

COMPOSITIO MATHEMATICA

Sheaf quantization of Legendrian isotopy

Peng Zhou

Compositio Math. **¹⁵⁹** (2023), 419–435.

[doi:10.1112/S0010437X2200793X](https://doi.org/10.1112/S0010437X2200793X)

Sheaf quantization of Legendrian isotopy

Peng Zhou

In memory of Steve

ABSTRACT

Let $\{\Lambda_t^{\infty}\}\$ be an isotopy of Legendrians (possibly singular) in a unit cosphere bundle S^*M that arise as slices of a singular Legendrian $\Lambda_I^{\infty} \subset S^*M \times T^*I$. Let $\mathcal{C}_t =$ $Sh(M, \Lambda_t^{\infty})$ be the differential graded derived category of constructible sheaves on M with singular support at infinity contained in Λ_t^{∞} . We prove that if the isotopy of Legendrians embeds into an isotopy of Liouville hypersurfaces, then the family of categories $\{\mathcal{C}_t\}$ is constant in t.

Motivation and results

Let M be a smooth manifold, and let $Sh(M)$ be the co-complete differential graded (dg) derived category of weakly constructible sheaves on M with coefficient in \mathbb{C} . In [\[KS13,](#page-16-0) [Tam08,](#page-17-0) [GKS12\]](#page-16-1) it is proved that contact isotopy of the cosphere bundle $T^{\infty}M = (T^*M - T^*_MM)/\mathbb{R}_+$ acts on $Sh(M)$ as equivalences of categories. In this paper, we consider a (singular) Legendrian $\Lambda^{\infty} \subset$ $T^{\infty}M$ and the full subcategory $Sh(M,\Lambda^{\infty})$ consisting of sheaves F with singular support at infinity, $SS^{\infty}(F) = (SS(F) - T_M^*M)/\mathbb{R}_+$, contained in Λ^{∞} . We define a notion of isotopy for the singular Legendrian Λ^{∞} and prove that the category $Sh(M, \Lambda^{\infty})$ remains invariant under such an isotopy.

Such invariances of constructible sheaf categories are possible because constructible sheaves are closely related to Lagrangians in T^*M (see [\[NZ09,](#page-17-1) [GPS18a,](#page-16-2) [NS20\]](#page-17-2)) and hence enjoy the flexibility of symplectic geometry. More precisely, the full subcategory of compact objects in $Sh(M, \Lambda^{\infty})$, denoted by $Sh^{w}(M, \Lambda^{\infty})$, is equivalent to the wrapped Fukaya category of the pair (T^*M, Λ^∞) (see [\[GPS18a,](#page-16-2) [NS20\]](#page-17-2)),

$$
Sh^{\mathbf{w}}(M, \Lambda^{\infty}) \simeq \mathrm{Fuk}^{\mathbf{w}}(T^*M, \Lambda^{\infty}),
$$

where the superscript 'w' stands for 'wrapped'. The traditional constructible sheaves with bounded cohomologies $Sh^{pp}(M, \Lambda^{\infty})$ can be recovered as perfect modules [\[Nad16\]](#page-16-3),

$$
Sh^{pp}(M, \Lambda^{\infty}) = \text{Fun}^{ex}(Sh^{\text{w}}(M, \Lambda^{\infty})^{op}, \text{Perf}(\mathbb{C})).
$$

There is an analogous result in the wrapped Fukaya category for Liouville sectors [\[GPS18b,](#page-16-4) Theorem 1.4]: given a Liouville domain W with a 'stop' $S \subset \partial W$, if the contact complement $\partial W \setminus S$ remains invariant up to contact isotopy as S moves, then the wrapped Fukaya category

Received 30 January 2020, accepted in final form 2 November 2022, published online 17 February 2023. *[2020 Mathematics Subject Classification](http://www.ams.org/msc/)* 53D25 (primary), 53D37 (secondary).

Keywords: nearby cycle, singular support estimate.

This work was supported by an IHES Simons Postdoctoral Fellowship as part of the Simons Collaboration on HMS.

[©] 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence.

 $Fuk^w(W, S)$ is invariant. Hence, combined with the comparison results of [\[GPS18a,](#page-16-2) [NS20\]](#page-17-2), we get that $Sh(M, \Lambda^{\infty})$ is invariant as long as $T^{\infty}M\setminus\Lambda^{\infty}$ is invariant up to contact isotopy.

This paper gives a similar sufficient condition using 'isotopy' of Λ^{∞} : we replace Λ^{∞} by a tube $U = U(\Lambda^{\infty})$ around the Legendrian Λ^{∞} , and we equip U with a contact flow X that shrinks the tube U back to Λ^{∞} (Definition [0.2\)](#page-2-0). Although Λ^{∞} may be singular, the data of (U, X) are smooth, so we can talk about isotopies of (U, X) . The relation to the complement $T^{\infty}M\setminus\Lambda^{\infty}$ is that if (U_t, X_t) varies smoothly, then the complements $\{T^{\infty}M\setminus\Lambda_t^{\infty}\}_t$ are contactomorphic, where Λ_t^{∞} is the limit of U_t under the shrinking flow X_t .

To state the main theorem precisely, we need some definitions.

Let (C, α) be a contact manifold with a contact 1-form α .

DEFINITION 0.1. A singular Legendrian $\mathcal{L} \subset C$ is a Whitney stratifiable subspace such that its top-dimensional strata are smooth Legendrians and the closure of the union of the topdimensional strata is \mathcal{L} .

DEFINITION 0.2. Let $\mathcal{L} \subset C$ be a singular Legendrian. A *convex tube* (U, X) *around* \mathcal{L} is an open subset U containing $\mathcal L$ with smooth boundary ∂U and a contact vector field X transverse to ∂U and pointing inward to ∂U , such that $\mathcal{L}_X(\alpha) = -\alpha$ and $\bigcap_{u>0} X^u(U) = \mathcal{L}$, where X^u is the time- u flow of X .

DEFINITION 0.3. Let $I \subset \mathbb{R}$ be a closed interval and $\{(U_t, X_t, \mathcal{L}_t)\}_{t \in I}$ a family of singular Legendrians \mathcal{L}_t with convex tubes (U_t, X_t) . If ∂U_t and X_t vary smoothly with t, we say that $\{(U_t, X_t, \mathcal{L}_t)\}_{t \in I}$ is an *isotopy of convex tubes* over *I*.

Let M be a smooth manifold with Riemannian metric g. Let $S^*M\subset T^*M$ be the unit cosphere bundle, and let $\alpha = \lambda |_{S^*M}$ be a contact 1-form on S^*M where λ is the Liouville 1-form on T^*M (e.g. $\lambda = p dx$ on $T^*\mathbb{R}$). We identify S^*M with $T^{\infty}M$. We equip $S^*M \times T^*I$ with the contact form $\tilde{\alpha} = \alpha + \tau dt$, where t is the coordinate of I and τ is the coordinate on the cotangent fiber. Then the composition $S^*M \times T^*I \hookrightarrow \dot{T}^*(M \times I) \to T^\infty(M \times I)$ is an open immersion and contactomorphism, with image $(x, t; [p, \tau]) \in T^{\infty}(M \times I)$ where $p \neq 0$.

DEFINITION 0.4. Let $I \subset \mathbb{R}$ be a closed interval. A strong isotopy of Legendrians in S^*M over I is a Legendrian $\mathcal{L}_I \subset S^*M \times T^*I$. A strong isotopy of convex tubes is a convex tube (U_I, X_I) of \mathcal{L}_I such that X_I preserves the fibers of $S^*M \times T^*I \to I$.

Our main result is the following.

THEOREM 0.5. If (U_I, X_I) is a strong isotopy of convex tubes around \mathcal{L}_I in $S^*M \times T^*I$, then *for any* $t \in I$ *we have an equivalence of categories*

$$
\iota_t^*: Sh(M \times I, \mathcal{L}_I) \to Sh(M, \mathcal{L}_t),
$$

where ι_t : $M_t = M \times \{t\} \hookrightarrow M_I = M \times I$ *is the inclusion of the slice over t.*

Given a strong isotopy of Legendrians \mathcal{L}_I , we prove that to construct a tube thickening (U_I, X_I) it suffices to construct a Liouville hypersurface thickening of each slice \mathcal{L}_t (see Proposition [1.14\)](#page-8-0).

Although the result is expected given the analogous result in Fukaya category, and it is superseded by the recent paper [\[NS20\]](#page-17-2), we hope that its purely sheaf-theoretic proof and the simpler cotangent bundle setting make the presentation of this result still worthwhile.

Previous work

We first recall the sheaf quantization of a contact isotopy of S^*M .

Figure 1. The deformation to the right is uniformly displaceable, and the one to the left is not, due to the appearance of a new short Reeb chord (marked by a thick line); cf. [\[Nad15,](#page-16-5) Example 1.5].

Theorem 0.6 [\[GKS12,](#page-16-1) Theorem 3.7 and Proposition 3.12]. *Let* I *be an open interval containing* 0*,* and let $\varphi: I \times T^{\infty}M \to T^{\infty}M$ be a smooth map with $\varphi_t = \varphi(t, -)$ *. Assume* φ *is such that* (i) $\varphi_0 = id$ *and* (ii) φ_t *are contactomorphisms for all* $t \in I$ *. Then for each* $t \in I$ *we have the equivalences of categories*

$$
\hat{\varphi}_t : Sh(M) \xrightarrow{\sim} Sh(M) \quad \text{such that} \quad SS^{\infty}(\hat{\varphi}_t F) = \varphi_t(SS^{\infty}(F)).
$$

Note that any isotopy of smooth Legendrians can be extended to a contact isotopy of the ambient manifold. In general, we have the following corollary.

COROLLARY 0.7. If an isotopy of Legendrians $\{\Lambda_t^{\infty}\}_{t\in I}$ can be embedded into an isotopy $\{\varphi_t\}_{t\in I}: S^*M \to S^*M$ of the contact manifold, that is, $\Lambda_t^{\infty} = \varphi_t(\Lambda_0^{\infty})$, then we have an *equivalence of categories*

$$
\hat{\varphi}_t: Sh(M,\Lambda_0^\infty)\xrightarrow{\sim} Sh(M,\Lambda_t^\infty).
$$

For a deformation of singular Legendrians, there is one necessary condition for the invariance of categories, due to Nadler [\[Nad15\]](#page-16-5).

DEFINITION 0.8 (Displaceable Legendrian). Let (S^*M,α) be the unit cosphere bundle of a Riemannian manifold M with Reeb vector field R and time-t Reeb flow R^t . A Legendrian $\mathcal{L} \subset S^*M$ is ϵ -*displaceable* for R and for some $\epsilon > 0$ if

$$
\mathcal{L} \cap R^s(\mathcal{L}) = \emptyset \quad \text{for all } 0 < |s| < \epsilon. \tag{1}
$$

We say that a family of Legendrians $\{\mathcal{L}_t\}$ is *uniformly* ϵ -*displaceable* for R and for some $\epsilon > 0$ if each \mathcal{L}_t is ϵ -displaceable.

If a family of Legendrians $\{\mathcal{L}_t\}$ can be upgraded to an isotopy of convex tubes $\{U_t, X_t, \mathcal{L}_t\}$ then $\{\mathcal{L}_t\}$ is uniformly displaceable (Proposition [1.9\)](#page-6-0).

Example 0.9*.* Consider the example in [Figure 1.](#page-3-0)

The category of constructible sheaves for the three diagrams comprises the representations of the following commutative diagrams (where each region corresponds to a vertex and an arrow between vertices goes against the direction of the hair).

$$
(1) = \begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ C & \longrightarrow & D \end{array} \qquad (2), (3) = \begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ C & \longrightarrow & D \end{array}
$$

A sketch of the proof

Given a convex tube (U, X) of a Legendrian $\mathcal{L} \subset S^*M$, we may define a projection functor as the 'limit' of the flow X :

$$
\Pi_{\mathcal{L}} : Sh(M, U) \to Sh(M, \mathcal{L}), \quad \Pi(F) := \lim_{T \to \infty} \hat{X}^T(F), \tag{2}
$$

where $Sh(M, U)$ stands for the category of constructible sheaves with $SS^{\infty}(F) \subset U$ and the limit is defined using the nearby cycle functor in § [2.6.](#page-14-0)

Let $(U_I, X_I, \mathcal{L}_I)$ be a strong isotopy of convex tubes in $S^*M \times T^*I$, and let $\{(U_I, X_I, \mathcal{L}_I)\}$ be the slices. Let $F_t \in Sh(M, \mathcal{L}_t)$. We will extend F_t to a sheaf $F_I \subset Sh(M \times I, \mathcal{L}_I)$ such that $F_I |_t = F_t.$

We first show that such an extension is unique (if it exists); this is equivalent to showing that the restriction functor $Sh(M, \mathcal{L}_I) \to Sh(M, \mathcal{L}_t)$ is fully faithful (Proposition [3.1\)](#page-14-1), that is,

 $\text{Hom}(F_I, G_I) \xrightarrow{\sim} \text{Hom}(F_t, G_t)$ for all $F_I, G_I \in Sh(M \times I, \mathcal{L}_I)$.

One needs to show that $\mathcal{H}om(F_I, G_I)(M \times (a, b))$ is independent of the size of the interval, so that one can interpolate from $(a, b) = I$ to an infinitesimally small neighborhood around t. The key technical point is to use the uniform displaceability condition to perturb G_I slicewise by positive Reeb flow for time $s, G_I \to K_s^! G_I$, to separate $SS^\infty(F_I)$ and $SS^\infty(K_s^! G_I)$.

We then show that such an extension exists locally; that is, given F_t , we can find a small neighborhood $J = (t - \delta, t + \delta)$ such that $\mathcal{L}_t \times T_J^* J \subset U_J = U_I \cap S^* M \times T^* J$ and extend F_t on M_t to F_J on M_J by defining $F_J = \Pi_{\mathcal{L}_J}(F_t \boxtimes \mathbb{C}_J)$.

Finally, we use the uniqueness of extension to patch together the local extensions, and thus we get the global extension result (cf. [\[GKS12,](#page-16-1) Lemma 1.13]).

Notation

We use $Sh(M)$ to denote the co-complete dg derived category of weakly constructible sheaves. With an abuse of notation, we use 'constructible sheaf' to mean a cohomologically constructible complex of sheaves. All the functors $f_*, f^*, f_!, \mathcal{H}$ etc. are derived.

1. Convex tubes and isotopy

1.1 Basics of contact geometry

We recall the definition of co-oriented contact manifold as follows. Let C be a $(2n+1)$ dimensional manifold, and let $\xi \subset TC$ be a rank-2n sub-bundle such that there exists a 1-form (contact 1-form) α (up to multiplication by a non-negative function) satisfying $\xi = \ker \alpha$ and $\alpha \wedge (d\alpha)^n \neq 0$. If we fix such an α , we have a Reeb vector field R_α given by

$$
\iota_{R_{\alpha}}\alpha = 1, \quad \iota_{R_{\alpha}}d\alpha = 0.
$$

We remark that different choices of α will lead to different choices of R_{α} .

A contact vector field X is a vector field on C that preserves the sub-bundle ξ .

DEFINITION 1.1. Given a smooth function $H: C \to \mathbb{R}$, the *contact Hamiltonian vector field* X_H is uniquely determined by the conditions

$$
\begin{cases} \langle X_H, \alpha \rangle = H, \\ \iota_{X_H} d\alpha = \langle dH, R \rangle \alpha - dH. \end{cases} \tag{3}
$$

The Reeb vector field is a special case of X_H where $H = 1$.

Proposition 1.2 [\[Gei08,](#page-16-6) Theorem 2.3.1]. *With a fixed choice of contact form* α*, there is a oneto-one correspondence between the contact vector field* X and smooth functions $H: C \to \mathbb{R}$. The *correspondence is given by*

$$
X \mapsto H = \langle \alpha, X \rangle, \quad H \mapsto X_H.
$$

Unlike symplectic Hamiltonian vector fields, X_H does not preserve the level sets of H.

Lemma 1.3. *We have that*

$$
\langle X_H, dH \rangle = H \langle R, dH \rangle.
$$

In particular, X_H preserves the zero set of H .

Proof. Apply ι_{X_H} to the second line of [\(3\)](#page-4-0) and then use the first line.

We also have the Lie derivative of α along X_H ,

$$
\mathcal{L}_{X_H}(\alpha) = d\iota_{X_H}\alpha + \iota_{X_H} d\alpha = \langle R, H \rangle \alpha.
$$

PROPOSITION 1.4. If $\mathcal{L} \subset C$ *is a germ of a smooth Legendrian and* H *is any locally defined function vanishing on* \mathcal{L} *, then the contact flow* X_H *is tangential to* \mathcal{L} *.*

Proof. To show that X_H is tangential to $\mathcal L$ at $p \in \mathcal L$, we only need to show that for any tangent vector $v \in T_p \mathcal{L}$ we have $d\alpha(X_H, v) = 0$ and $\alpha(X_H)|_p = 0$, because these two conditions imply $X_H \in (T_p \mathcal{L})^{\perp_{d\alpha}} \cap \ker(\alpha) = T_p \mathcal{L}$. Indeed, $\alpha(X_H)|_p = H(p) = 0$ and

$$
d\alpha(X_H, v) = \iota_{X_H}(d\alpha)(v) = [\langle R, dH \rangle \alpha - dH](v) = \langle R, dH \rangle (\alpha(v)) - H(v) = 0.
$$

Hence X_H is tangential to \mathcal{L} .

Example 1.5*.* Let M be a smooth manifold, and let T∗M the cotangent bundle with canonical Liouville 1-form λ and symplectic 2-form $\omega = d\lambda$. If we put local Darboux coordinates (q, p) $(q_1,\ldots,q_m;p_1,\ldots,p_m)$ on T^*M , where $m=\dim_{\mathbb{R}} M$, then $\lambda=\sum_{i=1}^m p_i dq_i$ and $\omega=\sum_i dp_i \wedge dq_i$, and we will suppress the indices and summation and write simply $\lambda = p dq$ and $\omega = dp dq$. Also define $\dot{T}^*M = T^*M\setminus T^*_MM$ and $T^{\infty}M = \dot{T}^*M/\mathbb{R}_{>0}$. The Liouville vector field for λ is defined by $\iota_{V_\lambda}\omega=\lambda$, and here it is given by $V_\lambda=p\partial_p$. On $T(T^*M)$, the symplectic orthogonal to the Liouville vector field defines a distribution

$$
\widetilde{\xi} = \{ (q, p; v_q, v_p) \in T(\dot{T}^*M) : \omega((v_q, v_p), V_\lambda) = 0 \},
$$

which projects to a canonical contact distribution ξ on $T^{\infty}M$. Let g be any Riemannian metric on M; then T^*M has an induced norm. Let $S^*M = \{(q, p) \in T^*M : |p| = 1\}$ be the unit cosphere bundle with contact form $\alpha = \lambda |_{S^*M}$; then the contact distribution can also be written as $\xi =$ $\ker(\alpha)$.

Define the symplectization of $(C, \xi = \ker \alpha)$ by

$$
S := C \times \mathbb{R}_u, \quad \lambda = e^u \alpha, \quad \omega_S = d(e^u \alpha).
$$

We have the projection along \mathbb{R}_u and the inclusion of zero-section

 $\pi_S : S \to C$, $\iota_C : C \simeq C \times \{0\} \hookrightarrow S$.

A different choice of α would give rise to the same S up to a fiber-preserving symplectomorphism that identifies the 'zero-section' $\text{Im}(\iota_C)$.

A Hamiltonian function $H: C \to \mathbb{R}$ can be extended to a homogeneous degree-one function $\widetilde{H}: S \to \mathbb{R}$ by setting $\widetilde{H} = e^u H$. Then the symplectic Hamiltonian vector field $\xi_{\widetilde{H}}$, given by $\omega_S(-,\xi_{\widetilde{H}}) = dH(-)$, preserves the fiber of π_S and descends to X_H .

1.2 Convex tubes

Recall the definition of convex tubes in Definition [0.2.](#page-2-0)

DEFINITION 1.6. A Liouville hypersurface thickening of a singular Legendrian $\mathcal L$ is a hypersurface $H \supset L$ such that $(H, \alpha|_H)$ is a Liouville domain with the Liouville skeleton being \mathcal{L} .

First we show that a Liouville hypersurface thickening can be upgraded to a convex tube thickening of \mathcal{L} .

PROPOSITION 1.7. Let $\mathcal L$ be a singular Legendrian with a Liouville hypersurface thickening $\mathcal H$. *Then* $\mathcal L$ *admits a convex tube* (U, X) *, where the contact vector field* X preserves $\mathcal H$ and X *restricted to* H *is the downward Liouville flow of* H *.*

Proof. Let $\epsilon > 0$ be small enough that for any $0 < s < \epsilon$ we have $\mathcal{H} \cap R^s \mathcal{H} = \emptyset$. Then define $U = \bigcup_{|s| \leq \epsilon/2} R^s \mathcal{H} \simeq \mathcal{H} \times (-\epsilon/2, +\epsilon/2)$, and let $h : U \to (-\epsilon/2, +\epsilon/2)$ be the projection. Then $X = X_h$ shrinks U to L and restricts to the downward Liouville flow on H. One may smooth the corner of U and achieve transversality of X with ∂U .

Conversely, we show that each convex tube (U, X) around $\mathcal L$ determines a Liouville thickening.

PROPOSITION 1.8. Let (U, X) be a convex tube around L. Let $h = \alpha(X)$ and $\mathcal{H} = h^{-1}(0) \subset U$. Then H is a Liouville thickening of L .

Proof. Since $X = X_h$ preserves H and shrinks H to L, we only need to show that H is transverse to R and X is the downward Liouville flow on \mathcal{H} .

Since $\mathcal{L}_X(\alpha) = \langle R, dh \rangle \alpha = -\alpha$, we have $R(h) = -1$. Thus R is transversal to the level sets of h, in particular H. Hence d α is non-degenerate on H, so H is exact symplectic. Let $\lambda = \alpha|_{\mathcal{H}}, \omega =$ d λ . When we restrict to TH, we have

$$
\iota_{X_h}(\omega) = \iota_{X_h}(d\alpha) = \langle R, dh \rangle \alpha - dh = -\lambda,
$$

and hence X_h is the downward Liouville flow on \mathcal{H} .

PROPOSITION 1.9. Let (U, X) be a convex tube of L. Then L is displaceable (see Definition [0.8\)](#page-3-1). *Similarly, let* $I = [0, 1]$ *and let* (U_I, X_I) *be a strong isotopy of convex tubes for* \mathcal{L}_I *. Then the family of Legendrians* \mathcal{L}_t *are uniformly displaceable.*

Proof. Let $h = \alpha(X)$ be the Hamiltonian function generating X. Then h vanishes on \mathcal{L} , and by the normalization condition we have $R(h) = -1$. If there is a Reeb chord $\gamma : [0, T] \to C$ contained in U and ending on \mathcal{L} , then we have

$$
\int_0^T \dot{\gamma}(dh) dt = \int_0^T R(dh) dt = \int_0^T (-1) dt = -T.
$$

But on the other hand we also have

$$
\int_0^T \dot{\gamma}(dh) dt = \int_{\gamma} dh = h(\gamma(T)) - h(\gamma(0)) = 0,
$$

since $\gamma(T) \in \mathcal{L}$, $\gamma(0) \in \mathcal{L}$ and $h|_{\mathcal{L}} = 0$. Thus, there is no Reeb chord ending on \mathcal{L} and contained in U. For any $x \in \mathcal{L}$, let $t(x) = \inf\{t \in \mathbb{R} : R^t(x) \notin U\}$; then $t(x) > 0$ and is continuous on \mathcal{L} . Let $\epsilon = \inf\{t(x) : x \in \mathcal{L}\}\;$ since $\mathcal L$ is compact, $\epsilon > 0$. Then $\mathcal L$ is displaceable.

For the uniformly displaceable statement, note that $I = [0, 1]$ is compact and $\epsilon(t)$ for (U_t, X_t) is continuous in t; hence $\epsilon = \inf \{ \epsilon(t) \} > 0.$

1.3 The construction of strong isotopies of convex tubes

Consider the unit cosphere bundle (S^*M,α) and a closed interval $I \subset \mathbb{R}$. Let a point in S^*M be denoted by $(x, p) \in T^*M$ with $|p|=1$. Let a point in T^*I be denoted by $(t, \tau) \in I \times \mathbb{R}$. Let $S^*M \times T^*I$ be equipped with the contact 1-form

$$
\alpha_I = \alpha + \tau dt.
$$

Let $\pi_t : S^*M \times T^*I \to I$.

PROPOSITION 1.10. The Reeb flow R_I on $S^*M \times T^*I$ for α_I is the pullback of the Reeb flow R *on* S∗M*.*

Proof. Let R denote the pullback to $S^*M \times T^*I$. We may verify that $\iota_R(\alpha_I) = 1$ and $\iota_R(d\alpha_I) = 0.$

Let \mathcal{L}_I be a strong isotopy of Legendrians. Let

$$
\mathcal{L}_t = \{(x, p) \in S^*M \mid \exists (x, p, t, \tau) \in \mathcal{L}_I\}.
$$

LEMMA 1.11. We have that \mathcal{L}_t is a singular Legendrian in S^*M .

Proof. Take any $p \in \mathcal{L}_t$ that is the image of a point \tilde{p} in the smooth loci \mathcal{L}_t^{sm} ; any tangent vector $v \in T_p \mathcal{L}_t$ can be lifted to $\widetilde{v} \in T_{\widetilde{p}} \mathcal{L}_I$. Concretely, $\widetilde{v} = v + c\partial_{\tau}$. Since $0 = (\alpha + \tau dt)(\widetilde{v}) = \alpha(v)$, we see that $T_p\mathcal{L}_t$ is in ker(α). Hence a dense open part of \mathcal{L}_t is Legendrian, and thus \mathcal{L}_t is a singular Legendrian.

Let $(U_I, X_I, \mathcal{L}_I)$ be a strong isotopy of convex tubes. First we define the restriction to $S^*M \times$ T_t^*I . Since X_I preserves the t coordinate, for each t we have the vector field

$$
\hat{X}_t := X_I|_t \in \text{Vect}(S^*M \times T_t^*I).
$$

Also define the restriction

$$
\hat{U}_t = U_I \cap S^*M \times T_t^*I, \quad \hat{\mathcal{L}}_t = \mathcal{L}_I \cap S^*M \times T_t^*I.
$$

Next, we define (U_t, X_t) . Define the projection map $\hat{\pi}_t : S^*M \times T_t^*I \to S^*M$ and write

$$
U_t = \hat{\pi}_t(\hat{U}_t), \quad \mathcal{L}_t = \hat{\pi}_t(\hat{\mathcal{L}}_t).
$$

Let $h_I = \alpha_I(X_I)$; since X_I has no ∂_t component, $\partial_\tau h_I = 0$ and hence h_I is independent of τ . For each $t \in I$ we define

 $h_t(x, p) := h_I(x, p, t)$ for all $(x, p) \in U_t$,

and we let X_t be the contact vector field generated by h_t .

Proposition 1.12. *With the above setup, we have*

$$
\hat{X}_t = X_t + (-\tau - \partial_t h_t)\partial_\tau.
$$

Proof. We split a tangent vector v on $S^*M \times T^*I$ into two components as $v = v_1 + v_2$, where v_1 and v_2 are along the S^*M and T^*I factors, respectively. Similarly, we decompose X_I as $X_I = X_{I,1} + X_{I,2}$, where $X_{I,2} = a \partial_\tau$.

By the definition of X_I , we have

$$
\iota_{X_I}(\alpha + \tau dt) = h_I
$$

and

$$
\iota_{X_I} d(\alpha + \tau dt) = \langle R_I, h_I \rangle (\alpha + \tau dt) - dh_I,
$$

which we will refer to as the first and second equations below.

Since $\tau dt(X_{I,2}) = 0$, the first equation becomes

$$
\alpha(X_{I,1}) = h_t(x,p).
$$

For the second equation, if we restrict to the tangent space on S^*M , we have

$$
\iota_{X_{I,1}} d\alpha = \langle R, h_t \rangle \alpha - dh_t.
$$

Thus $X_{I,1} = X_t$ is the contact vector field on S^*M generated by $h_t(x, p)$.

Finally, if we restrict the second equation to the tangent space of T^*I , we get

$$
\iota_{X_{I,2}}(d\tau \wedge dt) = \langle R, h_I \rangle (\tau dt) - \partial_t h_t dt.
$$

If we plug in $X_{I,2} = a\partial_t$ and $\langle R, h_I \rangle = -1$, we get the desired result.

PROPOSITION 1.13. For any $t \in I$, the (U_t, X_t) defined above is a convex tube for \mathcal{L}_t . Further*more, the family* $\{(U_t, X_t)\}_t$ *varies smoothly with* t and hence is an isotopy of convex tubes *for* $\{\mathcal{L}_t\}$ *.*

Proof. From Proposition [1.12](#page-7-0) we know that the flow of \hat{X}_t preserves the fibers of $S^*M \times T^*_t I \to$ S^*M and the induced flow on S^*M is generated by X_t . Since the flow of \hat{X}_t shrinks \hat{U}_t to $\hat{\mathcal{L}}_t$, i.e. $\hat{\mathcal{L}}_t = \bigcap_{u>0} \hat{X}_t^u \hat{U}_t$, the sequence of open sets $\hat{X}_t^u \hat{U}_t$ is monotonically decreasing in u; furthermore, $\hat{\pi}_t(\hat{X}_t^u \hat{U}_t) = X_t^u(U_t)$, so we have

$$
\mathcal{L}_t = \bigcap_{u>0} X_t^u(U_t). \qquad \qquad \Box
$$

The final proposition allows us to upgrade from an isotopy of Liouville hypersurfaces to a strong isotopy of convex tubes.

PROPOSITION 1.14. If \mathcal{L}_I is a Legendrian in $S^*M \times T^*I$ and if $\{\mathcal{H}_t\}$ is a smooth family of *Liouville hypersurfaces in* S^*M *such that* \mathcal{L}_t *is the skeleton of* \mathcal{H}_t *, then we have a strong isotopy of convex tubes* (U_I, X_I) *around* \mathcal{L}_I *.*

Proof. First we use \mathcal{H}_t to get a family of convex tubes (U_t, X_t) and the associated Hamiltonian functions h_t , where $h_t|_{\mathcal{H}_t} = 0$ and $R(h_t) = -1$. The family of functions h_t determines the lifted function $h_I(x, p, t, \tau) = h_t(x, p)$ which is defined when $(x, p) \in U_t$. In turn, h_I determines the contact vector field X_I , which restricts to the fiber $S^*M \times T_t^*I$ as given by Proposition [1.12.](#page-7-0) Thus, we only need to specify the subset $\hat{U}_t \subset U_t \times T_t^* I$ such that its boundary $\partial \hat{U}_t$ is transverse to the vector field \hat{X}_t and it is compressed by the flow of \hat{X}_t to $\hat{\mathcal{L}}_t = \mathcal{L}_I \cap S^*M \times T_t^*I$.

Let

$$
C = 1 + \sup\{|\partial_t h_t(x, p)| : (x, p) \in \bar{U}_t, t \in I\}
$$

and let

$$
\hat{U}_t = U_t \times (-C, C) \subset S^*M \times T^*I.
$$

Then the flow \hat{X}_t is transverse to the boundary ∂U_t . We only need to show that $\bigcap_{u>0} \hat{X}_t^u(\hat{U}_t)$ $\hat{\mathcal{L}}_t$. Since $\hat{U}_t \to U_t$ with fiber $(-C, C)$, \hat{X}_t restricted to the fiber gives the equation for τ as

$$
(d/du)\tau(u) = -\tau - \partial_t h_t(x(u), p(u)).
$$

This is a contracting flow with unit contraction rate in the sense that for any initial condition (τ_1, τ_2) at $u = 0$ we have $\tau_1(u) - \tau_2(u) = (\tau_1 - \tau_2)e^{-u}$ for $u > 0$.

Under the projection map $\hat{\pi}_t : S^*M \times T_t^*I \to S^*M$, we have the surjection

$$
\hat{\pi}_t : \hat{\mathcal{L}}'_t := \bigcap_{u>0} \hat{X}_t^u \hat{U}_t \to \bigcap_{u>0} X_t^u U_t = \mathcal{L}_t,
$$

and by the contracting property of the flow \hat{X}_t , the fiber can consist of only one point; thus $\hat{\pi}_t : \hat{\mathcal{L}}'_t \to \mathcal{L}_t$ is a bijection.

Let $U_I = \bigcup_{t \in I} \hat{U}_t \subset S^*M \times T^*I$, and put the slices $\hat{\mathcal{L}}'_t$ together into $\mathcal{L}'_I = \bigcap_{u>0} X_I^u U_I$. Recall $\hat{\pi}: S^*M \times T^*I \to S^*M \times I$; then $\hat{\pi}(\mathcal{L}_I) = \hat{\pi}(\mathcal{L}'_I)$ and \mathcal{L}'_I is homeomorphic to its image. Since a smooth family of smooth Legendrians in $S^*M \times I$ has a unique lift to $S^*M \times T^*I$, \mathcal{L}_I and \mathcal{L}'_I agree over the smooth loci of $\hat{\pi}(\mathcal{L}_I)$. Since \mathcal{L}_I is the closure of its smooth part, we have $\mathcal{L}_I = \mathcal{L}'_I$, finishing the proof of the proposition.

2. Non-characteristic isotopy of sheaves

2.1 Constructible sheaves

We give a quick working definition of constructible sheaves used in this paper, and refer to [\[KS13\]](#page-16-0) for a proper treatment. A constructible sheaf F on M is a sheaf valued in a chain complex of C-vector spaces, such that its cohomology is locally constant with finite rank with respect to some Whitney stratification^{[1](#page-9-0)} $S = {\{\mathcal{S}_{\alpha}\}_{{\alpha \in A}}}$ on M, where the \mathcal{S}_{α} are disjoint locally closed smooth submanifolds with a nice adjacency condition and $M = \bigsqcup_{\alpha \in A} S_{\alpha}$. The singular support $SS(F)$ of F is a closed conical Lagrangian in T^*M , contained in $\bigcup_{\alpha\in A} T^*_{S_\alpha}M$, such that $SS(F)\cap T^*_MM$ equals the support of F and $(p, q) \in SS(F) \backslash T^*_M M$ if there exists a locally defined function f with $f(q) = 0$ and $df(q) = p$ such that the restriction map $F(B_{\epsilon}(q) \cap \{f < \delta\}) \to F(B_{\epsilon}(q) \cap \{f < \delta\})$ $-\delta$ }) fails to be a quasi-isomorphism for $0 < \delta \ll \epsilon \ll 1$. We denote by $SS^{\infty}(F) = SS(F) \cap S^*M$ the singular support of F at infinity.

If $\Lambda \subset T^*M$ is a conical Lagrangian containing the zero-section (as assumed throughout this paper), we write $Sh(M, \Lambda^{\infty})$ for the dg derived category of constructible sheaves with object F satisfying $SS^{\infty}(F) \subset \Lambda^{\infty}$.

Example 2.1. On R, let $\mathbb{C}_{[0,1]}$ (respectively $\mathbb{C}_{(0,1)}$) denote the constant sheaf with stalk \mathbb{C} on $[0,1]$ (respectively on $(0, 1)$) and zero stalk elsewhere. Then the singular supports of $\mathbb{C}_{[0,1]}$ and $\mathbb{C}_{(0,1)}$ in $T^*\mathbb{R}$ are

$$
SS(\mathbb{C}_{[0,1]}) = \qquad \qquad \longrightarrow \qquad SS(\mathbb{C}_{(0,1)}) = \qquad \qquad \boxed{\qquad \qquad }.
$$

Example 2.2*.* Let $j: U = B(0, 1) \hookrightarrow \mathbb{R}^2$ be the inclusion of an open unit ball in \mathbb{R}^2 . Then $j_*\mathbb{C}_U$ is supported on the closed set \overline{U} , with singular support at infinity as

$$
SS^{\infty}(j_{*}\mathbb{C}_{U}) = \{(x,\eta) \in S^{*}\mathbb{R}^{2} \mid x \in \partial U, \eta = -d|x|\} = \bigg\{\begin{matrix} \text{if } \text{if } x \in \partial U, \text{ if } x \in \partial U, x \in \partial U, y \in \partial U, y \in \partial U \end{matrix}\bigg\}
$$

 $\sim 10^{-1}$

And $j_{\parallel}C_U$ is supported on the open set U, with singular support at infinity given by

$$
SS^{\infty}(j_!\mathbb{C}_U)=\{(x,\eta)\in S^*\mathbb{R}^2\mid x\in\partial U,\,\eta=d|x|\}=\{\langle\chi\rangle\}
$$

Here the Legendrians are represented by co-oriented hypersurfaces in \mathbb{R}^2 with hairs indicating the co-orientation.

¹ More precisely, a μ -stratification; see [\[KS13,](#page-16-0) § 8.3].

2.2 Operation on sheaves

In this subsection, we deviate from our running convention and use $Sh(X)$ to denote the cocomplete dg derived category of sheaves on X without any constructibility condition. Let $f: Y \rightarrow$ X be a map of real analytic manifolds. Then we have the following pairs of adjoint functors:

$$
-\otimes F: Sh(X) \leftrightarrow Sh(X): \mathcal{H}om(F, -),
$$

$$
f^*: Sh(X) \leftrightarrow Sh(Y): f_*,
$$

$$
f_!: Sh(Y) \leftrightarrow Sh(X): f^!.
$$

Given an open subset U of X and its closed complement Z ,

open inclusion: $U \stackrel{j}{\hookrightarrow} X \stackrel{i}{\hookleftarrow} Z$, closed inclusion,

we have $j^* = j^!$ and $i_* = i$. Furthermore, there are exact triangles

$$
i_!i^!
$$
 \rightarrow id $\rightarrow j_*j^* \xrightarrow{[1]}$, $j_!j^! \rightarrow id \rightarrow i_*i^* \xrightarrow{[1]}$.

These are sheaf-theoretic incarnations of excisions: upon applying to the constant sheaf on X and taking global sections, we get

$$
H^*(Z, i^! \mathbb{C}) \to H^*(X, \mathbb{C}) \to H^*(U, \mathbb{C}) \xrightarrow{[1]}, \quad H^*_c(U, \mathbb{C}) \to H^*_c(X, \mathbb{C}) \to H^*_c(Z, \mathbb{C}) \xrightarrow{[1]}.
$$

Let X_i , $i = 1, 2$, be spaces, and let $K \in Sh(X_1 \times X_2)$. We define the pair of adjoint functors

$$
K_! : Sh(X_1) \leftrightarrow Sh(X_2) : K^!, \tag{4}
$$

$$
K_! : F \mapsto \pi_{2!}(K \otimes \pi_1^* F), \quad K^!: G \mapsto \pi_{1*}(\mathcal{H}om(K, \pi_2^! G)). \tag{5}
$$

In [\[KS13\]](#page-16-0), $K_1 = \Phi_K$ and $K^! = \Psi_K$ with X_1 and X_2 switched. The notation here is suggestive of their being adjoint functors.

2.3 Isotopy of constructible sheaves

Let $I = (a, b) \subset \mathbb{R}$. For any $t \in I$, let

$$
j_t: M_t := M \times \{t\} \hookrightarrow M_I := M \times I
$$

be the inclusion of the t-slice M_t into the total space M_I , and let $\pi_I : M_I \to I$ be the projection. Let \mathbb{C}_{M_t} be the constant sheaf on M_t with stalk \mathbb{C} . We then have

$$
SS(\mathbb{C}_{M_t}) = \{(x, t; 0, \tau) \in T^*M_I\}, \quad SS^{\infty}(\mathbb{C}_{M_t}) = \{(x, t; 0, \pm 1) \in S^*M_I \simeq T^{\infty}M\}.
$$

DEFINITION 2.3. Let M be a smooth manifold and I a closed interval of \mathbb{R} .

(i) An *isotopy of (constructible) sheaves* is a constructible sheaf $F_I \in Sh(M \times I)$ such that $SS^{\infty}(F_I)$ is a strong isotopy of Legendrians in $S^*M \times T^*I$ (Definition [0.4\)](#page-2-1). Equivalently, for any $t \in I$ we have

$$
SS^{\infty}(F_I) \cap SS^{\infty}(\mathbb{C}_{M_t}) = \emptyset.
$$

If F_I is an isotopy of sheaves, then for any $t \in I$ we denote the *restriction of* F_I at t by

$$
F_t := F_I|_{M_t} \in Sh(M).
$$

(ii) Two isotopies of sheaves $F_I, G_I \in Sh(M \times I)$ are said to be *non-characteristic* if

$$
SS^{\infty}(F_I)|_t \cap SS^{\infty}(G_I)|_t = \emptyset \text{ for all } t \in I.
$$

Some easy-to-check properties are the following.

Proposition 2.4. *Let* M *be a compact real analytic manifold.*

(1) If F_I is an isotopy of sheaves and $\Lambda_I^{\infty} = SS^{\infty}(F_I)$, then

$$
SS^{\infty}(F_t) \subset \Lambda_t^{\infty}.
$$

(2) If F_I is an isotopy of sheaves and $\pi_I : M_I \to I$, then $(\pi_I)_*F_I$ is a local system on I.

2.4 Invariance of morphisms under non-characteristic isotopies

We use the same notation for $M_I = M \times I$, M_t , \mathbb{C}_{M_t} etc. as in the previous subsection.

LEMMA 2.5. Let $F \in Sh(M)$ and let $\varphi : M \to \mathbb{R}$ be a C^1 function such that $d\varphi(x) \neq 0$ for $x \in \varphi^{-1}([0,1]).$

(1) For
$$
s \in (0,1)
$$
 let $U_s = \{x : \varphi(x) < s\}$, and let $U_1 = \bigcup_s U_s$. If $SS^{\infty}(\mathbb{C}_{U_s}) \cap SS^{\infty}(F) = \emptyset$ for all $0 < s < 1$,

then

$$
\operatorname{Hom}(\mathbb{C}_{U_1}, F) \xrightarrow{\sim} \operatorname{Hom}(\mathbb{C}_{U_s}, F) \quad \text{for all } 0 < s < 1.
$$

(2) For
$$
s \in (0,1)
$$
 let $Z_s = \{x : \varphi(x) \leq s\}$, and let $Z_0 = \bigcap_s Z_s$. If

$$
SS^{\infty}(\mathbb{C}_{Z_s}) \cap SS^{\infty}(F) = \emptyset \quad \text{for all } 0 < s < 1,
$$

then

$$
\operatorname{Hom}(\mathbb{C}_{Z_s}, F) \xrightarrow{\sim} \operatorname{Hom}(\mathbb{C}_{Z_0}, F) \quad \text{for all } 0 < s < 1.
$$

Proof. Assertion (1) is a special case of [\[GKS12,](#page-16-1) Proposition 1.8]. Assertion (2) follows from (1) and the fact that

$$
0 \to \mathbb{C}_{M \setminus \mathbb{Z}_s} \to \mathbb{C}_M \to \mathbb{C}_{Z_s} \to 0.
$$

The following lemma is also often used.

LEMMA 2.6 (Petrowsky theorem for sheaves [\[KS13\]](#page-16-0)). Let $F, G \in Sh(M)$ be (cohomologically) *constructible complexes of sheaves. If* $SS^{\infty}(F) \cap SS^{\infty}(G) = \emptyset$, then the natural morphism

 $\mathcal{H}om(F,\mathbb{C}_M)\otimes G\to \mathcal{H}om(F,G)$

is an isomorphism.

COROLLARY 2.7. If F_I is an isotopy of sheaves, then

$$
\mathcal{H}om(\mathbb{C}_{M_t}, F_I) \simeq \mathbb{C}_{M_t}[-1] \otimes F_I.
$$

PROPOSITION 2.8. Let G_I and F_I be non-characteristic isotopies of sheaves; then $\mathcal{H}om(F_I, G_I)$ *is an isotopy of sheaves. In particular,*

$$
Hom(F_t, G_t) \simeq Hom(F_s, G_s) \quad for all $t, s \in I$.
$$

Proof. As G_I and F_I being non-characteristic implies $SS^{\infty}(G_I) \cap SS^{\infty}(F_I) = \emptyset$, we can bound the singular support of the hom-sheaf as [\[KS13\]](#page-16-0)

$$
SS(\mathcal{H}om(F_I, G_I)) \subset SS(G_I) + SS(F_I)^a.
$$

Again, using that G_I and F_I are non-characteristic, we obtain

$$
SS^{\infty}(\mathcal{H}om(F_I, G_I)) \cap SS^{\infty}(\mathbb{C}_{M_t}) = \emptyset \text{ for all } t, s \in I.
$$

Hence $\mathcal{H}om(F_I, G_I)$ is an isotopy of sheaves. For the second statement, we have

$$
\text{Hom}(F_t, G_t) = \text{Hom}(j_t^* F_I, j_t^* G_I) \simeq \text{Hom}(F_I, j_{t*} j_t^* G_I) \simeq \text{Hom}(F_I, \mathbb{C}_{M_t} \otimes G_I)
$$
\n
$$
\simeq \text{Hom}(F_I, \mathcal{H}om(\mathbb{C}_{M_t}, G_I)[1]) \simeq \text{Hom}(\mathbb{C}_{M_t}, \mathcal{H}om(F_I, G_I))[1]
$$
\n
$$
\simeq \text{Hom}(\mathbb{C}_t, \pi_{I*} \mathcal{H}om(F_I, G_I))[1] \simeq [\pi_{I*} \mathcal{H}om(F_I, G_I)]_t. \tag{6}
$$

The result then follows since $\pi_{I*}(\mathcal{H}om(F_I, G_I))$ is a local system.

2.5 Invariance of morphisms under Reeb perturbations

Sometimes we want to vary G and F while preserving Hom(F, G), but $SS^{\infty}(G) \cap SS^{\infty}(F) \neq \emptyset$, e.g. $F = G$. Here we borrow an idea from the infinitesimally wrapped Fukaya category [\[NZ09\]](#page-17-1), namely that to compute $\text{Hom}_{Fuk}(L_1, L_2)$ one needs to perform a perturbation to separate L_1 and L_2 at infinity; one can perturb $L_2 \leadsto R^t L_2$ or $L_1 \leadsto R^{-t} L_1$, where R^t is the unit-speed geodesic flow on T^*M (smoothed near the zero-section) for positive small times t, small enough that no new intersections are created between L_1 and L_2 at infinity.

Fix a Riemannian metric g on M and identify S^*M with $T^{\infty}M$, so that the Reeb flow R^t is the unit-speed geodesic flow. Let $r_{\text{inj}}(M,g)$ be the injective radius of (M,g) . Let \hat{R}^t be the GKS quantization of R^t . The rest of this subsection will be devoted to proving the following proposition.

PROPOSITION 2.9. Let $\Lambda^{\infty} \subset T^{\infty}M$ be a Legendrian, and let $0 < \epsilon < r_{\text{inj}}(M,g)$ be small enough *that*

$$
\Lambda^{\infty} \cap R^t \Lambda^{\infty} = \emptyset \quad \text{for all } 0 < |t| < \epsilon.
$$

(1) *For any* $F \in Sh(M, \Lambda)$ *and* $0 \leq t < \epsilon$, we have a canonical morphism

$$
F \to \hat{R}^t F.
$$

(2) For any $F, G \in Sh(M, \Lambda)$ and $0 \leq t < \epsilon$, we have canonical quasi-isomorphisms

$$
\text{Hom}(F,G) \xrightarrow{\sim} \text{Hom}(F, \hat{R}^t G), \quad \text{Hom}(F,G) \xrightarrow{\sim} \text{Hom}(\hat{R}^{-t} F, G).
$$

Proof. For any $0 \leq t < \epsilon$, define

$$
K_t = \mathbb{C}_{\{(x,y)|d_g(x,y)\leq t\}} \in Sh(M\times M).
$$

Then, from [\[GKS12\]](#page-16-1), we have

$$
\hat{R}^t F = \pi_{1*} \mathcal{H}om(K_t, \pi_2^! F) = K_t^! F
$$

and

$$
\hat{R}^{-t}F = \pi_{2!}(K_t \otimes \pi_1^*F) = (K_t)_!F,
$$

where π_1 and π_2 are the projections from $M \times M$ to the first and second factors, and \mathcal{H} om is the (dg derived) sheaf-hom. From the canonical restriction morphism $K_t \to K_0 = \mathbb{C}_{\Delta}$, where $\Delta \subset M \times M$ is the diagonal subset, we have

$$
F = \pi_{1*} \mathcal{H}om(K_0, \pi_2^! F) \rightarrow \pi_{1*} \mathcal{H}om(K_t, \pi_2^! F) = \hat{R}^t F.
$$

For statement (2) of the proposition, we first prove the following lemma.

Lemma 2.10. *We have that*

$$
SS^{\infty}(K_t) \cap SS^{\infty}(\mathcal{H}om(\pi_1^*F, \pi_2^!G)) = \emptyset \quad \text{for all } 0 < t < \epsilon. \tag{7}
$$

Proof. We identify the contact infinity $T^{\infty}M$ with the unit cosphere bundle S^*M . Assume that the intersection is non-empty and contains the point (x_1, x_2, p_1, p_2) . Since $(x_1, x_2; p_1, p_2) \in$ $SS^{\infty}(K_t)$, we have

$$
d_g(x_1, x_2) = t.
$$

Since $t < \epsilon < r_{\text{inj}}(M,g)$, there is a unique length-t geodesic γ connecting x_1 and x_2 , and p_i is the unit tangent vector along γ at x_i pointing to the interior of the geodesic,

$$
p_i = -\partial_{x_i} d_g(x_1, x_2).
$$

Hence the geodesic flow on S^*M relates (x_i, p_i) via

$$
R^{t}(x_1, p_1) = (x_2, -p_2), \quad R^{t}(x_2, p_2) = (x_1, -p_1). \tag{8}
$$

On the other hand, since $(x_1, x_2; p_1, p_2) \in SS^{\infty}(\mathcal{H}om(\pi_1^*F, \pi_2^!G))$, we have

$$
(x_1, -p_1) \in SS^{\infty}(F), \quad (x_2, p_2) \in SS^{\infty}(G). \tag{9}
$$

Hence, combining (8) and (9) , we have

$$
(x_1, -p_1) \in R^t(SS^{\infty}(G)) \cap SS^{\infty}(F) \subset R^t\Lambda^{\infty} \cap \Lambda^{\infty}.
$$

This contradicts the displaceability of Λ^{∞} for $t < \epsilon$.

Now we come back to the proof of Proposition [2.9.](#page-12-0) We have

$$
\text{Hom}(F, G) \simeq \Gamma(M, \mathcal{H}om(F, G))
$$
\n
$$
\simeq \Gamma(M \times M, \mathcal{H}om(\mathbb{C}_{\Delta}, \mathcal{H}om(\pi_1^*F, \pi_2^!G)))
$$
\n
$$
\xrightarrow{\sim} \Gamma(M \times M, \mathcal{H}om(K_t, \mathcal{H}om(\pi_1^*F, \pi_2^!G)))
$$
\n
$$
\simeq \Gamma(M \times M, \mathcal{H}om(\pi_1^*F, \mathcal{H}om(K_t, \pi_2^!G)))
$$
\n
$$
\simeq \Gamma(M, \mathcal{H}om(F, \pi_{1*}\mathcal{H}om(K_t, \pi_2^!G)))
$$
\n
$$
\simeq \text{Hom}(F, \hat{R}^t G),
$$

where in the third step we used the canonical morphism $K_t \to \mathbb{C}_{\Delta}$ when replacing \mathbb{C}_{Δ} by K_t , and used Lemmas [2.10](#page-12-1) and [2.5\(](#page-11-0)2) to show that it is a quasi-isomorphism. \square

We will use the following purely sheaf-theoretic statement later to study the family of GKS quantization.

PROPOSITION 2.11. Let $I = (0, 1)$ *, and let* $K_I \in Sh(M \times M \times I)$ be an isotopy of sheaves such *that* $K_t = \mathbb{C}_{\Delta_t}$ *for some closed subsets* $\{\Delta_t\}_{0 \leq t \leq 1}$ *satisfying*

$$
\Delta_t \subset \Delta_s \ \ \forall \, 0 < t < s < 1 \quad \text{and} \quad \bigcap_{t \in I} \Delta_t = \Delta_M = \{(x, x) : x \in M\}.
$$

Let $F, G \in Sh(M, \Lambda)$, and let $Hom(\pi_1^*F, \pi_2^!G) \in Sh(M \times M)$ be the hom-sheaf. Assume that

$$
SS^{\infty}(K_t) \cap SS^{\infty}(\mathcal{H}om(\pi_1^*F, \pi_2^!G)) = \emptyset \text{ for all } t \in I;
$$

then

$$
\text{Hom}(F, G) \simeq \text{Hom}(F, K_t^! G) \simeq \text{Hom}(K_t^! F, G) \quad \text{for all } t \in I,
$$

where $K_t^!$, $K_{t!}$ are defined in [\(5\)](#page-10-0).

The proof is exactly the same as that of Proposition $2.9(2)$ $2.9(2)$, where the condition provided in Lemma [2.10](#page-12-1) is put into the hypothesis, so we do not repeat it here.

2.6 Limit of contact isotopy

Let $I = (0, 1)$ and define the inclusions

$$
(0,1)\xrightarrow{j_I} \mathbb{R} \xleftarrow{j_0} \{0\}.
$$

PROPOSITION 2.12 [\[TWZ19,](#page-17-3) Lemma 7.1]. Let $F_I \in Sh(M_I)$ be an isotopy of constructible sheaves, and let $\Lambda_I^{\infty} = SS^{\infty}(F_I)$. Suppose the family $(\Lambda_t^{\infty}, t) \subset T^{\infty}M \times (0, 1)$ has a closure in $T^{\infty}M \times [0,1)$ whose intersection with $T^{\infty}M \times \{0\}$ is a Legendrian Λ_0^{∞} . Then the sheaf

$$
F_0 := (j_0)^*(j_I)_*F_I \tag{10}
$$

has $SS^{\infty}(F_0) \subset \Lambda_0^{\infty}$ *.*

Proof. These are corollaries of results in [\[KS13\]](#page-16-0). By [\[KS13,](#page-16-0) Theorem 6.3.1], a point $(x, p; 0, -1) \in$ $T^*M \times T^*\mathbb{R}$ belongs to $SS((j_1)_*F_1)$ only if (x, p) is the limit of a sequence of points $(x_n, p_n) \in \Lambda_{t_n}$ where $t_n \to 0$, i.e. $(x, p) \in \Lambda_0$. By [\[KS13,](#page-16-0) Proposition 5.4.5], $SS(F_0) \subset SS((j_I)_*F_I)|_0 = \Lambda_0$; hence $SS^{\infty}(F_0) \subset \Lambda_0^{\infty}$. $\sum_{i=0}^{\infty}$

Let (U, X) be a convex tube for a Legendrian $\mathcal{L} \subset S^*M$. Let X be extended from a neighborhood of \bar{U} to all of S^*M . Let

$$
\hat{X}^{[0,\infty)} : Sh(M) \to Sh(M \times [0,\infty))
$$

be the sheaf quantization of the flow X , and let

$$
j_{[0,\infty)}: [0,\infty) \hookrightarrow [0,\infty] \hookleftarrow {\{\infty\}}: j_{\infty}.
$$

Then we define the functor $\Pi_X := (\mathrm{id}_M \times j_\infty)^* \circ (\mathrm{id}_M \times j_{[0,\infty)})_* \circ \hat{X}^{[0,\infty)} : Sh(M) \to Sh(M)$.

Let $Sh(M, U)$ denote the subcategory of $Sh(M)$ consisting of sheaves F with $SS^{\infty}(F) \subset U$.

PROPOSITION 2.13. When restricted to $Sh(M, U)$, we have that

$$
\Pi_{U,X} = \Pi_X|_{Sh(M,U)} : Sh(M,U) \to Sh(M,\mathcal{L}).
$$

Proof. This follows from the definition of a convex tube and Proposition [2.12.](#page-14-2) \Box

3. Existence and uniqueness of the extension

In this section we prove our main result, Theorem [0.5.](#page-2-2) In this section, we will sometimes identify $\Lambda_t^{\infty} \subset T^{\infty}M$ with $\mathcal{L}_t \subset S^*M$ and identify Reeb flow with geodesic flow.

3.1 Uniqueness of extension

Recall from Proposition [1.9](#page-6-0) that existence of strong isotopy of convex tubes implies uniform displaceability of the family $\{\mathcal{L}_t\}.$

PROPOSITION 3.1. Let Λ_t^{∞} be a family of Legendrians in $T^{\infty}M$ that are uniformly displaceable with parameter ϵ . Then the restriction functor ι_t^* is fully faithful for all t.

Proof. For $0 \le s \le \epsilon$ we define a family of kernels in $Sh((M_1 \times I_1) \times (M_2 \times I_2))$ as

$$
K_s := \mathbb{C}_{d(x_1, x_2) \leq s} \boxtimes \mathbb{C}_{t_1 = t_2}.
$$
\n
$$
(11)
$$

One can check that K_s generates the slicewise geodesic flow, i.e. if $F_I \in Sh(M_I)$ and

$$
K_s^!F_I := \pi_{1*}\mathcal{H}om(K_s, \pi_2^!F_I),
$$

then

$$
SS^{\infty}((K^!sF_I)|_{M_t}) = R^sSS^{\infty}(F_I|_{M_t}),
$$

where π_i is the projection from $(M_1 \times I_1) \times (M_2 \times I_2)$ to $M_i \times I_i$ and R^s is the Reeb (geodesic) flow for time s.

We first prove the following claim: for any $F_I, G_I \in Sh(M_I, \Lambda_I^{\infty}),$

 $Hom(\mathbb{C}_{M\times (a,b)}, \mathcal{H}om(F_I, G_I))$ is independent of $(a, b) \subset I$.

It suffices to prove the case for the right endpoint b. To use the estimate of the singular support of the hom-sheaf, we would like to perturb G_I by the fiberwise Reeb flow.

LEMMA 3.2. *For any* $0 < s < \epsilon$,

$$
\text{Hom}(\mathbb{C}_{M\times\{t\}},\mathcal{H}om(F_I,G_I))\xrightarrow{\sim}\text{Hom}(\mathbb{C}_{M\times\{t\}},\mathcal{H}om(F_I,K_s^!G_I)).
$$

 $Furthermore, Hom(\mathbb{C}_{M\times\{t\}}, Hom(F_I, K_s^!G_I))$ *is independent of t. The same is true if we replace* $\{t\}$ by any subinterval, e.g. [a, b] and (a, b) of I.

Proof. Unwinding the definition of $K_s^!$, we have

$$
\begin{aligned} \text{Hom}(\mathbb{C}_{M\times\{t\}},\mathcal{H}om(F_I,K_s^!G_I)) \\ &= \text{Hom}(\mathbb{C}_{M\times\{t\}},\mathcal{H}om(F_I,\pi_{1*}\mathcal{H}om(K_s,\pi_2^!G_I))) \\ &= \text{Hom}(\mathbb{C}_{M\times\{t\}},\pi_{1*}\mathcal{H}om(\pi_1^*F_I,\mathcal{H}om(K_s,\pi_2^!G_I))) \\ &= \text{Hom}(\pi_1^*\mathbb{C}_{M\times\{t\}},\mathcal{H}om(K_s,\mathcal{H}om(\pi_1^*F_I,\pi_2^!G_I))). \end{aligned}
$$

We claim that

$$
SS^{\infty}(\pi_1^* \mathbb{C}_{M \times \{t\}}) \cap SS^{\infty} \mathcal{H}om(K_s, \mathcal{H}om(\pi_1^* F_I, \pi_2^! G_I)) = \emptyset \quad \text{for all } 0 < s < \epsilon. \tag{12}
$$

The verification is straightforward, though a bit tedious, and we leave it to the reader.

From this claim and the fact that

$$
\text{Hom}(\pi_1^* \mathbb{C}_{M \times \{t\}}, \mathcal{H}om(K_s, \mathcal{H}om(\pi_1^* F_I, \pi_2^! G_I)))
$$

$$
\simeq \text{Hom}(\pi_1^* \mathbb{C}_{M \times \{t\}} \otimes K_s, \mathcal{H}om(\pi_1^* F_I, \pi_2^! G_I)),
$$

we may apply Lemma [2.5\(](#page-11-0)2) on the shrinking closed set to get

$$
\operatorname{Hom}(\pi_1^* \mathbb{C}_{M \times \{t\}} \otimes K_s, \mathcal{H}om(\pi_1^* F_I, \pi_2^! G_I)) \simeq \operatorname{Hom}(\pi_1^* \mathbb{C}_{M \times \{t\}} \otimes K_0, \mathcal{H}om(\pi_1^* F_I, \pi_2^! G_I))
$$

for all $0 < s < \epsilon$. This proves the first statement of the lemma.

The statement about independence of t follows from [\(12\)](#page-15-0) and Proposition [2.8.](#page-11-1)

The subinterval case can be proved similarly, and we omit the details. \Box

Now we finish proving the proposition. By Lemma [3.2,](#page-15-1)

 $Hom(\mathbb{C}_{M\times (a,b)}, \mathcal{H}om(F_I, G_I))$

is independent of (a, b) , so we may shrink from $(0, 1)$ to an arbitrary small neighborhood of t. Then we have

$$
\begin{aligned} \text{Hom}(F_I, G_I) &\simeq [\pi_{I*}(\mathcal{H}om(F_I, G_I))]_t \simeq [\pi_{I*}(\mathcal{H}om(F_I, K_s^! G_I))]_t \\ &\simeq \text{Hom}(\iota_t^* F_I, \iota_t^* K_s^! G_I) \simeq \text{Hom}(F_t, R^s G_t) \simeq \text{Hom}(F_t, G_t), \end{aligned}
$$

where $0 < s < \epsilon$ and we have used a small Reeb perturbation to make $F_I, K_s^! G_I$ a noncharacteristic isotopy of sheaves and then applied (6) from the proof of Proposition [2.8.](#page-11-1)

PROPOSITION 3.3. Let $\{\Lambda_t^{\infty}\}\$ be a family of Legendrians in $T^{\infty}M$ that are uniformly displaceable *with parameter* ϵ . For a given t , let $F_t \in Sh(M, \Lambda_t^{\infty})$. Suppose we have F'_I and F''_I in $Sh(M_I, \Lambda_I^{\infty})$

and isomorphisms

$$
f: F'_I|_t \xrightarrow{\sim} F_t, \quad g: F''_I|_t \xrightarrow{\sim} F_t.
$$

Then there exists a canonical isomorphism

$$
\Phi: F'_I \to F''_I
$$

such that $\Phi|_t = g^{-1} \circ f : F'_I|_t \to F''_I|_t.$

Proof. The proof follows from Proposition [3.1](#page-14-1) by standard arguments.

3.2 Existence of local extension

PROPOSITION 3.4. Let $I = [0, 1]$. Let \mathcal{L}_I be a strong isotopy of Legendrians in $S^*M \times T^*I$ with *the slice over* t *denoted by* \mathcal{L}_t *. Let* (U_t, X_t) *be a strong isotopy of convex tubes for* \mathcal{L}_t *. Then for any* $t \in I$ *and* $F_t \in Sh(M, \mathcal{L}_t)$ *, there exists an interval* $J \supset t$ *and* $F_J \in Sh(M_J, \mathcal{L}_J)$ *such that* $F_J|_t = F_t$, where $M_J = M \times J$ and $\mathcal{L}_J = \mathcal{L}_I \cap S^*M \times T^*J$.

Proof. For any interval $J \subset I$, let $U_J = U_I \cap S^*M \times T^*J$. Then for small enough J containing t, we have $\mathcal{L}_t \times T_J^* J \subset U_J$. Let X_J denote the restriction of X_I to X_J ; then if we define (see Proposition [2.13](#page-14-3) for definition of $\Pi_{U,X}$)

$$
F_J := \Pi_{(U_J, X_J)}(F_t \boxtimes \mathbb{C}_J),
$$

we have $F_J|_t = F_t$ and $SS^{\infty}(F_J) \in \mathcal{L}_J$.

3.3 Proof of Theorem [0.5](#page-2-2)

By the local extension result (Proposition [3.4\)](#page-16-7) and uniqueness of extension result, for any $t \in I =$ [0, 1] and $F_t \in Sh(M, \mathcal{L}_t)$ we can extend F_t to $F_I \in Sh(M_I, \mathcal{L}_I)$ such that $F_I|_t = F_t$. Hence the functor ι_t^* is fully faithful (Proposition [3.1\)](#page-14-1) and essentially surjective; thus it is an equivalence.

ACKNOWLEDGEMENTS

I would like to thank E. Zaslow for the statement and proof of Proposition [2.12,](#page-14-2) and D. Nadler, V. Shende, P. Schapira and S. Guillermou for their interest and inspiring discussions. I would also like to thank the anonymous referee who pointed out a serious gap in an earlier version of the manuscript and provided many useful comments for improving the paper.

REFERENCES

- Gei08 H. Geiges, *An introduction to contact topology*, Cambridge Studies in Advanced Mathematics, vol. 109 (Cambridge University Press, 2008).
- GPS18a S. Ganatra, J. Pardon and V. Shende, *Microlocal Morse theory of wrapped Fukaya categories*, Preprint (2018), [arXiv:1809.08807.](https://arxiv.org/abs/1809.08807)
- GPS18b S. Ganatra, J. Pardon and V. Shende, *Sectorial descent for wrapped Fukaya categories*, Preprint (2018), [arXiv:1809.03427.](https://arxiv.org/abs/1809.03427)
- GKS12 S. Guillermou, M. Kashiwara and P. Schapira, *Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems*, Duke Math. J. **161** (2012), 201–245.
- KS13 M. Kashiwara and P. Schapira, *Sheaves on manifolds*, Grundlehren der mathematischen Wissenschaften, vol. 292 (Springer, 2013).
- Nad15 D. Nadler, *Non-characteristic expansions of Legendrian singularities*, Preprint (2015), [arXiv:1507.01513.](https://arxiv.org/abs/1507.01513)
- Nad16 D. Nadler, *Wrapped microlocal sheaves on pairs of pants*, Preprint (2016), [arXiv:1604.00114.](https://arxiv.org/abs/1604.00114)

- NS20 D. Nadler and V. Shende, *Sheaf quantization in Weinstein symplectic manifolds*, Preprint (2020), [arXiv:2007.10154.](https://arxiv.org/abs/2007.10154)
- NZ09 D. Nadler and E. Zaslow, *Constructible sheaves and the Fukaya category*, J. Amer. Math. Soc. **22** (2009), 233–286.
- Tam08 D. Tamarkin, *Microlocal condition for non-displaceablility*, Preprint (2008), [arXiv:0809.1584.](https://arxiv.org/abs/0809.1584)
- TWZ19 D. Treumann, H. Williams and E. Zaslow, *Kasteleyn operators from mirror symmetry*, Selecta Math. (N.S.) **25** (2019), 60.

Peng Zhou pzhou.math@gmail.com

University of California, Berkeley, 970 Evans Hall, Berkeley, CA 94720, USA