
Duality for relative logarithmic de Rham–Witt
sheaves and wildly ramified class field theory over

finite fields

Uwe Jannsen, Shuji Saito and Yigeng Zhao

Compositio Math. 154 (2018), 1306–1331.

doi:10.1112/S0010437X1800711X

https://doi.org/10.1112/S0010437X1800711X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1800711X
https://doi.org/10.1112/S0010437X1800711X


Compositio Math. 154 (2018) 1306–1331

doi:10.1112/S0010437X1800711X

Duality for relative logarithmic de Rham–Witt
sheaves and wildly ramified class field theory over

finite fields

Uwe Jannsen, Shuji Saito and Yigeng Zhao

Abstract

In order to study p-adic étale cohomology of an open subvariety U of a smooth proper
variety X over a perfect field of characteristic p > 0, we introduce new p-primary torsion
sheaves. It is a modification of the logarithmic de Rham–Witt sheaves of X depending
on effective divisors D supported in X−U . Then we establish a perfect duality between
cohomology groups of the logarithmic de Rham–Witt cohomology of U and an inverse
limit of those of the mentioned modified sheaves. Over a finite field, the duality can be
used to study wildly ramified class field theory for the open subvariety U .
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Introduction

Let k be a perfect field of characteristic p > 0 and let X be a smooth proper variety of dimension
d over k. The logarithmic de Rham–Witt sheaves WmΩr

X,log are defined as the subsheaves of the
de Rham–Witt sheaves WmΩr

X , which are étale locally generated by sections d log[x1]m ∧ · · · ∧
d log[xr]m with xν ∈ O×X for all ν [Ill79]. By the Gersten resolution [Ros96, Ker10, GS88] and the
Bloch–Gabber–Kato theorem [BK86], the d log map induces an isomorphism of étale sheaves

d log[−] : KMr,X/pm
∼=−→WmΩr

X,log ; {x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m, (1)

where KMr,X is the sheaf of Milnor K-groups. It is conceived as a p-adic analogue of the `-adic

sheaf µ⊗r`m with ` 6= p. If k is a finite field, there is a non-degenerate pairing of finite groups due
to Milne [Mil86]:

H i(X,WmΩr
X,log)×Hd+1−i(X,WmΩd−r

X,log)→ Hd+1(X,WmΩd
X,log)

Tr−→ Z/pmZ.
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Duality for relative logarithmic de Rham–Witt sheaves

It induces a natural isomorphism

Hd(X,WmΩd
X,log) ∼= H1(X,Z/pmZ)∨ ∼= πab1 (X)/pm,

where A∨ is the Pontryagin dual of a discrete abelian group and πab1 (X) is the maximal abelian
quotient of Grothendieck’s étale fundamental group of X. This gives a description of πab1 (X)/pm

in terms of étale cohomology with p-adic coefficient. For `-adic étale cohomology, we also have a
non-degenerate pairing of finite groups for a smooth non-proper variety U of dimension d over a
finite field k [SGA41

2 , Sai89]

H i(U,Z/`m(j))×H2d+1−i
c (U,Z/`m(d− j))→ H2d+1

c (U,Z/`m(d)) ∼= Z/`mZ,

which can be used to describe πab1 (U)/`m by `-adic étale cohomology:

H2d
c (U,Z/`m(d)) ∼= H1(U,Z/`m)∨ ∼= πab1 (U)/`m.

In the p-adic setting there is no obvious analogue of étale cohomology with compact support for
logarithmic de Rham–Witt sheaves.

In this paper, we propose a new approach. Let X be a proper smooth variety over a perfect
field k as before, and let j : U ↪→ X be the complement of an effective divisor D such that
Supp(D) has simple normal crossings. We introduce new p-primary torsion sheaves WmΩr

X|D,log

(see Definition 1.1.1), which we call relative logarithmic de Rham–Witt sheaves. It is defined
as the subsheaf of the de Rham–Witt sheaf WmΩr

X which is étale locally generated by sections
d log[x1]m∧. . .∧d log[xr]m with x1 ∈ Ker(O×X → O

×
D), and xν ∈ j∗O×U for all ν. As in the classical

situation, we have the following theorem.

Theorem 1 (see Theorem 1.1.5). The map d log induces an isomorphism

d log[−] : KMr,X|D/(p
mKMr,X ∩ KMr,X|D)

∼=−→WmΩr
X|D,log

{x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m. (2)

Here KMr,X|D is the sheaf of relative Milnor K-groups which has been studied by one of the

authors (Saito) and Rülling in [RS18].
If D1 > D2, we have inclusions (see Proposition 1.1.4)

WmΩr
X|D1,log ⊆WmΩr

X|D2,log ⊆WmΩr
X,log,

and thus obtain a pro-system of Z/pmZ-sheaves “lim
←−D”WmΩr

X|D,log, where D runs over the set

of all effective divisors with Supp(D) ⊂ X − U .
In case m = 1 these sheaves are related to sheaves of differential forms by the exact sequence

(see Theorem 1.2.1)

0→ Ωr
X|D,log → Ωr

X|D
1−C−1

−−−−→ Ωr
X|D/dΩr−1

X|D → 0, (3)

where Ωr
X|D = Ωr

X(logD) ⊗OX
OX(−D) and C−1 is the inverse Cartier morphism. In order to

extend the above exact sequence to the case m > 1, we need introduce the filtered relative de
Rham–Witt complex WmΩ•X|D for which we have W1Ω•X|D = Ω•X|D (see § 2.3 and Theorem 2.3.1).

Its construction uses the de Rham–Witt complexes in log geometry [HK94], which can be seen
as the higher analogue of Ωr

X(logD).
Using the generalization of (3) to the case m > 1, we can define a pairing between WmΩr

U,log

and the pro-system “lim
←−D”WmΩd−r

X|D,log and obtain the following theorem.
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Theorem 2 (see Theorem 4.1.4). Let X, D and U be as above and assume that k is finite. Then
the groups Hj(X,WmΩr

X|D,log) are finite and there are natural perfect pairings of topological
abelian groups

H i(U,WmΩr
U,log)× lim

←−
D

Hd+1−i(X,WmΩd−r
X|D,log)→ Hd+1(X,WmΩd

X,log)
Tr−→ Z/pmZ,

where the first group is endowed with discrete topology, and the second is endowed with profinite
topology.

From the case i = 1 and r = 0 of the above theorem, we get a natural isomorphism

lim
←−
D

Hd(X,WmΩd
X|D,log)

∼=−→ H1(U,Z/pmZ)∨ ∼= πab
1 (U)/pm,

which gives rise to a series of quotients πab
1 (X,D)/pm of πab

1 (U)/pm using the inverse limit. It is
thought of as classifying abelian étale covering of U whose degree divides pm and ramification is
bounded by the divisor D.

One of the authors (Zhao) [Zha16] has proved a similar duality theorem for a projective
semi-stable scheme over an equi-characteristic discrete valuation ring k[[t]] with k finite.

When the base field k is prefect but not necessarily finite, we follow the method of Milne
[Mil86] and work in the category S (pm) of Z/pmZ-sheaves on perfect étale site (Pf /k)ét (see
§ 5.1). Let Db(S (pm)) be the derived category of bounded complexes in S (pm). We then get
from X, D objects of Db(S (pm)):

Rπ∗WmΩd−r
X|D,log and Rπ∗Rj∗WmΩr

U,log,

where π : X → S = Spec(k) is the structure morphism and j : U → X is the open immersion.
Then our duality theorem reads as follows.

Theorem 3 (see Theorem 5.2.1). There is a natural isomorphism in Db(S (pm)):

R lim
←−
D

Rπ∗WmΩd−r
X|D,log

∼=−→ RHomDb(S (pm))(Rπ∗Rj∗WmΩr
U,log,Z/pmZ)[−d],

where R lim
←−D denotes the homotopy limit over effective Cartier divisors supported on X − U .

The paper is organized as follows.
In § 1, we study the two important results on the relative logarithmic de Rham–Witt sheaves:

the first one is a computation of the kernel of the restriction map Rm−1 : WmΩr
X|D,log →

W1Ωr
X|D,log; the second is the exact sequence (3).

In order to define the desired pairing, we introduce filtered de Rham–Witt complexes in § 2,
and study the behavior of Frobenius and Verschiebung morphisms on these complexes.

Using two-term complexes, we define the pairing in § 3 and prove its perfectness when the
base field k is finite in § 4. The last § 5 is on the duality over a general perfect field.

1. Relative logarithmic de Rham–Witt sheaves

Let X be a smooth proper variety of dimension d over a perfect field k of characteristic p > 0,
let D be an effective divisor such that Supp(D) is a simple normal crossing divisor on X, and
let j : U := X −D ↪→ X be the complement of D.
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Duality for relative logarithmic de Rham–Witt sheaves

1.1 Basic properties
Definition 1.1.1. For r ∈ N let

WmΩr
X|D,log ⊂ j∗WmΩr

U,log

be the subsheaf generated étale locally by sections

d log[x1]m ∧ · · · ∧ d log[xr]m with x1 ∈ Ker(O×X → O
×
D), xν ∈ j∗O×U for all ν.

For r ∈ N let KMr,X be the rth Milnor K-sheaf on Xét given by

V 7→ Ker

( ⊕
η∈V (0)

KM
r (k(η))

⊕∂x−−→
⊕
x∈V (1)

KM
r−1(k(x))

)
for an étale V → X,

where V (i) is the set of points of codimension i in V , for i = 0, 1, and ∂x : KM
r (k(η))→KM

r (k(x))

is the tame symbol from [BT73, § 4]. By [Ker10, Proposition 10(8) and Theorem 13], KMr,X is

étale locally generated by symbols {x1, . . . , xr} with xi ∈ O×X,x. We have a natural isomorphism
of étale sheaves

d log[−] : KMr,X/pm
∼=−→WmΩr

X,log

{x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m. (1.1.1)

This follows from the Gersten resolutions of ε∗KMr,X and ε∗WmΩr
X,log from [Ros96] and [GS88]

together with the Bloch–Gabber–Kato theorem [BK86], where ε : Xét→XZar is the map of sites.

Definition 1.1.2 [RS18, Definition 2.4]. For r ∈ N, we define the relative MilnorK-sheafKMr,X|D
to be image of the map

Ker(O×X → O
×
D)⊗Z j∗KMr−1,U → j∗KMr,U ; x⊗ {x1, . . . , xr−1} 7→ {x, x1, . . . , xr}.

Using some symbol calculations, we get the following proposition.

Proposition 1.1.3 [RS18, Corollary 2.9]. Let D1, D2 be two effective divisors on X whose
supports are simple normal crossing divisors. Assume D1 6 D2. Then we have the inclusions
of sheaves

KMr,X|D2
⊂ KMr,X|D1

⊂ KMr,X .

Corollary 1.1.4. Under the assumption of Proposition 1.1.3, we have inclusions

WmΩr
X|D2,log ⊂WmΩr

X|D1,log ⊂WmΩr
X,log.

Proof. This follows from the fact that the sheaf WmΩr
X|D,log is the image of KMr,X|D under the

map d log[−]. 2

The isomorphism (1.1.1) also has the following relative version.

Theorem 1.1.5. The d log map induces an isomorphism of étale sheaves

d log[−] : KMr,X|D/(p
mKMr,X ∩ KMr,X|D)

∼=−→WmΩr
X|D,log

{x1, . . . , xr} 7→ d log[x1]m ∧ · · · ∧ d log[xr]m. (1.1.2)
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Proof. The assertion follows directly by the following commutative diagram.

KMr,X|D/(p
mKMr,X ∩ KMr,X|D) �

� //

d log
����

KMr,X/pm

∼=d log

��
WmΩr

X|D,log
� � //WmΩr

X,log

2

In the rest of this section, we will prove two fundamental results for the relative logarithmic
de Rham–Witt sheaves.

Theorem 1.1.6. Write D =
∑

λ∈Λ nλDλ, where Dλ (λ ∈ Λ) are irreducible components of D.
Then we have an exact sequence

0→Wm−1Ωr
X|[D/p],log

p
−→WmΩr

X|D,log →W1Ωr
X|D,log → 0,

where [D/p] =
∑

λ∈Λ[nλ/p]Dλ with [n/p] = min{n′ ∈ Z | pn′ > n}.

Proof. The claim follows from Theorem 1.1.7 below by the isomorphism (1.1.2). 2

Let R be the henselization of a local ring of a smooth scheme over a field k of characteristic
p > 0. Let (T1, . . . , Td) ⊂ R be a part of a system of regular parameters and put T = T1 · · ·Td.
We endow Nd with a semi-order by

(n1, . . . , nd) 6 (n′1, . . . , n
′
d) if ni 6 n′i for all i

and put
1 = (1, . . . , 1).

Following [BK86, § 4], we define UnKM
r (R) ⊂ KM

r (R) for n = (n1, . . . , nd) ∈ Nd as the subgroup
generated by symbols

{x1, . . . , xr} with x1 ∈ 1 + Tn1
1 · · ·T

nd
d R, xi ∈ R[1/T ]× (2 6 i 6 d).

(Here having the injectivity of KM
r (R) → KM

r (K) with the quotient field K of R, the above
symbols are considered in KM

r (K).) For an integer m > 0, put

UnkMr (R)m = Image(UnKM
r (R)→ KM

r (R)/pm).

Theorem 1.1.7. We have the following exact sequence:

0→ U [n/p]kMr (R)m−1
p−→ UnkMr (R)m→ UnkMr (R)1→ 0,

where [n/p] = min{ν ∈ Nd| pν > n} ∈ Nd.

For the proof we compute

grn,ikMr (R)m = UnkMr (R)m/U
n+δikMr (R)m with δi = (0, . . . ,

i
∨
1, . . . , 0).

We need some preliminaries. For n ∈ Nd and 1 6 i 6 d and an integer q > 1 put

ωqn,i = InΩq
R(log T )⊗R Ri with Ri = R/(Ti),
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Duality for relative logarithmic de Rham–Witt sheaves

where In = (Tn1
1 · · ·T

nd
d ) ⊂ R and Ωq

R(log T ) is the sheaf of (absolute) differential q-forms of R

with logarithmic poles along T = 0. It is easy to check the exterior derivative induces

dq : ωqn,i→ ωq+1
n,i .

Put

Zqn,i = Ker(ωqn,i
dq−→ ωq+1

n,i ), Bq
n,i = Image(ωq−1

n,i
dq−1

−−−→ ωqn,i).

We can easily check the following.

Lemma 1.1.8 [RS18, Theorem 2.16]. Let the notation be as above. Then the inverse Cartier

morphism

C−1 : Ωq
R→ Ωq

R/dΩq−1
R

induces an isomorphism

C−1
n,i : ωq[n/p],i

∼=−→ Zqn,i/B
q
n,i.

We define subgroups

Bq
n,i = Bq

1|n,i ⊂ B
q
2|n,i ⊂ · · · ⊂ Z

q
2|n,i ⊂ Z

q
1|n,i = Zqn,i ⊂ ω

q
n,i,

by the inductive formulae

Bq
s|[n/p],i

'−−→
C−1

n,i

Bq
s+1|n,i/B

q
n,i, Zqs|[n/p],i

'−−→
C−1

n,i

Zqs+1|n,i/B
q
n,i.

Proposition 1.1.9. Fix n = (n1, . . . , nd) ∈ Nd and 1 6 i 6 d.

(1) There is a natural map

ρn,i : ωr−1
n,i → grn,ikMr (R)m

such that for a ∈ R, b2, . . . , bd ∈ R[1/T ]×,

ρn,i

(
a(Tn1

1 · · ·T
nd
d )

db2
b2
∧ · · · ∧ dbr

br

)
= {1 + aTn1

1 · · ·T
nd
d , b2, . . . , br} ∈ UnKM

r (R).

(2) Write ni = ps · n′ with p 6 |n′. If m > s, ρn,i induces an isomorphism

ωr−1
n,i /B

r−1
s|n,i

∼=−→ grn,ikMr (R)m.

If m 6 s, ρn,i induces an isomorphism

ωr−1
n,i /Z

r−1
m|n,i

∼=−→ grn,ikMr (R)m.

Proof. The existence of ρn,i together with the fact that it induces the surjective maps as in (2) is

shown by the same argument as [BK86, (4.5) and (4.6)]. Note that ωr−1
n,i /B

r−1
s|n,i and ωr−1

n,i /Z
r−1
m|n,i

are free Rp
e

i -modules, for some e� 0. By localization, the injectivity of the maps is reduced to

the case R is a discrete valuation ring, which has been treated in [BK86, (4.8)]. 2
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Now we prove Theorem 1.1.7. It is easy to see that we have a complex as in the theorem. Its
exactness on the left follows from the fact that KM

r (R) is p-torsion free (cf. [GL00, Theorem 8.1]
and [Ros96, Theorem 6.1]). It remains to show the exactness in the middle. For this it suffices
to show the injectivity of the map induced by multiplication by p:

KM
r (R)/U [n/p]KM

r (R) + pm−1KM
r (R)

p−→ KM
r (R)/UnKM

r (R) + pmKM
r (R).

This follows from the following claims.

Claim 1.1.10. The multiplication by p induces an injective map:

KM
r (R)/U1KM

r (R) + pm−1KM
r (R)→ KM

r (R)/U1KM
r (R) + pmKM

r (R).

Proof. We have a map (cf. [RS18, the first displayed formula in the proof of Proposition 2.10])

KM
r (R)/U1KM

r (R)→
⊕

16i6d

KM
r (Ri); {a1, . . . , ar} 7→ ⊕i{a1 mod Ti, . . . , ar mod Ti},

where (a mod Ti) ∈ Ri is the image of a ∈ R. By [RS18, Proposition 2.10] and Proposition 1.1.3,
we see that this map is injective. Combining with the fact that

⊕
16i6dK

M
r (Ri) is p-torsion free,

we conclude this claim. 2

Claim 1.1.11. For n and i as in Proposition 1.1.9, the multiplication by p induces an injective
map:

gr[n/p],ikMr (R)m−1→ grn,ikMr (R)m.

Proof. It is easy to check that the multiplication by p induces such a map. Its injectivity follows
from the commutative diagram

ωr−1
[n/p],i/B

r−1
s−1|[n/p],i

C−1
n,i−−−→ ωr−1

n,i /B
r−1
s|n,iy' y'

gr[n/p],ikMr (R)m−1 −−−→ grn,ikMr (R)m

if m > s,

and the commutative diagram

ωr−1
[n/p],i/Z

r−1
m−1|[n/p],i

C−1
n,i−−−→ ωr−1

n,i /Z
r−1
m|n,iy' y'

gr[n/p],ikMr (R)m−1 −−−→ grn,ikMr (R)m

if m 6 s,

where the vertical isomorphisms are from Proposition 1.1.9. 2

1.2 Relation with differential forms
The sheaf Ωr

X|D,log relates to coherent sheaves as follows.

Theorem 1.2.1. We have an exact sequence

0→ Ωr
X|D,log → Ωr

X|D
1−C−1

−−−−→ Ωr
X|D/dΩr−1

X|D → 0,

where Ωr
X|D = Ωr

X/k(logD)⊗OX
OX(−D).
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Proof. For the exactness on the right, it suffices to show the surjectivity of 1− C−1 on sections
over the strict henselization of a local ring of X. In fact, by the argument in the classical case
where D = ∅ [Mil76, Lemma 1.3], it suffices to show the following claim.

Claim 1.2.2. Let A be a strictly henselian regular local ring of equi-characteristic p > 0 and
m ⊂ A be the maximal ideal. Let π ∈ m and a ∈ A. If a ∈ πA, then there exists b ∈ A, such that
b ∈ πA and bp − b = a.

Proof of Claim 1.2.2. Let k be the residue field of A. Since φ : A→ A is surjective, there exists
b̃ ∈ A such that b̃p − b̃ = a. Letting β ∈ k be the image of b̃, βp − β = 0 ∈ k by the assumption
a ∈ πA ⊂ m. Hence β ∈ Fp ⊂ A and we put b = b̃− β ∈ A. Then

b(bp−1 − 1) = bp − b = b̃p − b̃ = a ∈ πA.

Since b ∈ mA by the construction, bp−1 − 1 ∈ A× and we get b ∈ πA. 2

It remains to show the exactness in the middle, i.e., to show that Ωr
X|D ∩ Ωr

X,log = Ωr
X|D,log.

This is a étale local question, which is a consequence of Proposition 1.2.3 below, which is a
refinement of [Kat82, Proposition 1]. 2

Let R be the henselization of a local ring of X and choose a system T1, . . . , Td of regular
parameters of R such that Supp(D) = Spec(R/(T1 · · ·Te)) ⊂ Spec(R) for some e 6 d = dim(R).
Let Ω1

R(logD) denotes the module of differentials with logarithmic poles along D and put

Ωq
R(logD) =

q
∧ Ω1

R(logD). For a tuple of integers n = (n1, . . . , ne) with ni > 1, put

GnΩq
R = (Tn1

1 · · ·T
ne
e ) · Ωq

R(logD) ⊂ Ωq
R,

GnνR(q) = Ker
(
GnΩq

R

1−C−1

−−−−→ Ωq
R(logD)/dΩq−1

R (logD)
)
.

Proposition 1.2.3. GnνR(q) is generated by elements of the form

dx1

x1
∧ · · · ∧ dxq

xq
with x1 ∈ 1 + (Tn1

1 · · ·T
ne
e ), xi ∈ R

[
1

T1 · · ·Te

]×
(2 6 i 6 q).

Proof. The following argument is a variant of Part (B) of the proof of [Kat82, Proposition 1 (see
p. 224)]. By [Art69], we may replace R by R = k[[T1, . . . , Td]]. Indeed, to use Artin approximation
we have to equip any R-algebra with the log structure coming via pullback from the canonical
one on (R,D) to extend the group GnνR(q) to a functor on R-algebras S 7→ GnνS(q). Put
A = k[[T1, . . . , Td−1]] and T = Td so that R = A[[T ]]. Let Ωq

A(logE) be the module of differential
q-forms on Spec(A) with logarithmic poles along E = Spec(A/(T1 · · ·Td−1))⊂ SpecA. By [Kat82,
Proposition 1], we have an isomorphism

(R⊗A Ωq
A(logE))⊕ (R⊗A Ωq−1

A (logE)) ' Ωq
R(logD); (a⊗w, b⊗ v)→ aw+ bv ∧ dT

T
. (1.2.1)

For each n > 1, let Vn ⊂ Ωq
R(logD) be the image of

(TnA[[T ]]⊗ Ωq
A(logE))⊕ (TnA[[T ]]⊗A Ωq−1

A (logE)).

We easily check the following.
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Claim 1.2.4. For a tuple of integers n = (n1, . . . , nd−1, n) with n, ni > 1, we have GnΩq
R ⊂ Vn

and it coincides with the image of

(TnA[[T ]]⊗A (Tn1
1 · · ·T

nd−1

d−1 ) · Ωq
A(logE))⊕ (TnA[[T ]]⊗A (Tn1

1 · · ·T
nd−1

d−1 ) · Ωq−1
A (logE)).

The map (1.2.1) restricted on Vn induces an isomorphism

(Tn1
1 · · ·T

nd−1

d−1 ) · Ωq
A(logE)⊕ (Tn1

1 · · ·T
nd−1

d−1 ) · Ωq−1
A (logE)

∼=−→ GnΩq
R/G

n′Ωq
R,

(w, v)→ Tn
(
w + v ∧ dT

T

)
,

where n′ = (n1, . . . , nd−1, n+ 1).

Let Iq be the set of strictly increasing functions {1, . . . , q}→ {1, . . . , d− 1}. For s ∈ Iq write

ωs =
dTs(1)

Ts(1)
∧ · · · ∧

dTs(q)

Ts(q)
∈ Ωq

A(logE).

Then ωs (s ∈ Iq) form a basis of Ωq
A(logE) over A. Put

Un = Vn ∩Ker
(
Ωq
R(logD)

1−C−1

−−−−→ Ωq
R(logD)/dΩq−1

R (logD)
)
.

We have the following description of Un/Un+1 (see Part (B) of the proof of [Kat82,

Proposition 1]).
If (p, n) = 1, we have an isomorphism

ρn : Ωq−1
A (logE)

∼=−→ Un/Un+1,∑
s∈Iq−1

asωs 7→
∑
s∈Iq−1

d(1 + asT
n)

(1 + asTn)
∧ ωs (as ∈ A). (1.2.2)

If p|n, we have an isomorphism

ρn : Ωq−1
A (logE)/Ωq−1

A (logE)d=0 ⊕ Ωq−2
A (logE)/Ωq−2

A (logE)d=0

∼=−→ Un/Un+1,( ∑
s∈Iq−1

asωs,
∑
t∈Iq−2

btωt

)
7→

∑
s∈Iq−1

d(1 + asT
n)

(1 + asTn)
∧ ωs +

∑
t∈Iq−2

d(1 + btT
n)

(1 + btTn)
∧ dT
T
∧ ωt, (1.2.3)

where as, bt ∈ A.

Claim 1.2.5. Fix a tuple of integers n = (n1, . . . , nd−1, n) with ni > 1.

(1) Assume (p, n) = 1 and ρn(ω) ∈ GnΩq
R mod Un+1 for

ω =
∑
s∈Iq−1

asωs ∈ Ωq−1
A (logE).

Then we have as ∈ (Tn1
1 · · ·T

nd−1

d−1 ) for all s ∈ Iq−1.
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(2) Assume p|n and ρn(ω) ∈ GnΩq
R mod Un+1 for

ω = (ω1, ω2) ∈ Ωq−1
A (logE)/Ωq−1

A (logE)d=0 ⊕ Ωq−2
A (logE)/Ωq−2

A (logE)d=0.

Then one can write

ω1 =
∑
s∈Iq−1

asωs mod Ωq−1
A (logE)d=0,

ω2 =
∑
t∈Iq−2

btωt mod Ωq−2
A (logE)d=0,

with as, bt ∈ (Tn1
1 · · ·T

nd−1

d−1 ) for all s ∈ Iq−1 and t ∈ Iq−2.

Proof of Claim 1.2.5. Assume (p, n) = 1. From (1.2.2) we get

ρn

( ∑
s∈Iq−1

asωs

)
= Tn

∑
s∈Iq−1

das ∧ ωs ± nTn
∑
s∈Iq−1

asωs ∧
dT

T
mod Un+1.

Hence (1) follows from Claim 1.2.4 noting das ∧ ωs ∈ Ωq
A(logE). Next assume p|n. From (1.2.3)

we get

ρn

(( ∑
s∈Iq−1

asωs,
∑
t∈Iq−2

btωt

))
= Tn

∑
s∈Iq−1

das ∧ ωs ± Tn
∑
t∈Iq−2

dbt ∧ ωt ∧
dT

T
.

By Claim 1.2.4, if the left-hand side lies in GnΩq
R mod Un+1, we get

das ∧ ωs ∈ (Tn1
1 · · ·T

nd−1

d−1 ) · Ωq
A(logE), dbt ∧ ωt ∈ (Tn1

1 · · ·T
nd−1

d−1 ) · Ωq−1
A (logE).

Thus the desired assertion follows from the following.

Claim 1.2.6. Assume dη ∈ (Tn1
1 · · ·T

nd−1

d−1 ) ·Ωq
A(logE) for η =

∑
s∈Iq−1

asωs ∈ Ωq−1
A (logE). Then

there exist αs ∈ A for s ∈ Iq−1 such that as − αs ∈ (Tn1
1 · · ·T

nd−1

d−1 ) for all s and that dξ = 0 for
ξ =

∑
s∈Iq−1

αsωs.

Indeed write as = αs + a′s where a′s ∈ (Tn1
1 · · ·T

nd−1

d−1 ) and αs are expanded as∑
i1,...,id−1

αs,i1,...,id−1
T i11 · · ·T

id−1

d−1 (αs,i1,...,id−1
∈ k),

where i1, . . . , id−1 range over non-negative integers such that there exists 1 6 ν 6 d − 1 with
iν < nν . Then one easily check that αs satisfy the desired condition. 2

Now we can finish the proof of Proposition 1.2.3. In the following we fix a tuple of integers
n = (n1, . . . , nd−1, nd) with ni > 1 and take ω ∈ GnΩq

R. By Claim 1.2.5 there exist a series of
elements

as,n ∈ (Tn1
1 · · ·T

nd−1

d−1 ) (s ∈ Iq−1, n > nd),

bt,pm ∈ (Tn1
1 · · ·T

nd−1

d−1 ) (t ∈ Iq−2,m > nd/p),
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such that

ω =
∑
n>nd

∑
s∈Iq−1

d(1 + as,nT
n)

(1 + as,nTn)
∧ ωs +

∑
pm>nd

∑
t∈Iq−2

d(1 + bt,mT
pm)

(1 + bt,mT pm)
∧ dT
T
∧ ωt

=
∑
s∈Iq−1

(∑
n>nd

d(1 + as,nT
n)

(1 + as,nTn)

)
∧ ωs +

∑
t∈Iq−2

( ∑
pm>nd

d(1 + bt,mT
pm)

(1 + bt,mT pm)

)
∧ dT
T
∧ ωt.

The products

x =
∏
n>nd

(1 + as,nT
n), y =

∏
pm>nd

(1 + bt,mT
pm)

converge in 1 + (Tn1
1 · · ·T

nd
d ) ⊂ R× and we get

ω =
∑
s∈Iq−1

dx

x
∧ ωs +

∑
t∈Iq−2

dy

y
∧ dT
T
∧ ωt.

This completes the proof of Proposition 1.2.3. 2

Remark 1.2.7. In fact, the above proof shows that the exactness in the middle of the complex
in Theorem 1.2.1 already holds in the Nisnevich topology.

2. Filtered de Rham–Witt complexes

Let X,D, j : : U ↪→ X be as before. Let {Dλ}λ∈Λ be the (smooth) irreducible components of D.
We endow ZΛ with a semi-order by

n := (nλ)λ∈Λ > n′ := (n′λ)λ∈Λ if nλ > n′λ for all λ ∈ Λ. (2.0.1)

For n = (nλ)λ∈Λ ∈ ZΛ let

Dn =
∑
λ∈Λ

nλDλ

be the associated divisor.

2.1 Definition and basic properties
Let E be a Cartier divisor on X. It is given by {Vi, fi}, where {Vi}i is an open cover of X and
fi ∈ Γ(Vi,M×X) is a section of the sheaf of total fractional ring.

Definition 2.1.1. We define an invertible WmOX -module WmOX(E) associated to E as

WmOX(E)|Vi := WmOVi ·
[

1

fi

]
m

⊂WmMVi ,

where [·]m : O→WmO the Teichmüller lifting.

This definition gives us an invertible sheaf WmOX(Dn) for any Dn as above.

Lemma 2.1.2. We have:

(i) F (Wm+1OX(Dn)) ⊂WmOX(Dpn);

(ii) V (WmOX(Dpn)) ⊂Wm+1OX(Dn);

(iii) R(Wm+1OX(Dn)) ⊂WmOX(Dn).
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Proof. The claims (i) and (iii) are clear by the definition. Claim (ii) follows from the equalities

V (x · Fy) = V (x) · y and F [y]m+1 = [yp]m. 2

Let WmΩ∗X(logD) be the de Rham–Witt complex with respect to the canonical log structure

(X, j∗O×U ∩ OX) defined in [HK94, § 4].

Definition 2.1.3. For n = (nλ)λ∈Λ ∈ ZΛ, we define the filtered de Rham–Witt complex as

WmΩ∗X|Dn
:= WmOX(−Dn) ·WmΩ∗X(logD) ⊂ j∗WmΩ∗U ,

where WmΩ∗X(logD) is canonically viewed as a subsheaf of j∗WmΩ∗U (cf. [HK94, (4.20)]).

Note that

WmΩ∗X|Dn
∼= WmΩ∗X(logD)⊗WmOX

WmOX(−Dn).

In particular, W1Ω∗X|Dn
= Ω∗X(logD)⊗OX(−Dn) = Ω∗X|Dn

(cf. notation in Theorem 1.2.1).

Lemma 2.1.4. We have the following inclusions:

(i) F (Wm+1Ω∗X|Dn
) ⊂WmΩ∗X|Dpn

;

(ii) V (WmΩ∗X|Dpn
) ⊂Wm+1Ω∗X|Dn

;

(iii) R(Wm+1Ω∗X|Dn
) ⊂WmΩ∗X|Dn

.

Proof. This follows from Lemma 2.1.2 and the basic properties of de Rham–Witt complex [HK94,

§ 4.1] [Lor02, Proposition 1.5]. 2

2.2 Canonical filtration

On WmΩ∗X(logD), we can define the canonical filtration as in [Ill79, I (3.1.1)]:

FilsWmΩr
X(logD) :=


WmΩr

X(logD) if s 6 0 or r 6 0,

Ker(Rm−s : WmΩr
X(logD)→WsΩ

r
X(logD)) if 1 6 s 6 m,

0 if s > m.

For 1 6 s 6 m, we have [Lor02, Proposition 1.16]

FilsWmΩr
X(logD) = V sWm−sΩ

r
X(logD) + dV sWm−sΩ

r−1
X (logD).

Definition 2.2.1. For 1 6 s 6 m, we define

FilsWmΩr
X|Dn

:=


WmΩr

X|Dn
if s 6 0 or r 6 0,

Ker(Rm−s : WmΩr
X|Dn

→WsΩ
r
X|Dn

) if 1 6 s 6 m,

0 if s > m.

Theorem 2.2.2. We have

FilsWmΩr
X|Dn

= V sWm−sΩ
r
X|Dpsn

+ dV sWm−sΩ
r−1
X|Dpsn

.
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Proof. We only need to show the inclusion ‘⊆’. By the definition of the canonical filtration and
the fact that WmOX(−Dn) is an invertible sheaf, we have

FilsWmΩr
X|Dn

= WmOX(−Dn) · FilsWmΩr
X(logD),

and it suffices to show that the group on the right-hand side is contained in

V sWm−sΩ
r
X|Dpsn

+ dV sWm−sΩ
r−1
X|Dpsn

.

Using the formula x · V y = V (F (x) · y) repeatedly, we see that for any ω ∈ Wm−sΩ
r
X(logD),

ω′ ∈Wm−sΩ
r−1
X (logD) and x ∈WmOX(−Dn),

x · (V s(ω) + dV s(ω′)) = V s(F s(x) · ω) + dV s(F s(x) · ω′)± dx · V s(ω′). (2.2.1)

By our definition, we have F s(x) · ω ∈Wm−sΩ
r
X|Dpsn

and F s(x) · ω′ ∈Wm−sΩ
r−1
X|Dpsn

. It suffices

to prove that dx · V s(ω′) ∈ V sWm−sΩ
r
X|Dpsn

. Since the problem is local on X, it is enough to

show the following claim.

Claim 2.2.3. For any t ∈ OX , and z′ ∈Wm−sΩ
r
X(logD),

d[t]mV
s(z′) = V s([t]p

s−1
m−sd[t]m−sz

′).

Indeed, we know (cf. [Ill79, I, Proposition 1.5.2]),

d[t]mV (z) = V ([t]p−1
m−1d[t]m−1z) for any t ∈ OX , and z ∈Wm−1Ωr

X(logD).

Using this formula and x · V y = V (F (x) · y) repeatedly, we get the claim. 2

Corollary 2.2.4. There are the following inclusions:

(i) F (FilsWmΩr
X|Dn

) ⊂ Fils−1Wm−1Ωr
X|Dpn

;

(ii) V (FilsWmΩr
X|Dpn

) ⊂ Fils+1Wm+1Ωr
X|Dn

;

(iii) R(FilsWmΩr
X|Dn

) ⊂ FilsWm−1Ωr
X|Dn

.

Proof. This follows from Lemma 2.1.4, FV = p = V F and FdV = d. 2

For n > 1, i.e. n ∈ NΛ, we have

WmΩr
X|Dn

⊂WmΩr
X .

Indeed, for m = 1 this follows from the fact W1Ωr
X|Dn

= Ωr
X(logD)(−Dn) ⊂ Ωr

X . Then the claim

follows by induction on m using Theorem 2.2.2.

Lemma 2.2.5. For n ∈ NΛ, we have

FilsWmΩr
X ∩WmΩr

X|Dn
= FilsWmΩr

X|Dn
,

and
Ker(ps : WmΩr

X|Dn
→WmΩr

X|Dn
) = Film−sWmΩr

X|Dn
.

In particular the multiplication by ps induces an injective homomorphism

ps : Wm−sΩ
r
X|Dn

↪→WmΩr
X|Dn

. (2.2.2)
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Proof. The first equality follows from the following commutative diagram.

0 // FilsWmΩr
X|Dn

//
� _

��

WmΩr
X|Dn

Rm−s
//

� _

��

WsΩ
r
X|Dn

//
� _

��

0

0 // FilsWmΩr
X

//WmΩr
X

Rm−s
//WsΩ

r
X

// 0

The second equality follows from the first and the fact (cf. [Ill79, I, Proposition 3.11])

Ker(ps :WmΩr
X→WmΩr

X) = Film−sWmΩr
X . 2

Recall (cf. the proof of [Ill79, I, Proposition 3.11, p. 575])

Ker(Fm−1 : WmΩr
X → Ωr

X) = VWm−1Ωr
X , (2.2.3)

Ker(Fm−1d : WmΩr
X → Ωr+1

X ) = FWm+1Ωr
X . (2.2.4)

We have the following analogues for the filtered de Rham–Witt sheaves.

Proposition 2.2.6. For n ∈ NΛ, we have:

(i) Ker(Fm−1 : WmΩr
X|Dn

→ Ωr
X|Dpm−1n

) = VWm−1Ωr
X|Dpn

, i.e.,

VWm−1Ωr
X ∩WmΩr

X|Dn
= VWm−1Ωr

X|Dpn
;

(ii) Ker(Fm−1d : WmΩr
X|Dpn

→ Ωr+1
X|Dpmn

) = FWm+1Ωr
X|Dn

, i.e.,

FWm+1Ωr
X ∩WmΩr

X|Dpn
= FWm+1Ωr

X|Dn
.

Proof. This is proved by the same argument as in the proof of [Ill79, I, Proposition 3.11], which
we recall below.

(i) For m = 1 it is trivial. For m > 1 we have

KerFm−1 ⊂ Ker pm−1 = Fil1WmΩr
X|Dn

= VWm−1Ωr
X|Dpn

+ dVWm−1Ωr−1
X|Dpn

.

by Theorem 2.2.2 and Lemma 2.2.5. It suffices to show that, for 1 6 s 6 m,

(KerFm−1) ∩ (VWm−1Ωr
X|Dpn

+ FilsWmΩr
X|Dn

) ⊂ VWm−1Ωr
X|Dpn

+ Fils+1WmΩr
X|Dn

. (2.2.5)

Let z = V x+ dV sy with x ∈Wm−1Ωr
X|Dpn

, y ∈Wm−sΩ
r−1
X|Dpsn

be such that Fm−1z = 0. Noting

Fm−1V x = pFm−2x = 0 and Fm−1dV s = Fm−1−sd, it follows that Fm−1−sdy = 0. Let y be the
image of y in Ωr−1

X|Dpsn
under the restriction map Rm−1−s. Then, by [Ill79, I, Proposition 3.3], we

get C−(m−1−s)dy = 0 and dy = 0 in Ωr
X|Dpsn

. By Lemma 1.1.8 there exists (locally) y′ ∈ Ωr−1
X|Dps−1n

such that y = C−1(y′). We can then take a lift ỹ of y′ in Wm+1−sΩ
r−1
X|Dps−1n

. Indeed, writing

y′ =
∑

α aαωα with aα ∈ OX(−Dps−1n) and ωα ∈ Ωr−1
X (logD), we take ỹ =

∑
α[aα]m+1−sω̃α,

where ω̃α ∈Wm+1−sΩ
r−1
X (logD) is a lift of ωα. By the construction we have

y = F ỹ mod Fil1Wm−sΩ
r−1
X|Dpsn

.
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By taking V s on both sides, we get

V sy = V sF ỹ mod Fils+1WmΩr−1
X|Dn

.

Hence
dV sy = dV sF ỹ = pdV s−1ỹ = V dV s−2ỹ mod Fils+1WmΩr−1

X|Dn
.

That is
dV sy ∈ VWm−1Ωr

X|Dpn
+ Fils+1WmΩr

X|Dn
.

Hence z = V x+ dV sy ∈ VWm−1Ωr
X|Dpn

+ Fils+1WmΩr
X|Dn

, which proves (2.2.5).

(ii) It suffices to prove that, for 1 6 s 6 m,

Ker(Fm−1d) ∩ FilsWmΩr
X|Dpn

⊂ FWm+1Ωr
X|Dn

+ Fils+1WmΩr
X|Dpn

. (2.2.6)

Let z = V sx + dV sy with x ∈ Wm−sΩ
r
X|Dps+1n

, y ∈ Wm−sΩ
r−1
X|Dps+1n

be such that Fm−1dz = 0.

Noting Fm−1dV s = Fm−1−sd, it follows that Fm−1−sdx= 0. Let x be the image of x in Ωr
X|Dps+1n

.

As in (i), there exist x̃ ∈Wm−s+1Ωr
X|Dpsn

, such that

x = Fx̃ mod Fil1Wm−sΩ
r
X|Dps+1n

.

By taking V s on both sides, we obtain

V sx = FV sx̃ mod Fils+1WmΩr
X|Dpn

.

Noting that dV sy = FdV s+1y ∈ FWm+1Ωr
X|Dn

, we obtain the inclusion (2.2.6). 2

Corollary 2.2.7. For n ∈ NΛ and x ∈ Wm−1Ωr
X , p · x ∈ WmΩr

X|Dn
(cf. (2.2.2)) implies x ∈

Wm−1Ωr
X|Dn

.

Proof. Recall we have the following diagram [Ill79, Proposition 3.4].

WmΩr
X

p //

R
��

WmΩr
X

Wm−1Ωr
X

+ �
p

88

Hence there exists x̃ ∈ WmΩr
X such that px̃ = p · x and Rx̃ = x. By the assumption, we have

V F x̃ = px̃ = p · x ∈ WmΩr
X|Dn

. Thanks to Corollary 2.2.6(i), it follows that there exists y′ ∈
Wm−1Ωr

X|Dpn
such that

V F x̃ = V y′.

Recall the identity in [Ill79, I. 3.21.1.4]:

Ker(V : Wm−1Ωr
X →WmΩr

X) = FdV m−1Ωr−1
X .

Therefore there exists z′ ∈ Ωr−1
X such that Fx̃− y′ = FdV m−1z′. That is

F (x̃− dV m−1z′) = y′ ∈Wm−1Ωr
X|Dpn

.
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Corollary 2.2.6(ii) implies that there exists y′′ ∈WmΩr
X|Dn

such that

F (x̃− dV m−1z′) = Fy′′.

Thanks to the identity [Ill79, I. 3.21.1.2]

Ker(F : WmΩr
X →Wm−1Ωr

X) = V m−1Ωr
X ,

we find z′′ ∈ Ωr
X such that

x̃− y′′ = dV m−1z′ + V m−1z′′.

Noting that Ker(R : WmΩr
X →Wm−1Ωr

X) = V m−1Ωr
X + dV m−1Ωr−1

X , we get

x = Rx̃ = Ry′′ ∈Wm−1Ωr
X|Dn

. 2

2.3 Logarithmic part of filtered de Rham–Witt complexes

The relation between the filtered de Rham–Witt sheaves and the relative logarithmic de Rham–

Witt sheaves is given by the following theorem, which is a generalization of Theorem 1.2.1.

We first introduce some notations. Let

Σ := {Dn | n = (nλ)λ∈Λ ∈ NΛ}

be the set of effective divisors with supports in X − U , whose irreducible components are same

as those of D. The semi-order on ZΛ defined in (2.0.1) induces a semi-order on Σ:

Dn > Dn′ if n > n′.

For D1, D2 ∈ Σ with D1 >D2, we have a natural injective map WmΩr
X|D1,log ↪→WmΩr

X|D2,log

(see Corollary 1.1.4), which gives a pro-system of sheaves

“ lim
←−
D∈Σ

”WmΩr
X|D,log.

In order to simplify the notation, we simply write it as “lim
←−D”WmΩr

X|D,log.

Theorem 2.3.1. We have the following exact sequence of pro-sheaves,

0→ “lim
←−
D

”WmΩr
X|D,log → “lim

←−
D

”WmΩr
X|D

1−F−−→ “lim
←−
D

”WmΩr
X|D/dV

m−1Ωr−1
X|pm−1D

→ 0,

where D runs over the set Σ.

We need the following lemma, which follows from easy calculations with Witt vectors.

Lemma 2.3.2 [GH06, Lemma 1.2.3]. Let R be any ring, and t ∈ R, then [1 + t]m − [1]m =

(y0, . . . , ym−1) with yi ≡ t mod t2R for 0 6 i 6 m− 1. Here [x]m = (x, 0, . . . , 0) ∈Wm(R) is the

Teichmüller representative of x ∈ R.
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Proof of Theorem 2.3.1. First we show thatWmΩr
X|Dpm−1n,log ⊂ j∗WmΩr

U,log (cf. Definition 1.1.1)

lies in WmΩr
X|Dn

. This is a local question so that we may assume that X = Spec(A) and D = (t)

for some t ∈ A. By Lemma 2.3.2 we can write

[1 + tp
(m−1)na]m − [1]m = (tp

(m−1)ny0, . . . , t
p(m−1)nym−1)

with yi ∈ A for 0 6 i 6 m− 1. Noting dx = 0 for x ∈Wm(Fp), we get

d[1 + tp
(m−1)na]m = d(tp

(m−1)ny0, . . . , t
p(m−1)nym−1) = d([t]nm · (c0, . . . , cm−1))

with ci ∈ A for 0 6 i 6 m− 1, where the second equality follows from the formula

[t]nm · (c0, . . . , cm−1) = (tnc0, t
npc1, . . . , t

np(m−1)
cm−1).

Hence we get

d log[1 + tp
m−1n]m = ([1 + tp

m−1n]m)−1d([t]nm(c0, . . . , cm−1)) ∈WmΩ1
X|Dn

, (2.3.1)

noting [1 + tp
m−1n]m is a unit of WmOX .

The surjectivity of 1 − F as pro-systems follows by the same argument as in the proof of
[Ill79, I, Proposition 3.26]. Indeed, the formula dx = (F −1)(dV x+dV 2x+ · · ·+dV m−1x) implies
that

dWmΩr−1
X|Dn

⊂ (1− F )(WmΩr
X|D[n/pm]

).

Therefore it is enough to show that

WmΩr
X|Dn

1−F−−→WmΩr
X|Dn

/dWmΩr−1
X|Dn

is surjective.
Theorem 2.2.2 implies that WmΩr

X|Dn
/dWmΩr−1

X|Dn
is generated by sections

V i[x]m−id log[y1]m · · · d log[yr]m with 0 6 i 6 m− 1,

where x ∈ OX(−Dpin′) for some n′ 6 n and yj ∈ O×X for 1 6 j 6 r such that

d log[y1]m · · · d log[yr]m ∈WmΩr
X|Dn−n′

.

(Note that in view of (2.3.1), d log[yi]m may also contribute to the multiplicity.) We may then
choose (étale locally) y ∈ OX(−Dpin′) such that yp − y = x. Then we have

(1− F )
(
V i[y]m−id log[y1]m · · · d log[yr]m

)
= V i[x]m−id log[y1]m · · · d log[yr]m,

which implies the desired surjectivity.
Finally we show the exactness in the middle. It suffices to show the following equality in

WmΩr
X :

WmΩr
X|Dn

∩WmΩr
X,log = WmΩr

X|Dpm−1n,log.

We prove this by induction on m. For m = 1, this is Theorem 1.2.1.
Let x ∈WmΩr

X|Dn
∩WmΩr

X,log, then we have

Rx = Fx ∈Wm−1Ωr
X|Dpn

∩Wm−1Ωr
X,log.
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By induction hypothesis, we have

Rx = Fx ∈Wm−1Ωr
X|Dpm−1n,log.

On the other hand, there is a commutative diagram

WmΩr
X|Dpm−1n,log

R //
� _

��

Wm−1Ωr
X|Dpm−1n,log

//
� _

��

0

0 // Ωr
X,log

pm−1

//WmΩr
X,log

R //Wm−1Ωr
X,log

// 0

where the lower sequence is exact by [CSS83, Lemma 3]. Hence there exist y ∈WmΩr
X|Dpm−1n,log

and z ∈ Ωr
X,log, such that x− y = pm−1 · z.

Since pm−1 · z = x − y ∈ WmΩr
X|Dn

, Corollary 2.2.7 implies z ∈ Ωr
X|Dn

. By Theorem 1.2.1,

this implies z ∈ Ωr
X|Dn,log and hence pm−1 ·z ∈WmΩr

X|Dpm−1n,log (cf. Theorem 1.1.6). This proves

x = y + pm−1 · z ∈WmΩr
X|Dpm−1n,log as desired. 2

3. The pairing on the relative logarithmic de Rham–Witt sheaves

Let X,D, j : U ↪→X be as in § 2. In the following we want to define a pairing between cohomology
group of WmΩr

U,log and cohomology group of “lim
←−D”WmΩd−r

X|D,log. In order to define a pairing on

the sheaves level, we have to write WnΩr
U,log as ind-system of sheaves on X.

3.1 The pairing
To define our desired pairing, we will use the notation of two-term complexes. We briefly recall
the definition. In [Mil86], Milne defined a pairing of two-term complexes as follows.

Let

F • = (F 0 dF−−→ F 1), G • = (G 0 dG−→ G 1)

and

H • = (H 0 dH−−→H 1)

be two-term complexes. A pairing of two-term complexes

F • × G •→H •

is a system of pairings

〈 , 〉00,0 : F 0 × G 0
→H 0;

〈 , 〉10,1 : F 0 × G 1
→H 1;

〈 , 〉11,0 : F 1 × G 0
→H 1,

such that
dH (〈x, y〉00,0) = 〈x, dG (y)〉10,1 + 〈dF (x), y〉11,0 (3.1.1)

for all x ∈ F 0, y ∈ G 0. Such a pairing is the same as a mapping

F • ⊗ G •→H •.
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In our situation, for any tuple of integers n > 1 we set

WmF r,•
−n := [Z1WmΩr

X|D−n

1−C−−→WmΩr
X|D−n

], (3.1.2)

where Z1WmΩr
X|D−n

:= j∗Z1WmΩr
U ∩WmΩr

X|D−n
with j : U → X the canonical map and

Z1WmΩr
U := Image(F : Wm+1Ωr

U →WmΩr
U )

(2.2.4)
= Ker(Fm−1d : WmΩr

U → Ωr+1
U ),

and C is the higher Cartier map [Kat85, § 4]:

C : Z1WmΩr
U/dV

m−1Ωr−1
U

∼=−→WmΩr
U .

We also set

WmG d−r,•
n+1 := [WmΩd−r

X|Dn+1

1−F−−→WmΩd−r
X|Dn+1

/dV m−1Ωd−r−1
X|Dpm−1n

], (3.1.3)

WmH • := [WmΩd
X

1−C−−→WmΩd
X ]. (3.1.4)

By [Mil86, Lemma 1.1] we have a canonical isomorphism

WmΩd
X,log[0] 'WmH •. (3.1.5)

Lemma 3.1.1. For any tuple of integers n > 1 we have a natural pairing of two-term complexes

WmF r,•
−n ×WmG d−r,•

n+1 →WmH •. (3.1.6)

Proof. By the definition of filtered de Rham–Witt complexes, the cup product induces pairings

WmΩr
X|D−n

×WmΩd−r
X|Dn+1

→WmΩd
X|D1

⊂WmΩd
X

and
Z1WmΩr

X|D−n
×WmΩd−r

X|Dn+1
→WmΩd

X|D1
⊂WmΩd

X .

By composing with the higher Cartier operators, we have the following pairing:

Z1WmΩr
X|D−n

×WmΩd−r
X|Dn+1

/dV m−1Ωd−r−1
X|Dpm−1n

→WmΩd
X ; (α, β) 7→ −C(α ∧ β).

It is easy to see that these pairings are compatible. 2

If we now let n run over NΛ, we get a pairing between an ind-object and a pro-object

“lim
←−
n

”WmF r,•
−n × “lim

←−
n

”WmG d−r,•
n+1 →WmH •, (3.1.7)

or equivalently, a morphism in the category of pro-objects of complexes of abelian sheaves

“lim
←−
n

”WmG d−r,•
n+1 → “lim

←−
n

”Hom(WmF r,•
−n,WmH •),

where WmH • is viewed as a constant pro-object.

Remark 3.1.2. To construct the pairing (3.1.7) in a more natural way, we could use a full
subcategory of the ind-category of pro-objects of coherent complexes (cf. [Kat00, § 2.1]).
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4. Duality over finite fields

In this section we assume that the base field k is finite. By taking hypercohomology groups of
the pairing (3.1.7) using (3.1.5), we get a pairing

lim−→
n

Hi(X,WmF r,•
−n)× lim

←−
n

Hd+1−i(X,WmG d−r,•
n+1 )→ Hd+1(X,WmΩd

X,log).

Note that there is an isomorphism in the bounded derived category Db(X,Z/pmZ) of étale
Z/pmZ-modules:

lim−→
n

WmF r,•
−n = [j∗Z1WmΩr

U
1−C−−→ j∗WmΩr

U ] ∼= Rj∗WmΩr
U,log,

where the second isomorphism comes from the fact that j is affine. Hence we get

lim−→
n

Hi(X,WmF r,•
−n) ∼= H i(U,WmΩr

U,log) for any i ∈ Z.

Theorem 2.3.1 implies that

lim
←−
n

Hd+1−i(X,WmG d−r,•
n+1 ) ∼= lim

←−
D

Hd+1−i(X,WmΩd−r
X|D,log). (4.1.1)

Combining these facts, we obtain the following corollary.

Corollary 4.1.1. We have a natural pairing of abelian groups

H i(U,WmΩr
U,log)× lim

←−
D

Hd+1−i(X,WmΩd−r
X|D,log)→ Hd+1(X,WmΩd

X,log)
Tr−→ Z/pmZ, (4.1.2)

where the trace map is the canonical trace map of logarithmic de Rham–Witt sheaves (cf. [Mil86,
Corollary 1.12]).

Noting that Hd+1−i(X,WmΩd−r
X|D,log) are finite, we can endow lim

←−DH
d+1−i(X,WmΩd−r

X|D,log)

with the inverse limit topology, i.e, the profinite topology.

Proposition 4.1.2. The pairing is continuous if we endow H i(U,WmΩr
U,log) with the discrete

topology and lim
←−DH

d+1−i(X,WmΩd−r
X|D,log) with the profinite topology.

Proof. It suffices to show that the annihilator of each α ∈ H i(U,WmΩr
U,log) is open in the

projective limit lim
←−DH

d+1−i(X,WmΩd−r
X|D,log). This follows directly from the lemma below. 2

Lemma 4.1.3. For any α ∈ H i(U,WmΩr
U,log), the morphism induced by (4.1.2)

〈α, ·〉 : lim
←−
D

Hd+1−i(X,WmΩd−r
X|D,log)→ Hd+1(X,WmΩd

X,log)

factors through Hd+1−i(X,WmΩd−r
X|D,log) for some D ∈ Σ.

Proof. This follows directly by the construction of the pairing. 2

Our main result in this section is the following duality theorem.
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Theorem 4.1.4. The pairing (4.1.2) is a perfect pairing of topological Z/pmZ-modules, i.e, it
induces an isomorphism of profinite groups

lim
←−
D

Hd+1−i(X,WmΩd−r
X|D,log)

∼=−→ H i(U,WmΩr
U,log)∨,

where A∨ is the Pontryagin dual of a discrete group A.

The proof is divided into two steps, the first step is to reduce the theorem to the case where
m = 1; then we prove this special case in the second step.

Proof.
Step 1. We have the following commutative diagram with exact rows

··· // lim
←−
D

Hd+1−i(X,Wm−1Ωd−r
X|D,log

)

��

// lim
←−
D

Hd+1−i(X,WmΩd−r
X|D,log

)

��

// lim
←−
D

Hd+1−i(X,Ωd−r
X|D,log

)

��

// ···

··· // Hi(U,Wm−1Ωr
U,log)∨

R∨ // Hi(U,WmΩr
U,log)∨

(pm−1)∨
// Hi(U,Ωr

U,log)∨ // ...

where the first row is induced by Theorem 1.1.6, and it is exact since the inverse limit is exact
for projective system of finite groups. The exactness of the second row is clear. Using this
commutative diagram and induction on m, we reduce our question to the case m = 1.

Step 2. For m = 1 the pairing (3.1.6) is identified with

[ZΩr
X|D−n

1−C−−→ Ωr
X|D−n

]× [Ωd−r
X|Dn+1

F−1−−→ Ωd−r
X|Dn+1

/dΩd−r−1
X|Dn+1

]→ [Ωd
X

1−C−−→ Ωd
X ],

where for any n = (nλ)λ∈Λ ∈ NΛ (cf. the notation in (3.1.2)),

Ωr
X|Dn

= Ωr
X(logD)⊗OX(−Dn),

ZΩr
X|D−n

= Ker(d : Ωr
X|Dn

→ j∗Ω
r+1
U ), dΩd−r−1

X|Dn
= Image(d : Ωd−r−1

X|Dn
→ Ωd−r

X ).

The perfectness of the pairings

Ωr
X(logD)⊗ Ωd−r

X (logD)(−D)→ Ωd
X(logD)(−D) = Ωd

X (4.1.3)

implies that the following pairings

Ωr
X|D−n

⊗ Ωd−r
X|Dn+1

→ Ωd
X|D1

= Ωd
X , (ξ, η) 7→ ξ ∧ η; (4.1.4)

ZΩr
X|D−n

⊗ Ωd−r
X|Dn+1

/dΩd−r−1
X|Dn+1

→ Ωd
X|D1

= Ωd
X , (ξ, η) 7→ −C(ξ ∧ η); (4.1.5)

are perfect. In fact the perfectness of the pairing (4.1.5) follows from [Mil76, Lemma 1.7].
By Grothendieck–Serre duality, we obtain the following isomorphisms as k-vector spaces:

H i(X,Ωr
X|D−n

) ∼= Hd−i(X,Ωd−r
X|Dn+1

)∗,

and
H i(X,ZΩr

X|D−n
) ∼= Hd−i(X,Ωd−r

X|Dn+1
/dΩd−r−1

X|Dn+1
)∗.

Note that, for any two k-vector spaces V and W , an isomorphism of k-vector spaces

W ∼= Homk(V, k) =: V ∗

1326

https://doi.org/10.1112/S0010437X1800711X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1800711X


Duality for relative logarithmic de Rham–Witt sheaves

uniquely corresponds to an isomorphism of Fp-vector spaces

W ∼= HomFp(V,Fp) =: V ∨.

The above two isomorphisms give the isomorphism (1) in the following commutative diagram

lim
←−
n

Hd+1−i(X,W1G
d−r,•
n+1 )

∼= (2)

��

∼=
(1)

// (lim−→
n

Hi(X,W1F
r,•
−n))∨

(3)

lim
←−
n

Hd+1−i(X,Ωd−r
X|Dn+1,log) (Hi(X, [j∗ZΩr

U
1−C−−→ j∗Ω

r
U ]))∨

lim
←−
D

Hd+1−i(X,Ωd−r
X|D,log) // H i(U,Ωr

U,log)∨

∼= (4)

OO

where the isomorphism (2) is induced by Theorem 1.2.1, (3) follows from the observation that

j∗Ω
r
U = lim−→n

Ωr
X|D−n

, and the isomorphism (4) is due to the fact that Rj∗Ω
r
U,log

∼= [j∗ZΩr
U

1−C−−→
j∗Ω

r
U ]. Therefore the last horizontal map is an isomorphism. 2

In particular, for i = 1 and r = 0 we get isomorphisms

lim
←−
D

Hd(X,WmΩd
X|D,log)

∼=−→ H1(U,Z/pmZ)∨ ∼= πab1 (U)/pm,

and

H1(U,Z/pmZ)
∼=−→ lim−→

D

Hd(X,WmΩd
X|D,log)∨.

These isomorphisms can be used to define a measure of ramification for étale abelian covers

of U whose degree divides pm.

Definition 4.1.5. For any D ∈ Σ, we define

FilDH
1(U,Z/pmZ) := Hd(X,WmΩd

X|D,log)∨,

FilDH
1(U,Q/Z) := H1(U,Q/Z){p′}

⊕ ⋃
m>1

FilDH
1(U,Z/pmZ),

where H1(U,Q/Z){p′} is the prime-to-p part of H1(U,Q/Z). Dually we define

πab
1 (X,D)/pm := Hom(FilDH

1(U,Z/pmZ),Z/pmZ),

πab
1 (X,D) := Hom(FilDH

1(U,Q/Z),Q/Z).

The group πab
1 (X,D)/pm is a quotient of πab

1 (U)/pm, which can be thought of as classifying

abelian étale coverings of U whose degree divides pm with ramification bounded by D. These

groups are important objects in higher-dimensional class field theory.
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5. Duality over perfect fields

When the base field k is finite, our duality theory is formulated by endowing the cohomology
groups with the structure of topological groups. When the base field k is not finite, it is necessary
to endow the cohomology groups with stronger structures, namely the structures of proalgebraic
and indalgebraic groups, and use Breen–Serre duality instead of Pontryagin duality. In this
section, k denotes a perfect field of characteristic p > 0, not necessarily finite, and we put
S = Spec(k).

5.1 The relative perfect étale site
Recall a scheme T is said to be perfect if the absolute Frobenius morphism F : T → T is an
isomorphism. For any S-scheme X, the perfection Xpf of X is the projective limit of the system

Xred
F
←− X(p−1)

red

F
←− · · · F

←− X(p−n)
red

F
←− · · · ,

where X
(p−n)
red is the scheme Xred with the structure map Fn ◦ π : X → S. It is a perfect scheme,

and has the universal property that

HomS(X,Y ) = HomS(Xpf, Y )

for any perfect S-scheme Y . A perfect S-scheme X is said to be algebraic if it is the perfection
of a scheme of finite type over S. One sees easily that the perfect algebraic group schemes over
S form an abelian category. Let (Pf /S)ét be the perfect étale site over S, i.e., the category of
perfect schemes over S with étale topology.

In what follows we fix a smooth proper morphism π : X → S and an effective divisor D
such that Supp(D) is a simple normal crossing divisor on X. Let j : U := X −D ↪→ X be the
complement of D. Let (PfX/S)ét be the relative perfect étale site over X/S, i.e., the category
of pairs (T, Y ), where T is a perfect scheme over S and Y is étale over X ×S T equipped with
étale topology. We define X and S to be the category of abelian sheaves on (PfX/S)ét and
on (Pf /S)ét, respectively. For any integer m > 1, we denote X (pm) (respectively S (pm)) to be
the category of sheaves of Z/pmZ-modules on (PfX/S)ét (respectively (Pf /S)ét). The structure
morphism π : X → S induces a morphism of sites

π : (PfX/S)ét→ (Pf /S)ét, (T, Y ) 7→ T,

which gives rise to adjoint functors

π∗ : X // S : π∗ and π∗ : X (pm)oo // S (pm) : π∗oo .

Definition 1.1.1 gives an object WmΩr
X|D,log of X (pm) such that Riπ∗WmΩr

X|D,log is the

sheaf on (Pf /S)ét associated to the presheaf

T 7→ H i(XT ,WmΩr
XT |DT ,log) (T ∈ Ob((Pf /S)ét)).

5.2 Duality theorem
By (3.1.2) we have an isomorphism

lim−→
n

WmF r,•
−n = [j∗Z1WmΩr

U
1−C−−→ j∗WmΩr

U ] ∼= Rj∗WmΩr
U,log,
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where the second isomorphism follows from the fact that j is affine. Therefore

R lim−→
n

Rπ∗WmF r,•
−n = Rπ∗Rj∗WmΩr

U,log ∈ Db(S (pm)), (5.2.1)

since R lim−→n
commutes with Rπ∗. By (3.1.6) and (3.1.5), we have a map

Rπ∗WmGd−r,•n+1 → RHomS (Rπ∗WmFr,•−n, Rπ∗WmΩd
X,log).

By taking the homotopy limit R lim
←−n on both sides, we obtain a map

R lim
←−
n

Rπ∗WmG d−r,•
n+1 → R lim

←−
n

RHomS (Rπ∗WmF r,•
−n, Rπ∗WmΩd

X,log)

' RHomS

(
R lim−→

n

Rπ∗WmF r,•
−n, Rπ∗WmΩd

X,log

)
' RHomS (Rπ∗Rj∗WmΩr

U,log, Rπ∗WmΩd
X,log)

→ RHomS (Rπ∗Rj∗WmΩr
U,log,Z/pmZ)[−d]

where the second isomorphism follows from (5.2.1) and the last map is induced by the trace map
Tr : Rπ∗WmΩd

X,log → Z/pmZ[−d]. Thus Theorem 2.3.1 gives rise to a map

R lim
←−
D

Rπ∗WmΩd−r
X|D,log → RHomS (pm)(Rπ∗Rj∗WmΩr

U,log,Z/pmZ)[−d]. (5.2.2)

Theorem 5.2.1. The map (5.2.2) is an isomorphism in Db(S (pm)).

Proof. By the same method as in the proof of Theorem 4.1.4, we reduce the claim to the case
m = 1. We then use the following result from [Mil76, Proposition 2.1], [Ber81, Lemma 3.6].

Proposition 5.2.2. Let L be a locally freeOX -module of finite rank and put L ∨ =HomOX
(L ,

OX). Then the natural pairing

L × (L ∨ ⊗ Ωd
X)→ [Ωd

X
1−C−−→ Ωd

X ][1] ∼= Ωd
X,log[1]

and the trace map Rπ∗Ω
d
X,log → Z/pZ[−d] induces an isomorphism

Rπ∗L
∼=−→ RHomS (p)(Rπ∗(L

∨ ⊗ Ωd
X),Z/pZ)[−d+ 1].

Corollary 5.2.3. The perfect pairings (4.1.4) and (4.1.5) induce isomorphisms

Rπ∗Ω
d−r
X|Dn+1

∼=−→ RHomS (p)(Rπ∗Ω
r
X|D−n

,Z/pZ)[−d+ 1];

Rπ∗Ω
d−r
X|Dn+1

/dΩd−r−1
X|Dn+1

∼=−→ RHomS (p)(Rπ∗ZΩr
X|D−n

,Z/pZ)[−d+ 1].

Therefore, we have an isomorphism

Rπ∗W1G
•
n+1

∼=−→ RHomS (p)(Rπ∗W1F
•
−n,Z/pZ)[−d],

where W1F
r,•
−n and W1G

d−r,•
n+1 were defined in (3.1.2) and (3.1.3).
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Proof of Theorem 5.2.1(continued). By taking the limit, we obtain

R lim
←−
D

Rπ∗Ω
d−r
X|D,log

∼=−→ R lim
←−
n

Rπ∗Ω
d−r
X|Dn+1,log

∼=−→ R lim
←−
n

Rπ∗W1G
d−r,•
n+1

∼=−→ R lim
←−
n

RHomS (p)(Rπ∗W1F
r,•
−n,Z/pZ)[−d]

∼=−→ RHomS (p)(R lim−→
n

Rπ∗W1F
r,•
−n,Z/pZ)[−d]

∼=−→ RHomS (p)(Rπ∗Rj∗Ω
r
U,log,Z/pZ)[−d].

This is our theorem in the case that m = 1. 2

Remark 5.2.4. In fact we can endow R lim
←−D Rπ∗WmΩd−r

X|D,log with a structure of a complex

of proalgebraic groups, i.e., as an object in the bounded derived category of quasi-unipotent
proalgebraic groups, and similarly view Rπ∗Rj∗WmΩr

U,log as an object in the bounded
derived category of quasi-unipotent indalgebraic groups. Then Theorem 5.2.2 identifies
R lim
←−D Rπ∗WmΩd−r

X|D,log with the Breen–Serre dual of Rπ∗Rj∗WmΩr
U,log (cf. [Pép14, § 2.5]).
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