BOUNDS FOR LATTICE POLYTOPES CONTAINING A FIXED NUMBER OF INTERIOR POINTS IN A SUBLATTICE

JEFFREY C. LAGARIAS AND GÜNTER M. ZIEGLER

Abstract

A lattice polytope is a polytope in \mathbb{R}^{n} whose vertices are all in \mathbf{Z}^{n}. The volume of a lattice polytope \mathbf{P} containing exactly $k \geq 1$ points in $d \mathbf{Z}^{n}$ in its interior is bounded above by $k d^{n}(7(k d+1))^{n 2^{n+1}}$. Any lattice polytope in \mathbb{R}^{n} of volume V can after an integral unimodular transformation be contained in a lattice cube having side length at most $n \cdot n!V$. Thus the number of equivalence classes under integer unimodular transformations of lattice polytopes of bounded volume is finite. If \mathbf{S} is any simplex of maximum volume inside a closed bounded convex body \mathbf{K} in \mathbb{R}^{n} having nonempty interior, then $\mathbf{K} \subseteq(n+2) \mathbf{S}-(n+1) \mathbf{s}$ where $m \mathbf{S}$ denotes a homothetic copy of \mathbf{S} with scale factor m, and s is the centroid of S.

1. Introduction. A lattice polytope in \mathbb{R}^{n} is a convex polytope all of whose vertices are lattice points, i.e. points in \mathbb{Z}^{n}. A rational polytope \mathbf{P} is a convex polytope with all vertices in \mathbf{Q}^{n}. The denominator of a rational polytope \mathbf{P} is the smallest integer $d \geq 1$ such that $d \mathbf{P}$ is a lattice polytope.

For each $n \geq 2$ there are lattice polytopes in \mathbb{R}^{n} of arbitrarily large volume containing no interior lattice points, and for $n \geq 3$ there are lattice simplices of arbitrarily large volume whose vertices are their only lattice points. However D. Hensley [5] proved that any lattice polytope \mathbf{P} in \mathbb{R}^{n} containing exactly $k \geq 1$ interior lattice points has volume bounded by a finite bound $V(n, k)$, and furthermore the total number of lattice points in the interior and on the boundary of such \mathbf{P} is bounded by a finite bound $J(n, k)$.

The main purpose of this paper is to sharpen Hensley's upper bounds for $V(n, k)$ and $J(n, k)$, and to extend his results to apply to lattice polytopes containing a fixed number $k \geq 1$ of interior points in a given sublattice Λ of \mathbb{Z}^{n}. We also prove finiteness of the number of equivalence classes of such polytopes under lattice-point preserving affine maps. Finally, we prove that any closed convex body \mathbf{K} in \mathbb{R}^{n} contains a simplex \mathbf{S} such that $\mathbf{K} \subseteq(-n) \mathbf{S}+(n+1) \mathbf{s}$ and $\mathbf{K} \subseteq(n+2) \mathbf{S}-(n+1) \mathbf{s}$, where \mathbf{s} is the centroid of \mathbf{S}, and if \mathbf{K} is a lattice polytope then one can choose $\mathbf{S},(-n) \mathbf{S}+(n+1) \mathbf{s}$, and $(n+2) \mathbf{S}-(n+1) \mathbf{s}$ to all be lattice simplices.

In extending Hensley's bounds, we treat first the special case $\Lambda=d \mathbb{Z}^{n}$. This case arises in considering rational polytopes of denominator d containing k interior lattice points in \mathbf{Z}^{n}, after rescaling to clear the denominator.

Received by the editors August 4, 1989; revised May 30, 1991.
AMS subject classification: Primary: 52A43, 11H06; secondary: 11P21.
(c) Canadian Mathematical Society 1991.

THEOREM 1. Let $V(n, k, d)$ denote the maximal volume of a lattice polytope in \mathbf{R}^{n} that contains exactly $k \geq 1$ points in $d \mathbb{Z}^{n}$ in its interior, and let $J(n, k, d)$ denote the maximum number of lattice points $J(n, k, d)$ inside or on the boundary of such a polytope. Then $V(n, k, d)$ and $J(n, k, d)$ are finite, with

$$
\begin{equation*}
V(n, k, d) \leq k d^{n}(7(k d+1))^{n 2^{n+1}} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J(n, k, d) \leq n+n!k d^{n}(7(k d+1))^{n 2^{n+1}} \tag{1.2}
\end{equation*}
$$

The proof follows the general approach of Hensley's proof, obtaining an improvement by sharpening his basic Diophantine approximation lemma. (Hensley's bound for $V(n, k, 1)$ is roughly $k(4 k)^{n!+1}$.)

Any bound on $V(n, k, d)$ must have double exponential dependence on n. In $\S 2$ we generalize examples of Zaks, Perles and Wills [10] to show that for $n \geq 2$,

$$
\begin{aligned}
& V(n, k, d) \geq \frac{k+1}{n!}(d+1)^{2^{n-1}-1} \\
& J(n, k, d) \geq k(d+1)^{2^{n-2}}
\end{aligned}
$$

The bound (1.1) is probably far from the truth in its dependence on k, however, and conjectured extremal examples (see Proposition 2.6) suggest that $V(n, k, d)$ grows linearly in k as $k \rightarrow \infty$ with n and d fixed.

Exact formulae for $V(n, k, d)$ are known in a few cases. One has

$$
V(1, k, d)=(k+1) d,
$$

and a result of Scott [9] gives

$$
V(2, k, 1)= \begin{cases}9 / 2 & \text { for } k=1 \\ 2(k+1) & \text { for } k \geq 2\end{cases}
$$

The bounds of Theorem 1 immediately yield bounds applicable to a general (full rank) sublattice Λ of \mathbb{Z}^{n}. Let d be the smallest positive integer such that $d \mathbf{Z}^{n} \subset \Lambda$. If $\lambda_{i}=$ $\min \left\{\lambda \in \mathbb{N}: \lambda \mathbf{e}_{i} \in \Lambda\right\}$, then $\Lambda_{0}=\left\langle\lambda_{1} \mathbf{e}_{1}, \ldots, \lambda_{n} \mathbf{e}_{n}\right\rangle$ is a sublattice of Λ, and $d \mathbf{Z}^{n} \subseteq \Lambda$ requires $d \mathbb{Z}^{n} \subseteq \Lambda_{0}$ so that $d=$ l.c.m. $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Since for each i there is a basis of Λ whose first vector is $\lambda_{i} \mathbf{e}_{i}$, one has $\lambda_{i} \mid \operatorname{det}(\Lambda)$, so that $d \mid \operatorname{det}(\Lambda)$. If the columns of the integer matrix M are a basis of Λ then $\operatorname{det}(\Lambda)=|\operatorname{det}(M)|$ and $\operatorname{adj}(M)=|\operatorname{det}(M)| M^{-1}$ is an integer matrix. Furthermore $\tilde{M}=\frac{d}{\operatorname{det}(\Lambda)} \operatorname{adj}(M)$ is also an integer matrix, because $M \tilde{M}=d I$, and the columns of \tilde{M} express a basis of the sublattice $d \mathbf{Z}^{n}$ of Λ in terms of the basis M of Λ, hence are integral. The linear map $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\Phi(x)=\tilde{M} \mathbf{x}$ has $\Phi\left(\mathbb{Z}^{n}\right) \subseteq \mathbb{Z}^{n}$ and $\Phi(\Lambda)=d \mathbb{Z}^{n}$, and its determinant is $d^{n}(\operatorname{det}(\Lambda))^{-1}$. If a lattice polytope
\mathbf{P} contains exactly $k \geq 1$ interior lattice points in Λ, then $\Phi(\mathbf{P})$ is a lattice polytope containing exactly k interior lattice points in $d \mathbb{Z}^{n}$, hence

$$
\operatorname{Vol}(\Phi(\mathbf{P})) \leq V(n, k, d),
$$

so that

$$
\begin{equation*}
\operatorname{Vol}(\mathbf{P}) \leq(\operatorname{det}(\Lambda)) d^{-n} V(n, k, d), \tag{1.3}
\end{equation*}
$$

and one also obtains

$$
\begin{equation*}
\#\left(\mathbf{P} \cap \mathbb{Z}^{n}\right) \leq J(n, k, d) \tag{1.4}
\end{equation*}
$$

The second question we study concerns the finiteness of the number of integral equivalence classes of such polytopes. The group of lattice point preserving maps $\mathcal{L}_{n}(\mathbb{Z})$ consists of those affine maps L with $L\left(\mathbb{Z}^{n}\right)=\mathbb{Z}^{n}$. They are exactly the maps $L(\mathbf{x})=G \mathbf{x}+\mathbf{m}$ with $G \in G L(n, \mathbb{Z})$ and $\mathbf{m} \in \mathbb{Z}^{n}$. The subgroup $\mathcal{L}_{n, d}(\mathbb{Z})$ contains all such maps which also have $L\left(d \mathbb{Z}^{n}\right)=d \mathbb{Z}^{n}$; they consist of those maps $L \in \mathcal{L}_{n}(\mathbb{Z})$ having $\mathbf{m} \in d \mathbb{Z}^{n}$. Two polytopes \mathbf{P}_{1} and \mathbf{P}_{2} are integrally equivalent if $L\left(\mathbf{P}_{1}\right)=\mathbf{P}_{2}$ for $L \in \mathcal{L}_{n}(\mathbb{Z})$. Integrally equivalent polytopes have the same number of lattice points in each corresponding k-dimensional face. Two polytopes are d-integrally equivalent if $L\left(\mathbf{P}_{1}\right)=\mathbf{P}_{2}$ for $L \in \mathcal{L}_{n, d}(\mathbb{Z})$; such polytopes have the same number of lattice points in both \mathbb{Z}^{n} and $d \mathbb{Z}^{n}$ on corresponding faces.

We establish the finiteness of the number of integral equivalence classes of lattice polytopes of bounded volume, as a consequence of the following result. A lattice cube is a cube with sides parallel to the coordinate axes whose vertices are lattice points.

THEOREM 2. Any lattice polytope in \mathbb{R}^{n} of volume $\leq V$ is integrally equivalent under a map $\mathbf{x} \rightarrow U \mathbf{x}$ with $U \in G L(n, \mathbb{Z})$ to a lattice polytope contained in a lattice cube of side length at most $n \cdot n!V$.

The bound of Theorem 2 is reasonably tight since the lattice simplex \mathbf{S}_{n} with vertices $\mathbf{v}_{0}=\mathbf{0}$ and $\mathbf{v}_{i}=\mathbf{e}_{i}$ for $1 \leq i \leq n-1$ and $\mathbf{v}_{n}=[n!V] \mathbf{e}_{n}$ has volume $\operatorname{Vol}\left(\mathbf{S}_{n}\right) \leq V$ and for any $L \in \mathcal{L}_{n}(\mathbb{Z})$ the simplex $L\left(\mathbf{S}_{n}\right)$ is not contained in any lattice cube of side length $\frac{1}{\sqrt{n}}(n!) V$.

The finiteness of the number of integral equivalence classes of lattice polytopes of volume $\leq V$ follows immediately from Theorem 2. By a translation in \mathbb{Z}^{n} we may move the cube inside $\left\{\left(x_{1}, \ldots, x_{n}\right): 0 \leq x_{i} \leq n \cdot n!V\right\}$. Since there are only finitely many lattice points in this cube, there are at most finitely many integral equivalence types of such polytopes. If we wish to preserve membership in $d \mathbb{Z}^{n}$ as well, this translation must be in $d \mathbb{Z}^{n}$ and we can move the cube into $\left\{\left(x_{1}, \ldots, x_{n}\right): 0 \leq x_{i} \leq n \cdot n!V+d\right\}$. The finiteness of integral equivalence classes for lattice simplices for $n=3$ was previously established by Reznick [8, Section 3].

We also prove several properties of maximal volume simplices contained in a convex body \mathbf{K}, some of which are used in the proof of Theorem 2.

THEOREM 3. (a) Suppose \mathbf{K} is a closed bounded convex body in \mathbb{R}^{n} with nonempty interior. Let \mathbf{S} be any simplex of maximal volume contained in \mathbf{K}, and let \mathbf{s} be its centriod. Then

$$
\begin{equation*}
\mathbf{K} \subseteq(-n) \mathbf{S}+(n+1) \mathbf{s} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{K} \subseteq(n+2) \mathbf{S}-(n+1) \mathbf{s} \tag{1.6}
\end{equation*}
$$

(b) Any convex polytope \mathbf{K} contains a maximal volume simplex \mathbf{S} whose vertices are vertices of \mathbf{K}. In particular if \mathbf{K} is a lattice polytope then this \mathbf{S} is a lattice simplex, and both $(-n) \mathbf{S}+(n+1) \mathbf{s}$ and $(n+2) \mathbf{S}-(n+1) \mathbf{s}$ are lattice simplices.

The study of maximal volume simplices in a convex body goes back at least to Rado [7, pp. 242-244], who showed that the centroid \mathbf{s} of a maximal volume simplex in a convex body \mathbf{K} as in part (a) has the property that any chord in \mathbf{K} through \mathbf{s} is divided into two segments of ratio $k: l$ satisfying $\frac{1}{n} \leq \frac{k}{l} \leq n$. The inclusion $\mathbf{K} \subseteq(-n) \mathbf{S}+(n+1) \mathbf{s}$ is a well-known result traceable back to Mahler [6, pp. 111-116], and appears in Andrews [1, Lemma 2]. The observation that $\mathbf{K} \subseteq(n+2) \mathbf{S}-(n+1) \mathbf{s}$ is apparently new.

These two inclusions in part (a) are both sharp for all $n \geq 2$, in the sense that the minimal $c_{n}>0$ such that $\mathbf{S} \subseteq \mathbf{K} \subseteq c_{n} \mathbf{S}+\left(c_{n}-1\right) \mathbf{s}$ is $c_{n}=n+2$, and the minimal $\left|c_{n}\right|$ with $c_{n}<0$ is $c_{n}=-n$, see the end of $\S 4$.
2. Proof of Theorem 1. We first consider a lattice simplex \mathbf{S} in \mathbb{R}^{n} and let $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ denote the barycentric coordinates of an interior point $\mathbf{w} \in d \mathbb{Z}^{n}$ in \mathbf{S}. The basic idea (due to Hensley [5]) is to show that \mathbf{w} cannot be too close to a face of \mathbf{S}, i.e. that its barycentric coordinates are bounded away from 0 and 1 . This bounds the coefficient of asymmetry of \mathbf{S} around the lattice point \mathbf{w}, which leads to a bound on its volume by a generalization of Minkowski's convex body theorem due to Mahler.

The lower bound in the following one-sided Diophantine approximation lemma provides the basic ingredient in the proof. This result sharpens Lemma 3.1 in Hensley [5]. (Hensley's lemma yields roughly the bound $\delta(n, d) \geq(4 d)^{-n!-1}$.)

Lemma 2.1. For $d \geq 1$ let $\delta(n, d)$ be the largest constant such that for all positive real numbers $\alpha_{1}, \ldots, \alpha_{n}>0$ satisfying

$$
1 \geq \sum_{i=1}^{n} \alpha_{i}>1-\delta(n, d)
$$

there exist integers Q, P_{1}, \ldots, P_{n} with $Q>0$, all $P_{i} \geq 0$, such that
(1) $\sum_{i=1}^{n} \frac{P_{i}}{Q}=1$,
(2) $\alpha_{i}>\frac{d P_{i}}{d Q+1}$ for $1 \leq i \leq n$,
(3) $1 \leq d Q+1 \leq \delta(n, d)^{-1}$.

Then

$$
\begin{equation*}
\frac{d}{t_{n+1, d}-1} \geq \delta(n, d) \geq(7(d+1))^{-2^{n+1}} \tag{2.1}
\end{equation*}
$$

where $t_{n, d}$ is determined by $t_{1, d}=d+1$ and the recursion $t_{n, d}=t_{n-1, d}^{2}-t_{n-1, d}+1$.
One can easily prove by induction on n that

$$
(d+1)^{2^{n-1}} \geq t_{n, d} \geq(d+1)^{2^{n-2}}
$$

where the lower bound is derived using $u_{n, d}=t_{n, d}-1$, which satisfies $u_{n, d}=u_{n-1, d}^{2}+$ $u_{n-1, d}$. These inequalities show that the lower bound in (2.1) is qualitatively similar in order of magnitude to the upper bound.

Proof. The upper bound in (2.1) is obtained on choosing $\alpha_{i}=\frac{d}{t_{i, d}}$ for $1 \leq i \leq n$. One can easily prove by induction on n that $t_{n+1, d}-1=d \prod_{i=1}^{n} t_{i, d}$ and

$$
\sum_{i=1}^{n} \alpha_{i}=1-\frac{d}{t_{n+1, d}-1} .
$$

Now there is no approximation satisfying (1)-(3), for if there were then (2) would give $d Q+1>P_{i} t_{i, d}$ for all i. This implies that $d Q \geq P_{i} t_{i, d}$ since $t_{i, d} \in \mathbb{Z}$, hence

$$
\frac{d}{t_{i, d}} \geq \frac{P_{i}}{Q}, \quad 1 \leq i \leq n
$$

Consequently

$$
1-\frac{d}{t_{n-1, d}-1}=\sum_{i=1}^{n} \alpha_{i} \geq \sum_{i=1}^{n} \frac{P_{i}}{Q}=1,
$$

a contradiction.
The main content of the lemma is the lower bound in (2.1). The proof is by induction on n, holding d fixed. It's true for all d in the base case $n=1$, on taking $\delta(1, d)=\frac{1}{d+1}$ with $Q=P_{1}=1$. The upper bound in (2.1) holds with equality for this case.

Now suppose $n \geq 2$ and that the lower bound in (2.1) is true for all values smaller than n. Reorder the α_{i} so that $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}>0$, and since $\sum_{i=1}^{n} \alpha_{i} \geq \frac{1}{2}$ (using the upper bound in (2.1)) we have $\alpha_{1} \geq \frac{1}{2 n}$. Let $\frac{1}{\Delta_{n, d}}$ denote a lower bound for $\delta(n, d)$, which will be determined in the proof (by (2.11) below), and choose $\Delta_{1, d}=d+1$. We set $\sum_{i=1}^{n} \alpha_{i}=1-\mu$ with $0<\mu<\frac{1}{\Delta_{n, d}}$.

If there is some $j<n$ such that

$$
\alpha_{1}+\cdots+\alpha_{j}>1-\frac{1}{\Delta_{j, d}},
$$

then by the induction hypothesis there exists (Q, P_{1}, \ldots, P_{j}) satisfying (1)-(3) for $\left(\alpha_{1}, \ldots, \alpha_{j}\right)$, and on setting $P_{j+1}=\cdots=P_{n}=0$ we obtain a solution to (1)-(3) for $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Thus we need only consider the case that

$$
\begin{equation*}
\alpha_{j+1}+\cdots+\alpha_{n} \geq \frac{1}{\Delta_{j, d}}, \quad 1 \leq j \leq n-1 \tag{2.2}
\end{equation*}
$$

holds. Now the ordering of the α_{i} 's gives

$$
(n-j) \alpha_{j+1} \geq \alpha_{j+1}+\alpha_{j+2}+\cdots+\alpha_{n}
$$

which with (2.2) yields

$$
\begin{equation*}
\alpha_{j+1} \geq \frac{1}{n \Delta_{j, d}}, \quad 1 \leq j \leq n-1 \tag{2.3}
\end{equation*}
$$

By Minkowski's convex body theorem ([3, p. 71]) there exists a nonzero lattice point in the open symmetric convex body $\mathbf{K}=\mathbf{K}\left(Q, P_{2}, \ldots, P_{n}\right)$ in \mathbb{R}^{n} defined by

$$
\begin{align*}
|Q| & <R \tag{2.4a}\\
\left|Q \alpha_{i}-P_{i}\right| & <\min \left(\frac{1}{d} \alpha_{i}, \frac{1}{2 n^{2}(d+1)}\right), \quad i \geq 2
\end{align*}
$$

provided that $\operatorname{Vol}(\mathbf{K})>2^{n}$, that is provided

$$
\begin{equation*}
R \prod_{i=2}^{n} \min \left(\frac{1}{d} \alpha_{i}, \frac{1}{2 n^{2}(d+1)}\right)>1 \tag{2.5}
\end{equation*}
$$

Using the facts that $\alpha_{j}<1 / 2$ for $i \geq 2$ and (2.3) we obtain, for $i \geq 2$,

$$
\min \left(\frac{1}{d} \alpha_{i}, \frac{1}{2 n^{2}(d+1)}\right)>\frac{\alpha_{i}}{n^{2}(d+1)} \geq \frac{1}{n^{3}(d+1) \Delta_{i-1, d}} .
$$

Thus (2.5) is certainly satisfied whenever

$$
\begin{equation*}
R \geq n^{3 n-3}(d+1)^{n-1} \prod_{i=1}^{n-1} \Delta_{i, d} \tag{2.6}
\end{equation*}
$$

Take a nonzero solution $\left(Q, P_{2}, \ldots, P_{n}\right)$ in \mathbf{K}, and observe that $Q \neq 0$ because $Q=0$ implies by (2.4b) that all $P_{i}=0$, a contradiction. We may suppose that $Q>0$ since $\left(-Q_{1}-P_{1}, \ldots,-P_{n}\right)$ is also in \mathbf{K}, and (2.4b) then shows that all $P_{i} \geq 0$ for $i \geq 2$.

Now define P_{1} by

$$
P_{1}=Q-\sum_{j=2}^{n} P_{j},
$$

which makes (1) hold. We also have by (2.4b) that

$$
\begin{equation*}
(d Q+1) \alpha_{i}=d P_{i}+\alpha_{i}+d\left(Q \alpha_{i}-P_{i}\right)>d P_{i} \tag{2.7}
\end{equation*}
$$

for $2 \leq i \leq n$, which verifies (2) except for $i=1$. Next we show that $P_{1} \geq 0$. If $\tilde{\alpha}_{1}=\alpha_{1}+\mu=1-\sum_{i=2}^{n} \alpha_{i}$, then

$$
\begin{aligned}
Q \tilde{\alpha}_{1}-P_{1} & =Q\left(1-\sum_{i=2}^{n} \alpha_{i}\right)-\left(Q-\sum_{i=2}^{n} P_{i}\right) \\
& =-\sum_{i=2}^{n}\left(Q \alpha_{i}-P_{i}\right)
\end{aligned}
$$

Hence using $\tilde{\alpha}_{1} \geq \alpha_{1} \geq \frac{1}{2 n}$,

$$
\begin{equation*}
\left|Q \tilde{\alpha}_{1}-P_{1}\right| \leq \sum_{i=2}^{n}\left|Q \alpha_{i}-P_{i}\right| \leq \sum_{i=2}^{n} \frac{1}{2 n^{2}(d+1)}<\frac{1}{d+1} \tilde{\alpha}_{1} . \tag{2.8}
\end{equation*}
$$

Thus P_{1} is the nearest integer to $Q \tilde{\alpha}_{1}$, hence $P_{1} \geq 0$.
We claim that (2) and (3) will hold provided $\Delta_{n, d}$ and R are suitably chosen. To check (2) we need only treat the case $i=1$, by (2.7). We have, using (2.8) and (2.4a),

$$
\begin{aligned}
(d Q+1) \alpha_{1}= & (d Q+1) \tilde{\alpha}_{1}-(d Q+1) \mu \\
= & d P_{1}+\tilde{\alpha}_{1}+d\left(Q \tilde{\alpha}_{1}-P_{1}\right)-(d Q+1) \mu \\
\geq & d P_{1}+\tilde{\alpha}_{1}-\frac{d}{d+1} \tilde{\alpha}_{1}-(d R+1) \mu \\
& >d P_{1}+\frac{1}{d+1} \tilde{\alpha}_{1}-(d R+1) \frac{1}{\Delta_{n, d}} .
\end{aligned}
$$

This shows that (2) holds provided that

$$
\begin{equation*}
d R+1 \leq \frac{1}{2 n(d+1)} \Delta_{n, d} \tag{2.9}
\end{equation*}
$$

since $\tilde{\alpha}_{1} \geq \frac{1}{2 n}$. Also the inequality (2.9) guarantees that (3) holds, since $1 \leq Q \leq R$.
Thus to prove existence it suffices to choose $\Delta_{n, d}$ large enough that an R exists satisfying (2.6) and (2.9). Now (2.9) holds if

$$
R \leq \frac{1}{2 n(d+1)^{2}} \Delta_{n, d}
$$

This condition will allow an R for which (2.6) holds to exist provided that

$$
\begin{equation*}
\frac{1}{2 n(d+1)^{2}} \Delta_{n, d} \geq n^{3 n-3}(d+1)^{n-1} \prod_{i=1}^{n-1} \Delta_{i, d} \tag{2.10}
\end{equation*}
$$

It suffices to choose

$$
\begin{equation*}
\Delta_{n, d}=n^{3 n}(d+1)^{n+1} \prod_{i=1}^{n-1} \Delta_{i, d}, \tag{2.11}
\end{equation*}
$$

for $\Delta_{n, d}$ to make (2.10) hold for $n \geq 2$ and this completes the induction step.
To complete the proof, we show that

$$
\Delta_{n, d} \leq(7(d+1))^{2^{n+1}}
$$

Indeed (2.11) for $n \geq 2$ gives the recursion

$$
\log \Delta_{n, d}=3 n \log n+(n+1) \log (d+1)+\sum_{i=1}^{n-1} \log \left(\Delta_{i, d}\right)
$$

with $\Delta_{1, d}=d+1$. This recursion can be solved explicitly, yielding the following inequalities (in which the logarithms are to base 2):

$$
\begin{aligned}
\log \Delta_{n, d}= & 3 n \log n+3 \sum_{i=2}^{n-1} 2^{n-i-1} i \log i+\left(5 \cdot 2^{n-2}-1\right) \log (d+1) \\
& <3 \cdot 2^{n-1} \sum_{i \geq 2} 2^{-i}(i \log i)+5 \cdot 2^{n-2} \log (d+1) \\
& <3 \cdot 2^{n-1} \sum_{i \geq 2} 2^{-i} i(i-1)+5 \cdot 2^{n-2} \log (d+1) \\
= & 3 \cdot 2^{n+1}+5 \cdot 2^{n-2} \log (d+1)<2^{n+1} \log (7(d+1))
\end{aligned}
$$

Hensley conjectured that the upper bound in (2.1) holds with equality for $d=1$ and all n, and we extend this to conjecture that it holds for all n and d. The proof showed the conjecture is true for $n=1$ and all d, and we have also verified it in the cases $(n, d)=(2,1),(3,1),(2,2)$ and $(2,3)$.

LEmma 2.2. If \mathbf{S} is a lattice simplex in \mathbb{R}^{n} with $k=\#\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{S})\right) \geq 1$, and if $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ are the barycentric coordinates of an interior point \mathbf{w} in $d \mathbb{Z}^{n}$ then

$$
\delta(n, d k) \leq \alpha_{i} \leq 1-n \delta(n, d k) .
$$

Proof. Suppose not, so that some $\alpha_{i}<\delta(n, d k)$, which we may take to be α_{0}. Lemma 2.1 applies to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and the (Q, P_{1}, \ldots, P_{n}) it produces satisfies

$$
(j Q+1) \alpha_{i}>j P_{i}, \quad 1 \leq i \leq n
$$

for $1 \leq j \leq k d$, If \mathbf{v}_{i} are the vertices of \mathbf{S} then

$$
\mathbf{x}_{m}=(m d Q+1) \mathbf{w}+m \sum_{i=1}^{n} d P_{i} \mathbf{v}_{i}
$$

for $0 \leq m \leq k$ are distinct points in $d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{S})$, a contradiction.
Theorem 1.1 for a lattice simplex \mathbf{S} follows from Lemma 2.1 and the following bound.
Lemma 2.3. Suppose that \mathbf{S} is a lattice simplex in \mathbb{R}^{n} such that $k=\#\left(d \mathbb{Z}^{n} \cap\right.$ $\operatorname{Int}(\mathbf{S})) \geq 1$. Then

$$
\operatorname{Vol}(\mathbf{S}) \leq \frac{1}{n!}(k+1) d^{n} \delta(n, d k)^{-n}
$$

Proof. We adapt the proof of Theorem 3.4 in [5]. Let Φ be an affine map that takes \mathbf{S} to the "standard simplex" \mathbf{S}_{0} having vertices $\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ in \mathbb{R}^{n}. Let $\Lambda=\boldsymbol{\Phi}\left(\mathbb{Z}^{n}\right)$, so that Λ is a (possibly noninteger) lattice of determinant $|\operatorname{det}(\Phi)|$ and \mathbf{S} has volume $\operatorname{Vol}(\mathbf{S})=\frac{1}{n!}|\operatorname{det}(\Phi)|^{-1}$.

Suppose that $\mathbf{y} \in d \mathbb{Z}^{n} \cap \operatorname{Int}\left(\mathbf{S}_{0}\right)$ and set $\mathbf{v}=\Phi(\mathbf{y})=\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}$, where α_{i} are barycentric coordinates. The region $\mathbf{R}=\left\{\mathbf{v}+\mathbf{u}:\left|u_{i}\right|<\alpha_{i}\right.$ for $\left.1 \leq i \leq n\right\}$ is centrally symmetric about \mathbf{v}, and $\Phi\left(d \mathbb{Z}^{n}\right)=\mathbf{v}+d \Lambda$ is a coset of the lattice $d \Lambda$. By
van der Corput's theorem ([4, p. 51]) \mathbf{R} contains at least the greatest integer strictly less than $\left(\prod_{i=1}^{n} \alpha_{i}\right) \frac{1}{d^{n}}|\operatorname{det}(\Phi)|^{-1}$ distinct pairs of points $\mathbf{v} \pm \mathbf{u}$ where each $\mathbf{u} \in d \Lambda$ is nonzero. Now let $\mathbf{u}=\sum_{i=1}^{n} u_{i} \mathbf{e}_{i}$ with $\left|u_{i}\right|<\alpha_{i}$ for all i. Then at least one of $\mathbf{v}+\mathbf{u}$ and $\mathbf{v}-\mathbf{u}$ is in $\operatorname{Int}\left(\mathbf{S}_{0}\right)$ if some $\alpha_{i}>1 / 2$ and both $\mathbf{v} \pm \mathbf{u}$ are in $\operatorname{Int}\left(\mathbf{S}_{0}\right)$ otherwise. Thus Lemma 2.2 yields

$$
\begin{aligned}
k & =\#\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{S})\right)=\#\left((\mathbf{v}+d \Lambda) \cap \operatorname{Int}\left(\mathbf{S}_{0}\right)\right) \geq \frac{1}{d^{n}}\left(\prod_{i=1}^{n} \alpha_{i}\right)|\operatorname{det}(\Phi)|^{-1}-1 \\
& \geq d^{-n} \delta(n, k d)^{n} n!\operatorname{Vol}(\mathbf{S})-1
\end{aligned}
$$

To prove Theorem 1 for a general lattice polytope \mathbf{P} we follow Hensley's arguments exactly. As a consequence of Lemma 2.2 one has:

Lemma 2.4. Let \mathbf{F} be a lattice polytope in \mathbb{R}^{n} of dimension $n-1$. Let \mathbf{x}_{0} be a lattice point not in the $(n-1)$-dimensional hyperplane containing \mathbf{F} and let \mathbf{P} be the conical lattice polytope which is the convex hull of \mathbf{F} and \mathbf{x}_{0}. Suppose $k=\#\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{P})\right) \geq 1$. If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are the lattice vertices of \mathbf{F} then for any barycentric representation of \mathbf{y} contained in $d \mathbf{Z}^{n} \cap \operatorname{Int}(\mathbf{P})$ as $\mathbf{y}=\sum_{i=0}^{m} \alpha_{i} \mathbf{x}_{i}$ with all $\alpha_{i} \geq 0, \sum_{i=0}^{m} \alpha_{i}=1$, one has

$$
\delta(n, d k) \leq \alpha_{0} \leq 1-\delta(n, d k)
$$

Proof. See Hensley, [5, Corollary 3.2].
The coefficient of asymmetry $\sigma(\mathbf{K}, \mathbf{x})$ of a convex body \mathbf{K} about a point \mathbf{x} is

$$
\sigma(\mathbf{K}, \mathbf{x})=\sup _{\|y\|=1} \frac{\max \{\lambda: \mathbf{x}+\lambda \mathbf{y} \in \mathbf{K}\}}{\max \{\lambda: \mathbf{x}-\lambda \mathbf{y} \in \mathbf{K}\}}
$$

Using Lemma 2.4 one finds that the coefficient of asymmetry $\sigma(\mathbf{P}, \mathbf{y})$ of a lattice polytope \mathbf{P} having $\#\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{P})\right)=k \geq 1$ about any $\mathbf{y} \in\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{P})\right)$ satisfies

$$
\begin{equation*}
\sigma(\mathbf{P}, \mathbf{y}) \leq \frac{1-\delta(n, k d)}{\delta(n, k d)} \tag{2.12}
\end{equation*}
$$

Now we use the following extension of a theorem of Mahler (see [4, p. 52]).
THEOREM 2.5. If \mathbf{K} is any convex body having $k=\#\left(d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{K})\right) \geq 1$, such that the coefficient of assymmetry $\sigma(\mathbf{P}, \mathbf{y})$ about some $\mathbf{y} \in d \mathbb{Z}^{n} \cap \operatorname{Int}(\mathbf{K})$ satisfies $\sigma(\mathbf{P}, \mathbf{y}) \leq$ $\frac{1-\delta}{\delta}$ then

$$
\operatorname{Vol}(\mathbf{K}) \leq k\left(\frac{d}{\delta}\right)^{n}
$$

Proof. By rescaling coordinates by a factor of d we may suppose without loss of generality that $d=1$, and by a further translation we may suppose that $\mathbf{y}=\mathbf{0}$. We argue by contradiction. If $\operatorname{Vol}(\mathbf{K})>k \delta^{-n}$, then one can choose $\varepsilon>0$ small enough that $\mathbf{K}^{\prime}=(1-\varepsilon) \mathbf{K}$ has $\operatorname{Vol}\left(\mathbf{K}^{\prime}\right)>k \delta^{-n}$. Then put $\mathbf{K}^{\prime \prime}=(1+\sigma)^{-1} \mathbf{K}^{\prime}=\delta^{-1} \mathbf{K}^{\prime}$, and
$\operatorname{Vol}\left(\mathbf{K}^{\prime \prime}\right)>k$. By van der Corput's theorem ($\left.[4, \mathrm{p} .51]\right) \mathbf{K}^{\prime \prime}$ contains points $\mathbf{x}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{k+1}$ such that all $\mathbf{y}_{i}-\mathbf{x} \in \mathbb{Z}^{n}$. Now $-\frac{1}{\sigma} \mathbf{x} \in \mathbf{K}^{\prime \prime}$ by definition of $\sigma=\sigma(\mathbf{K}, \mathbf{0})=\sigma\left(\mathbf{K}^{\prime \prime}, \mathbf{0}\right)$. By convexity

$$
\frac{1}{1+\sigma}\left(\mathbf{y}_{i}-\mathbf{x}\right)=\frac{1}{1+\sigma} \mathbf{y}_{i}+\frac{\sigma}{1+\sigma}\left(-\frac{1}{\sigma} \mathbf{x}\right) \in \mathbf{K}^{\prime \prime}
$$

hence all $\mathbf{y}_{i}-\mathbf{x} \in \mathbf{K}^{\prime}$. Since $\mathbf{K}^{\prime} \subseteq \operatorname{Int}(\mathbf{K})$, there are $k+1$ interior lattice points in \mathbf{K}, a contradiction.

We have now completed all the work for Theorem 1. In fact, applying Theorem 2.5 to (2.12) yields

$$
\operatorname{Vol}(\mathbf{P}) \leq k d^{n} \delta(n, k d)^{-n}
$$

and (1.1) follows using Lemma 2.1. If \mathbf{P} is a lattice simplex Lemma 2.3 gives a slightly stronger bound for $n \geq 2$.

A theorem of Blichfeldt ([2],[3, p. 69]) asserts that any body \mathbf{P} containing J lattice points spanning \mathbb{R}^{n} has $\operatorname{Vol}(\mathbf{P}) \geq \frac{J-n}{n!}$, which yields $J \leq n+n!\operatorname{Vol}(\mathbf{P})$, and (1.2) follows.

We give lower bounds for $V(n, k, d)$ and $J(n, k, d)$ by extending examples of Zaks, Perles and Wills [10]. These involve the sequences $t_{n, d}$ defined in Lemma 2.1.

Proposition 2.6. The lattice simplex $\mathbf{S}_{n, k, d}$ having vertices $\mathbf{v}_{0}=\mathbf{0}, \mathbf{v}_{i}=t_{i, d} \mathbf{e}_{i}$ for $1 \leq i \leq n-1$, and $v_{n}=(k+1)\left(t_{n, d}-1\right) \mathbf{e}_{n}$ contains exactly k interior lattice points in $d \mathbb{Z}^{n}$. Hence

$$
\begin{equation*}
V(n, k, d) \geq \frac{k+1}{n!}\left(\prod_{i=1}^{n-1} t_{i, d}\right)\left(t_{n, d}-1\right)=\frac{k+1}{n!} \frac{1}{d}\left(t_{n, d}-1\right)^{2} \tag{2.13}
\end{equation*}
$$

and

$$
J(n, k, d) \geq(k+1)\left(t_{n, d}-1\right)
$$

This proposition gives the lower bounds stated in $\S 1$ using $t_{n, d}>(d+1)^{2^{n-2}}$ for $n \geq 2$.
Proof. We show that

$$
\operatorname{Int}\left(\mathbf{S}_{n, k, d}\right) \cap d \mathbb{Z}^{n}=\{(d, d, \ldots, d, i d): 1 \leq i \leq k\}
$$

Let $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ denote the barycentric coordinates of a lattice point $\mathbf{w}=\sum_{i=0}^{n} \alpha_{i} \mathbf{v}_{i} \in$ $d \mathbb{Z}^{n}$ in $\operatorname{Int}\left(\mathbf{S}_{n, k, d}\right)$. By induction on i for $1 \leq i \leq n-1$ starting from $i=1$ one shows that $\alpha_{i}=\frac{d}{t_{i, d}}$ using the relation

$$
\begin{equation*}
\sum_{j=1}^{i} \frac{d}{t_{j, d}}=1-\frac{d}{t_{i+1, d}-1} \tag{2.14}
\end{equation*}
$$

because necessarily $\alpha_{j}=\frac{m d}{t_{j, d}}$ for some $m \geq 1$, and choosing $m \geq 2$ gives $\sum_{j=1}^{i} \alpha_{j}>1$, a contradiction. Next (2.14) allows only $\alpha_{n}=\frac{m d}{(k+1)\left(t_{n, d}-1\right)}$ with $1 \leq m \leq k$. Since $\alpha_{0}=$ $1-\sum_{j=1}^{n} \alpha_{i}$ one checks that these barycentric coordinates actually yield the k lattice points in $d \mathbb{Z}^{n}$ above.

It is possible that equality holds in (2.13) for all $(n, k, d) \neq(2,1,1)$. This is however an open problem even for $n=2$. Furthermore it is possible that the only lattice polytopes attaining equality in (2.13) are lattice simplices unless $(n, d)=(2,1)$.
3. Proof of Theorem 2. First consider the case that the polytope is a simplex \mathbf{S} having vertices $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Z}^{n}$. Consider the lattice Λ spanned by the basis vectors $\mathbf{w}_{i}=\mathbf{v}_{i}-\mathbf{v}_{0}$ for $1 \leq i \leq n$. Then Λ is a sublattice of \mathbb{Z}^{n} and

$$
\operatorname{det}(\Lambda)=\left[\mathbb{Z}^{n}: \Lambda\right]=n!\operatorname{Vol}(\mathbf{S}) \leq n!V
$$

Let B be the integer matrix whose $i^{\text {th }}$ row is \mathbf{w}_{i}, so that $|\operatorname{det}(B)|=\operatorname{det}(\Lambda)$. If \mathbf{P}_{0} is the parallelepiped $\left\{\mathbf{y}: \mathbf{y}=\sum_{i=1}^{n} y_{i} \mathbf{w}_{i}, 0 \leq y_{i} \leq 1\right\}$ then \mathbf{S} is contained in the translated parallelepiped $\mathbf{v}_{0}+\mathbf{P}_{0}$. Now there is a matrix $U \in G L(n, \mathbb{Z})$ taking the basis matrix to the lower-triangular form (Hermite normal form):

$$
U B=\left[\begin{array}{ccc}
a_{11} & & \tag{3.1}\\
a_{21} & a_{22} & \\
\vdots & & \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]
$$

with $0 \leq a_{j i}<a_{i i}$ for $j>i$ and all $a_{i i}>0$ ([3, p. 13]). Now $|\operatorname{det}(B)|=\prod_{i=1}^{n} a_{i i} \leq n!V$, hence $1 \leq a_{i i} \leq n!V$ and the parallelepiped generated by the row vectors of $U B$ is contained in the cube $\left\{\mathbf{x}: 0 \leq x_{i} \leq n!V\right.$ for $\left.1 \leq i \leq n\right\}$. The map $\mathbf{x} \rightarrow U \mathbf{x} \in \mathcal{L}_{n}$ takes \mathbf{S} to $U \mathbf{S}$, which is contained in this parallelepiped, and thus lies in a lattice cube of side at most $n!V$.

Now suppose that \mathbf{P} is an arbitrary lattice polytope. We assume that Theroem 3 is proved. By Theorem 3(b) it contains a maximal volume simplex \mathbf{S} which is a lattice simplex. The argument above shows that there exists a transformation $U \in G L(n, \mathbb{Z})$ such that $\mathbf{x} \rightarrow U \mathbf{x}$ maps \mathbf{S} to a lattice simplex \mathbf{S}_{1} contained in a lattice cube \mathbf{C} of side $n!V$, and maps \mathbf{P} to a lattice polytope \mathbf{P}_{1}. Then \mathbf{S}_{1} is a maximal volume simplex in \mathbf{P}_{1}, so by Theorem 3(a) \mathbf{P}_{1} is contained in the lattice simplex $(-n) \mathbf{S}_{1}+(n+1) \mathbf{s}$, where \mathbf{s} is the centroid of \mathbf{S}_{1}, and $(n+1) \mathbf{s} \in \mathbb{Z}^{n}$. Consequently \mathbf{P}_{1} is contained in the lattice cube $(-n) \mathbf{C}+(n+1)$ s of side $n \cdot n!V$.
4. Proof of Theorem 3. Let \mathbf{S} be any maximal volume simplex in the bounded convex body \mathbf{K}, and let $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ be the vertices of \mathbf{S}. By making a translation if necessary we may assume that the centroid of \mathbf{S} is $\mathbf{0}$, i.e. $\sum_{i=0}^{n} \mathbf{v}_{i}=\mathbf{0}$. Our object is then to show that $\mathbf{K} \subseteq(-n) \mathbf{S}$ and $\mathbf{K} \subseteq(n+2) \mathbf{S}$. Let H_{i} be the hyperplane spanned by all the vertices except \mathbf{v}_{i}, and let $d_{i}=\operatorname{dist}\left(\mathbf{v}_{i}, H_{i}\right)$. Define H_{i}^{+}, H_{i}^{-}to be the two hyperplanes parallel to H_{i} such that H_{i}^{+}contains \mathbf{v}_{i} while H_{i}^{-}is at distance d_{i} from H_{i} with H_{i} separating H_{i}^{-} from \mathbf{v}_{i}. We claim that \mathbf{K} is contained in the closed region \mathbf{R}_{i} between H_{i}^{+}and H_{i}^{-}. For if $\mathbf{y} \in \mathbf{K}$ were outside this region, then the simplex spanned by \mathbf{y} and all \mathbf{v}_{j} for $j \neq i$ would have volume bigger than $\operatorname{Vol}(\mathbf{S})$, a contradiction. Hence $\mathbf{K} \subseteq \bigcap_{i=0}^{n} \mathbf{R}_{i}$.

We will show that

$$
\begin{equation*}
\bigcap_{i=0}^{n} \mathbf{R}_{i}=(n+2) \mathbf{S} \cap(-n) \mathbf{S}, \tag{4.1}
\end{equation*}
$$

which implies part (a) of the theorem. Since \mathbf{S} has nonzero volume, all points in \mathbb{R}^{n} have unique barycentric coordinates $\mathbf{y}=\sum_{i=0}^{n} \beta_{i} \mathbf{v}_{i}$ with $\sum_{i=0}^{n} \beta_{i}=1$. The region \mathbf{R}_{i} is given by the barycentric coordinates:

$$
\mathbf{R}_{i}=\left\{\mathbf{y}=\sum_{j=0}^{n} \beta_{j} \mathbf{v}_{j}: \sum_{j=0}^{n} \beta_{j}=1 \text { and }\left|\beta_{i}\right| \leq 1\right\} .
$$

This is clear since if $\mathbf{y}=\sum_{j=0}^{n} \beta_{j} \mathbf{v}_{j}$ then $\operatorname{dist}\left(\mathbf{y}, H_{i}\right)=\left|\beta_{i}\right| d_{i}$. Hence

$$
\begin{equation*}
\bigcap_{i=1}^{n} \mathbf{R}_{i}=\left\{\mathbf{y}=\sum_{j=0}^{n} \beta_{j} \mathbf{v}_{j}: \sum_{j=0}^{n} \beta_{j}=1 \text { and all }\left|\beta_{j}\right| \leq 1\right\} . \tag{4.2}
\end{equation*}
$$

Since $\sum_{i=0}^{n} \mathbf{v}_{i}=\mathbf{0}$ by hypothesis,

$$
\begin{align*}
(-n) \mathbf{S} & =\left\{\mathbf{y}=\sum_{j=0}^{n} \alpha_{j}\left(-n \mathbf{v}_{j}\right): \sum_{j=0}^{n} \alpha_{j}=1 \text { and all } \alpha_{j} \geq 0\right\} \\
& =\left\{\mathbf{y}=\sum_{j=0}^{n} \beta_{j} \mathbf{v}_{j}: \sum_{j=0}^{n} \beta_{j}=1 \text { and all } \beta_{j} \leq 1\right\} \tag{4.3}
\end{align*}
$$

where $\beta_{j}=-n \alpha_{j}+1$. Similarly

$$
\begin{align*}
(n+2) \mathbf{S} & =\left\{\mathbf{y}=\sum_{j=0}^{n} \alpha_{j}(n+2) \mathbf{v}_{j}: \sum_{j=0}^{n} \alpha_{j}=1 \text { and all } \alpha_{j} \geq 0\right\} \tag{4.4}\\
& =\left\{\mathbf{y}=\sum_{j=0}^{n} \beta_{j} \mathbf{v}_{j}: \sum_{j=0}^{n} \beta_{j}=1 \text { and all } \beta_{j} \geq-1\right\}
\end{align*}
$$

where $\beta_{j}=(n+2) \alpha_{j}-1$. The equality (4.1) follows on comparing (4.2)-(4.4).
To prove part (b), let \mathbf{P} be a convex polytope having nonzero volume. We wish to show that \mathbf{P} contains a maximal volume simplex whose vertices are all vertices of \mathbf{P}. Let \mathbf{S}^{\prime} be a maximal volume simplex contained in \mathbf{P}. If it has a vertex \mathbf{w}^{\prime} not a vertex of \mathbf{P}, consider the linear program of maximizing the (oriented) distance of a point in \mathbf{P} from the hyperplane spanned by the other n vertices of \mathbf{S}^{\prime}. Some vertex $\mathbf{w}^{\prime \prime}$ of \mathbf{P} is an optimal point for this linear program, so we can replace \mathbf{w}^{\prime} by $\mathbf{w}^{\prime \prime}$ to obtain a new maximal volume simplex for \mathbf{P} which has one fewer vertex not a vertex of \mathbf{P}. Continuing in this way, we eventually obtain a maximal volume simplex \mathbf{S} all of whose vertices are vertices of \mathbf{P}.

If \mathbf{P} is a lattice polytope this \mathbf{S} is a lattice simplex. If its vertices are $\mathbf{v}_{0}, \ldots, \mathbf{v}_{n}$ then $(n+1) \mathbf{s}=\sum_{i=0}^{n} \mathbf{v}_{i} \in \mathbb{Z}^{n}$. Hence $(-n) \mathbf{S}+(n+1) \mathbf{s}$ and $(n+2) \mathbf{S}-(n+1) \mathbf{s}$ are lattice simplices.

Remarks. (1) If \mathbf{P} is a lattice polytope having the maximum volume simplex \mathbf{S} which is a lattice simplex, then

$$
\bigcap_{i=0}^{n} \mathbf{R}_{i}=(n+2) \mathbf{S} \cap(-n) \mathbf{S}
$$

is a lattice polytope. For (4.2) implies that is vertices are contained in the set of lattice points $\left\{\sum_{i=0}^{n} \beta_{i} \mathbf{v}_{i}: \sum_{i=0}^{n} \beta_{i}=1\right.$ and all $\left.\beta_{i} \in\{1,0,-1\}\right\}$.
(2) The inclusion $\mathbf{K} \subset(-n) \mathbf{S}+(n+1) \mathbf{s}$ is sharp in the sense that if $\mathbf{K} \subset c_{n} \mathbf{S}+\left(1-c_{n}\right) \mathbf{s}$ for all \mathbf{K} and $c_{n}<0$ then $c_{n} \leq-n$. Take \mathbf{K} to be a simplex

$$
\begin{aligned}
\mathbf{S} & =\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) . \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n}: \text { all } x_{i} \geq 0 \text { and } \sum_{i=1}^{n} x_{i} \leq 1\right\} .
\end{aligned}
$$

Then $\mathbf{s}=\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$ and for $c_{n}<0$ one has

$$
c_{n} \mathbf{S}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \text { all } x_{i} \leq 0 \text { and } \sum_{i=1}^{n} x_{i} \geq c_{n}\right\} .
$$

Hence

$$
c_{n} \mathbf{S}+\left(1-c_{n}\right) \mathbf{s}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \text { all } x_{i} \leq \frac{1-c_{n}}{n+1} \text { and } \sum_{i=1}^{n} x_{i} \geq \frac{1}{n+1}\left(n+c_{n}\right)\right\}
$$

To obtain \mathbf{e}_{1} in this region requires $c_{n} \leq-n$.
(3) The inclusion $\mathbf{K} \subset(n+2) \mathbf{S}-(n+1) \mathbf{s}$ is sharp in the sense that if $\mathbf{K} \subset c_{n} \mathbf{S}+\left(1-c_{n}\right) \mathbf{s}$ for all K and $c_{n}>0$ then $c_{n} \geq n+2$. Let

$$
\mathbf{K}=\operatorname{conv}\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq n\right\}
$$

be the n-dimensional cross-polytope. A maximum volume simplex \mathbf{S} in \mathbf{K} is given by

$$
\begin{aligned}
\mathbf{S} & =\operatorname{conv}\left\{-\mathbf{e}_{1}, \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{2} \geq 0, \ldots, x_{n} \geq 0, \pm 1+\sum_{i=2}^{n} x_{i} \leq 1\right\}
\end{aligned}
$$

of volume $\frac{2}{n!}$, with centroid $\mathbf{s}=\left(0, \frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$. This holds because every lattice simplex in \mathbf{K} has this form after a suitable permutation of the coordinate axes, and after sending certain $x_{i} \rightarrow-x_{i}$. Now suppose $c_{n}>0$ is such that $\mathbf{K} \subseteq c_{n} \mathbf{S}-\left(c_{n}-1\right) \mathbf{s}$. Computation yields

$$
c_{n} \mathbf{S}=\left\{x \in \mathbb{R}^{n}: x_{2} \geq 0, \ldots, x_{n} \geq 0, \pm x_{1}+\sum_{i=2}^{n} x_{i} \leq c_{n}\right\}
$$

hence

$$
\begin{aligned}
c_{n} \mathbf{S} & -\left(c_{n}-1\right) \mathbf{s} \\
& =\left\{x \in \mathbb{R}^{n}: x_{2} \geq \frac{1-c_{n}}{n+1}, \ldots, x_{n} \geq \frac{1-c_{n}}{n+1}, \pm x_{1}+\sum_{i=2}^{n} x_{i} \leq \frac{c_{n}}{n+1}+\frac{n+1}{n-1}\right\} .
\end{aligned}
$$

For $n \geq 2$ the condition $-\mathbf{e}_{2} \in c_{n} \mathbf{S}-\left(c_{n}-1\right) \mathbf{S}$ requires $-1 \geq \frac{1-c_{n}}{n+1}$, which is $c_{n} \geq n+2$.
Acknowledgement. We are indebted to T. H. Foregger for a helpful reading of the paper, and to D. Chakerian, B. Grünbaum, V. Klee and a referee for helpful comments.

References

1. G. E. Andrews, A lower bound for the volume of strictly convex bodies with many boundary lattice points, Trans. Amer. Math. Soc. 106(1963), 270-279.
2. H. Blichfeldt, A new principle in the geometry of numbers, with some applications, Trans. Amer. Math. Soc. 15(1914), 227-235.
3. J. W. S. Cassels, An introduction to the geometry of numbers. Grundlehren Series 99, Springer-Verlag, 1971.
4. P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers. 2nd ed., North-Holland, Amsterdam, 1987.
5. D. Hensley, Lattice vertex polytopes with interior lattice points, Pacific J. Math. 105(1983), 183-191.
6. K. Mahler, The geometry of numbers. Duplicated lecture notes, University of Colorado, 1950.
7. R. Rado, Some covering theorems (I), Proc. London Math. Soc. 51(1949), 232-264.
8. B. Reznick, Lattice point simplices, Discrete Math. 60(1986), 219-242.
9. R. P. Scott, On convex lattice polygons, Bull. Austral. Math. Soc. 15(1976), 395-399.
10. J. Zaks, A. Perles and J. M. Wills, On lattice polytopes having interior lattice points, Elemente der Math. 37(1982), 44-46.

AT\&T Bell Laboratories
Room 2C-373
Murray Hill, New Jersey
U.S.A. 07974

Universität Augsburg
Augsburg, Germany

