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Abstract

We present a family of continuous piecewise linear maps of the unit interval into itself that are all chaotic
in the sense of Li and Yorke [‘Period three implies chaos’, Amer. Math. Monthly 82 (1975), 985–992]
and for which almost every point (in the sense of Lebesgue) in the unit interval is an eventually periodic
point of period p, p ≥ 3, for a member of the family.
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1. Introduction

In [17], for any integer p > 2, Nathanson presented a piecewise linear bimodal map
from the unit interval to itself, with parallel left and right arms both of unit slope, that is
chaotic in the sense of Li–Yorke [14], and yet almost all points in its domain converge
in a finite number of periods to an interval in which every point has period p (see,
for example, [4, 14] for background detail). In [6, 7], Du complemented Nathanson’s
work by constructing chaotic piecewise linear continuous interval mappings for which
almost all points in the interval converge to a fixed point, and similar mappings for
which almost all points converge to a point of order 3 (see also [8]). For the latter,
Du worked with a trapezoidal mapping with two flat bottoms (see [15] for details on
trapezoidal maps). All three examples are illustrations of the fact that Li–Yorke chaos
is trivial (in the words of Nathanson) or, from a physical point of view, essentially
unobservable (in the words of Colett–Eckmann) (see [1, 3]).

The robustness and the relationship of these results have remained an open question.
In particular, one can ask whether there exists a family of piecewise linear maps
that yields under particular parametric assumptions all of the aforementioned results
and consolidates them in the sense that (i) the result of [7] holds for a point with a
given arbitrary number of periods k and (ii) that of [17] is invariant with respect to
perturbations of a particular map within a specified family. This question, of interest
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in itself, is also motivated by issues in economic dynamics where a rationalisation of a
particular map as a solution to an optimisation problem is of substantive consequence
(see, for example, [2, 5, 9, 17]). We will give a complete answer to this question.

From a technical point of view, our results attain significance because the maps
that we construct are almost everywhere eventually periodic, as opposed to being
asymptotically periodic, and are not smooth in the sense of having a positive
Schwarzian derivative at their turning points and falling within the class isolated in
[10]. Furthermore, the proof of our theorem is a testimony to the recursive reasoning
originally laid out in [17], and supplemented here through the use of generating
functions that allow a key step in the proof of the main theorem to be seen as a
consequence of the powers of a relevant matrix converging to zero (see [20] for a
standard introduction). In addition to a desirable unification of the arguments that
lead to the two results, this clarification may encourage the use of this methodology in
other related contexts. In particular, the specific forms of the mappings in terms of two
parallel arms, as in [17], or flat bottoms, as in [6, 7], have prevented the applications
of the Nathanson–Du results to questions in economic dynamics where dynamical
systems have to be deduced as a consequence of an infinite-horizon optimal program
(see [2, 5, 16]). This is no longer true for the theorem presented here, and we pursue
elsewhere its implications for the Leontief–Shinkai and Robinson–Solow–Srinivasan
(RSS) models studied in [5, 9, 11–13, 16, 18] and subsequent work. For the importance
of recursion-theoretic, as opposed to set-theoretic, methods in economics, see [19] and
the references therein.

2. The principal result
We begin by defining the notation that we shall need to state the main theorem of

this paper. Let p ≥ 3 be any fixed integer and m > 1 any fixed real number such that

0 <
m − 1
mp − 1

< b <
m − 1
mp − 1

< 1 and d = −1
/(

b
mp−1 − 1

m − 1
−

1 − b
m

)
.

The family of functions that form the backbone for this paper is

f (x) =



mx + b if 0 ≤ x ≤
1 − b

m
,

d
(
x − b

(mp−1 − 1
m − 1

))
if

1 − b
m
≤ x ≤ b

(mp−1 − 1
m − 1

)
,

1
mp−1

(
x − b

(mp−1 − 1
m − 1

))
if b

(mp−1 − 1
m − 1

)
≤ x ≤ 1.

Note that f : [0, 1]→ [0, 1] is a bimodal, piecewise linear continuous map.
Next, we define p mutually disjoint closed subintervals C0,C1, . . . ,Cp−1 of [0, 1]

and p − 1 mutually disjoint open subintervals U−(p−2),U−(p−3), . . . ,U0 as follows:

C j =

[
b
(m j − 1

m − 1

)
,

1
mp−( j+1)

(
1 − b

(mp−( j+1) − 1
m − 1

))]
for 0 ≤ j ≤ (p − 1),

U−[(p−1)− j] =

( 1
mp− j

(
1 − b

(mp− j − 1
m − 1

))
, b

(m j − 1
m − 1

))
for 1 ≤ j ≤ (p − 1).
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Then the following maps are linear and onto:

C0
f
→ C1

f
→ C2

f
→ · · ·

f
→ Cp−1

f
→ C0,

U−(p−2)
f
→ U−(p−3)

f
→ · · ·

f
→ U−1

f
→ U0

f
→ (0, 1).

Let C =
⋃p−1

j=0 C j. Every element of C is a point of period p for f .

Lemma 2.1. For the values of m and b specified above, f is chaotic in the sense of Li
and Yorke.

Proof. Let ξ = (1 − b(m + 1))/m2. Then

f (ξ) =
1 − b

m
, f 2(ξ) = 1 and f 3(ξ) =

1
mp−1

(
1 − b

(mp−1 − 1
m − 1

))
.

The Li–Yorke conditions [14] are satisfied by virtue of the fact that

0 < f 3(ξ) < ξ < f (ξ) < f 2(ξ).

Hence, f must be a chaotic map. �

We now turn to the principal result of this paper, and to its corollaries.

Theorem 2.2. Assume that p > 2 is an integer. To almost every real number x ∈ [0, 1]
there corresponds a positive integer nx such that f nx (x) ∈ C.

Corollary 2.3 (Nathanson [17]). There exists a continuous piecewise linear mapping
f1 : [0, 1]→ [0, 1] such that to almost every real number x ∈ [0, 1] there corresponds
an integer nx > 0 such that f nx

1 (x) is a point of period p.

Corollary 2.4. Assume that p > 2 is an integer. There exists a continuous piecewise
linear mapping f0 : [0, 1]→ [0, 1] such that, to almost every real number x ∈ [0, 1],
there corresponds a positive integer nx such that f nx

0 (x) = 0, where 0 is a point of
period p, f0(x) = 0 for x ∈ Cp−1 and f0(x) = f (x) elsewhere.

Proof. Consider a mapping that modifies f in its third arm:

g(x) =



mx + b if 0 ≤ x ≤
1 − b

m
,

d
(
x − b

(mp−1 − 1
m − 1

))
if

1 − b
m
≤ x ≤ b

(mp−1 − 1
m − 1

)
,

0 if b
(mp−1 − 1

m − 1

)
≤ x ≤ 1.

Then, for ξ = (1 − (b(1 + m))/m2,

g(ξ) =
1 − b

m
, g2(ξ) = 1 and g3(ξ) = 0,

and the Li–Yorke conditions [14] are satisfied. Furthermore,

C0
g
→ C1

g
→ C2

g
→ · · ·

g
→ Cp−1

g
→ {0} ⊆ C0.

The proof of the theorem goes through unchanged for g. �
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Setting p = 3 in Corollary 2, we obtain the following result.

Corollary 2.5 (Du [7]). There exists a family of piecewise linear continuous mappings
f : [0, 1] → [0, 1] that are all chaotic in the sense of Li and Yorke such that to
almost every real number x ∈ [0, 1] there corresponds a positive integer nx such that
f nx (x) = 0, where 0 is a point of period 3.

We conclude this section with the assertion that the dynamics identified by the
family of piecewise linear maps is robust (structurally stable) in the sense that ‘small’
perturbations of the particular member of the family will leave the dynamics invariant
(see also the Remark 3.2 at the end of Section 3).

3. Proofs of results

We begin with the proof of the theorem by defining the following subsets of [0, 1] :

C? = {x ∈ [0, 1] : f n(x) ∈ C for some integer n ≥ 0}

and U? = [0, 1]\C?. With µ denoting Lebesgue measure on [0, 1], we wish to prove
that µ(C?) = 1 or, equivalently, µ(U?) = 0. To this end, we define

Un = {x ∈ U0 : f n(x) < C} for n ≥ 0.

Since f (C) ⊂ C, it follows that

U0 ⊃ U1 ⊃ U2 ⊃ · · · .

We maintain that as n→∞, µ(Un)→ 0. We need the following proposition.

Proposition 3.1. Fix a nonnegative integer n and let µ(U0) = δ. Then:

(1) Un is composed of a finite collection of mutually disjoint open intervals of length
δ j+1/mk, where k is a natural number and j ∈ {0, . . . , n};

(2) f n maps every interval of Un linearly onto exactly one of the intervals U− j for
0 ≤ j ≤ p − 2.

Proof. We argue by mathematical induction on n. In the first place, the statement is
clear for n = 0, since f 0 is the identity mapping and U0 is an interval of length δ
which is mapped by f 0 linearly onto itself. Assume next, as our induction hypothesis,
that Un−1 is composed of a finite collection of mutually disjoint open intervals of
length δ j+1/mk, where j ∈ {0, 1, . . . , n − 1}, k ≥ 0 is an integer and f n−1 maps each such
open interval in Un−1 linearly onto exactly one of the open intervals U−(p−2), . . . ,U−1,
or U0.

We must now prove that the two assertions of the proposition hold for Un and f n. In
order to understand the behaviour of f n on Un, it suffices to understand the behaviour
of f n on Un−1 as Un−1 ⊃ Un. Assume therefore that I is any one of the disjoint open
intervals that comprise Un−1, and that I has length δ j+1/mk. If f n−1(I) = U− j for
j > 0, then f n(I) = U−( j−1). In this case, the two assertions of the proposition hold
for f n.
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If on the other hand f n−1(I) = U0, then f n(I) = (0, 1) (since f (U0) = (0, 1)). Since
I was assumed to have length δ j+1/mk by hypothesis, the slope of f n is 1/(δ j+1/mk) =

mk/δ j+1. Since f n : I → (0, 1) is a linear onto mapping, it follows that I must contain
p − 1 mutually disjoint subintervals {I0, I−1, . . . , I−(p−3), I−(p−2)} such that f n(I−s) = U−s

for 0 ≤ s ≤ p − 2. Fix an arbitrary s ∈ {0, . . . , p − 2}. Since f n has slope mk/δ j+1 and
since µ(U−s) = δ/ms, we conclude that

µ(I−s) =
(δ/ms)

(δ j+1/mk)
=
δ j+2

ms+k , where j ∈ {0, 1, . . . , n − 1} and k ≥ 0 is an integer.

Finally, since we have assumed that j ∈ {0, . . . , n − 1} as our induction hypothesis, it
must be that j + 2 ≤ n + 1. Hence, Un is the union of a finite collection of mutually
disjoint open intervals of length δ j+1/mk with j ∈ {0, . . . , n} such that f n maps each
such interval linearly onto exactly one of the open segments {U−(p−2), . . . ,U−1,U0}.

The statement of the proposition therefore follows by mathematical induction. �

Proof of Theorem 2.2. In order to proceed with the proof of the main theorem, we
shall need to estimate the number of disjoint subintervals that comprise the sets Un.

We therefore introduce a key piece of notation. For any nonnegative integers n and
k, fix j ∈ {0, 1, . . . , n} and s ∈ {0, 1, . . . , p − 2}; let A(−s)

n, j,k denote the number of disjoint
open intervals I in Un of length δ j+1/mk such that f n maps I linearly onto U−s. We
begin our proof by deriving recurrence relations for A(−s)

n, j,k.

Assume that 1 ≤ s < p − 2 and let f n−1 map an interval I of length δ j+1/mk linearly
onto U−(s+1). Then f n would have to map I linearly onto U−s. There are exactly A−(s+1)

(n−1), j,k

such intervals that f n−1 maps linearly onto U−(s+1). On the other hand, if f n−1 maps an
interval I of length δ j/mk−1 linearly onto U0, then f n(I) = (0, 1) and, as f n : I → (0, 1)
is a linear onto mapping, I must contain a unique subinterval I−s of length δ j+1/mk that
is mapped linearly onto U−s. Since there are exactly A(0)

(n−1),( j−1),(k−1) intervals mapped
by f n−1 linearly onto U0, it follows that

A(−s)
n, j,k = A−(s+1)

(n−1), j,k + A(0)
(n−1),( j−1),(k−1).

We now treat the case s = p − 2. Assume that f n−1 maps an interval I of
length δ j+1/m j linearly onto U− j for any 0 < j ≤ p − 2; then f n must map I
linearly onto U−( j−1). Hence, f n(I) can never be U−(p−2). On the other hand, if
f n−1 mapped an interval I of length δ j/mk−(p−2) linearly onto U0, then f n(I) =

(0, 1) and, as f n : I → (0, 1) is a linear onto mapping, I would contain a unique
subinterval of length δ j+1/mk that f n maps linearly onto U−(p−2). The number of
intervals of length δ j/mk−(p−2) mapped by f n−1 linearly onto U0 is A(0)

(n−1),( j−1),(k−(p−2)),

and so

A−(p−2)
n, j,k = A(0)

(n−1),( j−1),(k−(p−2)).
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Finally, we consider the case s = 0. If f n−1 maps an interval I of length δ j+1/mk

linearly onto U−1, then f n maps I linearly onto U0. The number of intervals of length
δ j+1/mk mapped by f n−1 linearly onto U−1 is A(−1)

(n−1), j,k. If, on the other hand, f n−1

maps an interval I of length δ j/mk linearly onto U0, then f n(I) = (0, 1) and I contains
a unique subinterval I0 of length δ j+1/mk such that f n maps I0 linearly onto U0. Since
there are A(0)

(n−1),( j−k),k intervals of length δ j/mk mapped linearly onto U0 by f n−1,

A(0)
n, j,k = A(0)

(n−1),( j−1),k + A(−1)
(n−1), j,k.

We have obtained the system of linear recurrence relations (for 1 ≤ ` ≤ p − 3):

A(0)
n, j,k = A(0)

(n−1),( j−1),k + A(−1)
(n−1), j,k,

...

A(−`)
n, j,k = A(0)

(n−1),( j−`),(k−1) + A(−(`+1))
n−1, j,k ,

...

A(−(p−2))
n, j,k = A(0)

n−1,( j−(p−2)),k−1.

We also observe that A(0)
0,0,0 = 1 and

A(−s)
0, j,0 = 0 for j > 0 and s ∈ {1, . . . , (p − 2)} ,

A(0)
0, j,k = 0 for ( j, k) ∈ Z+ × Z+, where Z+ = {1, 2, . . . } and

A(−s)
n, j,k = 0 for all s if any one of n, j or k is a negative integer.

We therefore obtain the system (for 1 ≤ ` ≤ p − 3)

α =



A(0)(X,Y,Z)
...

A(−`)(X,Y,Z)
...

A(−(p−2))(X,Y,Z)


=



∑
(n, j,k) A(0)

n, j,kXnY jZk

...∑
(n, j,k) A(−`)

n, j,kXnY jZk

...∑
(n, j,k) A(−(p−2))

n, j,k XnY jZk



=



∑
(n, j,k)(A

(0)
(n−1),( j−1),k + A(−1)

(n−1), j,k)XnY jZk

...∑
(n, j,k)(A

(0)
(n−1),( j−`),(k−1) + A(−(`+1))

n−1, j,k )XnY jZk

...∑
(n, j,k)(A

(0)
n−1,( j−(p−2)),k−1)XnY jZk


.
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Let us write

α =



A(0)(X,Y,Z)
...

A(−`)(X,Y,Z)
...

A(−(p−2))(X,Y,Z)


, e1 =



1
0
0
...
0
0


, M =



XZ X 0 0 0 . . . 0 0
...

...
...
...
... . . .

...
...

XY`Z 0 0 0 X . . . 0 0
...

...
...
...
... . . .

...
...

XY (p−3)Z 0 0 0 0 . . . 0 X
XY (p−2)Z 0 0 0 0 . . . 0 0


.

Our system of equations can then be written

α = Mα + e1 or α(I(p−1) − M) = e1,

where I(p−1) denotes the (p − 1) × (p − 1) identity matrix. Formally,

α =

∞∑
n=0

Mne1.

What is crucial is the recognition that if we set δ = Y and 1/m = Z, then

M = X



δ 1 0 0 0 . . . 0 0
...

...
...
...
... . . .

...
...

δ/m` 0 0 0 1 . . . 0 0
...

...
...
...
... . . .

...
...

δ/m(p−3) 0 0 0 0 . . . 0 1
δ/m(p−2) 0 0 0 0 . . . 0 0


.

The sum of the terms that comprise the first column of Mn coincides with µ(Un) for
n ≥ 0. To prove that µ(Un)→ 0 as n→∞, it therefore suffices to prove that all the
eigenvalues of the matrix M lie in the open unit disc, for then Mn converges uniformly
to the zero matrix as n→∞. The characteristic polynomial of M is

g(λ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − Z −1 0 0 0 . . . 0 0
−YZ λ −1 0 0 . . . 0 0
...

...
...

...
...

...
...

−Y`Z 0 0 · · · λ−1 · · · 0
...

...
... · · ·

... · · ·
. . .

...
−Y (p−3)Z 0 0 0 0 . . . λ −1
−Y (p−2)Z 0 0 0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λp−1 + ap−2λ

p−2 + ap−3λ
p−3 + · · · + a1λ + a0,
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say, where a j = ±Y (p−2)− jZ. Since |a j| = δ/m(p−2)− j for Y = 1/m and Z = δ, we conclude
that |a j| = δ/m(p−2)− j for 0 ≤ j ≤ p − 2. Thus,

(p−2)∑
j=0

|a j| =

(p−2)∑
j=0

µ(U− j) < 1.

To see that all the roots of g(λ) lie in the open unit disc, we argue as follows. If
|z| ≥ 1, then

|zp−1| >
( p−2∑

j=0

| − a j|

)
|z|p−1 ≥

p−2∑
j=0

| − a j||z| j ≥
∣∣∣∣∣ p−2∑

j=0

−a jz j
∣∣∣∣∣.

Thus,

|g(z)| =
∣∣∣∣∣zp−1 −

p−2∑
j=0

(−a j)z j
∣∣∣∣∣ ≥ |zp−1| −

∣∣∣∣∣ p−2∑
j=0

−a jz j
∣∣∣∣∣ > 0.

Thus, g(z) = 0 implies that |z|< 1.We conclude that Mn converges to the (p− 1)× (p− 1)
zero matrix as n → 0. Hence, µ(Un) → 0 as n → ∞. Since U0 ⊃ U1 ⊃ · · · , it is
clear from the definition of Un that U? ∩ U0 =

⋂∞
n=1 Un. Thus, we have proved

µ(U? ∩ U0) = 0.
Next, we observe that U? =

⋃p−2
s=0 (U? ∩ U−s) and define

Un,−s = {y ∈ U−s : f n(y) < C} and x−s =
x − b(1 + m + · · · + ms−1)

ms for x ∈ [0, 1].

Then x ∈ U0 if and only if x−s ∈ U−s for 1 ≤ s ≤ p − 2. Furthermore, f n(x) =

f n+1(x−s). So, f n(x) < C if and only if f n+1(x−s) < C. Therefore, x ∈ Un if and only if
x−s ∈ U(n+s),−s, and so µ(U(n+s),−s) = (1/ms)µ(Un). Thus, as n→∞, µ(Un)→ 0 if and
only if µ(Un,−s)→ 0 for every s ∈ {1, . . . , (p − 2)}.

Now let
U?

n = {x ∈ [0, 1] | f n(x) < C}.

Since f (C) ⊂ C, we have U?
0 ⊃ U?

1 ⊃ U?
2 · · · and U? =

⋂∞
n=1 U?

n . Furthermore,

U?
n = Un ∪

p−2⋃
s=1

Un,−s =⇒ µ(U?
n ) = µ(Un) +

p−2∑
s=1

µ(Un,−s).

Since µ(Un)→ 0 and µ(Un,−s)→ 0, this gives µ(U?
n )→ 0 as n→∞. Finally, since

U? =
⋂∞

n=1, we have µ(U?) = 0, and the proof is finished. �

Remark 3.2. We observe that Cp−1 ⊂ C?, and so, provided that f (Cp−1) ⊂ C?, the
precise value of the function f (x) on Cp−1 has no bearing on µ(U?) provided that we
can prove that f is chaotic in the sense of Li and Yorke. Hence, the method first
initiated by Nathanson and essentially subscribed to in this paper is flexible enough to
accommodate the different forms of almost everywhere eventually periodic behaviour
that we have specified in the theorems and corollaries in Section 2 above.
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