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Abstract

Let {Λ∞
t } be an isotopy of Legendrians (possibly singular) in a unit cosphere bun-

dle S∗M that arise as slices of a singular Legendrian Λ∞
I ⊂ S∗M × T ∗I. Let Ct =

Sh(M, Λ∞
t ) be the differential graded derived category of constructible sheaves on M

with singular support at infinity contained in Λ∞
t . We prove that if the isotopy of Leg-

endrians embeds into an isotopy of Liouville hypersurfaces, then the family of categories
{Ct} is constant in t.

Motivation and results
Let M be a smooth manifold, and let Sh(M) be the co-complete differential graded (dg) derived
category of weakly constructible sheaves on M with coefficient in C. In [KS13, Tam08, GKS12]
it is proved that contact isotopy of the cosphere bundle T∞M = (T ∗M − T ∗

MM)/R+ acts on
Sh(M) as equivalences of categories. In this paper, we consider a (singular) Legendrian Λ∞ ⊂
T∞M and the full subcategory Sh(M, Λ∞) consisting of sheaves F with singular support at
infinity, SS∞(F ) = (SS(F )− T ∗

MM)/R+, contained in Λ∞. We define a notion of isotopy for
the singular Legendrian Λ∞ and prove that the category Sh(M, Λ∞) remains invariant under
such an isotopy.

Such invariances of constructible sheaf categories are possible because constructible sheaves
are closely related to Lagrangians in T ∗M (see [NZ09, GPS18a, NS20]) and hence enjoy the
flexibility of symplectic geometry. More precisely, the full subcategory of compact objects in
Sh(M, Λ∞), denoted by Shw(M, Λ∞), is equivalent to the wrapped Fukaya category of the pair
(T ∗M, Λ∞) (see [GPS18a, NS20]),

Shw(M, Λ∞) � Fukw(T ∗M, Λ∞),

where the superscript ‘w’ stands for ‘wrapped’. The traditional constructible sheaves with
bounded cohomologies Shpp(M, Λ∞) can be recovered as perfect modules [Nad16],

Shpp(M, Λ∞) = Funex(Shw(M, Λ∞)op, Perf(C)).

There is an analogous result in the wrapped Fukaya category for Liouville sectors [GPS18b,
Theorem 1.4]: given a Liouville domain W with a ‘stop’ S ⊂ ∂W , if the contact complement
∂W\S remains invariant up to contact isotopy as S moves, then the wrapped Fukaya category
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Fukw(W, S) is invariant. Hence, combined with the comparison results of [GPS18a, NS20], we
get that Sh(M, Λ∞) is invariant as long as T∞M\Λ∞ is invariant up to contact isotopy.

This paper gives a similar sufficient condition using ‘isotopy’ of Λ∞: we replace Λ∞ by a tube
U = U(Λ∞) around the Legendrian Λ∞, and we equip U with a contact flow X that shrinks the
tube U back to Λ∞ (Definition 0.2). Although Λ∞ may be singular, the data of (U, X) are
smooth, so we can talk about isotopies of (U, X). The relation to the complement T∞M\Λ∞

is that if (Ut, Xt) varies smoothly, then the complements {T∞M\Λ∞
t }t are contactomorphic,

where Λ∞
t is the limit of Ut under the shrinking flow Xt.

To state the main theorem precisely, we need some definitions.
Let (C, α) be a contact manifold with a contact 1-form α.

Definition 0.1. A singular Legendrian L ⊂ C is a Whitney stratifiable subspace such that
its top-dimensional strata are smooth Legendrians and the closure of the union of the top-
dimensional strata is L.

Definition 0.2. Let L ⊂ C be a singular Legendrian. A convex tube (U, X) around L is an
open subset U containing L with smooth boundary ∂U and a contact vector field X transverse
to ∂U and pointing inward to ∂U , such that LX(α) = −α and

⋂
u>0 Xu(U) = L, where Xu is

the time-u flow of X.

Definition 0.3. Let I ⊂ R be a closed interval and {(Ut, Xt,Lt)}t∈I a family of singular
Legendrians Lt with convex tubes (Ut, Xt). If ∂Ut and Xt vary smoothly with t, we say that
{(Ut, Xt,Lt)}t∈I is an isotopy of convex tubes over I.

Let M be a smooth manifold with Riemannian metric g. Let S∗M ⊂ T ∗M be the unit
cosphere bundle, and let α = λ|S∗M be a contact 1-form on S∗M where λ is the Liouville 1-form
on T ∗M (e.g. λ = p dx on T ∗

R). We identify S∗M with T∞M . We equip S∗M × T ∗I with the
contact form α̃ = α + τ dt, where t is the coordinate of I and τ is the coordinate on the cotangent
fiber. Then the composition S∗M × T ∗I ↪→ Ṫ ∗(M × I)→ T∞(M × I) is an open immersion and
contactomorphism, with image (x, t; [p, τ ]) ∈ T∞(M × I) where p �= 0.

Definition 0.4. Let I ⊂ R be a closed interval. A strong isotopy of Legendrians in S∗M over
I is a Legendrian LI ⊂ S∗M × T ∗I. A strong isotopy of convex tubes is a convex tube (UI , XI)
of LI such that XI preserves the fibers of S∗M × T ∗I → I.

Our main result is the following.

Theorem 0.5. If (UI , XI) is a strong isotopy of convex tubes around LI in S∗M × T ∗I, then
for any t ∈ I we have an equivalence of categories

ι∗t : Sh(M × I,LI)→ Sh(M,Lt),

where ιt : Mt = M × {t} ↪→MI = M × I is the inclusion of the slice over t.

Given a strong isotopy of Legendrians LI , we prove that to construct a tube thicken-
ing (UI , XI) it suffices to construct a Liouville hypersurface thickening of each slice Lt (see
Proposition 1.14).

Although the result is expected given the analogous result in Fukaya category, and it is
superseded by the recent paper [NS20], we hope that its purely sheaf-theoretic proof and the
simpler cotangent bundle setting make the presentation of this result still worthwhile.

Previous work
We first recall the sheaf quantization of a contact isotopy of S∗M .
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Sheaf quantization of Legendrian isotopy

Figure 1. The deformation to the right is uniformly displaceable, and the one to the left is
not, due to the appearance of a new short Reeb chord (marked by a thick line); cf. [Nad15,
Example 1.5].

Theorem 0.6 [GKS12, Theorem 3.7 and Proposition 3.12]. Let I be an open interval contain-
ing 0, and let ϕ : I × T∞M → T∞M be a smooth map with ϕt = ϕ(t,−). Assume ϕ is such
that (i) ϕ0 = id and (ii) ϕt are contactomorphisms for all t ∈ I. Then for each t ∈ I we have the
equivalences of categories

ϕ̂t : Sh(M) ∼−→ Sh(M) such that SS∞(ϕ̂tF ) = ϕt(SS∞(F )).

Note that any isotopy of smooth Legendrians can be extended to a contact isotopy of the
ambient manifold. In general, we have the following corollary.

Corollary 0.7. If an isotopy of Legendrians {Λ∞
t }t∈I can be embedded into an isotopy

{ϕt}t∈I : S∗M → S∗M of the contact manifold, that is, Λ∞
t = ϕt(Λ∞

0 ), then we have an
equivalence of categories

ϕ̂t : Sh(M, Λ∞
0 ) ∼−→ Sh(M, Λ∞

t ).

For a deformation of singular Legendrians, there is one necessary condition for the invariance
of categories, due to Nadler [Nad15].

Definition 0.8 (Displaceable Legendrian). Let (S∗M, α) be the unit cosphere bundle of a
Riemannian manifold M with Reeb vector field R and time-t Reeb flow Rt. A Legendrian
L ⊂ S∗M is ε-displaceable for R and for some ε > 0 if

L ∩Rs(L) = ∅ for all 0 < |s| < ε. (1)

We say that a family of Legendrians {Lt} is uniformly ε-displaceable for R and for some
ε > 0 if each Lt is ε-displaceable.

If a family of Legendrians {Lt} can be upgraded to an isotopy of convex tubes {Ut, Xt,Lt},
then {Lt} is uniformly displaceable (Proposition 1.9).

Example 0.9. Consider the example in Figure 1.
The category of constructible sheaves for the three diagrams comprises the representations

of the following commutative diagrams (where each region corresponds to a vertex and an arrow
between vertices goes against the direction of the hair).

(1) =
A B

C D

(2), (3) =
A B

C D
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A sketch of the proof
Given a convex tube (U, X) of a Legendrian L ⊂ S∗M , we may define a projection functor as
the ‘limit’ of the flow X:

ΠL : Sh(M, U)→ Sh(M,L), Π(F ) := lim
T→∞

X̂T (F ), (2)

where Sh(M, U) stands for the category of constructible sheaves with SS∞(F ) ⊂ U and the limit
is defined using the nearby cycle functor in § 2.6.

Let (UI , XI ,LI) be a strong isotopy of convex tubes in S∗M × T ∗I, and let {(Ut, Xt,Lt)}
be the slices. Let Ft ∈ Sh(M,Lt). We will extend Ft to a sheaf FI ⊂ Sh(M × I,LI) such that
FI |t = Ft.

We first show that such an extension is unique (if it exists); this is equivalent to showing
that the restriction functor Sh(M,LI)→ Sh(M,Lt) is fully faithful (Proposition 3.1), that is,

Hom(FI , GI)
∼−→ Hom(Ft, Gt) for all FI , GI ∈ Sh(M × I,LI).

One needs to show that Hom(FI , GI)(M × (a, b)) is independent of the size of the interval, so
that one can interpolate from (a, b) = I to an infinitesimally small neighborhood around t. The
key technical point is to use the uniform displaceability condition to perturb GI slicewise by
positive Reeb flow for time s, GI → K !

sGI , to separate SS∞(FI) and SS∞(K !
sGI).

We then show that such an extension exists locally; that is, given Ft, we can find a small
neighborhood J = (t− δ, t + δ) such that Lt × T ∗

J J ⊂ UJ = UI ∩ S∗M × T ∗J and extend Ft on
Mt to FJ on MJ by defining FJ = ΠLJ

(Ft � CJ).
Finally, we use the uniqueness of extension to patch together the local extensions, and thus

we get the global extension result (cf. [GKS12, Lemma 1.13]).

Notation
We use Sh(M) to denote the co-complete dg derived category of weakly constructible sheaves.
With an abuse of notation, we use ‘constructible sheaf’ to mean a cohomologically constructible
complex of sheaves. All the functors f∗, f∗, f!,Hom etc. are derived.

1. Convex tubes and isotopy

1.1 Basics of contact geometry
We recall the definition of co-oriented contact manifold as follows. Let C be a (2n + 1)-
dimensional manifold, and let ξ ⊂ TC be a rank-2n sub-bundle such that there exists a 1-form
(contact 1-form) α (up to multiplication by a non-negative function) satisfying ξ = ker α and
α ∧ (dα)n �= 0. If we fix such an α, we have a Reeb vector field Rα given by

ιRαα = 1, ιRαdα = 0.

We remark that different choices of α will lead to different choices of Rα.
A contact vector field X is a vector field on C that preserves the sub-bundle ξ.

Definition 1.1. Given a smooth function H : C → R, the contact Hamiltonian vector field XH

is uniquely determined by the conditions{
〈XH , α〉 = H,

ιXH
dα = 〈dH, R〉α− dH.

(3)

The Reeb vector field is a special case of XH where H = 1.
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Proposition 1.2 [Gei08, Theorem 2.3.1]. With a fixed choice of contact form α, there is a one-
to-one correspondence between the contact vector field X and smooth functions H : C → R. The
correspondence is given by

X �→ H = 〈α, X〉, H �→ XH .

Unlike symplectic Hamiltonian vector fields, XH does not preserve the level sets of H.

Lemma 1.3. We have that

〈XH , dH〉 = H〈R, dH〉.
In particular, XH preserves the zero set of H.

Proof. Apply ιXH
to the second line of (3) and then use the first line. �

We also have the Lie derivative of α along XH ,

LXH
(α) = dιXH

α + ιXH
dα = 〈R, H〉α.

Proposition 1.4. If L ⊂ C is a germ of a smooth Legendrian and H is any locally defined
function vanishing on L, then the contact flow XH is tangential to L.

Proof. To show that XH is tangential to L at p ∈ L, we only need to show that for any tangent
vector v ∈ TpL we have dα(XH , v) = 0 and α(XH)|p = 0, because these two conditions imply
XH ∈ (TpL)⊥dα ∩ ker(α) = TpL. Indeed, α(XH)|p = H(p) = 0 and

dα(XH , v) = ιXH
(dα)(v) = [〈R, dH〉α− dH](v) = 〈R, dH〉(α(v))−H(v) = 0.

Hence XH is tangential to L. �
Example 1.5. Let M be a smooth manifold, and let T ∗M the cotangent bundle with canonical
Liouville 1-form λ and symplectic 2-form ω = dλ. If we put local Darboux coordinates (q, p) =
(q1, . . . , qm; p1, . . . , pm) on T ∗M , where m = dimR M , then λ =

∑m
i=1 pi dqi and ω =

∑
i dpi ∧ dqi,

and we will suppress the indices and summation and write simply λ = p dq and ω = dp dq. Also
define Ṫ ∗M = T ∗M\T ∗

MM and T∞M = Ṫ ∗M/R>0. The Liouville vector field for λ is defined
by ιVλ

ω = λ, and here it is given by Vλ = p∂p. On T (Ṫ ∗M), the symplectic orthogonal to the
Liouville vector field defines a distribution

ξ̃ = {(q, p; vq, vp) ∈ T (Ṫ ∗M) : ω((vq, vp), Vλ) = 0},
which projects to a canonical contact distribution ξ on T∞M . Let g be any Riemannian metric
on M ; then T ∗M has an induced norm. Let S∗M = {(q, p) ∈ T ∗M : |p| = 1} be the unit cosphere
bundle with contact form α = λ|S∗M ; then the contact distribution can also be written as ξ =
ker(α).

Define the symplectization of (C, ξ = ker α) by

S := C × Ru, λ = euα, ωS = d(euα).

We have the projection along Ru and the inclusion of zero-section

πS : S → C, ιC : C � C × {0} ↪→ S.

A different choice of α would give rise to the same S up to a fiber-preserving symplectomorphism
that identifies the ‘zero-section’ Im(ιC).

A Hamiltonian function H : C → R can be extended to a homogeneous degree-one function
H̃ : S → R by setting H̃ = euH. Then the symplectic Hamiltonian vector field ξ

H̃
, given by

ωS(−, ξ
H̃

) = dH̃(−), preserves the fiber of πS and descends to XH .
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1.2 Convex tubes
Recall the definition of convex tubes in Definition 0.2.

Definition 1.6. A Liouville hypersurface thickening of a singular Legendrian L is a hypersur-
face H ⊃ L such that (H, α|H) is a Liouville domain with the Liouville skeleton being L.

First we show that a Liouville hypersurface thickening can be upgraded to a convex tube
thickening of L.

Proposition 1.7. Let L be a singular Legendrian with a Liouville hypersurface thickening H.
Then L admits a convex tube (U, X), where the contact vector field X preserves H and X
restricted to H is the downward Liouville flow of H.

Proof. Let ε > 0 be small enough that for any 0 < s < ε we have H ∩RsH = ∅. Then define
U =

⋃
|s|�ε/2 RsH � H× (−ε/2, +ε/2), and let h : U → (−ε/2, +ε/2) be the projection. Then

X = Xh shrinks U to L and restricts to the downward Liouville flow on H. One may smooth the
corner of U and achieve transversality of X with ∂U . �

Conversely, we show that each convex tube (U, X) around L determines a Liouville thickening.

Proposition 1.8. Let (U, X) be a convex tube around L. Let h = α(X) and H = h−1(0) ⊂ U .
Then H is a Liouville thickening of L.

Proof. Since X = Xh preserves H and shrinks H to L, we only need to show that H is transverse
to R and X is the downward Liouville flow on H.

Since LX(α) = 〈R, dh〉α = −α, we have R(h) = −1. Thus R is transversal to the level sets of
h, in particular H. Hence dα is non-degenerate on H, so H is exact symplectic. Let λ = α|H, ω =
dλ. When we restrict to TH, we have

ιXh
(ω) = ιXh

(dα) = 〈R, dh〉α− dh = −λ,

and hence Xh is the downward Liouville flow on H. �

Proposition 1.9. Let (U, X) be a convex tube of L. Then L is displaceable (see Definition 0.8).
Similarly, let I = [0, 1] and let (UI , XI) be a strong isotopy of convex tubes for LI . Then the
family of Legendrians Lt are uniformly displaceable.

Proof. Let h = α(X) be the Hamiltonian function generating X. Then h vanishes on L, and by
the normalization condition we have R(h) = −1. If there is a Reeb chord γ : [0, T ]→ C contained
in U and ending on L, then we have∫ T

0
γ̇(dh) dt =

∫ T

0
R(dh) dt =

∫ T

0
(−1) dt = −T.

But on the other hand we also have∫ T

0
γ̇(dh) dt =

∫
γ

dh = h(γ(T ))− h(γ(0)) = 0,

since γ(T ) ∈ L, γ(0) ∈ L and h|L = 0. Thus, there is no Reeb chord ending on L and contained
in U . For any x ∈ L, let t(x) = inf{t ∈ R : Rt(x) /∈ U}; then t(x) > 0 and is continuous on L.
Let ε = inf{t(x) : x ∈ L}; since L is compact, ε > 0. Then L is displaceable.

For the uniformly displaceable statement, note that I = [0, 1] is compact and ε(t) for (Ut, Xt)
is continuous in t; hence ε = inf{ε(t)} > 0. �
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1.3 The construction of strong isotopies of convex tubes
Consider the unit cosphere bundle (S∗M, α) and a closed interval I ⊂ R. Let a point in S∗M
be denoted by (x, p) ∈ T ∗M with |p| = 1. Let a point in T ∗I be denoted by (t, τ) ∈ I × R. Let
S∗M × T ∗I be equipped with the contact 1-form

αI = α + τ dt.

Let πt : S∗M × T ∗I → I.

Proposition 1.10. The Reeb flow RI on S∗M × T ∗I for αI is the pullback of the Reeb flow R
on S∗M .

Proof. Let R denote the pullback to S∗M × T ∗I. We may verify that ιR(αI) = 1 and
ιR(dαI) = 0. �

Let LI be a strong isotopy of Legendrians. Let

Lt = {(x, p) ∈ S∗M | ∃(x, p, t, τ) ∈ LI}.
Lemma 1.11. We have that Lt is a singular Legendrian in S∗M .

Proof. Take any p ∈ Lt that is the image of a point p̃ in the smooth loci Lsm
I ; any tangent vector

v ∈ TpLt can be lifted to ṽ ∈ Tp̃LI . Concretely, ṽ = v + c∂τ . Since 0 = (α + τ dt)(ṽ) = α(v), we
see that TpLt is in ker(α). Hence a dense open part of Lt is Legendrian, and thus Lt is a singular
Legendrian. �

Let (UI , XI ,LI) be a strong isotopy of convex tubes. First we define the restriction to S∗M ×
T ∗

t I. Since XI preserves the t coordinate, for each t we have the vector field

X̂t := XI |t ∈ Vect(S∗M × T ∗
t I).

Also define the restriction

Ût = UI ∩ S∗M × T ∗
t I, L̂t = LI ∩ S∗M × T ∗

t I.

Next, we define (Ut, Xt). Define the projection map π̂t : S∗M × T ∗
t I → S∗M and write

Ut = π̂t(Ût), Lt = π̂t(L̂t).

Let hI = αI(XI); since XI has no ∂t component, ∂τhI = 0 and hence hI is independent of τ .
For each t ∈ I we define

ht(x, p) := hI(x, p, t) for all (x, p) ∈ Ut,

and we let Xt be the contact vector field generated by ht.

Proposition 1.12. With the above setup, we have

X̂t = Xt + (−τ − ∂tht)∂τ .

Proof. We split a tangent vector v on S∗M × T ∗I into two components as v = v1 + v2, where
v1 and v2 are along the S∗M and T ∗I factors, respectively. Similarly, we decompose XI as
XI = XI,1 + XI,2, where XI,2 = a ∂τ .

By the definition of XI , we have

ιXI
(α + τ dt) = hI

and
ιXI

d(α + τ dt) = 〈RI , hI〉(α + τ dt)− dhI ,

which we will refer to as the first and second equations below.
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Since τ dt(XI,2) = 0, the first equation becomes

α(XI,1) = ht(x, p).

For the second equation, if we restrict to the tangent space on S∗M , we have

ιXI,1
dα = 〈R, ht〉α− dht.

Thus XI,1 = Xt is the contact vector field on S∗M generated by ht(x, p).
Finally, if we restrict the second equation to the tangent space of T ∗I, we get

ιXI,2
(dτ ∧ dt) = 〈R, hI〉(τ dt)− ∂tht dt.

If we plug in XI,2 = a∂t and 〈R, hI〉 = −1, we get the desired result. �

Proposition 1.13. For any t ∈ I, the (Ut, Xt) defined above is a convex tube for Lt. Further-
more, the family {(Ut, Xt)}t varies smoothly with t and hence is an isotopy of convex tubes
for {Lt}.
Proof. From Proposition 1.12 we know that the flow of X̂t preserves the fibers of S∗M × T ∗

t I →
S∗M and the induced flow on S∗M is generated by Xt. Since the flow of X̂t shrinks Ût to L̂t, i.e.
L̂t =

⋂
u>0 X̂u

t Ût, the sequence of open sets X̂u
t Ût is monotonically decreasing in u; furthermore,

π̂t(X̂u
t Ût) = Xu

t (Ut), so we have

Lt =
⋂
u>0

Xu
t (Ut). �

The final proposition allows us to upgrade from an isotopy of Liouville hypersurfaces to a
strong isotopy of convex tubes.

Proposition 1.14. If LI is a Legendrian in S∗M × T ∗I and if {Ht} is a smooth family of
Liouville hypersurfaces in S∗M such that Lt is the skeleton of Ht, then we have a strong isotopy
of convex tubes (UI , XI) around LI .

Proof. First we use Ht to get a family of convex tubes (Ut, Xt) and the associated Hamiltonian
functions ht, where ht|Ht = 0 and R(ht) = −1. The family of functions ht determines the lifted
function hI(x, p, t, τ) = ht(x, p) which is defined when (x, p) ∈ Ut. In turn, hI determines the
contact vector field XI , which restricts to the fiber S∗M × T ∗

t I as given by Proposition 1.12.
Thus, we only need to specify the subset Ût ⊂ Ut × T ∗

t I such that its boundary ∂Ût is transverse
to the vector field X̂t and it is compressed by the flow of X̂t to L̂t = LI ∩ S∗M × T ∗

t I.
Let

C = 1 + sup{|∂tht(x, p)| : (x, p) ∈ Ūt, t ∈ I}

and let

Ût = Ut × (−C, C) ⊂ S∗M × T ∗I.

Then the flow X̂t is transverse to the boundary ∂Ut. We only need to show that
⋂

u>0 X̂u
t (Ût) =

L̂t. Since Ût → Ut with fiber (−C, C), X̂t restricted to the fiber gives the equation for τ as

(d/du)τ(u) = −τ − ∂tht(x(u), p(u)).

This is a contracting flow with unit contraction rate in the sense that for any initial condition
(τ1, τ2) at u = 0 we have τ1(u)− τ2(u) = (τ1 − τ2)e−u for u > 0.
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Under the projection map π̂t : S∗M × T ∗
t I → S∗M , we have the surjection

π̂t : L̂′t :=
⋂
u>0

X̂u
t Ût →

⋂
u>0

Xu
t Ut = Lt,

and by the contracting property of the flow X̂t, the fiber can consist of only one point; thus
π̂t : L̂′t → Lt is a bijection.

Let UI =
⋃

t∈I Ût ⊂ S∗M × T ∗I, and put the slices L̂′t together into L′I =
⋂

u>0 Xu
I UI . Recall

π̂ : S∗M × T ∗I → S∗M × I; then π̂(LI) = π̂(L′I) and L′I is homeomorphic to its image. Since a
smooth family of smooth Legendrians in S∗M × I has a unique lift to S∗M × T ∗I, LI and L′I
agree over the smooth loci of π̂(LI). Since LI is the closure of its smooth part, we have LI = L′I ,
finishing the proof of the proposition. �

2. Non-characteristic isotopy of sheaves

2.1 Constructible sheaves
We give a quick working definition of constructible sheaves used in this paper, and refer to [KS13]
for a proper treatment. A constructible sheaf F on M is a sheaf valued in a chain complex of
C-vector spaces, such that its cohomology is locally constant with finite rank with respect to
some Whitney stratification1 S = {Sα}α∈A on M , where the Sα are disjoint locally closed smooth
submanifolds with a nice adjacency condition and M =

⊔
α∈A Sα. The singular support SS(F )

of F is a closed conical Lagrangian in T ∗M , contained in
⋃

α∈A T ∗
Sα

M , such that SS(F ) ∩ T ∗
MM

equals the support of F and (p, q) ∈ SS(F )\T ∗
MM if there exists a locally defined function f

with f(q) = 0 and df(q) = p such that the restriction map F (Bε(q) ∩ {f < δ})→ F (Bε(q) ∩ {f <
−δ}) fails to be a quasi-isomorphism for 0 < δ � ε� 1. We denote by SS∞(F ) = SS(F ) ∩ S∗M
the singular support of F at infinity.

If Λ ⊂ T ∗M is a conical Lagrangian containing the zero-section (as assumed throughout this
paper), we write Sh(M, Λ∞) for the dg derived category of constructible sheaves with object F
satisfying SS∞(F ) ⊂ Λ∞.

Example 2.1. On R, let C[0,1] (respectively C(0,1)) denote the constant sheaf with stalk C on [0, 1]
(respectively on (0, 1)) and zero stalk elsewhere. Then the singular supports of C[0,1] and C(0,1)

in T ∗
R are

SS(C[0,1]) = , SS(C(0 .,1)) =

Example 2.2. Let j : U = B(0, 1) ↪→ R
2 be the inclusion of an open unit ball in R

2. Then j∗CU

is supported on the closed set U , with singular support at infinity as

SS∞(j∗CU ) = {(x, η) ∈ S∗
R

2 | x ∈ ∂U, η = −d|x|} =

And j!CU is supported on the open set U , with singular support at infinity given by

SS∞(j!CU ) = {(x, η) ∈ S∗
R

2 | x ∈ ∂U, η = d|x|} =

Here the Legendrians are represented by co-oriented hypersurfaces in R
2 with hairs indicating

the co-orientation.

1 More precisely, a µ-stratification; see [KS13, § 8.3].
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2.2 Operation on sheaves
In this subsection, we deviate from our running convention and use Sh(X) to denote the co-
complete dg derived category of sheaves on X without any constructibility condition. Let f : Y →
X be a map of real analytic manifolds. Then we have the following pairs of adjoint functors:

−⊗ F : Sh(X)↔ Sh(X):Hom(F,−),

f∗: Sh(X)↔ Sh(Y ): f∗,

f!: Sh(Y )↔ Sh(X): f !.

Given an open subset U of X and its closed complement Z,

open inclusion: U
j

↪−→ X
i←−↩ Z, closed inclusion,

we have j∗ = j! and i∗ = i!. Furthermore, there are exact triangles

i!i
! → id→ j∗j∗

[1]−→, j!j
! → id→ i∗i∗

[1]−→ .

These are sheaf-theoretic incarnations of excisions: upon applying to the constant sheaf on X
and taking global sections, we get

H∗(Z, i!C)→ H∗(X, C)→ H∗(U, C)
[1]−→, H∗

c (U, C)→ H∗
c (X, C)→ H∗

c (Z, C)
[1]−→ .

Let Xi, i = 1, 2, be spaces, and let K ∈ Sh(X1 ×X2). We define the pair of adjoint functors

K! : Sh(X1)↔ Sh(X2) : K !, (4)

K! : F �→ π2!(K ⊗ π∗
1F ), K ! : G �→ π1∗(Hom(K, π!

2G)). (5)

In [KS13], K! = ΦK and K ! = ΨK with X1 and X2 switched. The notation here is suggestive of
their being adjoint functors.

2.3 Isotopy of constructible sheaves
Let I = (a, b) ⊂ R. For any t ∈ I, let

jt : Mt := M × {t} ↪→MI := M × I

be the inclusion of the t-slice Mt into the total space MI , and let πI : MI → I be the projection.
Let CMt be the constant sheaf on Mt with stalk C. We then have

SS(CMt) = {(x, t; 0, τ) ∈ T ∗MI}, SS∞(CMt) = {(x, t; 0,±1) ∈ S∗MI � T∞M}.
Definition 2.3. Let M be a smooth manifold and I a closed interval of R.

(i) An isotopy of (constructible) sheaves is a constructible sheaf FI ∈ Sh(M × I) such that
SS∞(FI) is a strong isotopy of Legendrians in S∗M × T ∗I (Definition 0.4). Equivalently,
for any t ∈ I we have

SS∞(FI) ∩ SS∞(CMt) = ∅.
If FI is an isotopy of sheaves, then for any t ∈ I we denote the restriction of FI at t by

Ft := FI |Mt ∈ Sh(M).

(ii) Two isotopies of sheaves FI , GI ∈ Sh(M × I) are said to be non-characteristic if

SS∞(FI)|t ∩ SS∞(GI)|t = ∅ for all t ∈ I.

Some easy-to-check properties are the following.
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Proposition 2.4. Let M be a compact real analytic manifold.

(1) If FI is an isotopy of sheaves and Λ∞
I = SS∞(FI), then

SS∞(Ft) ⊂ Λ∞
t .

(2) If FI is an isotopy of sheaves and πI : MI → I, then (πI)∗FI is a local system on I.

2.4 Invariance of morphisms under non-characteristic isotopies
We use the same notation for MI = M × I, Mt, CMt etc. as in the previous subsection.

Lemma 2.5. Let F ∈ Sh(M) and let ϕ : M → R be a C1 function such that dϕ(x) �= 0 for
x ∈ ϕ−1([0, 1]).

(1) For s ∈ (0, 1) let Us = {x : ϕ(x) < s}, and let U1 =
⋃

s Us. If

SS∞(CUs) ∩ SS∞(F ) = ∅ for all 0 < s < 1,

then

Hom(CU1 , F ) ∼−→ Hom(CUs , F ) for all 0 < s < 1.

(2) For s ∈ (0, 1) let Zs = {x : ϕ(x) � s}, and let Z0 =
⋂

s Zs. If

SS∞(CZs) ∩ SS∞(F ) = ∅ for all 0 < s < 1,

then

Hom(CZs , F ) ∼−→ Hom(CZ0 , F ) for all 0 < s < 1.

Proof. Assertion (1) is a special case of [GKS12, Proposition 1.8]. Assertion (2) follows from (1)
and the fact that

0→ CM\Zs
→ CM → CZs → 0. �

The following lemma is also often used.

Lemma 2.6 (Petrowsky theorem for sheaves [KS13]). Let F, G ∈ Sh(M) be (cohomologically)
constructible complexes of sheaves. If SS∞(F ) ∩ SS∞(G) = ∅, then the natural morphism

Hom(F, CM )⊗G→ Hom(F, G)

is an isomorphism.

Corollary 2.7. If FI is an isotopy of sheaves, then

Hom(CMt , FI) � CMt [−1]⊗ FI .

Proposition 2.8. Let GI and FI be non-characteristic isotopies of sheaves; then Hom(FI , GI)
is an isotopy of sheaves. In particular,

Hom(Ft, Gt) � Hom(Fs, Gs) for all t, s ∈ I.

Proof. As GI and FI being non-characteristic implies SS∞(GI) ∩ SS∞(FI) = ∅, we can bound
the singular support of the hom-sheaf as [KS13]

SS(Hom(FI , GI)) ⊂ SS(GI) + SS(FI)a.

Again, using that GI and FI are non-characteristic, we obtain

SS∞(Hom(FI , GI)) ∩ SS∞(CMt) = ∅ for all t, s ∈ I.
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Hence Hom(FI , GI) is an isotopy of sheaves. For the second statement, we have

Hom(Ft, Gt) = Hom(jt
∗FI , jt

∗GI) � Hom(FI , jt∗j
∗
t GI) � Hom(FI , CMt ⊗GI)

� Hom(FI ,Hom(CMt , GI)[1]) � Hom(CMt ,Hom(FI , GI))[1]

� Hom(Ct, πI∗Hom(FI , GI))[1] � [πI∗Hom(FI , GI)]t. (6)

The result then follows since πI∗(Hom(FI , GI)) is a local system. �

2.5 Invariance of morphisms under Reeb perturbations
Sometimes we want to vary G and F while preserving Hom(F, G), but SS∞(G) ∩ SS∞(F ) �= ∅,
e.g. F = G. Here we borrow an idea from the infinitesimally wrapped Fukaya category [NZ09],
namely that to compute HomFuk(L1, L2) one needs to perform a perturbation to separate L1 and
L2 at infinity; one can perturb L2 � RtL2 or L1 � R−tL1, where Rt is the unit-speed geodesic
flow on T ∗M (smoothed near the zero-section) for positive small times t, small enough that no
new intersections are created between L1 and L2 at infinity.

Fix a Riemannian metric g on M and identify S∗M with T∞M , so that the Reeb flow Rt

is the unit-speed geodesic flow. Let rinj(M, g) be the injective radius of (M, g). Let R̂t be the
GKS quantization of Rt. The rest of this subsection will be devoted to proving the following
proposition.

Proposition 2.9. Let Λ∞ ⊂ T∞M be a Legendrian, and let 0 < ε < rinj(M, g) be small enough
that

Λ∞ ∩RtΛ∞ = ∅ for all 0 < |t| < ε.

(1) For any F ∈ Sh(M, Λ) and 0 � t < ε, we have a canonical morphism

F → R̂tF.

(2) For any F, G ∈ Sh(M, Λ) and 0 � t < ε, we have canonical quasi-isomorphisms

Hom(F, G) ∼−→ Hom(F, R̂tG), Hom(F, G) ∼−→ Hom(R̂−tF, G).

Proof. For any 0 � t < ε, define

Kt = C{(x,y)|dg(x,y)�t} ∈ Sh(M ×M).

Then, from [GKS12], we have

R̂tF = π1∗Hom(Kt, π
!
2F ) = K !

tF

and
R̂−tF = π2!(Kt ⊗ π∗

1F ) = (Kt)!F,

where π1 and π2 are the projections from M ×M to the first and second factors, and Hom
is the (dg derived) sheaf-hom. From the canonical restriction morphism Kt → K0 = CΔ, where
Δ ⊂M ×M is the diagonal subset, we have

F = π1∗Hom(K0, π
!
2F )→ π1∗Hom(Kt, π

!
2F ) = R̂tF.

For statement (2) of the proposition, we first prove the following lemma.

Lemma 2.10. We have that

SS∞(Kt) ∩ SS∞(Hom(π∗
1F, π!

2G)) = ∅ for all 0 < t < ε. (7)
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Proof. We identify the contact infinity T∞M with the unit cosphere bundle S∗M . Assume
that the intersection is non-empty and contains the point (x1, x2, p1, p2). Since (x1, x2; p1, p2) ∈
SS∞(Kt), we have

dg(x1, x2) = t.

Since t < ε < rinj(M, g), there is a unique length-t geodesic γ connecting x1 and x2, and pi is the
unit tangent vector along γ at xi pointing to the interior of the geodesic,

pi = −∂xidg(x1, x2).

Hence the geodesic flow on S∗M relates (xi, pi) via

Rt(x1, p1) = (x2,−p2), Rt(x2, p2) = (x1,−p1). (8)

On the other hand, since (x1, x2; p1, p2) ∈ SS∞(Hom(π∗
1F, π!

2G)), we have

(x1,−p1) ∈ SS∞(F ), (x2, p2) ∈ SS∞(G). (9)

Hence, combining (8) and (9), we have

(x1,−p1) ∈ Rt(SS∞(G)) ∩ SS∞(F ) ⊂ RtΛ∞ ∩ Λ∞.

This contradicts the displaceability of Λ∞ for t < ε. �
Now we come back to the proof of Proposition 2.9. We have

Hom(F, G) � Γ(M,Hom(F, G))

� Γ(M ×M,Hom(CΔ,Hom(π∗
1F, π!

2G)))
∼−→ Γ(M ×M,Hom(Kt,Hom(π∗

1F, π!
2G)))

� Γ(M ×M,Hom(π∗
1F,Hom(Kt, π

!
2G)))

� Γ(M,Hom(F, π1∗Hom(Kt, π
!
2G)))

� Hom(F, R̂tG),

where in the third step we used the canonical morphism Kt → CΔ when replacing CΔ by Kt,
and used Lemmas 2.10 and 2.5(2) to show that it is a quasi-isomorphism. �

We will use the following purely sheaf-theoretic statement later to study the family of GKS
quantization.

Proposition 2.11. Let I = (0, 1), and let KI ∈ Sh(M ×M × I) be an isotopy of sheaves such
that Kt = CΔt for some closed subsets {Δt}0<t<1 satisfying

Δt ⊂ Δs ∀ 0 < t < s < 1 and
⋂
t∈I

Δt = ΔM = {(x, x) : x ∈M}.

Let F, G ∈ Sh(M, Λ), and let Hom(π∗
1F, π!

2G) ∈ Sh(M ×M) be the hom-sheaf. Assume that

SS∞(Kt) ∩ SS∞(Hom(π∗
1F, π!

2G)) = ∅ for all t ∈ I;

then

Hom(F, G) � Hom(F, K !
tG) � Hom(Kt!F, G) for all t ∈ I,

where K !
t, Kt! are defined in (5).

The proof is exactly the same as that of Proposition 2.9(2), where the condition provided in
Lemma 2.10 is put into the hypothesis, so we do not repeat it here.
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2.6 Limit of contact isotopy
Let I = (0, 1) and define the inclusions

(0, 1)
jI

↪−→ R
j0←−↩ {0}.

Proposition 2.12 [TWZ19, Lemma 7.1]. Let FI ∈ Sh(MI) be an isotopy of constructible
sheaves, and let Λ∞

I = SS∞(FI). Suppose the family (Λ∞
t , t) ⊂ T∞M × (0, 1) has a closure in

T∞M × [0, 1) whose intersection with T∞M × {0} is a Legendrian Λ∞
0 . Then the sheaf

F0 := (j0)∗(jI)∗FI (10)

has SS∞(F0) ⊂ Λ∞
0 .

Proof. These are corollaries of results in [KS13]. By [KS13, Theorem 6.3.1], a point (x, p; 0,−1) ∈
Ṫ ∗M × T ∗

R belongs to SS((jI)∗FI) only if (x, p) is the limit of a sequence of points (xn, pn) ∈ Λtn

where tn → 0, i.e. (x, p) ∈ Λ0. By [KS13, Proposition 5.4.5], SS(F0) ⊂ SS((jI)∗FI)|0 = Λ0; hence
SS∞(F0) ⊂ Λ∞

0 . �
Let (U, X) be a convex tube for a Legendrian L ⊂ S∗M . Let X be extended from a

neighborhood of Ū to all of S∗M . Let

X̂ [0,∞) : Sh(M)→ Sh(M × [0,∞))

be the sheaf quantization of the flow X, and let

j[0,∞) : [0,∞) ↪→ [0,∞] ←↩ {∞} : j∞.

Then we define the functor ΠX := (idM × j∞)∗ ◦ (idM × j[0,∞))∗ ◦ X̂ [0,∞) : Sh(M)→ Sh(M).
Let Sh(M, U) denote the subcategory of Sh(M) consisting of sheaves F with SS∞(F ) ⊂ U .

Proposition 2.13. When restricted to Sh(M, U), we have that

ΠU,X = ΠX |Sh(M,U) : Sh(M, U)→ Sh(M,L).

Proof. This follows from the definition of a convex tube and Proposition 2.12. �

3. Existence and uniqueness of the extension

In this section we prove our main result, Theorem 0.5. In this section, we will sometimes identify
Λ∞

t ⊂ T∞M with Lt ⊂ S∗M and identify Reeb flow with geodesic flow.

3.1 Uniqueness of extension
Recall from Proposition 1.9 that existence of strong isotopy of convex tubes implies uniform
displaceability of the family {Lt}.
Proposition 3.1. Let Λ∞

t be a family of Legendrians in T∞M that are uniformly displaceable
with parameter ε. Then the restriction functor ι∗t is fully faithful for all t.

Proof. For 0 � s < ε we define a family of kernels in Sh((M1 × I1)× (M2 × I2)) as

Ks := Cd(x1,x2)�s � Ct1=t2 . (11)

One can check that Ks generates the slicewise geodesic flow, i.e. if FI ∈ Sh(MI) and

K !
sFI := π1∗Hom(Ks, π

!
2FI),

then
SS∞((K !

sFI)|Mt) = RsSS∞(FI |Mt),
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where πi is the projection from (M1 × I1)× (M2 × I2) to Mi × Ii and Rs is the Reeb (geodesic)
flow for time s.

We first prove the following claim: for any FI , GI ∈ Sh(MI , Λ∞
I ),

Hom(CM×(a,b),Hom(FI , GI)) is independent of (a, b) ⊂ I.

It suffices to prove the case for the right endpoint b. To use the estimate of the singular support
of the hom-sheaf, we would like to perturb GI by the fiberwise Reeb flow.

Lemma 3.2. For any 0 < s < ε,

Hom(CM×{t},Hom(FI , GI))
∼−→ Hom(CM×{t},Hom(FI , K

!
sGI)).

Furthermore, Hom(CM×{t},Hom(FI , K
!
sGI)) is independent of t. The same is true if we replace

{t} by any subinterval, e.g. [a, b] and (a, b) of I.

Proof. Unwinding the definition of K !
s, we have

Hom(CM×{t},Hom(FI , K
!
sGI))

= Hom(CM×{t},Hom(FI , π1∗Hom(Ks, π
!
2GI)))

= Hom(CM×{t}, π1∗Hom(π∗
1FI ,Hom(Ks, π

!
2GI)))

= Hom(π∗
1CM×{t},Hom(Ks,Hom(π∗

1FI , π
!
2GI))).

We claim that

SS∞(π∗
1CM×{t}) ∩ SS∞Hom(Ks,Hom(π∗

1FI , π
!
2GI)) = ∅ for all 0 < s < ε. (12)

The verification is straightforward, though a bit tedious, and we leave it to the reader.
From this claim and the fact that

Hom(π∗
1CM×{t},Hom(Ks,Hom(π∗

1FI , π
!
2GI)))

� Hom(π∗
1CM×{t} ⊗Ks,Hom(π∗

1FI , π
!
2GI)),

we may apply Lemma 2.5(2) on the shrinking closed set to get

Hom(π∗
1CM×{t} ⊗Ks,Hom(π∗

1FI , π
!
2GI)) � Hom(π∗

1CM×{t} ⊗K0,Hom(π∗
1FI , π

!
2GI))

for all 0 < s < ε. This proves the first statement of the lemma.
The statement about independence of t follows from (12) and Proposition 2.8.
The subinterval case can be proved similarly, and we omit the details. �
Now we finish proving the proposition. By Lemma 3.2,

Hom(CM×(a,b),Hom(FI , GI))

is independent of (a, b), so we may shrink from (0, 1) to an arbitrary small neighborhood of t.
Then we have

Hom(FI , GI) � [πI∗(Hom(FI , GI))]t � [πI∗(Hom(FI , K
!
sGI))]t

� Hom(ι∗t FI , ι
∗
t K

!
sGI) � Hom(Ft, R

sGt) � Hom(Ft, Gt),

where 0 < s < ε and we have used a small Reeb perturbation to make FI , K
!
sGI a non-

characteristic isotopy of sheaves and then applied (6) from the proof of Proposition 2.8. �
Proposition 3.3. Let {Λ∞

t } be a family of Legendrians in T∞M that are uniformly displaceable
with parameter ε. For a given t, let Ft ∈ Sh(M, Λ∞

t ). Suppose we have F ′
I and F ′′

I in Sh(MI , Λ∞
I )
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and isomorphisms

f : F ′
I |t ∼−→ Ft, g : F ′′

I |t ∼−→ Ft.

Then there exists a canonical isomorphism

Φ : F ′
I → F ′′

I

such that Φ|t = g−1 ◦ f : F ′
I |t → F ′′

I |t.
Proof. The proof follows from Proposition 3.1 by standard arguments. �

3.2 Existence of local extension
Proposition 3.4. Let I = [0, 1]. Let LI be a strong isotopy of Legendrians in S∗M × T ∗I with
the slice over t denoted by Lt. Let (UI , XI) be a strong isotopy of convex tubes for LI . Then
for any t ∈ I and Ft ∈ Sh(M,Lt), there exists an interval J ⊃ t and FJ ∈ Sh(MJ ,LJ) such that
FJ |t = Ft, where MJ = M × J and LJ = LI ∩ S∗M × T ∗J .

Proof. For any interval J ⊂ I, let UJ = UI ∩ S∗M × T ∗J . Then for small enough J containing
t, we have Lt × T ∗

J J ⊂ UJ . Let XJ denote the restriction of XI to XJ ; then if we define (see
Proposition 2.13 for definition of ΠU,X)

FJ := Π(UJ ,XJ )(Ft � CJ),

we have FJ |t = Ft and SS∞(FJ) ∈ LJ . �

3.3 Proof of Theorem 0.5
By the local extension result (Proposition 3.4) and uniqueness of extension result, for any t ∈ I =
[0, 1] and Ft ∈ Sh(M,Lt) we can extend Ft to FI ∈ Sh(MI ,LI) such that FI |t = Ft. Hence the
functor ι∗t is fully faithful (Proposition 3.1) and essentially surjective; thus it is an equivalence.

Acknowledgements

I would like to thank E. Zaslow for the statement and proof of Proposition 2.12, and D. Nadler,
V. Shende, P. Schapira and S. Guillermou for their interest and inspiring discussions. I would
also like to thank the anonymous referee who pointed out a serious gap in an earlier version of
the manuscript and provided many useful comments for improving the paper.

References

Gei08 H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics,
vol. 109 (Cambridge University Press, 2008).

GPS18a S. Ganatra, J. Pardon and V. Shende, Microlocal Morse theory of wrapped Fukaya categories,
Preprint (2018), arXiv:1809.08807.

GPS18b S. Ganatra, J. Pardon and V. Shende, Sectorial descent for wrapped Fukaya categories, Preprint
(2018), arXiv:1809.03427.

GKS12 S. Guillermou, M. Kashiwara and P. Schapira, Sheaf quantization of Hamiltonian isotopies and
applications to nondisplaceability problems, Duke Math. J. 161 (2012), 201–245.

KS13 M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der mathematischen
Wissenschaften, vol. 292 (Springer, 2013).

Nad15 D. Nadler, Non-characteristic expansions of Legendrian singularities, Preprint (2015),
arXiv:1507.01513.

Nad16 D. Nadler, Wrapped microlocal sheaves on pairs of pants, Preprint (2016), arXiv:1604.00114.

434

https://doi.org/10.1112/S0010437X2200793X Published online by Cambridge University Press

https://arxiv.org/abs/1809.08807
https://arxiv.org/abs/1809.03427
https://arxiv.org/abs/1507.01513
https://arxiv.org/abs/1604.00114
https://doi.org/10.1112/S0010437X2200793X


Sheaf quantization of Legendrian isotopy

NS20 D. Nadler and V. Shende, Sheaf quantization in Weinstein symplectic manifolds, Preprint
(2020), arXiv:2007.10154.

NZ09 D. Nadler and E. Zaslow, Constructible sheaves and the Fukaya category, J. Amer. Math. Soc.
22 (2009), 233–286.

Tam08 D. Tamarkin, Microlocal condition for non-displaceablility, Preprint (2008), arXiv:0809.1584.
TWZ19 D. Treumann, H. Williams and E. Zaslow, Kasteleyn operators from mirror symmetry, Selecta

Math. (N.S.) 25 (2019), 60.

Peng Zhou pzhou.math@gmail.com

University of California, Berkeley, 970 Evans Hall, Berkeley, CA 94720, USA

435

https://doi.org/10.1112/S0010437X2200793X Published online by Cambridge University Press

https://arxiv.org/abs/2007.10154
https://arxiv.org/abs/0809.1584
https://doi.org/10.1112/S0010437X2200793X

	Motivation and results
	Previous work
	A sketch of the proof
	Notation
	1 Convex tubes and isotopy
	1.1 Basics of contact geometry
	1.2 Convex tubes
	1.3 The construction of strong isotopies of convex tubes

	2 Non-characteristic isotopy of sheaves
	2.1 Constructible sheaves
	2.2 Operation on sheaves
	2.3 Isotopy of constructible sheaves
	2.4 Invariance of morphisms under non-characteristic isotopies
	2.5 Invariance of morphisms under Reeb perturbations
	2.6 Limit of contact isotopy

	3 Existence and uniqueness of the extension
	3.1 Uniqueness of extension
	3.2 Existence of local extension
	3.3 Proof of Theorem 0.5

	Acknowledgements
	References

