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BOUNDS FOR LATTICE POLYTOPES 
CONTAINING A FIXED NUMBER OF 

INTERIOR POINTS IN A SUBLATTICE 

JEFFREY C. LAGARIAS AND GUNTER M. ZIEGLER 

ABSTRACT. A lattice polytope is a polytope in R n whose vertices are all in Z n. The 
volume of a lattice polytope P containing exactly k > 1 points in dZn in its interior 
is bounded above by kdn(l(kd + 1 ))n2"+ . Any lattice polytope in R " of volume V can 
after an integral unimodular transformation be contained in a lattice cube having side 
length at most n • n ! V. Thus the number of equivalence classes under integer unimodular 
transformations of lattice poly topes of bounded volume is finite. If S is any simplex of 
maximum volume inside a closed bounded convex body K in R " having nonempty 
interior, then K C ( n + 2)S — (n + l)s where raS denotes a nomothetic copy of S with 
scale factor m, and s is the centroid of S. 

1. Introduction. A lattice polytope in R n is a convex polytope all of whose vertices 
are lattice points, i.e. points in Zn . A rational polytope P is a convex polytope with all 
vertices in Qn. The denominator of a rational polytope P is the smallest integer d > 1 
such that JP is a lattice polytope. 

For each n>2 there are lattice polytopes in R n of arbitrarily large volume containing 
no interior lattice points, and for n > 3 there are lattice simplices of arbitrarily large 
volume whose vertices are their only lattice points. However D. Hensley [5] proved that 
any lattice polytope P in R n containing exactly k > 1 interior lattice points has volume 
bounded by a finite bound V(n, k), and furthermore the total number of lattice points in 
the interior and on the boundary of such P is bounded by a finite bound J(n, k). 

The main purpose of this paper is to sharpen Hensley's upper bounds for V(n, k) and 
/(n, £), and to extend his results to apply to lattice polytopes containing a fixed number 
k > 1 of interior points in a given sublattice A of Zn. We also prove finiteness of the 
number of equivalence classes of such polytopes under lattice-point preserving affine 
maps. Finally, we prove that any closed convex body K in R " contains a simplex S such 
that K Ç (—n)S + (n + l)s and KC(n + 2)S — (n+ l)s, where s is the centroid of S, and 
if K is a lattice polytope then one can choose S, (—n)S + (n + 1 )s, and (n + 2)S — (n + 1 )s 
to all be lattice simplices. 

In extending Hensley's bounds, we treat first the special case A = d~Ln. This case 
arises in considering rational polytopes of denominator d containing k interior lattice 
points in Zn, after rescaling to clear the denominator. 
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THEOREM 1. Let V(n,k,d) denote the maximal volume of a lattice polytope in Kn 

that contains exactly k > 1 points in d~Ln in its interior, and let J(n, k, d) denote the 
maximum number of lattice points J(n, Je, d) inside or on the boundary of such a polytope. 
Then V(n, k, d) andJ(n, k, d) are finite, with 

(1.1) V(nXd) < kdn(l(kd+ l))n , 

and 

(1.2) J(n,k,d) <n + n\kdn(l(kd+l))n2n 

The proof follows the general approach of Hensley's proof, obtaining an improve
ment by sharpening his basic Diophantine approximation lemma. (Hensley's bound for 
V(n,it, 1) is roughly k(4k)nl+l.) 

Any bound on V(n, k, d) must have double exponential dependence on n. In § 2 we 
generalize examples of Zaks, Perles and Wills [10] to show that for n > 2, 

V(nXd)> k-^-{d+\fn~x-\ 
n\ 

J{n,k,d) >k(d+lf~\ 

The bound (1.1) is probably far from the truth in its dependence on k, however, and con
jectured extremal examples (see Proposition 2.6) suggest that V(n, k, d) grows linearly 
in k as k —-> oo with n and d fixed. 

Exact formulae for V(n, k, d) are known in a few cases. One has 

V(l9k,d) = (&+l)d, 

and a result of Scott [9] gives 

V(2kl)=l9/2 f0Tk=h 

n A / C ' 1 J l 2 ( * + l ) forfc>2. 

The bounds of Theorem 1 immediately yield bounds applicable to a general (full rank) 
sublattice A of Tn. Let d be the smallest positive integer such that d~Ln C A. If A, = 
min{A GN : Ae, G A}, then Ao = (Aiei, . . . , A„en) is a sublattice of A, and dZn Ç A 
requires d~Ln Ç Ao so that d — I. c. m. (X\,..., Xn). Since for each / there is a basis of 
A whose first vector is A/e,-, one has A,-| det(A), so that d\ det(A). If the columns of the 
integer matrix M are a basis of A then det(A) = | det(Af)| and adj(M) = | det(M)|M_1 

is an integer matrix. Furthermore M — * ^.. adj(M) is also an integer matrix, because 

MM — dl, and the columns of M express a basis of the sublattice dJ.n of A in terms of the 
basis M of A, hence are integral. The linear map O: Kn —• Kn given by 0(JC) = Mx has 
0>(Z") Ç Tn and O(A) = dZn, and its determinant is <f(det(A))~ . If a lattice polytope 
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P contains exactly k > 1 interior lattice points in A, then O(P) is a lattice polytope 
containing exactly k interior lattice points in dZn, hence 

Vol(<D(P)) < V(n,k,d), 

so that 

(1.3) Vol(P) < (<\et{KJ)drnV(n,k,d), 

and one also obtains 

(1.4) #(PH Zn)<J{n,k,d). 

The second question we study concerns the finiteness of the number of integral equiv
alence classes of such polytopes. The group of lattice point preserving maps Ln(Z) con
sists of those affine maps L with L(Z n) = Zn. They are exactly the maps L(x) = Gx + m 
with G G GL(AI, Z) and m G Zn. The subgroup £ ^ ( 1 ) contains all such maps which 
also have L(dZn) — dZn\ they consist of those maps L G Ln{Z) having m G dZn. 
Two polytopes Pi and P2 are integrally equivalent if L(Pi) = P2 for L G Ln(Z). Inte
grally equivalent polytopes have the same number of lattice points in each correspond
ing ^-dimensional face. Two polytopes are d-integrally equivalent if L(P\ ) = P2 for 
L G Lnj(Z ); such polytopes have the same number of lattice points in both Z n and dZn 

on corresponding faces. 
We establish the finiteness of the number of integral equivalence classes of lattice 

polytopes of bounded volume, as a consequence of the following result. A lattice cube 
is a cube with sides parallel to the coordinate axes whose vertices are lattice points. 

THEOREM 2. Any lattice polytope in R n of volume < V is integrally equivalent under 
a map x —-+ Ux with U G GL(n, Z ) to a lattice polytope contained in a lattice cube of 
side length at most n • n\V. 

The bound of Theorem 2 is reasonably tight since the lattice simplex Sn with vertices 
Vo = 0 and \t — e, for 1 < i < n — I and \n = [n\ V]en has volume Vol(Sn) < V and 
for any L G Ln(Z) the simplex L(S„) is not contained in any lattice cube of side length 

The finiteness of the number of integral equivalence classes of lattice polytopes of 
volume < V follows immediately from Theorem 2. By a translation in Zn we may move 
the cube inside {(x\,...,xn) : 0 < JC,- < n • n\ V}. Since there are only finitely many 
lattice points in this cube, there are at most finitely many integral equivalence types of 
such polytopes. If we wish to preserve membership in dZ n as well, this translation must 
be in dZn and we can move the cube into { (JCI, . . . ,xn) : 0 < xt < n • n\V + d}. The 
finiteness of integral equivalence classes for lattice simplices for n = 3 was previously 
established by Reznick [8, Section 3]. 

We also prove several properties of maximal volume simplices contained in a convex 
body K, some of which are used in the proof of Theorem 2. 
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THEOREM 3. (a) Suppose K is a closed bounded convex body in R n with nonempty 
interior. Let S be any simplex of maximal volume contained in K, and let s be its centriod. 
Then 

(1.5) KC(-n)S + (n+l)s, 

and 

(1.6) KC(n + 2)S-(n + l)s. 

(b) Any convex polytope K contains a maximal volume simplex S whose vertices are 
vertices ofK. In particular ifK is a lattice polytope then this S is a lattice simplex, and 
both (—n)S + (n + l)s and (n + 2)S — (n + l)s are lattice simplices. 

The study of maximal volume simplices in a convex body goes back at least to Rado 
[7, pp. 242-244], who showed that the centroid s of a maximal volume simplex in a 
convex body K as in part (a) has the property that any chord in K through s is divided 
into two segments of ratio k : / satisfying \ <-t <n. The inclusion K Ç (—n)S + (n + l)s 
is a well-known result traceable back to Mahler [6, pp. 111-116], and appears in Andrews 
[1, Lemma 2]. The observation that K Ç (n + 2)S — (n + l)s is apparently new. 

These two inclusions in part (a) are both sharp for all n > 2, in the sense that the 
minimal cn > 0 such that S Ç K Ç cnS + (cn — l)s is cn = n + 2, and the minimal | cn\ 
with cn < 0 is cn = —n, see the end of § 4. 

2. Proof of Theorem 1. We first consider a lattice simplex S in R" and let 
(ao9a\,...,an) denote the bary centric coordinates of an interior point w G d~Ln in S. 
The basic idea (due to Hensley [5]) is to show that w cannot be too close to a face of 
S, i.e. that its barycentric coordinates are bounded away from 0 and 1. This bounds the 
coefficient of asymmetry of S around the lattice point w, which leads to a bound on its 
volume by a generalization of Minkowski's convex body theorem due to Mahler. 

The lower bound in the following one-sided Diophantine approximation lemma pro
vides the basic ingredient in the proof. This result sharpens Lemma 3.1 in Hensley [5]. 
(Hensley's lemma yields roughly the bound 6 (n, d) > (4d)~n-~l.) 

LEMMA 2.1. For d > \letb (n, d) be the largest constant such that for all positive 
real numbers a\,...,an > 0 satisfying 

1 > Z > / > l-6(n,d) 

there exist integers Q,P\,... ,Pn with Q > 0, all Pi > 0, such that 
n p 

"'Sit-1 -
dPi 

(2) at> —J-f0rl<i<n, 
dQ+ 1 
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(3) \<dQ+\ <£>{n,dyx. 

Then 

(2.1) , d , >8(n,d) > (l(d+l))~2n+\ 
tn+\,d — A 

where tn^ is determined by t\j = d + 1 and the recursion tnj = t2
n_ld — tn-\4 + 1. 

One can easily prove by induction on n that 

(d+lf~l >tn4>{d+\f~\ 

where the lower bound is derived using unj = tn^ — 1, which satisfies un4 = u\_x d + 
un-\4. These inequalities show that the lower bound in (2.1) is qualitatively similar in 
order of magnitude to the upper bound. 

PROOF. The upper bound in (2.1) is obtained on choosing at — f- for 1 < i < n. 
One can easily prove by induction on n that tn+\4 — 1 = dn"=l U4 and 

n d 

1=1 tn+\4— 1 

Now there is no approximation satisfying (l)-(3), for if there were then (2) would give 
dQ+\> Pitied for all /. This implies that dQ > P^ since ^ G Z, hence 

U,d ~ Q ~ ~ 

Consequently 
fj n n p. 

tn-\,d — 1 i=i ,= i (J 

a contradiction. 
The main content of the lemma is the lower bound in (2.1). The proof is by induction 

l 
d+\ on n, holding d fixed. It's true for all d in the base case n — 1, on taking 6(lyd) — -^ 

with Q — P\ — 1. The upper bound in (2.1) holds with equality for this case. 
Now suppose n > 2 and that the lower bound in (2.1) is true for all values smaller 

than n. Reorder the at so that oc\ > a2 > • • • > otn > 0, and since £"=1 a, > \ (using 
the upper bound in (2.1)) we have oc\ > ^ . Let j - denote a lower bound for 6 (n, d), 
which will be determined in the proof (by (2.11) below), and choose Ai4 = d + 1. We 
set ELi «i = 1 - M with 0 < ix < v1-. 

If there is some j < n such that 

ot\ + • • • + a}> 1 , 
&j,d 

then by the induction hypothesis there exists (Q,P\,...,Pj) satisfying (l)-(3) for 
(« i , . . . , a,-), and on setting P/+i = • • • = Pn — 0 we obtain a solution to (l)-(3) for 
(« i , . . . , an). Thus we need only consider the case that 

(2.2) a^ i+ • • • + <*„> 7 - , 1 <j <n-h 
&j,d 
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holds. Now the ordering of the a/'s gives 

(n -j)aj+i > ocj+i + ctj+2 + ••• + «„, 

which with (2.2) yields 

(2.3) a i > J _ , l<j<n-l. 

By Minkowski's convex body theorem ([3, p. 71]) there exists a nonzero lattice point 
in the open symmetric convex body K = K(g, P2,.. ., P«) in R n defined by 

(2.4a) IQI < * , 

(2.4*) l ^ . p ^ n r i n ^ . ^ ^ ^ Î > 2. 

provided that Vol(K) > 2n, that is provided 

(2-5) ^P2min(ia,^l^)>l. 

Using the facts that otj < 1/2 for i > 2 and (2.3) we obtain, for i > 2, 

111111W " 2n2(d+l)J n2(d+l) ~ n3(rf+ l)A,--u" 

Thus (2.5) is certainly satisfied whenever 

«-1 

(2.6) / ? > n 3 n - v + i ) n _ i n A M * -
1=1 

Take a nonzero solution (Q,Pi,.. • ,Pn) in K, and observe that Q ^ 0 because 2 = 0 
implies by (2.4b) that all P; = 0, a contradiction. We may suppose that Q > 0 since 
(—Gi —Pi -P„) is also in K, and (2.4b) then shows that all Pt > 0 for i > 2. 

Now define Pi by 

which makes (1) hold. We also have by (2.4b) that 

(2.7) (dQ + lfa = dPt + at + d(Qat - Pt) > dPt 

for 2 < 1 < n, which verifies (2) except for i = 1. Next we show that Pi > 0. If 

d\ = ot\ + [i = 1 — E"=2
 a " m e n 

Qâi - P i = g ( l - X > ) - ( ô - è ^ ) 

1=2 
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Hence using cc\ > ot\ > ^ , 

(2.8) | G â i - P i I <it\Q<*i-pi\ < E , 2 l n < TTT«i-
•/=2 /=2 2«z(a + l ) d + 1 

Thus Pi is the nearest integer to Qd\, hence Pi > 0. 
We claim that (2) and (3) will hold provided A„4 and R are suitably chosen. To check 

(2) we need only treat the case i = 1, by (2.7). We have, using (2.8) and (2.4a), 

(dQ + l)ai = (dQ + l)5i - (dQ + l)/x 

- dPx +CCX+ d(Qdx -P0-(dQ+ l)/i 

d 
> dP\ + â\ - -—-6c\ - (dR + l)/i 

d + 1 
> dPx + - — - a x - (dR + 1 ) — . 

d + 1 An4 

This shows that (2) holds provided that 

(2.9) dR + l< * An,,, 
2n(d+ 1) 

since d\ > ^ . Also the inequality (2.9) guarantees that (3) holds, since 1 < Q < R. 
Thus to prove existence it suffices to choose Anj large enough that an R exists satis

fying (2.6) and (2.9). Now (2.9) holds if 

2n(d + \)1 

This condition will allow an R for which (2.6) holds to exist provided that 

(2.10) * A M > « 3 w - v + i f - 1 n 1 A ^ . 

It suffices to choose 

(2.H) A ^ ^ v + i r 1 n ^ , 
/=i 

for Anj to make (2.10) hold for n > 2 and this completes the induction step. 
To complete the proof, we show that 

An,d<(7(d+l)f+\ 

Indeed (2.11) for n > 2 gives the recursion 

n-\ 
log An4 = 3nlogn + (n + l)\og(d + 1) + £ l og(A^) 

1=1 
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with A\j(i = d+1. This recursion can be solved explicitly, yielding the following inequal
ities (in which the logarithms are to base 2): 

n-\ 
logAn4 = 3nlogn + 3 £ 2n","-1ïlog/ + (5 • 2n~2 - l)\og(d+ 1) 

< 3 • 2n~l £ 2"'(« log i) + 5 • 2n~2 log(d + 1) 
i>2 

< 3 • 2n _ 1 £ 2"'/(/ - 1) + 5 • 2n~2 \og(d + 1) 
i>2 

= 3 • 2n+1 + 5 • 2n~2 \og(d + 1)< 2"+1 log(7(d + 1)). 

• 
Hensley conjectured that the upper bound in (2.1) holds with equality for d = 1 and 

all n, and we extend this to conjecture that it holds for all n and d. The proof showed 
the conjecture is true for n = 1 and all d, and we have also verified it in the cases 
(/i, d) = (2,1), (3,1), (2,2) and (2,3). 

LEMMA 2.2. TfS is a lattice simplex in Rn with k = #(dln n Int(S)) > 1, and if 
(ao>..., crn) are r/i£ bary centric coordinates of an interior point w in dTn then 

6(n,dk) <at< l-n6(n,dk). 

PROOF. Suppose not, so that some at < 8(n,dk), which we may take to be a0. 
Lemma 2.1 applies to (oc\,..., an) and the (Q, P i , . . . , Pn) it produces satisfies 

(jQ+l)<Xi>jPh \<i<n 

for 1 < j <kd, If Y/ are the vertices of S then 

n 

xm = (mJg + l)w + m J ] JP/V/ 
i=i 

for 0 < m < k are distinct points in d~Ln D Int(S), a contradiction. • 
Theorem 1.1 for a lattice simplex S follows from Lemma 2.1 and the following bound. 

LEMMA 2.3. Suppose that S is a lattice simplex in Rn such that k — #(dZn n 

Int(S)) > 1. Then 

Vol(S) < —(k+ l)dnè(n,dkTn. 
ni 

PROOF. We adapt the proof of Theorem 3.4 in [5]. Let O be an affine map that takes 
S to the "standard simplex" So having vertices 0,ei,... ,e„ in Rn. Let A = 0(Zn) , 
so that A is a (possibly noninteger) lattice of determinant | det(0)| and S has volume 
Vol(S)=i f |det(*) | - 1 . 

Suppose that y G dZn n Int(S0) and set v = O(y) = £"=1 af/e,-, where at are 
bary centric coordinates. The region R = {v + u : \ut\ < a/ for 1 < i < n} is 
centrally symmetric about v, and 0(JZ n) = v + dA is a coset of the lattice dA. By 
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van der Corput's theorem ([4, p. 51]) R contains at least the greatest integer strictly less 
than ( n"=i cti ) j ; | det(0)|_ 1 distinct pairs of points v ± u where each u G dK is nonzero. 
Now let u = £"=i ufa with | w;| < at for all /. Then at least one of v + u and v — u is 
in Int(So) if some ax > 1/2 and both v ± u are in Int(S0) otherwise. Thus Lemma 2.2 
yields 

k = #(dZn Pi Int(S)) = #((v + dK) PI Int(So)) > ~( f[ a/11 det(0)|~ l - 1, 

>d-n8(n,kd)nn\ Vol (S) - l . 

• 
To prove Theorem 1 for a general lattice poly tope P we follow Hensley's arguments 

exactly. As a consequence of Lemma 2.2 one has: 

LEMMA 2.4. Let ¥ be a lattice polytope in R n of dimension n—\. Let XQ be a lattice 
point not in the (n — 1)-dimensional hyperplane containing F and let P be the conical 
lattice polytope which is the convex hull of F and Xo. Suppose k — #(dZ n H Int(P)) > 1. 
Ifx\,...,xm are the lattice vertices of F then for any barycentric representation of y 
contained in dZn H Int(P) as y = E^o a 'x* w^tn a^ a* — 0> ̂ w=o a* — 1» one nas 

S(n9dk)<a0< l-6(n,dk). 

PROOF. See Hensley, [5, Corollary 3.2]. • 
The coefficient of asymmetry a(K, x) of a convex body K about a point x is 

,__ . max{A : x + Ay G K} 
(j(K,x)= sup max{ A : x — A y G K} 

Using Lemma 2.4 one finds that the coefficient of asymmetry a(P, y) of a lattice polytope 
P having #( jZ n n Int(P)) = k > 1 about any y G (dZn H Int(P)) satisfies 

o (n, ko) 

Now we use the following extension of a theorem of Mahler (see [4, p. 52]). 

THEOREM 2.5. IfK is any convex body having k = #{dZn D Int(K)) > 1, such that 
the coefficient of assymmetry <r(P, y) about some y G dZn D Int(K) satisfies a(P, y) < 
^-then 

d\n 
Vol(K) < k(j)\ 

8. 

PROOF. By rescaling coordinates by a factor of d we may suppose without loss of 
generality that d = 1, and by a further translation we may suppose that y = 0. We 
argue by contradiction. If Vol(K) > k8~n, then one can choose e > 0 small enough 
that K; = (1 - e)K has Vol(K;) > kè~n. Then put K" = (1 + a)-lK' = è^K', and 
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Vol(K") > k. By van der Corput's theorem ([4, p. 51]) K" contains points x, y i , . . . , y*+i 
such that all y,- - x G Zn. Now - ± x G K" by definition of a = a(K, 0) = <r(K", 0). By 
convexity 

1 +a 1+a l + a v a J 
hence all y/ — x € K7. Since K7 Ç Int(K), there are k + 1 interior lattice points in K, a 
contradiction. • 

We have now completed all the work for Theorem 1. In fact, applying Theorem 2.5 
to (2.12) yields 

Vol(P) <kdn6(n,kd)-\ 

and (1.1) follows using Lemma 2.1. If P is a lattice simplex Lemma 2.3 gives a slightly 
stronger bound for n > 2. 

A theorem of Blichfeldt ([2],[3, p. 69]) asserts that any body P containing J lattice 
points spanning Rn has Vol(P) > ^f, which yields J < n + n\ Vol(P), and (1.2) 
follows. • 

We give lower bounds for V(n, k, d) and J(n, k, d) by extending examples of Zaks, 
Perles and Wills [10]. These involve the sequences tn4 defined in Lemma 2.1. 

PROPOSITION 2.6. The lattice simplex Sn,k,d having vertices vo = 0, v, = f;^e; for 
1 < / < n — 1, and vn = (k + \){tnd — l)e„ contains exactly k interior lattice points in 
dZn. Hence 

(2.13) V(n,*, d) > * ± ! ( ft tiÀ){tn4 - 1) = ^ _ i L t _ X)\ 

and 
J(nXd)>{k+\){tn4-\). 

This proposition gives the lower bounds stated in § 1 using tn4 > (d+l)2" for n>2. 

PROOF. We show that 

Int(S„,M) H dTn = {(d,d, ...,d,id):l<i<k}. 

Let (ao, oc\,..., otn) denote the barycentric coordinates of a lattice point w = ££=0 «/v,- G 
dZn in Int(Sn^)- By induction on / for 1 < i < n— \ starting from / = 1 one shows 
that at — j - using the relation 

(2-14) ±±=l-^L-

because necessarily ay = ^ for some m > 1, and choosing m > 2 gives £ j = 1 a, > 1, 
a contradiction. Next (2.14) allows only an = (k+x^f _ t) with 1 < m < k. Since ao = 
1 — ELi cti one checks that these barycentric coordinates actually yield the k lattice 
points in d~ln above. • 

It is possible that equality holds in (2.13) for all (n, k, d) ^ (2,1,1). This is however 
an open problem even for n = 2. Furthermore it is possible that the only lattice poly topes 
attaining equality in (2.13) are lattice simplices unless (n, d) = (2,1). 
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3. Proof of Theorem 2. First consider the case that the poly tope is a simplex S 
having vertices vo, v i , . . . , \n G Z n. Consider the lattice A spanned by the basis vectors 
w; = y/ — v0 for \ <i <n. Then A is a sublattice of Zn and 

det(A) = [Zn : A] = n\ Vol(S) < n\ V. 

Let B be the integer matrix whose /th row is w„ so that | det(#)| = det(A). If Po is the 

parallelepiped |y : y = EJLiJ/W,-, 0 < yt < 11 then S is contained in the translated 

parallelepiped vo + Po- Now there is a matrix U G GL(n, Z) taking the basis matrix to 

the lower-triangular form (Hermite normal form): 

r#ii i 

\_&n\ ' ' ' &nn J 

with 0 < up < a„ for; > i and all ait > 0 ([3, p. 13]). Now | det(J5)| = II-Li an < n\ V, 
hence 1 < an < n\ V and the parallelepiped generated by the row vectors of UB is 
contained in the cube { x : 0 < xt < n\ V for 1 <i<n}. The map x - > ( / x G 4 takes 
S to £/S, which is contained in this parallelepiped, and thus lies in a lattice cube of side 
at most n\ V. 

Now suppose that P is an arbitrary lattice polytope. We assume that Theroem 3 is 
proved. By Theorem 3(b) it contains a maximal volume simplex S which is a lattice 
simplex. The argument above shows that there exists a transformation U G GL(n, Z ) 
such that x —•+ Ux maps S to a lattice simplex Si contained in a lattice cube C of side 
n\ V, and maps P to a lattice polytope Pi. Then Si is a maximal volume simplex in Pi, 
so by Theorem 3(a) Pi is contained in the lattice simplex (—n)S\ + (n + l)s, where s is 
the centroid of Si, and (n + l)s G Zn. Consequently Pi is contained in the lattice cube 
(—n)C + (n + l)s of side n • n\ V. m 

4. Proof of Theorem 3. Let S be any maximal volume simplex in the bounded con
vex body K, and let vo, . . . , v„ be the vertices of S. By making a translation if necessary 
we may assume that the centroid of S is 0, i.e. £"=0 v,- = 0. Our object is then to show 
that K Ç (—n)S and KÇ (n + 2)S. Let //, be the hyperplane spanned by all the vertices 
except v/, and let dt — dist(v,-,//,-). Define ///\ HJ~ to be the two hyperplanes parallel to 
Hi such that Hf contains v, while Hj is at distance dt from Ht with Ht separating / / r 
from v/. We claim that K is contained in the closed region R; between H+ and Hj. For if 
y G K were outside this region, then the simplex spanned by y and all v7 for; ^ / would 
have volume bigger than Vol(S), a contradiction. Hence K Ç fÇLo ^* 

We will show that 

(4.1) n R i = (/i + 2)Sn(- / i )S , 
i=0 

https://doi.org/10.4153/CJM-1991-058-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-058-4


BOUNDS FOR LATTICE POLYTOPES 1033 

which implies part (a) of the theorem. Since S has nonzero volume, all points in R n have 
unique barycentric coordinates y = E"=0 A

y* w ^ n £?=o A' = *• ^ ° e r e gi° n ^/ *s given 
by the barycentric coordinates: 

R<- = (y = tpjVj : £ft= 1 and \fr\ < 1 ). 
I j=0 j=0 ) 

This is clear since if y = £"=o ftv/ then dist(y,f/,-) = |ft|d,-. Hence 

(4.2) 

Since X^L0
 v* = 0 by hypothesis, 

y = ^2 aj(~nYj) : E a7 = * a n c^a^ aj— 0 
7=0 j=0 ) 

= {y = ÈPrt • È & = 1 and all ft- < l ) , 
I 7=0 7=0 i 

fi * = J = E M : £ft = 1 and all |ft| < 1 . 
i=l I 7=0 7=0 

(4.3) 

where ft = -na ;- + 1. Similarly 

(n + 2)S 

(4.4) 

y = ^ a7(n + 2)vy : E
 a ; ~ * anc^ ^ aj — 0 

7-0 7=0 

= y = E M : EA- = 1 andallft > -1 
7=0 7=0 

where ft = (n + 2)a; — 1. The equality (4.1) follows on comparing (4.2)-(4.4). 
To prove part (b), let P be a convex poly tope having nonzero volume. We wish to 

show that P contains a maximal volume simplex whose vertices are all vertices of P. Let 
S' be a maximal volume simplex contained in P. If it has a vertex W not a vertex of P, 
consider the linear program of maximizing the (oriented) distance of a point in P from 
the hyperplane spanned by the other n vertices of S'. Some vertex W of P is an optimal 
point for this linear program, so we can replace W by w" to obtain a new maximal volume 
simplex for P which has one fewer vertex not a vertex of P. Continuing in this way, we 
eventually obtain a maximal volume simplex S all of whose vertices are vertices of P. 

If P is a lattice polytope this S is a lattice simplex. If its vertices are vo,. . . , v„ then 
(n + l)s = £?=0 V,- e Zn. Hence (-n)S + (n + l)s and (n + 2)S - (n + l)s are lattice 
simplices. • 

REMARKS. (1) If P is a lattice polytope having the maximum volume simplex S 
which is a lattice simplex, then 

f) Ri = (n + 2)S H (-n)S 
i=0 

is a lattice polytope. For (4.2) implies that is vertices are contained in the set of lattice 

points { E ? = 0 A
v«" : £?=o0i = ! md a11 Pi e { 1,0, - 1 } ). 
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(2) The inclusion K C (—n)S + (n + l)s is sharp in the sense that if K C c„S + (l— cn)s 
for all K and cn < 0 then cn < —n. Take K to be a simplex 

S = conv(0,ei,...,e„). 

= ( x e R " : a lU > 0 a n d ] [ > < l}-

Then s — ( ̂ , . . . , j ~ ) and for cn < 0 one has 

cnS = |x G Rn : all JC, < 0 and £*,- > cn\. 

Hence 

cnS + (l-cn)s= ( x G R " : alljc/ < — % and VJC, > -^—(n + cn)\. I n + 1 -rf w + 1 J 

To obtain ei in this region requires cn < —n. 
(3) The inclusion K C (n+2)S—(n+l)s is sharp in the sense that if K C cnS+(l — cn)s 

for all K and cn > 0 then cn > n + 2. Let 

K = conv{ ±e,- : 1 < i < n} 

be the n-dimensional cross-polytope. A maximum volume simplex S in K is given by 

S = conv{— ei,ei,e2,. . . ,e„} 

- ( xE Rn :x2 >0 , . . . , j t n > 0 , ± 1 + X > < l ) . 

of volume ^ , with centroid s = ( 0, ^ , . . . , ^ ) . This holds because every lattice sim
plex in K has this form after a suitable permutation of the coordinate axes, and after 
sending certain X( —• — xt. Now suppose cn > 0 is such that K Ç cnS — (cn — l)s. 
Computation yields 

cnS= IxG Rn : x2 >0, . . . , j t„ >0,zbci +J2xt <cn\, 
1 i=2 J 

hence 

c„S - (cn - l)s 

i « + 1 w + 1 £2 « + 1 « - 1 J 

For n > 2 the condition —e2 G cwS — (c„ — l)s requires — 1 > ^f-, which is cn > n + 2. 
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