(ϕ(n) ↔ �(n)) → ∃X∀n(n ∈ X ↔ ϕ(n)), (Δ1
0-CA)

where ϕ is a Σ0
1 formula and � is a Π0

1 formula, i.e., one of the form ∀k�(n, k) where �
contains only bounded quantifiers.

Other subsystems of second-order arithmetic are obtained by extending RCA0 with
additional axioms. The present paper is concerned only with one of these systems,
ACA0, which is obtained by augmenting the axioms of RCA0 with the arithmetical
comprehension scheme, which consists of the universal closures of all formulas of the
form

∃X∀n(n ∈ X ↔ ϕ(n)), (ACA)

where ϕ is an arithmetical formula, i.e., which may contain number quantifiers but no
set quantifiers, although it may contain free set variables.

2.2. Countable algebras and ultrafilters. Our approach to ultrafilters on countable
algebras of sets is based on that of Hirst [24]. We use the standard coding of a sequence
of sets by a single sets using the primitive recursive pairing map (m, n) = (m + n)2 +m.
Y ⊆ N is a sequence of sets, Y = 〈Yi : i ∈ N〉, if

(i, v) ∈ Y ↔ v ∈ Yi

for all i, v ∈ N.

Definition 2.1 (Countable algebras of sets). Let V ⊆ N and let A = 〈An : n ∈ N〉 be
a countable sequence of sets such that for every i ∈ N, Ai ⊆ V . A is a countable algebra
over V if it contains V and it is closed under unions, intersections, and complements
relative to V. A countable algebra A over V is atomic if for all v ∈ V , there exists k ∈ N

such that Ak = {v}.

IfA is a countable algebra over a set V, we writeAci to denote its relative complement
V \ Ai . Repetitions are allowed, so given a countable algebra A we can computably
construct an algebra A′ which contains the same sets (typically in a different order)
in which we can uniformly compute the operations of complementation, union, and
intersection. We make this precise through the following definition.

Definition 2.2 (Boolean embeddings). A boolean formation sequence is a finite
sequence s ∈ Seq with |s | ≥ 1 such that for all j < |s |, one of the following obtains
for some n,m < j:
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(1) s(j) = (0, n, n),
(2) s(j) = (1, n, n) and n < j,
(3) s(j) = (2, n,m) and n,m < j.

If s is a boolean formation sequence, then we write s ∈ BFS.
Fix a set V ⊆ N and suppose that S = 〈Si : i ∈ N〉 is a countable sequence of subsets

of V and that A = 〈Ai : i ∈ N〉 is an algebra of sets over V. A function e : BFS → N is a
boolean embedding of S into A if for all boolean formation sequences s with k = |s | – 1,
there exist n,m < s such that:

(1) If s(k) = (0, n, n), then Ae(s) = Sn.
(2) If s(k) = (1, n, n) and n < k, then Ae(s) = Ac

e(s�n+1).

(3) If s(k) = (2, n,m) and n,m < k, then Ae(s) = Ae(s�n+1) ∩ Ae(s�m+1).

The following lemma is a straightforward exercise in primitive recursion.

Lemma 2.3. The following is provable in RCA0. Suppose S = 〈Si : i ∈ N〉 is a sequence
of subsets of V ⊆ N. Then there exists an algebra A over V, a boolean embedding e of S
into A, and a boolean embedding e∗ from A into A.

Moreover, if S is already a countable algebra over V, then:

(1) For all m ∈ N, Sm = Ae(〈(0,m,m)〉).
(2) For all n ∈ N, there exists k ∈ N such that An = Sk .

Definition 2.4 (Ultrafilters). Suppose A = 〈An : n ∈ N 〉 is a countable algebra over
V ⊆ N. U ⊆ N is an ultrafilter on A if it obeys the following conditions for all i, j, k ∈ N.

(1) (Non-emptiness.) If Ai = V , then i ∈ U .
(2) (Properness.) If Ai = ∅, then i �∈ U .
(3) (Upwards closure.) If i ∈ U and Ai ⊆ Aj , then j ∈ U .
(4) (Intersections.) If i, j ∈ U and Ak = Ai ∩ Aj , then k ∈ U .
(5) (Maximality.) If Aj = Aci , then i ∈ U or j ∈ U .

An ultrafilter U is principal if it obeys the following condition, and non-principal
otherwise.

(6) (Principality.) There exist k, d ∈ N such that k ∈ U and Ak = {d}.

The next lemma is elementary, but worth stating as it is used a number of times.

Lemma 2.5. The following is provable in RCA0. Suppose A is a countable atomic
algebra overV ⊆ N and U ⊆ N is an ultrafilter on A. Then U has the following properties
for all i, j, k ∈ N.

(1) If i ∈ U and Aj = Aci , then j �∈ U .
(2) If Ak = Ai ∪ Aj and k ∈ U , then either i ∈ U or j ∈ U .
(3) Suppose 〈Yi : i < k〉 is a finite sequence of sets and s ∈ Seq is such that |s | =
k + 1. If Yi = As(i) for all i < k, (

⋃
i<k Yi) = As(k), and s(k) ∈ U , then there

exists j < k such that s(j) ∈ U .
(4) The following conditions are equivalent:

(a) U is principal.
(b) There exists k ∈ N such that Ak is finite and k ∈ U .
(c) There exists d ∈ V such that for all i ∈ N, i ∈ U if and only if d ∈ Ai .
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8 BENEDICT EASTAUGH

When we come to consider Fishburn’s possibility theorem in Section 5, we will need
the following well-known result: the existence of non-principal ultrafilters on countable
algebras is equivalent to arithmetical comprehension. This equivalence appears in its
present guise as theorem 9 of Kreuzer [31], but it has many antecedents. The proof
of the forward direction presented here follows a partition construction from Kreuzer
[30], although similar ideas have been used by others, going back to Kirby and Paris
[28] and Solovay [49]. The reversal uses the fact that non-principal ultrafilters refine the
Fréchet filter in order to code the jump, an idea drawn from Kirby [27, theorem 1.10].

Lemma 2.6. The following are equivalent over RCA0.

(1) ACA0.
(2) For every infinite set V ⊆ N and every atomic countable algebra A over V, there

exists a non-principal ultrafilter U on A.

Proof. We first show that 1 implies 2. Working in ACA0, let V ⊆ N be infinite and
let A be a countable algebra over V ; we do not need the additional assumption that A
is atomic. Given s ∈ 2<N, let

As =
⋂
i<|s|

{
Ai if s(i) = 0,
(Ai)c if s(i) = 1.

(1)

By Σ0
0 induction we have that for all v ∈ V , ∀n∃! s ∈ 2n(v ∈ As). In other words,

〈As : s ∈ 2n〉 is a partition of V. To see this, let t ∈ 2n be the unique sequence such
that z ∈ At . v ∈ At�〈0〉 ↔ v ∈ An+1, so if v ∈ An+1 we set s = t�〈0〉 and if v �∈ An+1

then we set s = t�〈1〉. Since these possibilities are exclusive, either way s ∈ 2n+1 is the
unique sequence such that v ∈ As as desired. Now let

T = {s ∈ 2<N : As is infinite}. (2)

T exists by arithmetical comprehension. We claim that T is an infinite tree. Suppose
not, so there is some n such that for all s ∈ 2n,As is finite. LetA′ = ∪s∈2nA

s .A′ is finite
since every As is, so let m bound the elements of A′. By assumption V is infinite, so
there exists v ∈ V such that v > m. v �∈ A′ so v �∈ As for all s ∈ 2n, contradicting the
fact that 〈As : s ∈ 2n〉 partitions V. By weak König’s lemma that there exists an infinite
path P in T, so let U = {k : P(k) = 0}, which exists by recursive comprehension in the
parameter P. To complete the proof we show that U is a non-principal ultrafilter on A.

To establish non-principality, it suffices to note that every Ai such that i ∈ U is
infinite because AP�i+1 is an infinite subset of Ai . To show maximality, let i ∈ U
be arbitrary with (Ai)c = Aj , and suppose j ∈ U . Let k = max{i, j} + 1. Since, by
our assumption, P(i) = P(j) = 0, we have that AP�k = ∅, contradicting the fact that
P�k ∈ T and soAP�k is infinite. To show thatU is closed under intersections, let i, j ∈ U ,
let Am = Ai ∩ Aj , and let An = (Am)c . Suppose for a contradiction that m �∈ U , so by
maximality An ∈ U . Let k = max{i, j,m, n} + 1. Then AP�k = ∅, contradicting the
fact that P�k ∈ T . A similar argument establishes upwards closure. Take i ∈ U and
suppose Ai ⊆ Aj . Towards a contradiction assume that j ∈ U , so by maximality and
intersections if Ak = Ai ∩ (Aj)c = ∅ then k ∈ U , contradicting non-principality.

Working now in RCA0, we show that 2 implies 1. To prove arithmetical comprehen-
sion it suffices to prove that the range of any one-to-one function h : N → N exists [48,
lemma III.1.3, pp. 105–106]. The sequence

B = {(2n, v) : v ∈ V ∧ (∃k < v)(h(k) = n)} ∪ {(2n + 1, n) : n ∈ V } (3)
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ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS 9

exists by recursive comprehension since all quantifiers in its definition are bounded, and
by Lemma 2.3 there exists a countable algebra A = 〈Ai : i ∈ N〉 over N and a boolean
embedding e : BFS → N of B into A. The right-hand side of the union defining B
ensures that A is atomic, i.e., it contains all singletons {v} for v ∈ V .

For convenience we write n′ to mean e(〈(0, 2n, 2n)〉), i.e., the index in A such that
An′ = Bn.

By 2 there exists U ⊆ N such that U is a non-principal ultrafilter on A, and by
recursive comprehension, the setY = {n : n′ ∈ U} exists. We show thatY = ran(h) =
{n : ∃k(h(k) = n)}.

Suppose n ∈ Y , so n′ ∈ U and thus by non-principality An′ is non-empty, meaning
there is some v such that (∃k < v)(h(k) = n). It follows that ∃k(h(k) = n), i.e.,
n ∈ ran(h). For the converse note that if ∃k(h(k) = n) then An′ is cofinite. To see
this, fix any m ∈ An′ and any j ∈ N. Assume v + j ∈ An′ , so there exists some
k < v + j such that h(k) = n. k < v + j + 1, so by Σ0

0 induction, for all j, v + j ∈ An′ .
Consequently An′ is cofinite and so by maximality n′ ∈ U , and thus n ∈ Y .

2.3. Orderings in social choice theory. The paper aims to be self-contained where
notions from social choice theory are concerned, but a good starting point for a
deeper study is Taylor’s monograph Social Choice and the Mathematics of Manipulation
[51]. In social choice theory, voters express their preferences as orders on the set of
alternatives X (e.g., ranking candidates in an election). These orders are required to
be transitive and strongly connected, but ties are permitted to express indifference
between alternatives. This notion is standardly called a weak order in the social choice
theory literature, and we follow this terminology here, noting that it is synonymous
with the notion of a total preorder. In this paper we will be concerned exclusively with
finite sets of alternatives X, and hence all our weak orders will be assumed to be coded
by natural numbers.

Definition 2.7 (Weak orders). Suppose X ⊆ N is nonempty and R ⊆ X × X . R is
strongly connected if (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ X .

If R is a transitive and strongly connected relation then we call it a weak order and
write x �R y to mean (x, y) ∈ R, x <R y to mean (x, y) ∈ R ∧ (y, x) �∈ R, and x ∼R y
to mean (x, y) ∈ R ∧ (y, x) ∈ R.

Many basic properties of weak orders can be established in RCA0. For example, if R
is a weak order then:

(1) �R is reflexive.
(2) ∼R is an equivalence relation on X.
(3) If x <R z then x <R y or y <R z (negative transitivity).

Given a set V ⊆ N of voters and a finite set X ⊆ N of alternatives, we let W be
the set of all (codes for) weak orders on X. A profile is a function f : V →W . In
practice we will always be concerned with countable sequences F = 〈fi : i ∈ N〉 of
profiles. If fi is a profile and v ∈ V is a voter then we write x �i(v) y to mean that
x �R y whereR = fi(v), i.e., that alternative x is preferred to y by voter v in the voting
scenario represented by the profile fi . Similarly we write x <i(v) y to mean x <R y,
and x ∼i(v) y to mean x ∼R y.

A coalition is simply a set C ⊆ V of voters; by convention, we allow both the empty
set and singleton sets containing only one voter to count as coalitions. Given a coalition
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C, we write x �i [C ] y to mean that x �i(v) y for all v ∈ C , and x <i [C ] y and x ∼i [C ] y
have their obvious meanings.

If Y ⊆ X , we write fi(v) = fj(v) on Y to mean that x �i(v) y ↔ x �j(v) y for all
x, y ∈ Y , i.e., that v’s preferences regarding all x and y in S are the same under both
the voting scenarios represented by the profiles fi and fj . We write fi = fj on Y to
mean that fi(v) = fj(v) on Y for all v ∈ V .

§3. Countable societies. In the classical social choice literature, the notion of a
society has been generalised by Armstrong [1] to allow A to be any algebra of sets over
V, rather than all of P(V ). In Armstrong’s generalisation F is always the set of all
A-measurable profiles, i.e., those f : V →W such that for all x, y ∈ X , {v : x �f(v)
y} ∈ A. This paper only addresses the countable case, i.e., when not only V but also
A and F are countable objects that can be coded by sets of natural numbers.7

A countable society consists of a set of voters V ⊆ N, a finite set of alternatives
X ⊆ N and the associated set W of weak orders on X, an atomic countable algebra of
coalitions A, and a countable sequence of profiles F = 〈fi : i ∈ N〉 over V,X (i.e., for
all i, fi is a function from V to W). However, in order for theorems about countable
societies to continue to make sense in the way they do when A = P(V ) and F =WV ,
we need to impose certain conditions on A and F . The first such condition is that
profiles in F are measurable by coalitions in A. Measurability must also be uniform,
to ensure that proofs using it can be carried out in RCA0.

Definition 3.1 (Uniform measurability). Suppose V ⊆ N is nonempty and X ⊆ N is
finite, and that A is a countable algebra of sets over V and F is a countable sequence of
profiles over V,X . If there exists � : N× X × X → N such that for all n ∈ N, x, y ∈ X ,
and v ∈ V ,

x �n(v) y ↔ v ∈ A�(n,x,y),

then we say F is uniformly A-measurable.

Lemma 3.2. The following is provable in RCA0. Suppose V ⊆ N is nonempty and
X ⊆ N is nonempty and finite, and that A = 〈Ai : i ∈ N〉 is a countable algebra of sets
over V andF = 〈fi : i ∈ N〉 is a countable sequence of profiles overV,X . IfF is uniformly
A-measurable then there exist functions �<, �∼ : N× X × X → N such that for all
n ∈ N, x, y ∈ X , and v ∈ V ,

x <n(v) y ↔ v ∈ A�<(n,x,y)

and

x ∼n(v) y ↔ v ∈ A�∼(n,x,y).

The second condition, quasi-partition embedding, ensures that finite sequences
of coalitions in A can be recovered uniformly from profiles in F . This condition
emerges naturally from the proofs of the Kirman–Sondermann theorem and Fishburn’s

7 A different approach, following that of Towsner [52], would be to introduce new symbols U
and S standing for third-order objects like ultrafilters and social welfare functions. However,
the approach via countable algebras pursued in this paper is more congenial to both the
reverse mathematics and the underlying motivation of viewing social welfare functions as
potentially computable (and hence countable) objects.
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possibility theorem, although to the best of our knowledge it is isolated here for the first
time.8 Quasi-partitions of V, in which overlaps are allowed, are preferred to partitions
since they are more computationally tractable.9

Definition 3.3 (Quasi-partition embedding). Suppose V ⊆ N is nonempty and X ⊆ N

is finite with |X | ≥ 3, and that A is a countable algebra of sets over V and F is a countable
profile algebra overV,X . A permutation of a finite set W is a finite sequencep ∈ Seq such
that for all (codes for) weak orders R ∈W there exists a unique i such that p(i) = R.
We write p ∈ Perm(W ) to indicate that p is a permutation of W. A quasi-partition is
a finite sequence s ∈ Seq such that 1 ≤ |s |. We write s ∈ QPart(k) to indicate that s is
a quasi-partition with |s | ≤ k. A is quasi-partition embedded into F if there exists a
function e : Perm(W ) × QPart(|W |) → N such that for all v ∈ V ,

fe(p,s)(v) =

{
p(i) if (∃! i < |s | – 1)(v ∈ As(i)),
p(|s | – 1) otherwise.

Definition 3.4 (Countable societies). A countable society S consists of a nonempty set
V ⊆ N of voters, a finite set X ⊆ N of alternatives with |X | ≥ 3, an atomic countable
algebra A over V, and a sequence F = 〈fi : i ∈ N〉 of profiles over V,X such that F is
uniformly A-measurable and A is quasi-partition embedded into F .

A countable society S is finite if V is finite, and infinite otherwise.

Definition 3.5 (Social welfare functions). Suppose that S is a countable society.
� : N →W is a social welfare function for S if it obeys the following conditions.

(1) (Unanimity.) For all x, y ∈ X and i ∈ N, if x <i [V ] y then x <�(i) y.
(2) (Independence.) For all x, y ∈ X and all i, j ∈ N, if fi = fj on {x, y} then
�(i) = �(j) on {x, y}.

If � obeys the following additional condition then it is non-dictatorial.

(3) (Non-dictatoriality.) For all v ∈ V there exists i ∈ N and x, y ∈ X such that
x <i(v) y and y ��(i) x.

Definition 3.6 (Decisive coalitions). Suppose S = 〈V,X,A,F〉 is a countable society
and that � is a social welfare function for S.

(1) An is �-decisive for x, y if for all i, x <i [An ] y implies x <�(i) y.
(2) An is �-decisive if it is �-decisive for all x, y ∈ X .
(3) An is almost �-decisive for x, y at i if x <i [An ] y, y <i [Acn ] x, and x <�(i) y.
(4) An is almost �-decisive for x, y if

∀i((x <i [An ] y ∧ y <i [Acn ] x) → x <�(i) y).

(5) An is almost �-decisive if it is almost �-decisive for all x, y ∈ X .

The notion of a decisive coalition is due to Arrow [4, definition 10, p. 52], while almost
decisiveness was introduced by Sen [45, definition 3∗2, p. 42]. The non-dictatoriality

8 Other weakenings of Arrow’s universal domain condition are well-known, such as the free
triple property and the chain property, but when V is infinite these conditions still guarantee
that F is uncountable.

9 One way of thinking of this condition is as providing a uniform way of transforming finite
covers of V into finite partitions of V.
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condition for social welfare functions can be rephrased in terms of decisive coalitions,
namely by saying that no singleton {d} ⊆ V is �-decisive. This gives rise to some
natural strengthenings of non-dictatoriality (Definition 5.1).

§4. Arrow’s theorem via ultrafilters. In this section we show how the Kirman–
Sondermann analysis of social welfare functions in terms of ultrafilters can be carried
out in RCA0 (Theorem 4.4). This immediately gives a proof of Arrow’s theorem in
RCA0 (Theorem 4.5).

Definition 4.1. The Kirman–Sondermann theorem for countable societies (KS) is the
following statement: Suppose S = 〈V,X,A,F〉 is a countable society and that � is a
social welfare function for S. Then there exists an ultrafilter

U� = {i : Ai is �-decisive}

on A which is principal if and only if � is dictatorial.
Arrow’s theorem is the statement that if S is a finite society and � is a social welfare

function for S, then � is dictatorial.

A crucial step in many proofs of Arrow’s theorem is sometimes known in the social
choice literature as the “spread of decisiveness” [47, pp. 35–37] or the “contagion
lemma” [9, pp. 44–45]. Kirman and Sondermann’s version of this is a lemma showing
that there exists a profile f and a pair of alternatives x, y ∈ X such that C ⊆ V is
almost �-decisive at f for x, y if and only if C is almost �-decisive for every profile and
every pair of alternatives [29, lemma A]. In our arithmetical setting, the corresponding
versions of these two conditions are Σ0

2 and Π0
2, respectively, so formalising Kirman

and Sondermann’s lemma A establishes that the set {i : Ai is almost �-decisive} is Δ0
2

definable relative to S and �. However, the definition of a countable society in fact
allows us to uniformly find witnesses for this last condition, and thereby obtain a Σ0

0
definition.

This and subsequent proofs are made easier by the use of some notation for weak
orders. Given distinct alternatives x, y, z ∈ X ,

R = x < y < z ∼ ∗

means that R is a weak order such that x <R y and y <R z, and hence x <R z. We use
the wildcard symbol ∗ to quantify over all c ∈ X not explicitly mentioned, so in the
example above, any other c ∈ X is such that y <R c but z ∼R c. This notation thus
denotes a unique weak order, or rather, the natural number coding it as a finite set.

Lemma 4.2. The following is provable inRCA0. SupposeS = 〈V,X,A,F〉 is a countable
society and � is a social welfare function for S. Then there exists a function g : N → N

and alternatives a, b ∈ X such that the following conditions are equivalent for all n ∈ N.

(1) An is almost �-decisive.
(2) There exist x, y ∈ X such that An is almost �-decisive for x, y.
(3) There exist k ∈ N and x, y ∈ X such that An is almost �-decisive for x, y at k.
(4) a <�(g(i)) b.

Proof. It follows immediately from the statements that 1 implies 2, and 2 implies 3.
We show that 3 implies 2. Let fm be arbitrary, let An be almost �-decisive for x, y at k,
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and assume that x <m[An ] y and y <m[Acn ] x. Given v ∈ V , if v ∈ An then x <k(v) y by
almost �-decisiveness and x <m(v) y by assumption, while if v �∈ An then y <k(v) x and
y <m(v) x, so fm = fk on {x, y} and thus �(m) = �(k) on {x, y} by independence.
Since x <�(k) y it follows that x <�(m) y, establishing that An is almost �-decisive for
x, y.

Now we show that 2 implies 1. Let An be almost �-decisive for x, y and let z ∈ X \
{x, y}. Assume that x <m[An ] z and z <m[Acn ] x for some fm. Since F quasi-partition
embeds A, there exists j such that

fj(v) =
{
x < y < z ∼ ∗ if v ∈ An,
y < z < x ∼ ∗ if v ∈ Acn.

By the almost �-decisiveness ofAn and the construction offj , it follows that x <�(j) y,
and by unanimity, y <�(j) z, so by transitivity we have that x <�(j) z. By our initial
assumption, and the construction of fj , fm = fj on {x, z}, so by independence
x <�(m) z.

A similar argument yields that(
z �m[An ] y ∧ y �m[Acn ] z

)
→ z ��(m) y.

Now fix w ∈ X . If w ∈ {x, y, z} we are done, so assume otherwise. Running the
argument twice more we get that(

z �m[An ] w ∧ w �m[Acn ] z
)
→ z ��(m) w,

and since w, z were arbitrary, we have established that An is almost �-decisive.
Finally we show that g exists and that 1 and 4 are equivalent. Pick any a, b ∈ X and

let p be a permutation of W such that p(0) = a < b < ∗ and p(1) = b < a < ∗. A is
quasi-partition embedded into F by some e : N → N, so we have

fe(p,〈n〉)(v) =

{
a < b < ∗ if v ∈ An,
b < a < ∗ if v ∈ Acn.

The function g(n) = e(p, 〈n〉) exists by recursive comprehension.
If An is almost �-decisive then a <�(g(n)) b by the definition of g, so suppose for the

converse implication that a <�(g(n)) b. a <g(n)[An ] b and b <g(n)[Acn ] a by the definition
of g, meaning An is almost �-decisive for a, b at g(n). By the equivalence between 1
and 3, An is almost �-decisive.

Lemma 4.3. The following is provable inRCA0. SupposeS = 〈V,X,A,F〉 is a countable
society and � is a social welfare function for S. Then the set

U� = {i ∈ N : Ai is almost �-decisive}

exists and forms an ultrafilter on A.

Proof. Working inRCA0, fix a countable societyS = 〈V,X,A,F〉 and a social welfare
function � for S. For all of the arguments below we fix distinct x, y, z ∈ X .

To show that U� exists, note that by Lemma 4.2 there exists a function g : N → N

and x, y ∈ X such that

x <�(g(i)) y ↔ Ai is almost �-decisive.
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The left-hand side of this definition is Σ0
0 in the parameters S, �, g, so U� exists by

recursive comprehension in those parameters. In the remainder of the proof we show
that U� is an ultrafilter on A.

That U� contains an index for V and no index for ∅ follows straightforwardly from
unanimity, so we next prove upwards closure under the subset relation. Suppose i ∈ U�
and Ai ⊆ Aj , and partition V into

V0 = Ai ,

V1 = Aci ∩ Aj,
V2 = Acj.

Since A is quasi-partition embedded into F , there exists some m such that

fm(v) =

⎧⎪⎨
⎪⎩
x < y < z ∼ ∗ if v ∈ V0,

y < x < z ∼ ∗ if v ∈ V1,

y < z < x ∼ ∗ if v ∈ V2.

x <m[Ai ] y by the definition of fm, so since Ai is almost �-decisive we have that
x <�(m) y. The definition offm also gives us thaty <m[V ] z, so by unanimity,y <�(m) z,
and by transitivity, x <�(m) z, which suffices to establish that j ∈ U� by clause 3 of
Lemma 4.2.

Next we prove that U� is closed under intersections. Suppose that i, j ∈ U� and that
k is such that Ak = Ai ∩ Aj . Partition V into

V1 = Ai ∩ Aj,
V2 = Ai ∩ Acj,
V3 = Aci ∩ Aj,
V4 = Aci ∩ Acj.

By quasi-partition embedding let the profile fn be defined as follows:

fn(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
z < x < y ∼ ∗ if v ∈ V1,

x < y < z ∼ ∗ if v ∈ V2,

y < z < x ∼ ∗ if v ∈ V3,

y < x < z ∼ ∗ if v ∈ V4.

SinceAi = V1 ∪ V2 we have that x <n[Ai ] y by the definition offn. Similarly sinceAci =
V3 ∪ V4, y <n[Aci ]

x, so by the almost �-decisiveness of Ai it follows that x <�(n) y. By
a parallel piece of reasoning we have that z <�(n) x, and so by transitivity z <�(n) y. It
follows by clause 3 of Lemma 4.2 that Ak is almost �-decisive.

Finally we prove that U� satisfies maximality. Suppose that Aj = Aci . By quasi-
partition embedding there exists some m ∈ N such that

fm(v) =

{
y < z < x ∼ ∗ if v ∈ Ai ,
x < y < z ∼ ∗ if v ∈ Aci .

By unanimity we have that y <�(m) z, so either y <�(m) x or x <�(m) z. In the former
case, m, y, x witness that Ai is almost �-decisive by clause 3 of Lemma 4.2, while in
the latter case m,x, z witness that Aj is almost �-decisive.
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Theorem 4.4. KS is provable in RCA0.

Proof. We work in RCA0. Let S = 〈V,X,A,F〉 be a countable society and let � :
N → X be a social welfare function for S. By Lemma 4.3 there exists an ultrafilter
U� ⊆ N on A such that

U� = {i ∈ N : Ai is almost �-decisive}.

It only remains to be shown that (i) i ∈ U� if and only if Ai is �-decisive, and (ii) U� is
principal if and only if � is dictatorial.

For (i), the backwards direction is immediate from the definitions. For the forward
direction fix Ai such that i ∈ U� , i.e., Ai is almost �-decisive. Let fm and x, y be such
that x <m[Ai ] y; we will establish that x <�(m) y.

Start by partitioning V into the sets

V0 = {v : x <m(v) y},
V1 = {v : y <m(v) x},
V2 = {v : x ∼m(v) y} = (V0 ∪ V1)c .

By uniform A-measurability, there exist e0, e1, e2 ∈ N such thatAej = Vj for all j ≤ 2,
and because F quasi-partition embeds A, there exists n ∈ N such that

fn(v) =

⎧⎪⎨
⎪⎩
x < z < y ∼ ∗ if v ∈ V0,

y < z < x ∼ ∗ if v ∈ V1,

x ∼ y < z ∼ ∗ if v ∈ V2.

By hypothesis we have that Ai is almost �-decisive and Ai ⊆ V0, so V0 is almost
�-decisive by upwards closure. V c0 = V1 ∪ V2, so since z <n[V0] y and y <n[V1∪V2] z, it
follows from the almost �-decisiveness of V0 that z <�(n) y.

Let e3 be such that Ae3 = V0 ∪ V2, and hence Ace3 = V1. By upwards closure again,
Ae3 is almost �-decisive, and so becausex <n[Ae3 ] z and z <n[Ace3 ] x,x <�(n) z. It follows
by transitivity that x <�(n) y. Finally, by definition fn = fm on {x, y}, and so by
independence x <�(m) y as desired.

For the forward direction of (ii), assume that there exist k, d such that Ak = {d}
and k ∈ U� . It follows from (i) that Ak is �-decisive, and so d is a dictator for �.

For the backwards direction of (ii), suppose that � has a dictator d ∈ V .A is atomic,
so let k be any index such that Ak = {d}. Since F quasi-partition embeds A, there
exists an n such that fn is defined as follows:

fn(v) =

{
x < y ∼ ∗ if v ∈ Ak,
y < x ∼ ∗ if v ∈ Ack.

By the definition offn we have that x <n[Ak ] y and y <n[Ac
k

] x, and by the dictatoriality
of d we have that x <�(n) y, so by Lemma 4.2, k ∈ U� and hence U� is principal.

Theorem 4.5. Arrow’s theorem is provable in RCA0.

Proof. We work in RCA0. Suppose S = 〈V,X,A,F〉 is a finite society, and let � :
N →W be any social welfare function for S. By KS (Theorem 4.4), there exists an
ultrafilter U� on A which is principal if and only if � is dictatorial. Since V is finite, U�
is principal by part 4 of Lemma 2.5. Therefore, � is dictatorial.
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Since all the objects involved in Arrow’s theorem are finite, it can be formalised as
a sentence � in the language of first-order arithmetic, by replacing quantification over
finite sets of natural numbers with quantification over the numbers that code them (for
details see Section II.2 of [48] or Section 5.5.2 of [12]). The first-order sentence � then
follows in RCA0 from the second-order statement of Arrow’s theorem in virtue of the
coding. As long as one is careful with writing down the relevant bounds, � will be a
Π0

1 statement, i.e., of the form ∀n�(n) where �(n) contains only bounded quantifiers.
By results of Friedman [16] and Parsons [38], RCA0 is conservative over primitive
recursive arithmetic (PRA) for all Π0

2 statements [48, sec. IX.1]. We therefore have that
Arrow’s theorem (in the form of its first-order formalisation �) is provable in PRA,
and hence it is finitarily provable in the sense of Tait’s analysis of Hilbert’s program
[50]. Moreover, the bounds in � are exponential, which suggests the following stronger
result.

Conjecture 4.6. The first-order formalisation of Arrow’s theorem is provable in
IΔ0 + exp.

§5. Fishburn’s possibility theorem. The main result of this section, Theorem 5.4 is
that Fishburn’s possibility theorem for countable societies is equivalent to ACA0 over
RCA0. We also show that non-dictatorial social welfare functions actually satisfy more
general non-dictatoriality conditions than Arrow’s original condition (Lemma 5.2).

Definition 5.1. Fishburn’s possibility theorem for countable societies (FPT) is the
following statement: For all countable societies S = 〈V,X,A,F〉 where V is infinite,
there exists a non-dictatorial social welfare function � for S.

A social welfare function � for S is k-non-dictatorial if for all s ∈ Seq(V ) such that
|s | ≤ k, there exists j and x, y ∈ X such that for all i < |s |, x <j(s(i)) y and y <�(j) x.
FPTk is the statement obtained by replacing non-dictatoriality in FPT with k-non-
dictatoriality for some fixed k ≥ 1.
� is finitely non-dictatorial if for all k ≥ 1, � is k-non-dictatorial. FPT<N is the

statement obtained by replacing non-dictatoriality in FPT with finite non-dictatoriality.
� has the cofinite coalitions property if for every profile j ∈ N, if cofinitely many v ∈ V

are such that x <j(v) y, then x <�(j) y. FPT+ is the statement obtained by replacing non-
dictatoriality in FPT with the cofinite coalitions property.

One concern with the interpretation of Fishburn’s possibility theorem has been
that the choice of ultrafilter seems arbitrary. When faced with an infinite set with a
complement of the same cardinality, there seems to be no reason to consider one to
genuinely constitute a majority rather than the other. This is not the case for cofinite sets
which, in an infinite society, clearly constitute a majority. A social welfare function with
the cofinite coalitions property therefore satisfies a version of Condorcet consistency:
if a majority (a cofinite set) of voters prefer x to y, then so does the social welfare
function. Since an ultrafilter on a given algebra is non-principal exactly when it refines
the Fréchet filter, the cofinite coalitions property is also the strongest non-dictatoriality
property a social welfare function can have. We now show that all non-dictatorial social
welfare functions have this property.

Lemma 5.2. The following is provable in RCA0. Suppose S is a countable society and
� is a social welfare function for S. Then the following conditions are equivalent.
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(1) � is non-dictatorial.
(2) � is k-non-dictatorial for some fixed k ≥ 1.
(3) � is finitely non-dictatorial.
(4) � has the cofinite coalitions property.

Proof. The implications from 4 to 3, 3 to 2, and 2 to 1 are immediate. Working in
RCA0, we show that 1 implies 4. Let S = 〈V,X,A,S〉 be a countable society and let �
be a non-dictatorial social welfare function for S. By KS (Theorem 4.4) the ultrafilter
U� of (indexes of) �-decisive coalitions exists and is non-principal. Moreover, V is
infinite by Arrow’s theorem.

Fix an arbitrary profilefm and two alternatives x, y ∈ X , and suppose that for some
k, if v ∈ V is such that v ≥ k then x <m(v) y. By the closure of A under finite unions
and relative complements there exists a j such that Aj = {v ∈ V : v ≥ k}, which is
cofinite since V is infinite. Since U� is non-principal, j ∈ U� by part 4 of Lemma 2.5.
Therefore, Aj is �-decisive and x <�(m) y.

The following Lemma 5.3 is a partial converse of the Kirman–Sondermann theorem
for countable societies—partial because for any given ultrafilter U there may be distinct
social welfare functions with U as their set of decisive coalitions. Various restrictions
allow a one-to-one correspondence between ultrafilters and social welfare functions to
be recovered, for example, by restricting to profiles and social welfare functions which
output linear orders as in [51, theorem 6.1.3], or by imposing a monotonicity condition
as in [2].

These restrictions are less interesting from a computability-theoretic point of view,
since the resulting bijective functionals between ultrafilters and social welfare functions
are themselves computable, while without these restrictions there are social welfare
functions � such that U� <T �. This can occur most strikingly when � is dictatorial,
and hence U� is computable (since to compute membership in U� one simply needs to
check for any given Ai if d ∈ Ai , where d is the dictator). There will remain infinitely
many profiles fi and alternatives x, y such that neither �<(i, x, y) nor �<(i, y, x) are
in U� . Some of these gaps of indifference can be filled in by appealing to another,
non-principal and non-computable ultrafilter, resulting in a social welfare function
that is dictatorial but not computable. For details of this construction see proposition
1 of [35].

Lemma 5.3. The following statement is provable in RCA0. Suppose S = 〈V,X,A,F〉 is
a countable society. If U is an ultrafilter on A, then there exists a social welfare function
�U for S with the following properties.

(1) For all i ∈ N, i ∈ U if and only if Ai is �U -decisive.
(2) The following conditions are equivalent:

(a) U is non-principal,
(b) �U has the cofinite coalitions property.

Proof. Working in RCA0, let S = 〈V,X,A,F〉 be a countable society and U ⊆ N be
an ultrafilter on A.

Let ϕ(n,R) be the following Σ0
0 formula in the displayed free variables.

ϕ(n,R) ≡ (∀x, y ∈ X )((x, y) ∈ R↔ �(n, x, y) ∈ U).

Note that here we are considering R as a natural number coding a finite set. Let b code
the finite set X × X . Since our coding of finite sets by natural numbers is monotonic,
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b ≥ R′ for all R′ ∈W . By Σ0
1 induction, for all n there exists R ≤ b such that ϕ(R, n).

This is just an application of comprehension for codes of finite sets; for details, see,
e.g., [18].

We show that R is a weak order. To show strong connectedness, let x, y ∈ X be
arbitrary. Ifx = y then sincex �n(v) x for all n ∈ N and v ∈ V , we have thatA�(n,x,x) =
V , so �(n, x, x) ∈ U by non-emptiness and thus (x, x) ∈ R. Suppose instead that
x �= y, let i = �(n, x, y) and let j be such that Aj = Aci . Since U is an ultrafilter, by
maximality either i ∈ U or j ∈ U . If i ∈ U then (x, y) ∈ R, so assume the latter.
Aj = A�<(n,y,x) ⊆ A�(n,y,x), so �(n, y, x) ∈ U by upwards closure, establishing that
(y, x) ∈ R.

For transitivity, suppose (x, y) ∈ R and (y, z) ∈ R, so�(n, x, y) ∈ U and�(n, y, z) ∈
U . Let j be such thatAj = A�(n,x,y) ∩ A�(n,y,z), so j ∈ U by closure under intersections.
Then x �n[Aj ] y and y �n[Aj ] z, so by transitivity we have that x �n[Aj ] z. Thus,
Aj ⊆ A�(n,x,z) and �(n, x, z) ∈ U by upwards closure.

This lets us define � ⊆ N by

(n,R) ∈ � ↔ R = minR′ such that ϕ(R′, n).

Since W is finite, the use of minimisation is bounded and so the definition of � is Σ0
0 in

the parameters �< and U , meaning that � exists by recursive comprehension. By the
claim, � ⊆ N×W and for all n ∈ N there exists R ∈W such that (n,R) ∈ �. Thus,
since minimisation is a function, so is �, i.e., � : N →W .

We now show thatm ∈ U if and only if Am is �-decisive. For the forwards direction,
suppose m ∈ U and x, y ∈ X and n ∈ N are such that x <n[Am ] y. By this hypothesis,
Am ⊆ A�(n,x,y), so�(n, x, y) ∈ U by upwards closure.A�(n,x,y) = A�<(n,x,y) ∪ A�∼(n,x,y),
and thus either �<(n, x, y) ∈ U or �∼(n, x, y) ∈ U by part 2 of Lemma 2.5. Suppose
the latter. By hypothesis,A�∼(n,x,y) ∩ Am = ∅, and since U is closed under intersections
it would have to contain an index for ∅, contradicting properness. So �<(n, x, y) ∈ U ,
�∼(n, x, y) �∈ U , and�<(n, y, x) �∈ U , which establishes that x <�(n) y by the definition
of�. For the reverse direction, supposeAm is�-decisive and letx, y ∈ X be arbitrary. By
quasi-partition embedding there existsfk such that x <k(v) y if v ∈ Am, and y <k(v) x
if v ∈ Acm. By �-decisiveness, x <�(k) y, so �(k, x, y) ∈ U . Am = A�(k,x,y), so m ∈ U
by upwards closure.

To show that � satisfies unanimity, let x, y ∈ X and fn be arbitrary, and suppose
that x <n[V ] y. Because A�(n,x,y) = V by uniform A-measurability, it follows by the
non-emptiness condition for U that �(n, x, y) ∈ U . Moreover, we also have that
A�<(n,y,x) = A�∼(n,x,y) = ∅, so �<(n, y, x) �∈ U and �∼(n, x, y) �∈ U . It follows that by
the construction of �, x <�(n) y.

To show that � satisfies independence, let x, y ∈ X and suppose fi = fj on {x, y}.
A�(i,x,y) = A�(j,x,y) by uniform A-measurability. Upwards closure of U under ⊆ then
gives us that�(i, x, y) ∈ U ↔ �(j, x, y). By the construction of �, x ��(i) y ↔ x ��(j)
y as desired.

Finally we prove that U is non-principal if and only if � has the cofinite coalitions
property. For the forwards direction, suppose U is non-principal and let Ai be cofinite,
so i ∈ U by part 4 of Lemma 2.5. Suppose that x <k[Ai ] y for some x, y ∈ X and
k ∈ N. Since i ∈ U , Ai is �-decisive, and so x <�(k) y. For the backwards direction,
suppose � has the cofinite coalitions property and letAi be cofinite. By quasi-partition
embedding, let j be such thatA�(j,x,y) = {v : x <j(v) y} = Ai . x <�(j) y by the cofinite
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coalitions property since Ai is cofinite, so �(j, x, y) ∈ U , and hence i ∈ U by upwards
closure under ⊆. Since i was arbitrary, U is non-principal by part 4 of Lemma 2.5.

Theorem 5.4. The following are equivalent over RCA0.

(1) FPT.
(2) FPTk for any k ≥ 1.
(3) FPT<N.
(4) FPT+.
(5) Arithmetical comprehension.

Lemma 5.5. The following is provable in RCA0. Suppose V ⊆ N is nonempty and
X ⊆ N is finite with |X | ≥ 3 and A = 〈Ai : i ∈ N〉 is a countable algebra over V. Then
there exists a sequence F = 〈fi : i ∈ N〉 of profiles over V,X such that F is uniformly
A-measurable and A is quasi-partition embedded into F .

Proof. We first apply Lemma 2.3 to replace A with an extensionally equivalent
algebra A′ in which we can uniformly compute boolean combinations via a boolean
embedding. We abuse notation in the remainder of this proof by referring to A rather
than A′.

The infinite set Perm(W ) × QPart(|W |) exists by recursive comprehension, and
by primitive recursion there exists a function en : N → Perm(W ) × QPart(|W |)
enumerating it. Let �(n, v, w) be a Σ0

0 formula which says that en(n) = (p, s) and
either there exists a unique j < |s | – 1 such that v ∈ As(j) andw = p(i), or there exists
no such unique j and w = p(|s | – 1). The set F = {(n, v, w) : �(n, v, w)} exists by
recursive comprehension and codes a sequence of profiles 〈fi : i ∈ N〉.

We now show that e = en–1 is a quasi-partition embedding of A into F . Let p be a
permutation of W, s a quasi-partition, and k = e(p, s). Suppose v ∈ V . We reason by
cases.

(1) Suppose there exists a unique j < |s | – 1 such that v ∈ As(j). Then
(k, v, p(j)) ∈ F by the construction of F , i.e., fk(v) = p(j).

(2) Now suppose there is no such j. Then (k, v, p(|s | – 1)) ∈ F by the construction
of F , i.e., fk(v) = p(|s | – 1).

Finally we show that F is uniformly A-measurable. Fix x, y ∈ X and a profile fn.
By the construction of F , en(n) = (s, p) for some quasi-partition s and permutation p
of W. For all j < |s |, let tj be a boolean formation sequence for the set

As(j) \
⋃
i<|s|–1

{
As(i) if i �= j,
∅ otherwise,

and given boolean formation sequences t1 and t2, let

u(t1, t2) = t1 � t2 �〈(1, |t1| – 1, |t1| – 1),

(1, |t1| + |t2| – 1, |t1| + |t2| – 1),

(2, |t1| + |t2| , |t1| + |t2| + 1)〉.
Let h0(s, p, x, y) = 〈〉 and

hr(t, m, s, p, x, y) =

{
u(t, tj) if x <p(s(m–1)) y,

t otherwise.
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Let h be the function defined by primitive recursion from h0 and hr . Define � : N×
X × X → N by �(n, x, y) = e∗(h(|s | , s, p, x, y)), where e∗ : BFS → N is a boolean
embedding of A into itself (this exists by Lemma 2.3). We can then verify by Σ0

0
induction that F is uniformly A-measurable via �.

Proof of Theorem 5.4. Statements 1–4 are equivalent by Lemma 5.2. To complete
the proof it suffices to show that 5 implies 4 and 1 implies 5. To show that 5 implies 4,
we work in ACA0 and suppose that S = 〈V,X,A,F〉 is a countable society and that V
is infinite. By Lemma 2.6, there exists a non-principal ultrafilter U on A, and hence by
Lemma 5.3 there exists a social welfare function �U for S with the cofinite coalitions
property.

Finally we show that 1 implies 5. Working in RCA0, let V ⊆ N be infinite and let A
be a countable atomic algebra over V. Fix X = {x, y, z}. By Lemma 5.5 there exists
a countable sequence of profiles F over V,X such that A is quasi-partition embedded
into F and F is uniformly A-measurable. S = 〈V,X,A,F〉 is thus a countably infinite
society, and so by FPT there exists a non-dictatorial social welfare function � for S. By
KS (Theorem 4.4), there exists an ultrafilter U� on A which is non-principal since � is
non-dictatorial. SinceA is an arbitrary infinite atomic algebra, this implies arithmetical
comprehension by Lemma 2.6.

We conclude this section with a few remarks on the computability-theoretic status of
FPT. Early work in effectivising social choice theory emphasised the non-computability
of non-dictatorial social welfare functions, and thus an extension of Arrow’s theorem
from finite sets to computable sets. For example, Mihara [35] showed that whenV = N,
A = REC, and F consists of all A-measurable profiles, any non-dictatorial social
welfare function for this society is non-computable. In the present setting this is not
automatic: there are countable societies with computable non-dictatorial social welfare
functions. The natural minimal example of this is provided by a society based on a
computable presentation of the finite–cofinite algebra. There is a single non-principal
ultrafilter on this algebra, and both it and the non-dictatorial social welfare function
derived from it via the construction in Lemma 5.3 are computable.

On the other hand, there are recursive counterexamples to Fishburn’s possibility
theorem far less complex than the societies considered by Lewis [32] or Mihara [35]
which we discussed in Section 1. The following argument is based on Kirby’s proof of
the reverse direction of Lemma 2.6 [27, theorem 1.10]. Let h : N → N be a computable
enumeration of the halting problem 0′. Using Lemma 2.3 we computably embed
a sequence of sets B = 〈Bi : i ∈ N〉 into a countable atomic algebra A, where B is
defined by

B = {(2n, v) : (∃m < v)(h(m) = n)} ∪ {(2n + 1, n) : n ∈ N}.
By Lemma 5.5 there exists a countable society S = 〈N, 3,A,F〉. We can then construct
a primitive recursive function g : N → N that computes the indexes of a family of
profiles such that x <g(n)(v) y if v ∈ B2n, and y <g(n)(v) x otherwise. If � is any non-
dictatorial social welfare function for S, then 0′ ≤T �, since 0′ = ran(h) is Σ0

0 definable
in the parameter � by the formula ϕ(n) ≡ x <�(g(n)) y. There will only exist a v such
that v ∈ B2n if n ∈ ran(h), but when there is, the cofinite coalitions property ensures
thatx <f(v) y.S is thus a computable society all of whose non-dictatorial social welfare
functions compute 0′. Nevertheless, this non-computability result is ‘easy’ since it only
requires coding a single jump. A natural question is thus whether we can obtain more
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precise degree-theoretic information about the complexity of non-dictatorial social
welfare functions.

§6. Conclusion and further work. The results presented in this paper initiate the
reverse mathematics of social choice theory. In doing so, they demonstrate both the
suitability of reverse mathematics as a framework in which to assess the effectivity
of theorems from social choice theory, and the fruitfulness of social choice theory
as a source for reverse mathematical results. It is straightforward within the present
setting to define additional types of collective choice rules for countable societies,
allowing further theorems like Sen’s liberal paradox [46] or the Gibbard–Satterthwaite
theorem [17, 43] to be formalised in L2, and their reverse mathematical status to be
investigated. The latter theorem, which concerns strategic voting and the manipulability
of elections, is a classical impossibility result from the 1970s. Like Arrow’s theorem, it
has a corresponding possibility theorem when the set of voters is infinite [39]. Finally,
the equivalence between FPT and arithmetical comprehension shows that the existence
of non-computable sets is essential to proving the existence of non-dictatorial social
welfare functions. On the one hand, this is a far weaker notion of non-constructivity
than that measured by equivalences to choice principles over ZF. On the other, it
shows that we cannot in general hope for computable rules for social decision-making
in countably infinite societies, even for countable societies whose coalitions do not
include all computable sets of voters.
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