EXPONENTIAL SUMS ON REDUCED RESIDUE SYSTEMS

W. K. A. LOH

Abstract

The aim of this article is to obtain an upper bound for the exponential sums $\sum e(f(x) / q)$, where the summation runs from $x=1$ to $x=q$ with $(x, q)=1$ and $e(\alpha)$ denotes $\exp (2 \pi i \alpha)$.

We shall show that the upper bound depends only on the values of q and s, where s is the number of terms in the polynomial $f(x)$.

1. Introduction. Let $f(x)$ denote the polynomial

$$
\begin{equation*}
f(x)=a_{1} x^{k_{1}}+a_{2} x^{k_{2}}+\cdots+a_{s} x^{k_{s}} \tag{1}
\end{equation*}
$$

with $s \geq 2, k_{s}>k_{s-1}>\cdots>k_{1} \geq 1, k_{i} \in N$ and $a_{i} \in \mathbb{Z} \backslash\{0\}$.
Suppose that p is any prime and α is an integer with

$$
p^{\alpha} \mid\left(a_{1}, \ldots, a_{s}\right), \quad p^{\alpha+1} \nmid\left(a_{1}, \ldots, a_{s}\right),
$$

then define α to be the p-content of the function $f(X)$.
In this paper, we wish to estimate the exponential sum

$$
\begin{equation*}
\tilde{S}(q, f)=\sum_{\substack{x=1 \\(q, x)=1}}^{q} e(f(x) / q) \tag{2}
\end{equation*}
$$

where $q \geq 1$ and $e(\alpha)$ denotes $\exp (2 \pi i \alpha)$.
Since such sums are multiplicative, it suffices to estimate

$$
\begin{equation*}
\tilde{S}\left(p^{l}, f\right)=\sum_{\substack{x=1 \\(p, x)=1}}^{p^{l}} e\left(f(x) / p^{l}\right) \tag{3}
\end{equation*}
$$

By using an idea of Loxton and Vaughan [10], we are able to obtain the the following results:

THEOREM 1. Let f be as in (1) and suppose $p>k_{s}$ and p does not divide the content off. Then

$$
\left|\tilde{S}\left(p^{l}, f\right)\right| \leq\left(k_{s}-1\right) p^{\left(1-\frac{1}{s}\right) l}
$$

Received by the editors December 1, 1995.
AMS subject classification: 11L07.
(C)Canadian Mathematical Society 1998.

THEOREM 2. Let f be as in (1) and suppose $p \leq k_{s}$ and p does not divide the content off. Then

$$
\left|\tilde{S}\left(p^{l}, f\right)\right| \leq m\left(p^{-\tau_{0}} f^{\prime}\right) p^{\frac{\tau_{0}+1}{s}} p^{\left(1-\frac{1}{s}\right) l}
$$

where $p^{\tau_{0}}$ is the largest power of p dividing the content of f and $m(f)$ denote the total number of roots of the congruence

$$
\begin{equation*}
f(X) \equiv 0(\bmod p) \tag{4}
\end{equation*}
$$

THEOREM 3. Let f be as in (1) and suppose q is coprime to the content off. Then

$$
|\tilde{S}(q, f)| \leq q^{\left(1-\frac{1}{s}\right)+\epsilon},
$$

for large q.
Corollary 1. Let

$$
f(x)=a_{1} x^{k_{1}}+a_{2} x^{k_{2}}+\cdots+a_{s} x^{k_{s}}
$$

and suppose that $q>0$ is an integer and $\left(q, a_{1}, a_{2}, \ldots, a_{s}\right)=q_{1}$. Then, for large q,

$$
|\tilde{S}(q, f)| \leq \begin{cases}q_{1}^{1 / s} q^{\left(1-\frac{1}{s}\right)+\epsilon} & \text { if } 1 \leq q_{1}<q \\ \phi(q) & \text { if } q_{1}=q\end{cases}
$$

2. p-adic Sequences. First of all we establish a reduction procedure along the lines developed in Loxton and Vaughan (1985). We define sequences of polynomials $\left\{f_{i}\right\}$ and associated sequences of integers $\left\{\tau_{i}\right\},\left\{\omega_{i}\right\},\left\{n_{i}\right\},\left\{x_{i}\right\}$ as follows. Let

$$
f_{0}=f
$$

Given f_{i} choose τ_{i} so that the polynomial $p^{-\tau_{i}} f_{i}^{\prime}$ has integer coefficients but p does not divide its content. If the congruence,

$$
\begin{equation*}
p^{-\tau_{i}} f_{i}^{\prime}(x) \equiv 0 \quad(\bmod p) \tag{5}
\end{equation*}
$$

has no root ω_{i}, then the sequences terminate with $f_{i}, \tau_{i}, \omega_{i-1}, n_{i-1}, x_{i-1}$. If it has such a root ω_{i} choose n_{i} so that

$$
p^{-n_{i}}\left(f_{i}\left(\omega_{i}+p x\right)-f_{i}\left(\omega_{i}\right)\right),
$$

has integer coefficients but p does not divide its content. Clearly,

$$
\begin{equation*}
n_{i} \geq 2+\tau_{i} \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{i+1}(x)=p^{-n_{i}}\left(f_{i}\left(\omega_{i}+p x\right)-f_{i}\left(\omega_{i}\right)\right) \tag{7}
\end{equation*}
$$

At each stage of the construction there may be several choices for ω_{i} modulo p and so it may be possible to construct many such sequences. Let

$$
\begin{equation*}
x_{i}=\omega_{0}+p \omega_{1}+\cdots+p^{i-1} \omega_{i-1} \tag{8}
\end{equation*}
$$

and let \mathcal{A} denote the set of all sequences $\mathcal{X}=\left\{x_{i}\right\}$ which can be constructed in this way and write $f_{i}\left(x_{i}, \mathcal{X}\right), \tau_{i}(X), n_{i}(\mathcal{X}), m_{i}(X)$ for the associated quantities arising in the construction.

We further define

$$
\begin{equation*}
\mu_{0}(X)=0, \quad \mu_{i}(X)=\sum_{l=0}^{i-1} n_{l}(X) \tag{9}
\end{equation*}
$$

Now the polynomials $f_{i}(x, X)$ are given by

$$
\begin{equation*}
f_{i}(x, \mathcal{X})=p^{-\mu_{i}}\left(f\left(x_{i}+p^{i} x\right)-f\left(x_{i}\right)\right) \tag{10}
\end{equation*}
$$

For each $t \in N$ we define subsets $\mathcal{B}_{k}, \mathcal{C}_{k}, \mathcal{E}_{k}$ of \mathcal{A} as follows. Let \mathcal{B}_{k} denote the subset of \mathcal{A} formed from those sequences \mathcal{X} with at least k elements and satisfying

$$
\mu_{k-1}+\tau_{k-1}+2 \leq t \quad \text { and } \quad \mu_{k} \geq t
$$

Let \mathcal{C}_{k} denote the subset of \mathcal{A} formed from those sequences \mathcal{X} with at least k elements and satisfying

$$
\mu_{k-1}+\tau_{k-1}+2 \leq t \quad \text { and } \quad \mu_{k}<t<\mu_{k}+\tau_{k}+2
$$

Finally let \mathcal{E}_{k} denote the subset of \mathcal{A} formed from those sequences \mathcal{X} with at least k elements and satisfying

$$
\mu_{k}+\tau_{k}+2 \leq t
$$

Since $\mu_{i}+\tau_{i}$ increases with i, the sets \mathcal{B}_{k} and \mathcal{C}_{k} are disjoint and \mathcal{E}_{k} is the union of the \mathcal{B}_{j} and \mathcal{C}_{j} with $j>k$. Let $\mathcal{D}_{k}=\mathcal{B}_{k} \cup \mathcal{C}_{k}$. Note that $n_{i}(\mathcal{X}) \leq k$, since if $f_{i}(x)=\sum_{m=0}^{k} a_{m} x^{m}$, then $f_{i}\left(x_{i}+p x\right)-f_{i}\left(x_{i}\right)=\sum_{m=0}^{k} b_{m} p^{m} x^{m}$ with $b_{m}=a_{m}, b_{m-1}=a_{m-1}+a_{m}\left({ }_{m-1}^{m}\right) x_{i}$, and so on. Hence the sets $\mathcal{B}_{k}, \mathcal{C}_{k}, \mathcal{D}_{k}, \mathcal{E}_{k}$ are empty for all sufficiently large k. Let

$$
N_{k}(X)= \begin{cases}\max \left(1, \operatorname{deg}_{p}\left(p^{-\tau_{k}} f_{k}^{\prime}\right), \operatorname{deg}_{p}\left(f_{k}\right)-1\right) & \text { when } \tau_{k-1}=0 \tag{11}\\ \max \left(1, \operatorname{deg}_{p}\left(p^{-\tau_{k}} f_{k}^{\prime}\right)\right) & \text { otherwise }\end{cases}
$$

3. Preliminary Lemmata.

Lemma 1. Suppose p does not divide the content of f and let $N_{k}(\mathcal{X})$ be as in (13). Then

$$
\sum_{k=1}^{\infty} \sum_{X \in \mathcal{D}_{k}} N_{k}(X) \leq \operatorname{deg}_{p}\left(p^{-\tau_{0}} f^{\prime}\right)
$$

Proof. See Loxton and Vaughan (1985), Lemma 2.
The next lemma plays an important role in the proof of the Theorems.
Lemma 2. Suppose that $f \in \mathbb{Z}[X]$ and p does not divide the content of $f, p \geq 3$ and $t \geq \tau_{0}+2$ or $p=2$ and $t \geq \tau_{0}+3$. Then

$$
\tilde{S}\left(f ; p^{t}\right)=\sum_{k=1}^{\infty} \sum_{X \in \mathcal{B}_{k}} e\left(f\left(x_{k}\right) p^{-t}\right) p^{t-k}+\sum_{k=1}^{\infty} \sum_{X \in C_{k}} e\left(f\left(x_{k}\right) p^{-t}\right) p^{\mu_{k}-k} S_{k},
$$

where

$$
S_{k}=\sum_{x=1}^{p^{t-\mu_{k}}} e\left(f_{k}(x) p^{\mu_{k}-t}\right)
$$

In particular, if \mathcal{A} is empty, then $\tilde{S}\left(f ; p^{t}\right)=0$.

Proof. This is identical to the proof of Lemma 3 of Loxton and Vaughan (1985).
By making use of the following lemma, we can establish a upper bound for $\tilde{S}\left(p^{l}, f\right)$ which depends on the number of terms in the polynomial $f(x)$.

Lemma 3. Let

$$
g(x)=a_{1} x^{k_{1}}+\cdots+a_{n} x^{k_{n}}
$$

with $1 \leq k_{1}<\cdots<k_{n}$ and $\left(a_{1}, a_{2}, \ldots, a_{n}, p\right)=1$, and suppose z is a root of

$$
g(x) \equiv 0(\bmod p)
$$

of multiplicity m and with $p \nmid z$. Then $m \leq n-1$.
Proof. We argue by induction. The lemma is trivial when $n=1$. Suppose $n>1$. If $p \mid\left(a_{2}, \ldots, a_{n}\right)$, then $p \nmid a_{1}$, and the lemma follows from the case $n=1$. Hence $\left(a_{2}, \ldots, a_{n}, p\right)=1$. We have

$$
g(z+y)=b_{0}+b_{1} y+\cdots+b_{k} y^{k},
$$

where $k=k_{n}$ and $b_{i} \equiv 0(\bmod p)$ for $0 \leq i<m$ and $b_{m} \not \equiv 0(\bmod p)$. Then

$$
(z+y)^{k_{1}} \quad \text { is a factor of } b_{0}+b_{1} y+\cdots+b_{k} y^{k}
$$

and

$$
\begin{aligned}
b_{0}+b_{1} y+\cdots+b_{k} y^{k} & =(z+y)^{k_{1}}\left(c_{0}+c_{1} y+\cdots+c_{L} y^{L}\right) \\
& =\sum_{i} y^{i} \sum_{l=0}^{i} c_{l}\binom{i-l}{k_{1}} z^{k_{1}+l-i}
\end{aligned}
$$

Since the coefficient of y^{i} is $c_{i} z^{k_{1}}+c_{i-1}\binom{k_{1}}{1} z^{k_{1}-1}+\cdots$, it is easily seen by induction on i that $c_{0} \equiv c_{1} \equiv \cdots \equiv c_{m-1} \equiv 0(\bmod p)$ and $c_{m} z^{k_{1}} \equiv b_{m}(\bmod p)$ so $p \nless c_{m}$. Thus $g_{1}(x)=a_{1}+a_{2} x^{k_{2}-k_{1}}+\cdots+a_{n} x^{k_{n}-k_{1}}$ has a root of multiplicity m at z. Now

$$
g_{1}^{\prime}(z+y)=c_{1}+2 c_{2} y+\cdots+L c_{L} y^{L-1}
$$

and so g_{1}^{\prime} has a root of multiplicity $m-1$ at z. But

$$
g_{1}^{\prime}(x)=\left(k_{2}-k_{1}\right) a_{2} x^{k-2-k_{1}-1}+\cdots+\left(k_{n}-k_{1}\right) a_{n} x^{k_{n}-k_{1}-1}
$$

and so by the inductive hypothesis $m-1 \leq n-2$.
Lemma 4. Suppose that μ_{k}, m_{k} and τ_{k} are defined as in $\S 2$. Then

$$
\begin{equation*}
m_{i+1} \leq m_{i}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{k} \leq k+\sum_{i=1}^{k-1} m_{i}+\tau_{0}-\tau_{k} \tag{13}
\end{equation*}
$$

Proof. For a given X, let $m_{i}=m_{i}\left(\omega_{i}\right)$ denote the multiplicity of the root ω_{i} of $p^{-\tau_{i}} f_{i}^{\prime}(x) \equiv 0(\bmod p)$. In other words, on writing

$$
\begin{equation*}
p^{-\tau_{i}} f_{i}^{\prime}\left(\omega_{i}+y\right)=b_{0}+b_{1} y+\cdots+b_{n} y^{n} \tag{14}
\end{equation*}
$$

with $b_{l} \in \mathbb{Z}$, we have $b_{l} \equiv 0(\bmod p)$ when $0 \leq l \leq m_{i}$ and $b_{m_{i}} \not \equiv 0(\bmod p)$. By (7),

$$
\begin{equation*}
p^{-\tau_{i+1}} f_{i+1}^{\prime}(x)=p^{1-n_{i}-\tau_{i+1}+\tau_{i}} p^{\tau-i} f_{i}^{\prime}\left(\omega_{i}+p x\right) \tag{15}
\end{equation*}
$$

and this polynomial has integer coefficients. By (14),

$$
\begin{equation*}
p^{-\tau_{i+1}} f_{i+1}^{\prime}(x)=p^{1-n_{i}-\tau_{i+1}+\tau_{i}}\left(b_{0}+b_{1} p x+\cdots+b_{n} p^{n} x^{n}\right) \tag{16}
\end{equation*}
$$

and for $l>m_{i}$ the coefficient of x^{l} is divisible by a higher power of p than the coefficient of $x^{m_{i}}$. Thus

$$
\operatorname{deg}_{p}\left(p^{-\tau_{i+1}} f_{i+1}^{\prime}(x)\right) \leq m_{i}
$$

and so for each i,
(17)

$$
m_{i+1} \leq m_{i}
$$

Since the polynomial in (16) has integer coefficients and $p \nmid b_{m_{i}}$, we have

$$
1-n_{i}-\tau_{i+1}+\tau_{i}+m_{i} \geq 0
$$

Hence

$$
n_{i} \leq 1+m_{i}-\tau_{i+1}+\tau_{i}
$$

and so

$$
\mu_{k}=\sum_{i=0}^{k-1} n_{i} \leq k+\sum_{i=0}^{k-1} m_{i}+\tau_{0}-\tau_{k} .
$$

This completes the proof of the lemma.
LEmMA 5. Suppose $\left(q_{1}, q_{2}\right)=1$. Then

$$
\sum_{x \bmod q_{1} q_{2}} e\left(f(x) / q_{1} q_{2}\right)=\sum_{y_{1} \bmod q_{1}} e\left(u_{1} f\left(y_{1}\right) / q_{1}\right) \sum_{y_{2} \bmod q_{2}} e\left(u_{2} f\left(y_{2}\right) / q_{2}\right) .
$$

LEMMA 6. Suppose $K>0$, then for large q,

$$
K^{\omega(q)} \leq q^{\epsilon}
$$

where $\omega(q)$ is the number of distinct prime factor of q.

Proof. Let $p_{1}, p_{2}, \ldots, p_{w}$ be the first $\omega(q)$ primes.

$$
\vartheta(q)=\sum_{r=1}^{\omega(q)} \log p_{r} \leq \sum_{p \mid q} \log p \leq \log q
$$

By the Prime Number Theorem,

$$
\vartheta(x) \sim x, \quad \Pi(x) \sim \frac{x}{\log x}
$$

Therefore,

$$
p_{\omega} \leq \log q+o(\log q)
$$

Since

$$
\left.\begin{array}{rl}
\omega(q) & =\Pi\left(p_{w}\right)
\end{array}\right) \frac{p_{\omega}}{\log p_{\omega}}+\frac{\log q}{\log \log q}+o\left(\frac{\log q}{\log \log q}\right) \quad \begin{aligned}
K^{\omega(q)} & \leq K^{\frac{\log q}{\log \log q}+o\left(\frac{\log q}{\log \log q}\right)} \\
& \leq \exp \left(\log q\left(\frac{\log K}{\log \log q}+o\left(\frac{\log q}{\log \log q}\right)\right)\right. \\
& <\exp (\epsilon \log q)
\end{aligned}
$$

for large q.

4. Proof of Theorems.

Proof of Theorem 1. When $t=1$, we use Weil's estimate,

$$
\left|\tilde{S}\left(p^{l}, f\right)\right| \leq\left(\operatorname{deg}_{p}\left(f^{\prime}\right)-1\right) p^{\frac{1}{2}} \leq\left(\operatorname{deg}_{p}\left(f^{\prime}\right)-1\right) p^{t\left(1-\frac{1}{s}\right)}
$$

since $s \geq 2$. Suppose that $t \geq 2$. Since $p>k_{1}$, we have

$$
\begin{equation*}
\tau_{i}=0 \quad \text { for each } i \tag{18}
\end{equation*}
$$

because differentiating f_{i} one introduces a factor $<p$ in the coefficients. If $X \in \mathcal{B}$, then by Lemma 3 we have $m_{0} \leq s-1$. Thus, by (17), $m_{i} \leq s-1$ for each i. Now, by (13), $\mu_{k} \leq s k$ and so $k \geq t / s$. Thus the first double sum in Lemma 2 is bounded by

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{X \in \mathcal{B}_{k}} p^{\left(1-\frac{1}{s}\right) t} \tag{19}
\end{equation*}
$$

If $X \in \mathcal{C}_{k}$, then $\mu_{k-1}+2 \leq t=\mu_{k}+1$. Hence, by the Weil estimate,

$$
\left|S_{k}\right| \leq\left(\operatorname{deg}_{p}\left(f_{k}\right)-1\right) p^{\frac{1}{2}}
$$

for which see Chapter II of Schmidt (1976). Moreover $t-1 \leq s k$. Thus the second double sum in Lemma 2 is bounded by

$$
\sum_{k=1}^{\infty} \sum_{X \in \mathcal{C}_{k}} p^{t-\frac{1}{2}-k}\left(\operatorname{deg}_{p}\left(f_{k}\right)-1\right)
$$

This is

$$
\begin{equation*}
\leq \sum_{k=1}^{\infty} \sum_{X \in \mathcal{C}_{k}} p^{\left(1-\frac{1}{s}\right) t}\left(\operatorname{deg}_{p}\left(f_{k}\right)-1\right) \tag{20}
\end{equation*}
$$

The theorem follows from (19), (20) and Lemma 1.
Proof of Theorem 2. First of all, when $t=1$. Trivially,

$$
\left|\tilde{S}\left(p^{l}, f\right)\right|=p^{\frac{1}{s}} p^{\left(1-\frac{1}{s}\right)}=p^{\frac{1}{s}} p^{t\left(1-\frac{1}{s}\right)}
$$

Secondly, suppose $2 \leq t \leq \tau_{0}+1$. By using the trivial estimate, we have

$$
\left|\tilde{S}\left(p^{l}, f\right)\right| \leq p^{t} \leq p^{\frac{\delta+1}{s}} p^{t\left(1-\frac{1}{s}\right)}
$$

Thirdly, suppose $t \geq \tau_{0}+2$, we use Lemma 3. By (13),

$$
\mu_{k}=\sum_{i=0}^{k} n_{i} \leq k+\sum_{i=0}^{k-1} m_{i}+\tau_{0}-\tau_{k}
$$

with all $m_{i} \leq s-1$. Therefore,

$$
\mu_{k} \leq s k+\tau_{0}-\tau_{k}
$$

If $X \in \mathcal{B}_{k}$, then

$$
\mu_{k-1}+\tau_{k-1}+2 \leq t \leq \mu_{k}
$$

Hence,

$$
\begin{equation*}
t \leq s k+\tau_{0}-\tau_{k} \leq s k+\tau_{0} \tag{21}
\end{equation*}
$$

The first double sum in Lemma 2 is bounded by

$$
\sum_{k=1}^{\infty} \sum_{X \in \mathcal{B}_{k}} p^{\frac{\tau_{0}+1}{s}} p^{\left(1-\frac{1}{s}\right) t}
$$

If $X \in \mathcal{C}_{k}$, then

$$
\begin{equation*}
\mu_{k}<t \leq \mu_{k}+\tau_{k}+1 \tag{22}
\end{equation*}
$$

Again by (13),

$$
t \leq s k+\tau_{0}-\tau_{k}+\tau_{k}+1 \leq s k+\tau_{0}+1
$$

Let $t=\mu_{k}+\theta$, hence $1 \leq \theta \leq \tau_{k}+1$. Therefore,

$$
\begin{aligned}
p^{\mu_{k}-k}\left|S_{k}\right| & \leq p^{\mu_{k}-k} p^{\theta} \\
& =p^{t-k} \\
& \leq p^{t-\left(\left(t-\tau_{0}-1\right) / s\right)} \\
& =p^{\frac{\tau_{0}+1}{s}} p^{t\left(1-\frac{1}{s}\right)}
\end{aligned}
$$

The second double sum in Lemma 2 is bounded by

$$
\sum_{k=1}^{\infty} \sum_{X \in C_{k}} p^{\frac{\tau_{0}+1}{s}} p^{t\left(1-\frac{1}{s}\right)}
$$

Hence,

$$
\begin{aligned}
\left|\tilde{S}\left(p^{l}, f\right)\right| & \left.\leq p^{\frac{\tau_{0}+1}{s} t\left(1-\frac{1}{s}\right.}\right)\left\{\sum_{k=1}^{\infty} \sum_{X \in \mathcal{B}_{k}} 1+\sum_{k=1}^{\infty} \sum_{X \in \mathcal{C}_{k}} 1\right\}, \\
& \leq m\left(p^{-\tau_{0}} f^{\prime}\right) p^{\frac{\tau_{0}+1}{s}} p^{t\left(1-\frac{1}{s}\right)} .
\end{aligned}
$$

This completes the proof of the theorem.
Proof of Theorem 3. Let $p=p_{1} p_{2} \cdots p_{R}$. We divide the proof into two cases.
(i) If $p_{i}>k$ for all i, then by Theorem 1

$$
\left|\tilde{S}\left(p_{i}^{t_{i}}, f\right)\right| \leq\left(k_{s}-1\right) p_{i}^{\left(1-\frac{1}{s}\right) t_{i}}
$$

By Lemma 5, we have

$$
|\tilde{S}(q, f)| \leq q^{\left(1-\frac{1}{s}\right)+\epsilon}
$$

for large q.
(ii) If $p_{r} \leq k_{1}$ and $p_{r+1}>k_{1}$, then

$$
\tilde{S}\left(p_{i}^{t_{i}}, f\right) \leq \begin{cases}m\left(p^{-\tau_{0}} f^{\prime}\right) k_{s}^{\frac{f+1}{5}} p_{i}^{\left(1-\frac{1}{s}\right) t_{i}}, & \text { if } i \leq r, \\ \left(k_{s}-1\right) p_{i}^{\left(1-\frac{1}{s}\right) t_{i}}, & \text { if } i>r .\end{cases}
$$

Note that $m\left(p^{-\tau_{0}} f^{\prime}\right) r \leq k_{s}-1$. By Lemma 5, we have

$$
|\tilde{S}(q, f)| \leq\left(\left(k_{s}-1\right) k_{s}^{\frac{\delta+1}{s}}\right)^{\omega(q)} q^{\left(1-\frac{1}{s}\right)}
$$

By Lemma 6,

$$
\left(\left(k_{s}-1\right) k_{s}^{\frac{\delta+1}{s}}\right)^{\omega(q)}<q^{\epsilon}
$$

if q is large. Therefore,

$$
|\tilde{S}(q, f)| \leq q^{\left(1-\frac{1}{s}\right)+\epsilon}
$$

This completes the proof of the theorem.

References

1. J. H. H. Chalk, On Hua's Estimates for Exponential Sums, Mathematika (2) 34(1987), 115-123.
2. Ping Ding, An improvement to Chalk's Estimation of Exponential Sums, Acta Arith. LIX.2(1991), 149-155.
3.

_ On Chalk's Estimation of Exponential Sums (II), Canad. Math. Bull., (1992), in the course of publication.
4. L. K. Hua, On an exponential sum, Chinese J. Math. 2(1940), 301-312.
5. \qquad , On exponential sums, Sci. Record (Peking) (N.S.) 1(1957), 1-4.
6. , Die Abschätzung von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Enzyklopa̋die Math. Wiss., Bd I2(1959), H.13, TI §13, S 41.
7. _ Additive Theory of Prime Numbers, Amer. Math. Soc. 1, Providence, 1965, 2-7.
8. W. K. A. Loh, Hua's Lemma, Bull. Austal. Math. Soc. (3) 50(1994), 451-458.
9. J. H. Loxton and R. A. Smith, On Hua's estimate of a complete exponential sums, J. London Math. Soc. (2) 26(1982), 15-20.
10. J. H. Loxton and R. C. Vaughan, The Estimation of Complete Exponential Sums, Canad. J. Math. (4) 28(1985), 440-454.
11. L. J. Mordell, On a sum analogous to a Gauss's sum, Quart. J. Math. 3(1932), 161-167.
12. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34(1948), 204-207.

