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IDEALS GENERATED BY SINGULAR INNER FUNCTIONS

MICHAEL VON RENTELN

Singular inner functions are in many respects the most important

and difficult type of functions in the Banach algebra H of

bounded analytic functions in the unit disc. This paper is

concerned with ideals generated by singular inner functions. In

particular, conditions on the associated measures are given so
OO

that the ideal spans the whole algebra H . To this end the

local boundary behavior of a singular inner function is studied

and the results obtained there may be of independent interest.

1. Introduction

Let D denote the open unit disc in the complex plane, let D denote

its closure, and let T denote its boundary, the unit circle. H is the

Banach algebra of all bounded analytic functions in D under the usual

pointwise operations and the sup-norm . [f, ..., f ) denotes the ideal

OO

generated by the functions / , ...,/„€ H . Probably the most well

known theorem about the ideal structure of H is the Corona Theorem. One

version goes as follows.

CORONA THEOREM. Let f , ..., fN be a finite number of functions in
OO

H wvtn

f N
inf I

1
. ( a ) | : z € D\ > 0 ,

t h e n i t f o l l o w s t h a t ( f 1 , . . . , f ) = H ° .
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238 M i c h a e l v o n R e n t e l n

oo

Every function f £ H , f # 0 , has the following canonical

factorization

where 3 is a Blaschke product, S is a singular inner function and F

is an outer function. For details the reader is referred to Hoffman [2].

A singular inner function is a function of the form

where u is a finite positive Borel measure on T , singular with respect

to Lebesgue measure m on T .

The modulus of 5 is

|5y(a) | = exp J P(z, t)d\i\ .

P{z, t) = Re ite -z

1-r

denotes the Poisson kernel, where z = re

z-e

iQ
0 2 r < 1 -I 5 0 < f

CD

The purpose of this paper is to discuss ideals in H which are
generated by singular inner functions S. = S

Is

1 5 i S Jlf , with

We are especially interested in theassociated singular measures u.

following problem.

PROBLEM. What conditions on the singular measures u , ..., \i~

ensure that the associated singular inner functions generate the whole

algebra H that is = H°° ?

To attack this problem we provide in Section 2 the measure theoretic

preliminaries. In Section 3 we give a necessary and also a sufficient

condition for [s , ..., sJ = H° . The conditions depend only on the

distributions of the measures u. on T , 1 J i $lf . For an appropriate

study of the problem one has also to consider the concentrations of the

measures. Conditions involving the concentrations are given in Section 4.
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Ideals generated by singular inner functions 239

In Section 5 necessary and sufficient conditions for certain classes of

generators are obtained.

Let us say one word about earlier considerations of singular inner

functions in the literature and the difference of our investigations. In

many areas of function theory and functional analysis singular inner

functions play an important r6"le, for example in the theory of the Hardy

spaces IF , especially in those where 0 < p < 1 (see, for example, [6]).

Investigations in those areas deal with the question of how global

properties of the singular inner function S are affected by global

properties of the measure p ; for example how the smoothness of the

measure y (measured in terms of the modulus of continuity) influences the

growth of the maximum or the mean modulus of the corresponding singular

inner function S (see [6], p. 11*+ f. and p. 119).

Our considerations of the singular measures are quite different, since

for our problems in algebraic ideal theory only the local behavior of the

singular measures are important. We especially need estimates of the

modulus of positive harmonic functions inside specific oricycles tangent to

the unit circle. These results may be of independent interest.

2. Measure theoretic preliminaries

All measures we consider are finite positive Borel measures on the

unit circle T . A singular measure is a measure singular with respect to

Lebesgue measure m on T . By supp(y) we denote the (closed) support

of the measure u . We shall say that a measure \i is concentrated on a

Borel set E c T , if \i(T\E) = 0 . Then the support of the measure u

may also be defined as the smallest closed set on which the measure y is

concentrated. A singular measure \l is concentrated, by definition, on a

set of Lebesgue measure zero, but the support of y may be the whole set

T . \\\\\\ denotes the total variation norm of \i . Let us start with some

notation.

NOTATION. Let a = eVa 6 T . Then

6 is the Dirac measure (point mass) associated with the point

a ;
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240 M i c h a e l von R e n t e l n

J{a, s) := {e : as < t < a+s} is an open circular arc of

length 2s with center a , where 0 < s S it .

LEMMA 2 .1 . Suppose y is a singular measure. Then y is

concentrated on the set

U(v) := {a € T : ( 0 u ) ( a ) := l i m ( y / m ) [ < / ( a , s ) ] = <*>} .
s-*0

Proof. For short we write U instead of £/(y) . Since y is

positive and singular it follows from the Decomposition Theorem of de la

Vallee Poussin (see, for example, Saks [5], p. 127, 9.7) that

u(#) = \i(E n U) for every Borel set E c T . Hence we obtain y(T) = \i(U)

and \i(T\U) = ]i(T) - \l(U) = 0 .

REMARKS. I. (D\i)(a) is called the symmetric derivative of the

measure y at the point a .

2. Note that from Theorem lit. 5 of Saks ([5], p. 151) follows only the

weaker result: U is concentrated on the set where the upper symmetric

derivative D\i is infinite.

3. A proof without using the Decomposition Theorem of de la Vallee

Poussin may be patterned after the proof of Theorem 8.9 of Rudin ([3],

p. 158). Note that D]i there is not the symmetric derivative of u . The

symmetric derivative may exist at points at which the derivative of Theorem

8.9 does not exist. Therefore Theorem 8.9 implies Lemma 2.1.

4. Every singular measure V has a decomposition \l = a + v , where

O is a discrete singular measure and V is a continuous singular measure.

O is concentrated on the set where V is discontinuous. This is a

countable set and also the smallest set where 0 is concentrated. This

set is in general much smaller than U(o) (see Remark 5). On the other

hand there is no smallest set where V is concentrated. V continuous at

a 6 T means v({a}) = 0 . This implies v(A) = 0 for each countable set

A of T . If V is concentrated on a set M , then V is also

concentrated on M\A , where A is countable.

5. If f(y) is countable, then M is a discrete singular measure.

The converse statement is false. For any given closed set E c T of zero

Lebesgue measure we can construct a discrete singular measure C with

U(a) = E .
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LEMMA 2.2. Suppose y is a singular measure. Let

L(\i) := {a € T : lim 5 (ra) = 0} .

Then it follows

£/(u) c £(y) c supp(y) = f/(y) .

Proof. The first inclusion follows from Fatou's Theorem ([3], Theorem

11.10, p. 226): if the symmetric derivative {D\i){a) , finite'or infinite,

exists at a point a £ T , then we have

lim \S (ra) | = exp[-2TrOy(a) ] .
r-KL v

The inclusion £(y) c U{\i) follows from Lemma 2.1 and Fatou's Theorem.

supp(y) = U{\i) is clear from the definition of supp(y) .

REMARK. Rudin has given a nice example of a singular measure y

([4], p. 38l f.) which shows that in general i/(y) is a proper subset of

L(\i) . He considers the half-space in IR , hut his example works also in

the unit disc. The measure y has the form

with, for example, s = l/n! and arg(a ) = "Vn"/(n+l)! . A calculation

shows for the lower symmetric derivative (Oy)(l) = 0 , and for the upper

symmetric derivative (0y)(l) = <=° , but lim S (r) = 0 .
r-KL ^

3. Conditions depending on the distributions

of the generator-measures

In this section we will give a necessary and also a sufficient

condition for [S , ..., S^) = H which depends only on the sets where the

associated singular measures y , ..., y„ are concentrated.

THEOREM 3.1. In order that the ideal generated by the singular inner

functions S , ..., S is the whole algebra H° the condition
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N
n u{u.) = 0

is necessary, and the condition

N
fl WJ = 0

i=l %

is sufficient.

Proof. The necessity follows from Lemma 2.2. To prove the
co oo

s u f f i c i e n c y l e t M ( # ) d e n o t e t h e m a x i m a l i d e a l s p a c e o f H . W e
CD

identify the maximal ideals M of H with the nontrivial

multiplicatively linear functionals m on H Define a map

•n : M ( # ) •*• D by IT : m •*• m{z)

where z is the identity function. For a point a = e%a € T let

M := IT (a) be the fiber over a .

Assume [S^, ..., S J ̂  H , then there exists a fiber M and a

maximal ideal M € M with S^., ..., S^ € M . By a result of Schark (see

Hoffman [2], pp. l6l, 162) we have for every i € {l, ..., N) :

(3.1) lim inf \S .(z) | = 0 .

From our hypothesis i t follows that there is an index j € {l, , N] ,

such tha t a $ U[\i .) . Then
3

6 := k d i s t [a , i/(p.j] > 0 .
3

For s = re with 0 £ r> < 1 , 10-oc | < 6 , we have

J P(z, t)du. = f P(z, t)d\i. <
>T 3 } | i :_a |>26 J sin26

This implies |S.(s)| > E for some e > 0 , which is a contradiction to
3

(3.1).

COROLLARY 3.2. Suppose that the sets £/(u.] , 1 < i < ff , are
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N
closed. Then [S^, . . . , 5^) = H° , if and only if D tf(uu) = 0 .

REMARK. The second condition in Theorem 3.1 is also necessary in the

case N = 1 , but not necessary for N > 2 , as follows from Theorem k.k.

4. Conditions depending on the concentrations of

the generator-measures

To study the problem further we have to relate the behavior of

\S (z)\ near a boundary point a € T to the behavior of the measure u

in a neighbourhood of that point. It turns out that some special

tangential approaches z •* a are essential for our considerations.

Therefore we shall begin by introducing some notation.

NOTATION. Let a € T , 0 < i ? < % , and u be a positive Borel

measure on T . Then

K(a, R) := {z : |a-(l-if)a| < R]

is the interior of the oricycle of radius R internally tangent to T at

the point a , especially we put

K(a) := K(a, h) •

G(u) := UWa) : a (. £/(u)}

is the union of the oricycles K(a) at those points a € T , where u has

an infinite symmetric derivative.

Before going to Lemma 4.1 ¥e study a special example.

EXAMPLE. Let u = 6 be the Dirac measure associated to the point

1 . Then

£/(u) = L(u) = supp(u) = {1}

and

\su(z)\ =i/e =yo)

holds for a l l z ? 1 on the oricycle {z : \z-%\ = %} . Thus

\S ( a ) | > 5 (0) for a l l z € ZAG(u) .
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I t is perhaps surprising that the last inequality in the example holds

for any singular inner function. This shows the following lemma.

LEMMA 4.1 . Let S be a singular irtnev function. Then

\S ( s ) | > 5 (0) holds for all z (. D\G(\i) .

The positive constant 5 (0) i s best -possible.

Proof. Let z € re%% € D\G(\l) . Then for every e%t € U(\l) i t

follows |s-%e | > % . Thus

1 - r 5 1 - cos |6- t | = 2 s i n 2 ( ( | 9 - t | ) / 2 ) .

This implies

1 2

P(z, t)dv = , p ?
T 'U(v) (l-rr+hrsin[(\e-t\)/2)

J = U P II •'- Li(1-r) +2r(l-r) >T

Thus |Sw(a) | > exp(-||y||) = 5y(0) .

Since s = 0 € ZAG(y) for every measure y , the constant •? (0) is

best possible.

REMARK. In the proof of Lemma U.I we have not used that V is a

singular measure. But if \i is not singular, then the set D\G(\i) in

general consists only of the point 0 and in that case the statement is

trivial.

DEFINITION 4.2. Let a = e1" be a point of T and y be a finite

positive Borel measure on T . Then we define:

M(V, a, 9) := sup{ (p/m) [j[e
iQ , a)] : ((2/TT ) |6-a|) 2 < s S IT} ;

N(\i, a) := s\xp{M(\i, a, 9) : |6-a| < ir/2} .

REMARKS . I . In the special case 9 = a and y absolutely

continuous M(\i, a, 9) is the Hardy-Littlewood maximal function.

2. If the measure y is discontinuous at the point a , that is

p({a}) > 0 , then it follows tf(p, a) = °° . On the other hand #(y, a) =°°
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does not imply u({a}) > 0 .

LEMMA 4 . 3 . Suppose S is a singular inner function and a € T .

Then it follows

| S u ( s ) | > e x p [ - C W ( v i , a ) ]

for all z € K(a) , where C is an absolute constant.

Proof. Fix a point z = re% € K{a) • For convenience, we shall

assume a = 1 . According to the point z we decompose the unit circle T

in a union of sets T in a special way. Let T = T (r, 9) be defined

as follows:

TQ := {e"" : |*—G| £ 1-r} ,

Tn := {e
U : 2n-1(l-r) < 11-0 j < 2n(l-r)} , n 6 N .

n
For n = 0, 1, 2, ... let I := U T7 . Then

n fe=0 *

Let p be the smallest integer n with I r> T . We put J = T .

By standard estimations of the Poisson kernel there is an absolute

constant M , such that

(1-r)j P(z, t)d\i < M \ dv

^ r 0 (1-r)^ n=l Jrn (6-

< il±; \ dV+ I -^ f
^"r hQ n=l 22""2(l-r) JT

(JQ) + 8 | -L

7i=l 2"-
J\e , sJJ : (1-r) £

, a, 8) £ 10M*tf(u, a) .
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From th i s the re su l t follows. We have used that z € re € K{l) implies

-IT/2 < 6 < +TT/2 and 1 - r > 1 - cos 6 = 2 sin2(6/2) 2 (2/TT)29 .

THEOREM 4.4 . Suppose that the measures u , . . . , y fulfill the

following condition

min sup min N[\I., a] < °° .
« ( ) i %

Then it follows that [s±, ..., SN) = H° .

Proof. By hypothesis there exists an index j € {l, ..., N] and an

absolute constant M , such that

min N (jJ., a) 5 M for every a *€ U (u .) .

Let k be the index (depending on a ) where the minimum is attained.

Lemma U.3 implies

From this inequality we obtain

N
£ |Si(s)| ' S j [s € G(u.)] .

On the other hand, Lemma U.I implies

• 0 [s €

The last two inequalities together with the Corona Theorem yield the

desired result.

COROLLARY 4 .5 . Suppose that there exists an absolute constant M

and for every a = e € u[\i-J an index j (depending on a ) such that

(U.I.) V . [ J ( a , s ) ] < Mm2[J{a, s ) ]
d

holds for all s with 0 < s < w . Then it follows that

( \ CO
C1 C 1 = JJ

Proof. By Theorem h.h it is enough to show that condition (U.I)

implies N[\I., a) 5 C with an absolute constant C . We estimate
J
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V.[j{eiQ, a)] S u.[J(a, |0-a|+s)] 5 Mm2[J(a, |0-
3 3

= kM(\e-a\+s)2 = lt«(|e-a|2+2|0-a|s+s2) .

For a l l s with ((2/TT) 10-a |)2 < s 5 TT and a l l 0 with |0-a| < TT/2

we get

V.\j{evQ, s)~\ 5 Aftr2(l+10-a| +s)s ,
3

that is,

d

w i t h some o t h e r a b s o l u t e c o n s t a n t C . We c o n c l u d e t h a t N[\i., a\ 2 C .
3

REMARK. One can show tha t the exponent 2 in condition (^.1) cannot

be replaced by any exponent smaller than 2 .

COROLLARY 4.6. Suppose that for every a = e ^ € ^(y,) there exists

a generator S. such that S. has a finite angular derivative at a ,
3 3

that is \S'.(a) | S M , where M is independent of j and d . Then it
3

follows that [S±, ..., SN) = H°° .

Proof. From a theorem of M. Riesz (see [ ? ] , p. 117 for a short proof)

i t follows that

\S'.(a)\ = 2 -rfL
3 h \evt-Le""-a | 2

We show that u . fu l f i l l s condition
3

ra+s fa+s
]i.[J(a, s)} = d\i. S s "

J >a-s ° 'ct-s

d\i.
3

'7 < ton [ j ( a , s ) ] .
- h^-al

5. Necessary and sufficient conditions

In this section we shall show that the condition of Theorem h.h is

also necessary for a large class of generators. Before turning to this
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question we need the following two lemmas.

LEMMA 5.1. A singular inner function S is bounded away from zero

in K(a) , a € T , if and only if N(\i, a) < <=° .

Proof. One direction follows from Lemma U.3. To prove the converse,

assume that S is bounded away from zero in K(a) . Then there exists an

absolute constant M , such that for every z € K(a) we have

(5.1) I Hz, t)dv < M .

Without loss of generality, we may take a = 1 . Let 0 € (-TT/2, +TT/2)

and %• > s > ((2/TT)0) be given. We choose the point z = r e with

r = 1 - 2s . Since r £ 1 - 2((2/ir)0) < cos 0 we see that z is in

Applying the inequality (5.1) for our specific point z we get

1-ri t L-r
M-> P(z, t)d\i > 5-* p d\i

'T ^T {l-r 1 +•'" •*•

dV > 2/5s f dV = (k/5)(vM[j[eiQ, s)]
Jlfl-*l<«hs +(Q-t) J |0- t |<s

Since M i s independent of 0 and s we obtain

sup{(y/m)[j(ei 0, s)] : ((2/TT)0)2 < s < %} < M

for a l l 0 € (-tr/2, +ir/2) . This implies N(\i, a) < °° .

LEMMA 5.2. If a singular inner function S is bounded away from

zero inside some oricycle K(a, R) , a € T , 0 < R < % , then S is

bounded away from zero in K(a) .

Proof. For convenience, assume a = 1 . By hypothesis, there exist

6 > 0 and R in (0, %) such that

(5.2) |S ( z ) | i 6 holds for a l l z 6 K(l, R) .

Suppose S i s not bounded away from zero in K(l) . Then there exists a

sequence
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(5.3) z = r e n i K(1)\K(1, R) , n € N ,
n n

with 3 •+ 1 and S (s ) •* 0 for n -*•<*>•, that is,

(5.U)

From (5.3) it follows that, for all n 2 nn(R) ,

(5.5) Cn 0
2 < 1 - r < CO0

2

I n n 2 n

with two positive constants C and C? , C? depending on R . For

nn ^ IN let us define C = p e n where
n n

(5.6) 1 - p = CQ
n n

and C > C. is a constant (depending on i? ) such that X, € K(l, R) for

all n ̂  n (if) . Then

(5.7)

We define

1 - v < 1 - p .
n n

Af := max

s -e
n

Geometric considerations make clear that the maximum is attained for

t = 0 for all n € N . Thus with (5-5) and (5.6) we obtain

1-p CQ
n_ _ C

Therefore for all n ̂  n {R) and all ê " € T we get

it
*, -e

n
£ M

it
s -en

https://doi.org/10.1017/S0004972700006067 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006067


250 Michael von Renteln

(5.8)
M \z -e K -e

n n

(5.7) and (5.8) now imply

(5.9) f P U , t)dV £ K f P ( c , t)d\l ,
1 f l I y n

where K is a constant (depending on R , but independent of n ). From

(5-1*) and (5-9) it follows |S (? ) | •* 0 , n •+ » , and this is a

contradiction to (5-2).

THEOREM 5.3. Suppose all but one of the generator measures are

discrete and let one of the discrete measures be finite. Then

[S1, . . ., Ŝ J = H if and only if

sup min N (u ., a) < °° .

Proof. The sufficiency follows from Theorem h.k. To prove the

necessi ty assume without loss of generality that y , . . . , )j are

d iscre te measures and u[v>-.) i s f i n i t e . We define

V := {a e U[\ix) : min /l/(u^, a) < <*>} .

Since f ly , ) i s f i n i t e we havev 1'

(5.10) sup min N[\I., a) < °° .

We shall show now that for each a € f/(y.)\K there exists a radius

R € (0, h) such that

(5.11) inf{|s^(s)| : 3 € tf(a, /?)} > 0 .

Assume not. Then there exists a point a € i/(y.)\7 such that for every

radius R € (0, %) we have

(5.12) inf{|S^(a)| : z € #(a, i?)} = 0 .

We choose a sequence of special radii R = i?, with i?, -»• 0 for fe -*•<*>.
K K

By (5-12) for each k € N there exists a point 3, € #(a, i?, ] with
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(5.13)

Since the measures \i , ..., u.̂  are discontinuous at the points of

U(\i ) \V a short calculation shows that

(5.Hi) l 5 ^ 3 ^ ! - exp|s(l-(l//?fc)) | - 0 (*"•»)

for all j £ {l, ..., ff-l} where s = min y.({a}) .

How (5.13) and (5-11*) are a contradiction to (s , ..., 5 ) = #°

Therefore we have established (5-11)•

Since V[V-.) is finite, Lemma 5.2 implies

(5.15) \ s / 3 ) \ - 6 > ° for all s €

and all a € y(y )\K , where 6 is some fixed positive constant.

According to Lemma 5.1, (5-15) implies

(5.16) sup N{y a) < » .

Now from (5.10) and (5.l6) we see that

sup min # (u . , a) < «> ,
a€£/(u ) lSiSA?

and th is implies our asser t ion.
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