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Convergence of approximate operator
methods for eigenvectors

A. L. Andrew

This paper examines a large class of common numerical methods

for computing the eigenvectors of a compact linear operator.

Special cases include all projection methods and the Weinstein

intermediate problems method. Simple sufficient conditions are

established for the sequence of approximate eigenvectors

obtained by any of these methods to converge to an exact

eigenvector. In the most general case only the convergence of

a subsequence was previously known.

1. Introduction

Approximate operator methods for numerical solution of the

eigenvalue problem

(1) Tip = yi|j

in infinite dimensional space, are those methods in which successive

approximations {y , ̂  } to the solution {p, i|)} are obtained by solving

simpler problems

(2) T ]1> = u \S) ,

where the sequence of operators {T } converges uniformly to T .

Important special cases are the various projection methods [I], [2] (see

Section 3) and the Weinstein intermediate problems method (and its
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subsequent modifications) [3]. Convergence of the approximate

eigenvalues, y^ , to solutions of (l) has been proved under very general

conditions [7; Lemmas 3.3 and 3.1*], [2; Theorem 2 ] , [3; Theorem 1. IX].

This paper strengthens a known result for convergence of the corresponding

eigenvectors, \p

The following notation is used here:

H is a (real or complex) infinite dimensional separable Hilbert

space;

E is the set of all unit vectors in H ;

F is the set of all scalars of unit modulus;

Z is the set of all positive integers.

The following theorem is proved in Section 2, and some of its

implications noted in Section 3.

THEOREM 1. Let T {n = 1, 2, ...) and T be compact linear

operators in H . Let y be a simple nonzero eigenvalue of T

satisfying (l) with ty € E . For all n € Z , let y , i|i satisfy (2)

with ty 6 E , and let

(3) ||T - T\\ •*• 0 and V •*• y as n -*• °° .

Then there is a sequence of scalars a € T such that ||a tji - ip|| •+ 0 as

In the case of projection methods, a weaker version of Theorem 1 is

well known. This weaker version requires the additional hypothesis that

all but finitely many members of the sequence {y } are simple

eigenvalues of the corresponding T . As noted by Petryshyn [7; p. 1+31]

this weaker result follows immediately from a theorem of Pol sky [2;

Theorem U] concerning the invariant spaces of T and T . The proof

given here is an extension of that used for another of Pol sky's theorems

[2; Theorem 3]. (Whereas Theorem 1 here proves the convergence of the

whole sequence, Pol sky's Theorem 3 proved only the convergence of a
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subsequence.)

The requirement that y be simple is known to be satisfied for many

important operators in mathematical physics. It may be less easy to check

the extra requirement (that the y be simple also) which is dispensed

with by Theorem 1. Hote that Theorem 1 does not require that all the

eigenvalues of T be simple.

In one sense Theorem 1 is best possible, as Polsky [Z; p. 6l] showed

that when the space, V , of eigenvectors of T corresponding to y ,

has dimension more than one, there may be vectors in V which cannot be

obtained as the limit of any sequence of eigenvectors of the T

However when the dimension of V is greater than one, analogues of

Theorem 1 may be proved provided the T satisfy certain additional

hypotheses. These results are stronger than that proved by Polsky [2;

Theorem 3] and that noted as a remark in Section 2. It is hoped to return

to this matter in a later paper.

In the special case of the Ritz method, an important quantitative

version of Theorem 1 has been proved by Weinberger [4]. His proof uses

the fact that in this special case 1 must be hermitian.

2. Proof of Theorem 1

DEFINITION 1. For all r in Z , define S to be the sequence

obtained by deleting from {ij; } those elements for which

(3a f D(Vw e E)|(CHJI -4, w)\ 5 2~

LEMMA 1. For all v in Z , S contains.at most finitely many

elements.

Proof. Suppose the contrary. Then, since the \\) are bounded, S

contains an infinite subsequence S* = {'I' / \} converging weakly to an

element ^ € H , and by (3), \\Tv(n) - 2| -»• 0 and y ^ j -»• y as
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n -*•">. Hence, since y , ,ii/ , , = T , ,ili , , ,' v(«rv(n) v(n) v(n)

|| ro *v(nyv(n)\\ || ro M « ) | | || v(n)|||rv(n)||

since T is compact and |K»v(n)|| = 1 . Hence Uv(n)*v(n) - WQ

Moreover, since yv(n) - U and *v ( n )
 J % , \M%(n)^^0 - s i n c e

the weak limit is unique it follows that

Hence 4»Q € Ky .

Since y , , -»• y # 0 , it follows from (5) that ty , •. -*• \p and that

\p € E . Hence for all a in F , and all w in E ,

I (a*v(w)-
a^0'

 W) I - |*V(K)"*O|
 + ° as " * °° • " follows that

(6) (Vex € r)(3i(.v(n) 6 5*)(Vw € S) | (a*v(n)-OH|<0, u) I < 2~
r .

Since 5* c 5 5 it follows from Definition 1 that

(7) (Vo € r)(Vifrv(n) € 5 ) r

Combining (6) and (7) shows that

(8) (Va £ r)ai|)Q * \\> .

Since the eigenvectors tjj and ^ are both in E , it follows from (8)

that they are linearly independent. This contradicts the fact that y is

a simple eigenvalue of T . Lemma 1 follows.

Since clearly 5 c S , it follows from Lemma 1 that there is an

infinite sequence of integers «j < n^ < ••• such that for all r i Z

and all integers n > n , ty \ S . It follows from the definitions of

n and S that there is a sequence {a } of scalars in Y such that

if n < n 5 n then | (a if/ -I(J, w) \ 5 2~r for all w in E . Since

r -»• °° as n •* <*> , it follows that a ij; -*i|; . Hence by (l) and (2)
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|y | | | i^ -a ty || = ||Ti|j-ua ty II 5 Hlty-Ufci \\i II + ||T-T IMIa ^ II + |y -y|||o( ty II •+ 0

by (3), since T is compact and ||a i|> II = 1 . Since y t 0 , this

completes the proof of Theorem 1.

REMARK. When the dimension of V is greater than one, a slight

modification of the above proof shows that the orthogonal projection of

ty on the. orthogonal complement of V still converges strongly to zero

as n -*• °° . The analogue of (k) in the modified proof is

(jkp i V n E) (VW (L E) I (cp-ijj , u ) | < 2~r .

An argument exactly analogous to that used in the proof of Theorem 1 shows

that there is a sequence {ip } of elements in V n E such that

ill -f ->• 0 as n -*•<*>. The result follows.

3. Applications

Let {v } be a sequence of linearly independent vectors complete in

H . Let U be the space spanned by the first n vectors in the

sequence and P the orthogonal projector of H onto U . Projection

methods for solving (l) are those methods in which approximations for y

and ij) are obtained by solving

(9) PW>=)i\b,Pil)=\p

in U . Important special cases are the Ritz method, the generalised

Ritz method, the Galerkin method and the method of moments [7]. Since

{v } is a complete sequence and T is compact, it can be shown [7] that

{P T} converges uniformly to T , so that all projection methods for

solving (l) with T compact are special cases of the approximate operator

methods considered here. Polsky [2; Theorem 2] showed that the set of

limit points of all sequences of eigenvalues of the P T is precisely the

set of all eigenvalues of T . It follows from Theorem 1 that, if the

eigenvalues of T are all simple, the set of all limit points of the
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corresponding sequences of appropriately normalized eigenvectors of the

PT is precisely the set of all normalized eigenvectors of T . In the

special case where 1 is hermitian and strictly positive, it is known [3]

that the sequence whose n-th member is the fe-th largest eigenvalue of

PjT converges monotonically to the fc-th largest eigenvalue of T , so

that it is easy to identify the corresponding convergent sequence of

approximate eigenvectors, even when convergence is slow.

The commonest applications of projection methods involve a

differential operator T~ with compact inverse T . Since the

eigenvalue problem T \p = yijj may be considered as T[T~ I|I) = y~ [T~ ty) ,

the theory developed for compact operators is readily extended to such

problems.

In addition to the projection methods, there are other important

methods to which Theorem 1 applies, including some in which the T
n

operate on infinite dimensional spaces (see, for example, [3; Theorem 3.

III]).
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