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Abstract

A large deviations principle (LDP), demonstrated for occupancy problems with indis-
tinguishable balls, is generalized to the case in which balls are distinguished by a finite
number of colors. The colors of the balls are chosen independently from the occupancy
process itself. There are r balls thrown into n urns with the probability of a ball entering a
given urn being 1/n (i.e. Maxwell–Boltzmann statistics). The LDP applies with the scale
parameter, n, tending to infinity and r increasing proportionally. The LDP holds under
mild restrictions, the key one being that the coloring process by itself satisfies an LDP.
This includes the important special cases of deterministic coloring patterns and colors
chosen with fixed probabilities independently for each ball.
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1. Introduction

In occupancy models which follow Maxwell–Boltzmann statistics, balls are thrown into n

urns with the probability of a ball entering a given urn being 1/n, independent of all other balls.
References [2] and [7] developed sample path large deviations principles for scaled occupancy
processes in which the time variable is (approximately) the number of balls thrown per urn, the
state is given by the fraction of urns which contain exactly i balls, and the number of balls and
urns are scaled up in fixed proportion. An LDP was obtained for infinite-dimensional processes
in [2], whilst [7] focused on processes with a finite number of occupancy levels, i = 0, . . . , I ,
and with i = I+ for urns with more than I balls. Additionally, [7] provided explicit solutions
to the corresponding calculus of variations problem.

In this paper we consider a generalization of such occupancy models to allow balls with
more than one color. We fix on the case of two colors, as the extension to any finite number
of colors is straightforward. The overall process can be regarded as the conjunction of two
independent random processes: an occupancy process which determines which urn each ball
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116 P. DUPUIS ET AL.

enters and a second process that determines color. The coloring process can be quite general
and includes the important special case where each color is picked independently and according
to a fixed vector of probabilities (independent and identically distributed (i.i.d.) coloring), as
well as deterministic coloring patterns. Again, time is scaled by a factor of n, so that at time t ,
t ≈ k/n ∈ [0, τ ], k balls have been thrown. The state of the process is the empirical measure,
which records the fraction of urns that contain i balls of color 1 and j balls of color 2, for
0 ≤ i ≤ I+ and 0 ≤ j ≤ J+, where I+ and J+ correspond to more than I balls and more
than J balls, respectively. Thus, �n

i,j (t) is the fraction of urns containing i color-1 balls and j

color-2 balls after approximately nt balls have been thrown. In general, the process {�n
i,j (t)}

is not Markov unless the coloring process is i.i.d.
There is a wide literature on occupancy problems, and the case of distinguished classes

of balls is a common generalization [11], [13]. At the end of this section, we describe a
number of applied problems in which colored balls play an important role. In part, our interest
in large deviation approximations is motivated by the fact that occupancy models are one of
the very few instances where a large deviations analysis can actually be fully exploited. In
the great majority of potential applications of large deviations, the final result is a variational
characterization of some important performance measure or other quantity. As a practical
matter, in all but the simplest settings the solution of these variational problems is not currently
within our computational reach. In contrast, for a number of single-color occupancy models the
potential of the theory can be realized, in that the variational problem can be solved explicitly.
The class of ‘solvable’ problems has always played the central role in practical applications of
mathematics, and is frequently turned to even when the underlying assumptions are far from
satisfied.

It is thus of some interest to understand the degree to which ‘solvability’ is generic in
occupancy models. In the case of problems with color, several new phenomena appear which
may have an impact on the issue of explicit solutions. In the case of a single color, the
components of the minimizing trajectories have a one-dimensional ordered dependence, and
the form of the component with a given coordinate index is determined by the component with
index one lower. In contrast, we will see that for the case of color there is a multi-dimensional
dependence. Another important distinction is that, while occupancy models with a single color
have a process level rate function that is convex, this is no longer true for the multi-color case
if there is sufficient correlation in the coloring process (see the examples in Section 2 and the
discussion in Section 4). The impact of both these effects on the issue of explicit solutions is a
topic for further investigation.

We derive the LDP for the color occupancy processes by using the representation theorem for
the scaled log-moment generating functions for measurable functions of sample paths (see [4]).
The representation is as an infimum over measures of the sum of a relative entropy cost and
a terminal cost. As discussed in Section 2, there is a natural split of the relative entropy cost
between a cost for occupancy and one for the coloring process. The local rate function in
the single-color case is the relative entropy R(θ(t) ‖ γ (t)), where γi(t) is interpreted as the
asymptotic proportion of urns that contain i balls and θi(t) as the rate at which balls enter such
urns when the time is t [7]. The corresponding expression in the color case is a weighted sum
of relative entropy terms

ẋ1(t)R(θ1(t) ‖ γ (t)) + ẋ2(t)R(θ2(t) ‖ γ (t)).

Here, θk
i,j (t) is the normalized rate at which balls of color k enter urns that presently contain i

balls of color 1 and j balls of color 2, xi(t) is the fraction of color-i balls per urn by time t , and
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Large deviations principle for color occupancy problems 117

the dot denotes the derivative with respect to time. The overall local rate function also includes
an additional term not present in the single-color case, namely the local rate function for the
coloring process itself.

In [7], the large deviation upper bound followed from the results in [5], but in the present
case this is no longer true since the occupancy process need not be Markov. Instead, we present
a direct proof based on weak convergence which only assumes a sample path LDP for the
coloration process.

The most significant obstacle to obtaining an LDP occurs in the proof of the large deviation
lower bound. The difficulty here is the singular behavior of the relative entropy cost when any
element of γ (t) approaches zero. In [7], this difficulty was met in two steps. The boundary was
avoided everywhere, except at the initial point, using a perturbation argument which relied on
the joint convexity of the local rate function. A simple ‘filling’ construction was then employed
in the vicinity of the initial point. The construction is essentially equivalent to the construction
of a change of measure with properly bounded Radon–Nikodým derivative that would be needed
in the traditional approach to the large deviation lower bound. As mentioned previously, there
are simple models for the coloration process (e.g. coloring via a two-state Markov chain) which
lead to a local rate function that is not jointly convex and a rate function on path space that
is not convex. As a consequence, a more delicate perturbation argument is required, and also
the filling construction must be replaced by a more sophisticated argument that is based on
time-reversal.

There are a number of applied problems in which occupancy models, and color models
in particular, can play an important role. One recent example is in the blocking analysis of
circuit-switched networks [6], [10]. Indeed, as shown in [6], the equilibrium distribution of a
star network is equivalent to the (conditional) outcome of a randomized occupancy experiment
in which a Poisson variable determines the number of balls to be thrown. Star networks are
used to model simultaneous service from multiple facilities [12], [16] occurring from different
classes of demand as in a telephone network. A demand is allocated a server from each
requested facility for a common random duration as long as each facility has a server free
at the time of the request. Otherwise, the demand is blocked and cleared. As an occupancy
model, the facilities are urns and a ball in an urn corresponds to the allocation of a server to
that demand.

In cases when some classes of demand require more than one server from the same facility, a
similar equivalence between the equilibrium distribution of the star network and an occupancy
experiment can still be established by using a color occupancy model. As an example, one class
of demand may require a single server from each of a random pair of facilities and a second
class two servers each from a random pair. Color-1 balls are used to indicate demands from the
first class at a facility and color-2 balls for demands from the second class [6]. This equivalence
allows an LDP to be obtained for the empirical occupancy of the star network (i.e. the fraction
of servers with no requests, one request, etc.).

Another recent application for color occupancy problems is the analysis of wavelength
conversion in the optical packet switch described in [8]. In each time slot, a random collection
of packets (balls) arrive on a set of input fibers and must be routed onto a set of output fibers
(urns). The packets on each fiber are wavelength-multiplexed on a finite number of channels
(colors). In the absence of wavelength conversion, packets must use the same channel on the
input and output fiber. If multiple packets of the same channel belong to the same output
fiber, then the excess packets must be converted to a different channel or discarded. Typical
quantities to be computed include the probability of requiring a large number of wavelength
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converters and the probability of discarding a large number of packets. The problem was
approached with single-color large deviations analysis in [8]; the results there give only an
upper bound on the true number of converters because packets discarded due to fiber capacity
were also considered to require conversion. By contrast, the multi-color analysis contains the
information needed to avoid this overestimation by taking fiber capacity into account. The multi-
color approach may also be useful in studying packet switches with constrained wavelength
conversion patterns.

Occupancy models play an important role in the analysis of capture/recapture techniques for
population estimation, as for example in ecology, pathology, and software fault detection [1],
[3], [9], [14], [15]. In this approach, individuals in the population are ‘captured’ at random and
the population size is inferred from the rate at which individuals are ‘recaptured’. Assuming that
each individual is equally likely to be caught, we obtain an occupancy model with Maxwell–
Boltzmann statistics, in which the individuals are urns and the number of balls in an urn
represents the number of captures. A colored-balls model arises when distinct methods are
used to capture individuals. As an illustration, suppose that fish are captured at two locations
in a large lake. There may be three distinct subpopulations of fish (those who stay at the east
location, those that stay at the west location, and those which swim throughout the lake (the
middle fish)). If there are no middle fish, then the two remaining populations may be estimated
separately using single-color analysis. If there are only middle fish, then we have no need
to distinguish between capture types, and again we may rely on a single color. However, if
there are significant numbers of fish of all types, then the analysis of the estimates requires a
color model.

The outline of this paper is as follows. In Section 2 a precise formulation of the model is
given and the main results of the paper – the upper and lower Laplace principles – are stated.
These bounds are equivalent to the large deviation upper and lower bounds. Section 2 also
presents three important special cases for coloration processes. In Section 3 the upper bound is
established and Section 4 establishes some properties of the rate function which will be needed
in the proof of the lower bound in Section 5.

2. Preliminaries and main result

We construct an urn model with colored balls as follows. Balls are thrown into one of n urns
sequentially. The throwing process is modeled by a collection of i.i.d. random variables

{Un
l , l = 1, . . . , �nτ� + 1},

where �·� denotes the integer-part function. Each Un
l is uniformly distributed on the set

{1, . . . , n}, with each value of the set corresponding to an urn. Thus, a total of Nn := �nτ� + 1
balls are thrown. There is also a coloration process designated by Yn

l ∈ {1, 2}. At each discrete
time a ball is assigned color Yn

l , and then placed into urn number Un
l . Thus, {Un

l } and {Yn
l },

respectively, are the random urn and color sequences.
We form empirical measures �n

i,j (t) as follows. If i ∈ {0, . . . , I } and j ∈ {0, . . . , J } then

�n
i,j

(
l

n

)
:= 1

n

( n∑
m=1

1
[ l∑

r=1

1[Un
r = m, Yn

r = 1] = i

]

× 1
[ l∑

r=1

1[Un
r = m, Yn

r = 2] = j

])
,
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where 1[·] is the indicator function. In other words, �n
i,j (l/n) is the fraction of cells containing

exactly i color-1 and j color-2 balls when l balls have been thrown. Similarly,

�n
I+,j

(
l

n

)
:= 1

n

( n∑
m=1

1
[ l∑

r=1

1[Un
r = m, Yn

r = 1] > I

]

× 1
[ l∑

r=1

1[Un
r = m, Yn

r = 2] = j

])
,

�n
i,J+

(
l

n

)
:= 1

n

( n∑
m=1

1
[ l∑

r=1

1[Un
r = m, Yn

r = 1] = i

]

× 1
[ l∑

r=1

1[Un
r = m, Yn

r = 2] > J

])
,

�n
I+,J+

(
l

n

)
:= 1

n

( n∑
m=1

1
[ l∑

r=1

1[Un
r = m, Yn

r = 1] > I

]

× 1
[ l∑

r=1

1[Un
r = m, Yn

r = 2] > J

])
.

By definition,

�n
0,0(0) := 1 and �n

i,j (0) := 0

for all other values of (i, j). (We can also consider other initial conditions, with only simple
notational changes in the results to be stated below. When extended to accommodate general
initial conditions, the large deviation results we will prove are uniform in the initial condition,
in the sense used in [7].) The definition of �n is extended to all t ∈ [0, τ ] not of the form
l/n by piecewise-linear interpolation. Let M denote the set of all probability measures on
{0, 1, . . . , I, I+} × {0, 1, . . . , J, J+}. The processes �n are considered to take values in the
space of continuous functions S := C([0, τ ] : M), equipped with the usual supremum norm.

We wish to analyze the large deviation asymptotics of these processes, when the underlying
coloration process satisfies a large deviations principle and is independent of the urn selection.
To this end, it is convenient to use the Laplace formulation. Let F be any bounded and
continuous function on S. The processes �n are said to satisfy a Laplace principle with rate
function I if the following two conditions hold:

• for each M < ∞, the set {γ : I (γ ) ≤ M} is compact in S,

• limn→∞[−(1/n) log E exp[−nF(�n)]] = infγ∈S[I (γ ) + F(γ )].
Since the processes �n take values in a Polish space, the notions of Laplace principle and large
deviations principle are equivalent [4, Corollary 1.2.5].

Cumulative coloration processes {Xn, n ∈ N} are defined for t = l/n by

Xn
1

(
l

n

)
:= 1

n

l∑
r=1

1[Yn
r = 1], Xn

2

(
l

n

)
:= 1

n

l∑
r=1

1[Yn
r = 2].
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These definitions are also extended to t ∈ [0, τ ] not of the form l/n by piecewise-linear
interpolation. Define the set of functions T by x = (x1, x2) ∈ T if

• xk(·) is increasing and continuous with xk(0) = 0 for k = 1, 2,

• x1(t) + x2(t) = t for all t ∈ [0, τ ].
We consider this set of functions as endowed with the usual supremum norm topology, and
make the following assumption.

Assumption 1. The sequence of coloration processes {Xn, n ∈ N} satisfies a large deviations
principle on T with the rate function J .

Since T is also a Polish space, as noted previously, this is equivalent to the statement that
J satisfies the following corresponding Laplace principle: J has compact level sets and for all
bounded and continuous functions G : T → R we obtain

lim
n→∞

[
−1

n
log E exp[−nG(Xn)]

]
= inf

x∈T
[J (x) + G(x)].

Let C be the set of probability distributions on {1, 2}. In order to prove the large deviation
lower bound, we will also need the following stronger assumption.

Assumption 2. Assumption 1 holds and, in addition, the following statements hold.

(a) The rate function J (x) takes the form
∫ τ

0 M(ẋ) dt , where M is a proper convex function.

(b) There is a point a ∈ C such that M(a) = 0 and ai > 0, i = 1, 2.

The assumed form for J is a special but common case (see the examples below). Since M

is a rate function, there is at least one probability vector a at which M(a) = 0. The assumption
that this occurs at a point where both components are positive is very mild.

We next describe a few typical coloration processes. The relative entropy function will be
used for this purpose, and indeed throughout this paper. For two probability measures α and β

on a Polish space A, the relative entropy of α with respect to β is defined by

R(α ‖ β) :=
∫

A

dα

dβ

(
log

dα

dβ

)
dβ =

∫
A

(
log

dα

dβ

)
dα,

whenever α is absolutely continuous with respect to β (and with the convention that 0 log 0 = 0).
In all other cases, we set R(α ‖ β) = ∞.

Example 1. Suppose that we color the balls to achieve a deterministic fraction pk of color k,
with pk ∈ (0, 1). More precisely, if Nk

l−1 balls of color k have been thrown in the first l − 1
throws (with N1

l−1 + N2
l−1 = l − 1) and if N1

l−1/n ≤ p1l/n, then we color the lth ball 1, and
otherwise color it 2. The rate function for the corresponding processes {Xn, n ∈ N} is quite
simple:

J (x) :=
{

0 if xk(t) = pkt,

∞ otherwise.

Example 2. An alternative coloring scheme is to select the color in an i.i.d. fashion, with
probability pk of color k, where pk ∈ (0, 1). If a is a probability vector define

M(a) := R(a ‖ p),
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and in all other cases let M(a) := ∞. Then the rate function is

J (x) :=
⎧⎨
⎩

∫ τ

0
M(ẋ1(t), ẋ2(t)) dt if x is absolutely continuous,

∞ otherwise.

Example 3. In our final example the color is determined by a two-state, ergodic Markov
process. Let the underlying transition probabilities be denoted by pk,l , k = 1, 2, l = 1, 2. Let
b denote the invariant distribution, with bk ∈ (0, 1). Given a probability vector a, let qk,l be
any ergodic probability transition matrix with invariant distribution a. Define

M(a) := inf
2∑

k=1

R(qk,· ‖ pk,·)ak,

where the infimum is over all such transition matrices q. In all other cases set M(a) := ∞.
Note that M(a) = 0 if and only if a = b. Here again the rate function is written

J (x) :=
⎧⎨
⎩

∫ τ

0
M(ẋ1(t), ẋ2(t)) dt if x is absolutely continuous,

∞ otherwise.

Before turning to the proof of the large deviation result, we introduce the notation needed to
define the rate function. Define V be the set of real (I + 2) × (J + 2) matrices, indexed over
the set {0, . . . , I+} × {0, . . . , J+}, such that the sum of all elements of each matrix is zero.
Let the linear maps T k : M → V be defined by the expressions

T 1
i,j [α] = αi−1,j − αi,j 1[i ≤ I ], T 2

i,j [α] = αi,j−1 − αi,j 1[j ≤ J ],

where for convenience we define α−1,j = αi,−1 = 0. The map T k is used to determine the
rate of change of the urn occupancies, as a function of the occupancy rates θk corresponding
to balls of color k.

Next, let γ ∈ S be given with γ0,0(0) = 1. Suppose that there are Borel-measurable
functions θk : [0, τ ] → M, k = 1, 2, and x ∈ T such that, for all t ∈ [0, τ ],

γ (t) = γ (0) +
∫ t

0
(ẋ1T

1[θ1] + ẋ2T
2[θ2]) ds. (1)

Then I (γ ) is defined by

I (γ ) = inf
x,θ

∫ τ

0
[ẋ1R(θ1 ‖ γ ) + ẋ2R(θ2 ‖ γ )] ds + J (x),

where the infimum is over all such θk and x that satisfy (1). If rates satisfying (1) exist with
I (γ ) < ∞ then we say that γ is a valid occupancy process (or a valid occupancy path). If such
rates do not exist, we set I (γ ) = ∞. In Section 3 we show that, for every valid occupancy
path, there exist rates x and θk which achieve the infimum.

We interpret θk
i,j (t) as the rate at which balls of color k are thrown into cells that at time

t contain i balls of color 1 and j balls of color 2, where the rates are normalized to give a
probability measure for each k. We follow our usual convention that i = I+ refers to more

https://doi.org/10.1239/jap/1175267167 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267167


122 P. DUPUIS ET AL.

than I balls, and likewise for j = J+. These normalized rates are modulated by the color
selection process x so that ẋkθ

k represents the true rate at which balls of color k enter urns of
various occupancy classes. Finally, the transformations T k[α] represent the rate of change in
γ induced by balls of color k entering urns at the rates given by α.

In the next three sections, under different assumptions for the upper and lower bounds, we
will prove the Laplace principle for this urn model. In particular, in Section 3 we will prove
that

lim inf
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≥ inf

γ∈S
[I (γ ) + F(γ )],

and in Section 5 we will prove that

lim sup
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≤ inf

γ∈S
[I (γ ) + F(γ )].

These bounds are equivalent to the large deviation upper and lower bounds, respectively
[4, Corollary 1.2.5]. In Section 3 we prove various properties of the rate function I , and in
particular show that I has compact level sets. Although all statements and proofs are for the
case of two colors, there are obvious extensions to the case of any finite number of colors.

To prove these bounds it will be convenient to use a representation for exponential integrals.
Let Un and Yn denote the product space of Nn := �nτ� + 1 copies of {1, . . . , n} and {1, 2},
respectively. These are the sets of possible urn sequences and color sequences. Let �n denote
the product measure on Un, such that each marginal of �n is πn, the uniform distribution
on {1, . . . , n}, and let 	n denote the distribution that is induced on Yn by the underlying
coloring process {Yn

l , l = 1, . . . , Nn}. Let µn denote any probability measure on Un × Yn.
Suppose that {Ūn

l , l = 1, . . . , Nn} and {Ȳ n
l , l = 1, . . . , Nn} (on the canonical probability space

Un × Yn and with expectation operator Ē
n
) have the joint distribution µn, and that �̄n and X̄n

are constructed from {Ūn
l , l = 1, . . . , Nn} and {Ȳ n

l , l = 1, . . . , Nn} in exactly the same way
that �n and Xn are constructed from {Un

l , l = 1, . . . , Nn} and {Yn
l , l = 1, . . . , Nn}. Then,

from [4, Proposition 1.4.2], we have

−1

n
log E exp[−nF(�n)] = inf

µn
Ē

n
[

1

n
R(µn ‖ �n ⊗ 	n) + F(�̄n)

]
. (2)

The process �̄n is an urn model with a ‘biased’ or ‘twisted’ distribution. The representation
equates the normalized log of the exponential integral with a variational problem, in which we
minimize the expected value of the functional F under the twisted distribution, plus a relative
entropy ‘cost’ to achieve the particular twist.

We next present an alternative expression for the relative entropy which reflects the natural
relations between the underlying measures. Suppose that µn is decomposed into the following
product of conditional distributions:

µn(du1, . . . , duNn, dy1, . . . , dyNn)

= λn(dy1, . . . , dyNn)

× µn
u,1(du1 | y1, . . . , yNn) · · · µn

u,Nn
(duNn | u1, . . . , uNn−1, y1, . . . , yNn).

Define the random measures

µ̄n
l (dul) := µn

u,l(dul | Ūr , r = 1, . . . , l − 1, Ȳr , r = 1, . . . , Nn).
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Thus, µ̄n
l is the distribution of the cell into which the lth ball is thrown, given the outcome of

all previous throws and the colors of all the balls. Using the fact that �n is a product measure
and the chain rule for relative entropy [4, Theorem C.3.1], we have

R(µn ‖ �n ⊗ 	n) = Ē
n
[ Nn∑

l=1

R(µ̄n
l ‖ πn) + R(λn ‖ 	n)

]
. (3)

This representation separates the total relative entropy into a contribution due to the twisting of
the coloration distribution, and a sum of contributions due to twisting of the distribution of the
individual throws, conditioned on the coloration process and all previous throws.

3. The large deviation upper bound

In this section we prove that

lim inf
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≥ inf

γ∈S
[I (γ ) + F(γ )], (4)

which corresponds to the large deviation upper bound. Since in the occupation measure problem
we do not distinguish between cells that contain the same number of balls of the various colors,
it makes sense to rewrite the relative entropy one last time. Given {Ūn

r , l = 1, . . . , l − 1} and
{Ȳ n

l , l = 1, . . . , Nn}, we know that n�̄n
i,j (l/n) is the number of cells that contain i balls of

color 1 and j balls of color 2. For (i, j), i ∈ {0, 1, . . . , I+}, j ∈ {0, 1, . . . , J+}, let Ki,j

denote the set of cells of the corresponding type, and let |Ki,j | = n�̄n
i,j (l/n) denote the number

of elements of Ki,j . Let νn
i,j (l/n) denote the total probability assigned to cells of this type by

µ̄n
l (the definition being irrelevant when |Ki,j | = 0), where

νn
i,j

(
l

n

)
= µ̄n

l (Ki,j ) =
∑

m∈Ki,j

µ̄n
l ({m}).

The convexity of x log x then implies the following bound:

Ē
n[R(µ̄n

l ‖ πn)]

= Ē
n
[ I+, J+∑

i=0, j=0

∑
m∈Ki,j

log

(
µ̄n

l ({m})
πn({m})

)
µ̄n

l ({m})
]

≥ Ē
n
[ I+, J+∑

i=0, j=0

|Ki,j | log

(∑
m∈Ki,j

µ̄n
l ({m})

|Ki,j |
1

πn({m})
)∑

m∈Ki,j
µ̄n

l ({m})
|Ki,j |

]
(5)

= Ē
n
[ I+, J+∑

i=0, j=0

log

(
νn
i,j (l/n)

�̄n
i,j (l/n)

)
νn
i,j

(
l

n

)]

= Ē
n
[
R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]
.

The inequality above becomes an equality when the measure µ̄n
l puts the same weight on urns

of the same type, and thus we would expect this property to hold for the measure that achieves
the minimum in the variational representation. For each t ∈ [0, Nn/n], define νn(t) = νn(l/n)
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if t ∈ [l/n, l/n + 1/n). Let �̂n denote the piecewise-constant (rather than piecewise-linear)
interpolant, where

�̂n(t) = �̄n

(
l

n

)
for t ∈

[
l

n
,

l

n
+ 1

n

)
.

Note that if �̄n converges uniformly to �̄, then so does �̂n.
For a process η taking values in M, the set of probabilities on urn types, and for a cum-

ulative coloring x ∈ T , we define increasing processes (η ⊗ xk)i,j , i ∈ {0, . . . , I, I+},
j ∈ {0, . . . , J, J+}, by

(η ⊗ xk)i,j (t) =
∫ t

0
ηi,j (s)ẋk(s) ds.

When xk(τ ) > 0 and (η ⊗ xk)/xk(τ ) appears in the relative entropy function, it is interpreted
as the probability measure on {0, . . . , I+}×{0, . . . , J+}× [0, τ ] that assigns to the set A×B

the following mass:
1

xk(τ )

∫
B

∑
i,j∈A

ηi,j (s)ẋk(s) ds.

Theorem 1. Define the processes �̄n, �̂n, X̄n
k , k = 1, 2, and νn as above for the given measure

µn. Then the collection

{(�̄n, X̄n
k , �̂n ⊗ X̄n

k , νn ⊗ X̄n
k ), k = 1, 2, n ∈ N}

is tight. Thus, given any subsequence, there exists a further subsequence which converges in
distribution to the processes �̄, X̄k , 	k , ζ k , k = 1, 2, defined on a probability space with
expectation operator Ē. These limit processes have the following properties.

1. Each process X̄k is absolutely continuous (with probability 1), with derivative in t denoted
by ˙̄Xk .

2. Each process ζ k can be decomposed in the form

ζ k = θ̄ k ⊗ X̄k,

where the measurable process θ̄ k takes values in M.

3. Each process 	k can be decomposed in the form

	k = �̄ ⊗ X̄k.

4. The relation (1) holds, with γ , x1, x2, θ1, and θ2 replaced by �̄, X̄1, X̄2, θ̄1, and θ̄2,
respectively.

Proof. It is easy to see that the processes �̄n, X̄n
k , �̂n ⊗ X̄n

k , and νn ⊗ X̄n
k , k = 1, 2, are

all uniformly (in n and ω) Lipschitz continuous. Therefore, the ensemble takes values in a
compact set, which automatically gives tightness and, hence, convergence along subsequences.
If a convergent subsequence is fixed (with limit �̄, X̄k , 	k , and ζ k , k = 1, 2), the limit
processes are also Lipschitz continuous and, hence, almost everywhere (in t) differentiable,
with probability 1. It follows directly from the definitions that

∑I+, J+
i=0, j=0 ζ k

i,j (t) = X̄k(t) for
t ∈ [0, τ ]. Since each component of ζ k

i,j (t) is nondecreasing, there is a measurable, M-valued
process θk

i,j such that

ζ k
i,j (t) =

∫ t

0
θk
i,j (s)

˙̄Xk(s) ds.
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The convergence of nondecreasing processes X̄n
k → X̄k and continuity of �̄ imply that

�̄ ⊗ X̄n
k → �̄ ⊗ X̄k . Since �̄n and, hence, also �̂n converge uniformly to �̄, we have �̂n ⊗ X̄n

k

→ �̄ ⊗ X̄k . Thus, 	k has the indicated decomposition.
Finally, we consider the last item in the theorem. Consider a component �̄i,j . We assume

that i ∈ {1, . . . , I } and j ∈ {1, . . . , J }, and observe that a similar argument to the one used for
this case will give the analogous conclusion for all other cases. Let F n

l := σ(Ȳ n
r , 1 ≤ r ≤ Nn,

Ūn
r , 1 ≤ r ≤ l). We can write

�̄n
i,j

(
l

n
+ 1

n

)
− �̄n

i,j

(
l

n

)

= 1

n
1[Ȳ n

k = 1](1[Ūn
k is an urn of type (i − 1, j) at time l]

− 1[Ūn
k is an urn of type (i, j) at time l])

+ 1

n
1[Ȳ n

k = 2](1[Ūn
k is an urn of type (i, j − 1) at time l]

− 1[Ūn
k is an urn of type (i, j) at time l])

= 1

n
1[Ȳ n

k = 1]
[
νn
i−1,j

(
l

n

)
− νn

i,j

(
l

n

)]

+ 1

n
1[Ȳ n

k = 2]
[
νn
i,j−1

(
l

n

)
− νn

i,j

(
l

n

)]
+ en

i,j

(
l

n

)
,

where {en
i,j (l/n), l = 0, . . . , Nn − 1} is a martingale difference with respect to F n

l with
E[en

i,j (l/n)]2 = O(1/n2). Thus,

�̄n
i,j (t) − �̄n

i,j (0) = (νn ⊗ X̄n
1 )

1,n
i−1,j (t) − (νn ⊗ X̄n

1 )
1,n
i,j (t)

+ (νn ⊗ X̄n
2 )

2,n
i,j−1(t) − (νn ⊗ X̄n

2 )
2,n
i,j (t) + gn

i,j (t),

where the process gn
i,j tends uniformly to zero on [0, τ ]. Therefore,

�̄i,j (t) − �̄i,j (0) = (θ1 ⊗ X̄1)
1
i−1,j (t) − (θ1 ⊗ X̄1)

1
i,j (t)

+ (θ2 ⊗ X̄2)
2
i,j−1(t) − (θ2 ⊗ X̄2)

2
i,j (t).

The last display is equivalent to the (i, j)th element of (1).

Theorem 2. Under Assumption 1, we have

lim inf
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≥ inf

γ∈S
[I (γ ) + F(γ )].

Proof. Owing to the representation, it suffices to show that

lim inf
n→∞ inf

µn
Ē

n
[

1

n
R(µn ‖ �n ⊗ 	n) + F(�̄n)

]
≥ inf

γ∈S
[I (γ ) + F(γ )].

According to (3) and (5), we have the bound

1

n
R(µn ‖ �n ⊗ 	n) ≥ Ē

n
[

1

n

Nn∑
l=1

R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))
+ 1

n
R(λn ‖ 	n)

]
.
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Using the chain rule [4, Theorem C.3.1] again, the nonnegativity of relative entropy, and
τ ≤ Nn/n, we can write

Ē
n
[

1

n

Nn∑
l=1

R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]

≥ Ē
n
[∫ τ

0
R(νn ‖ �̂n) dX̄n

1 +
∫ τ

0
R(νn ‖ �̂n) dX̄n

2

]

= Ē
n
[
X̄n

1 (τ )R

(
νn ⊗ X̄n

1

X̄n
1 (τ )

∥∥∥∥ �̂n ⊗ X̄n
1

X̄n
1 (τ )

)
+ X̄n

2 (τ )R

(
νn ⊗ X̄n

2

X̄n
2 (τ )

∥∥∥∥ �̂n ⊗ X̄n
2

X̄n
2 (τ )

)]
.

According to Theorem 1, given any subsequence of N we can find a further subsequence (again
denoted by n) along which we have the convergence in distribution of (�̄n, X̄n

k , �̂n ⊗ X̄n
k ,

νn ⊗ X̄n
k , k = 1, 2). Using Fatou’s lemma (for convergence in distribution) and the lower

semicontinuity of relative entropy [4, Lemma 1.4.3], we obtain

lim inf
n→∞ Ē

n
[

1

n

Nn∑
l=1

R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]
(6)

≥ lim inf
n→∞ Ē

n
[
X̄n

1 (τ )R

(
νn ⊗ X̄n

1

X̄n
1 (τ )

∥∥∥∥ �̂n ⊗ X̄n
1

X̄n
1 (τ )

)
+ X̄n

2 (τ )R

(
νn ⊗ X̄n

2

X̄n
2 (τ )

∥∥∥∥ �̂n ⊗ X̄n
2

X̄n
2 (τ )

)]

≥ Ē

[
X̄1(τ )R

(
θ̄1 ⊗ X̄1

X̄1(τ )

∥∥∥∥ �̄ ⊗ X̄1

X̄1(τ )

)
+ X̄2(τ )R

(
θ̄2 ⊗ X̄2

X̄2(τ )

∥∥∥∥ �̄ ⊗ X̄2

X̄2(τ )

)]

= Ē

[∫ τ

0
R(θ̄1(t) ‖ �̄(t)) dX̄1(t) +

∫ τ

0
R(θ̄2(t) ‖ �̄(t)) dX̄2(t)

]
.

We claim that, since {Xn, n ∈ N} satisfies a large deviations principle on T with rate
function J ,

lim inf
n→∞

1

n
R(λn ‖ 	n) ≥ Ē[J (X̄)]. (7)

Indeed, it follows from the variational representation that, for all bounded and continuous
functions G : T → R,

lim inf
n→∞ Ē

n
[

1

n
R(λn ‖ 	n) + G(X̄n)

]
≥ inf

x∈T
[J (x) + G(x)].

Thus,

lim inf
n→∞

1

n
R(λn ‖ 	n) ≥ inf

x∈T
[J (x) + G(x)] − Ē[G(X̄)]

and, since G is arbitrary,

lim inf
n→∞

1

n
R(λn ‖ 	n) ≥ sup

G∈Cb(T )

[
inf
x∈T

[J (x) + G(x)] − Ē[G(X̄)]
]
.

We claim that the right-hand side of this display is bounded below by Ē[J (X̄)]. Let −Gr be a
sequence of bounded, nonnegative, continuous functions that converge up to J as r → ∞. It
follows that J (x)+Gr(x) ≥ 0 for all r ∈ [0, ∞) and x ∈ T , and so infx∈T [J (x)+Gr(x)] ≥ 0.
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Since the monotone convergence theorem implies that Ē[−Gr(X̄)] ↑ Ē[J (X̄)], the result now
follows.

We have the following inequalities, each of which is explained after the display:

lim inf
n→∞

[
−1

n
log E exp[−nF(�n)]

]

= lim inf
n→∞ Ē

n
[

1

n
R(µn ‖ �n ⊗ 	n) + F(�̄n)

]
(8)

≥ lim inf
n→∞ Ē

n
[

1

n

Nn∑
l=1

R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))
+ 1

n
R(λn ‖ 	n) + F(�̄n)

]
(9)

≥ Ē

[∫ τ

0
R(θ̄1(t) ‖ �̄(t)) dX̄1(t) +

∫ τ

0
R(θ̄2(t) ‖ �̄(t)) dX̄2(t) + J (X̄) + F(�̄)

]
(10)

≥ Ē[I (�̄) + F(�̄)] (11)

≥ inf
γ∈S

[I (γ ) + F(γ )]. (12)

Equality (8) is due to the relative entropy representation and the fact that µn is a minimizer;
inequality (9) uses the decomposition (3) and the bound (5). Inequality (10) uses the bound (7),
the bound (6), the convergence in distribution of �̄n to �̄, and the continuity of F . Inequality
(11) uses the properties of the limit processes stated in Theorem 1 and the definition of the rate
function; inequality (12) is obvious. We have proved that given any subsequence of N there is a
further subsequence along which (4) holds. By the usual argument by contradiction, (4) holds
as stated.

4. Properties of the rate function

We begin this section by proving some important properties of the rate function; namely
compactness of level sets and achievability of the infimizer in the definition of the rate function.
The balance of the section develops a series of constructions that are needed in Section 5 to
handle the singularity of the rate function at the boundary. In particular, Lemmas 4 and 5, below,
show that any path lies close to a path with similar cost which avoids the boundary everywhere
except at the initial point. Specifically, each element of the perturbed path is bounded away
from zero by a power of t . Finally, given such a path, Lemma 6, below, constructs a final
perturbed path having piecewise-constant derivatives throughout, and for which the controls
are pure (concentrating on one urn type at a time) in a neighborhood of the initial point. This
last property is obtained using a reversed-time filling argument. These properties are heavily
used in the proof of the large deviation lower bound. The piecewise-constant nature of the
controls greatly simplifies the convergence analysis, since we can do the analysis separately on
each interval of constancy. In the control representation the occupancy process appears as the
second argument in the relative entropy. Since small values would make that cost singular, the
lower bound on the trajectories is needed to uniformly control the prelimit costs.

Theorem 3. Under Assumption 1, the set {γ : I (γ ) ≤ M} is compact for each M ∈ [0, ∞).

Proof. Since all paths γ with I (γ ) < ∞ are Lipschitz continuous with a common constant,
we need only show that γ → I (γ ) is lower semicontinuous. Let γn → γ as n → ∞. If
lim infn→∞ I (γn) < I (γ ), then we can extract a subsequence (again denoted by n) such that
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I (γn) converges and limn→∞ I (γn) = I (γ ) − ε, for some ε > 0. Let θk,n, k = 1, 2, and xn

be associated rates and cumulative coloration processes that satisfy

γ̇n = ẋn
1 T 1[θ1,n] + ẋn

2 T 2[θ2,n]
and

I (γn) =
∫ τ

0
[ẋn

1 R(θ1,n ‖ γn) + ẋn
2 R(θ2,n ‖ γn)] dt + J (xn) + O

(
1

n

)
.

Exactly as in the proof of the convergence theorem (Theorem 1), the uniformly Lipschitz con-
tinuous processes (γn, x

n
k , θk,n⊗xn

k , γn⊗xn
k , k = 1, 2) converge, at least along a subsequence,

to a collection of processes (γ, xk, θ
k ⊗ xk, γ ⊗ xk, k = 1, 2). Using the lower semicontinuity

of J and the relative entropy, we obtain

lim inf
n→∞

[∫ τ

0
[ẋn

1 R(θ1,n ‖ γn) + ẋn
2 R(θ2,n ‖ γn)] dt + J (xn)

]

= lim inf
n→∞

[∫ τ

0

[
xn

1 (τ )R

(
θ1,n ⊗ xn

1

xn
1 (τ )

∥∥∥∥ γn ⊗ xn
1

xn
1 (τ )

)

+ xn
2 (τ )R

(
θ2,n ⊗ xn

2

xn
2 (τ )

∥∥∥∥ γn ⊗ xn
2

xn
2 (τ )

)]
dt + J (xn)

]

≥
∫ τ

0

[
x1(τ )R

(
θ1 ⊗ x1

x1(τ )

∥∥∥∥ γ ⊗ x1

x1(τ )

)
+ x2(τ )R

(
θ2 ⊗ x2

x2(τ )

∥∥∥∥ γ ⊗ x2

x2(τ )

)]
dt + J (x)

=
∫ τ

0
[ẋ1R(θ1 ‖ γ ) + ẋ2R(θ2 ‖ γ )] dt + J (x).

Since we also have

γ (t) − γ (0) = lim
n→∞[γn(t) − γn(0)]

= lim
n→∞

∫ t

0
[ẋn

1 T 1[θ1,n] + ẋn
2 T 2[θ2,n]] ds

= lim
n→∞

[
T 1

[∫ t

0
ẋn

1 θ1,n ds

]
+ T 2

[∫ t

0
ẋn

2 θ2,n ds

]]

= T 1
[∫ t

0
ẋ1θ

1 ds

]
+ T 2

[∫ t

0
ẋ2θ

2 ds

]

=
∫ t

0
[ẋ1T

1[θ1] + ẋ2T
2[θ2]] ds,

we conclude that

I (γ ) ≤
∫ τ

0
[ẋ1R(θ1 ‖ γ ) + ẋ2R(θ2 ‖ γ )] dt + J (x) ≤ lim

n→∞ I (γn),

which is a contradiction. Therefore, lim infn→∞ I (γn) ≥ I (γ ).

It is also true that, given any γ , infimizing θs and xs exist.

Lemma 1. Let γ ∈ S be given. There exist measurable functions θk , k = 1, 2, and x ∈ T
which achieve the infimum in the definition of I (γ ).
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Proof. Since the proof uses the same ideas as that of Theorem 3, the argument is only
sketched. If I (γ ) = ∞ then there is nothing to prove. If I (γ ) < ∞ then there exist θk,n,
k = 1, 2, and xn ∈ T such that

γ̇ = ẋn
1 T 1[θ1,n] + ẋn

2 T 2[θ2,n]
and

J n(x) +
∫ τ

0
[ẋn

1 R(θ1,n ‖ γ ) + ẋn
2 R(θ2,n ‖ γ )] dt ≤ I (γ ) + O

(
1

n

)
.

Arguing exactly as in Theorem 3, we can consider the limit as n → ∞ (along a subsequence)
and construct the minimizing θk , k = 1, 2, and x ∈ T .

Recall that Assumption 2 specifies the common case when the coloration rate function takes
the form

J (x) =
∫ τ

0
M(ẋ1, ẋ2) dt

for some convex proper function M : R
2 → [0, ∞]. In this case we can write I as

I (γ ) =
∫ τ

0
L(γ, γ̇ ) dt,

with the local rate function

L(γ, η) := inf{a1R(θ1 ‖ γ ) + a2R(θ2 ‖ γ ) + M(a1, a2) :
a ∈ C, θk ∈ M, η = a1T

1[θ1] + a2T
2[θ2]}, (13)

where C is the set of probability distributions on {1, 2}.
In the remainder of this section we will construct processes and controls that will be used

in the proof of the large deviation lower bound. We first define the natural occupancy path
corresponding to a given colorization process, and the zero-cost path. For y ∈ [0, ∞) and
i ∈ Z, let

Pi (y) =
⎧⎨
⎩

yi

i! e−y, i ≥ 0,

0, i < 0,

denote the ith component of a Poisson distribution with mean y, and let Qi (y) = ∑
j>i Pj (y)

be the Poisson tail probability function. The product of two independent Poisson distributions
with means y1 and y2 defines a mapping � : R

+ × R
+ → M given by

�i,j (y1, y2) = Pi (y1)Pj (y2),

�i,J+(y1, y2) = Pi (y1)QJ (y2),

�I+,j (y1, y2) = QI (y1)Pj (y2),

�I+,J+(y1, y2) = QI (y1)QJ (y2).

The mapping � is the limiting (as n → ∞) mean urn occupancy distribution for an experiment
in which nyk balls of color k are thrown into n urns.

Lemma 2. (Natural occupancy path.) Suppose that Assumption 2(a) holds. Let x ∈ T be
a colorization process with finite cost J (x). The natural occupancy path corresponding to
x defined by γ ∗(t) = �(x1(t), x2(t)) is an occupancy path in S which satisfies the initial
condition γ ∗

0,0(0) = 1 and the bound I (γ ∗) ≤ J (x).
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Proof. The initial condition is immediate from the fact that x(0) = 0. The continuity of x

and of the Poisson distribution with respect to its mean ensure that γ ∗ ∈ S. To establish the
bound on I (γ ∗), we will show that the derivative of the path satisfies the differential equation

γ̇ ∗ = ẋ1T
1[γ ∗] + ẋ2T

2[γ ∗].
Then, according to the definition of the rate function, we obtain

I (γ ∗) ≤
∫ τ

0

( 2∑
k=1

ẋkR(γ ∗ ‖ γ ∗) + M(ẋ)

)
dt =

∫ τ

0
M(ẋ) dt = J (x).

Note that (d/dx)Pi (x) = Pi−1(x) − Pi (x). Then, for i ≤ I and j ≤ J , we have

γ̇ ∗
i,j = ẋ1[Pi−1(x1) − Pi (x1)]Pj (x2) + ẋ2Pi (x1)[Pj−1(x2) − Pj (x2)]

= ẋ1(γ
∗
i−1,j − γ ∗

i,j ) + ẋ2(γ
∗
i,j−1 − γ ∗

i,j ),

as required. Using the fact that (d/dx)Qi (x) = Pi (x), the cases involving i = I+ or j = J+
follow in a similar manner.

The following lemma is immediate, using the linear colorization process x(t) = at .

Lemma 3. (Zero-cost path.) Suppose that Assumption 2 holds, with a ∈ C such that M(a) = 0.
Then the function z(t) = �(a1t, a2t) is an occupancy path in S which satisfies I (z) = 0 and
the initial condition z0,0(0) = 1.

In the single-color case analyzed in [7], the local rate function expressed by (13) takes the
simpler form

Ls(γ, η) = R(θ ‖ γ ),

where γ and θ are probability distributions on {0, . . . , I+} and where θ has the explicit form
θi = − ∑i

j=0 ηj . In that case, the convexity of the relative entropy implies that the local rate
function is a convex function of its arguments.

In the present case, the local rate function is a convex function of η but is not necessarily
jointly convex in (γ, η). It can in fact be shown that, under Assumption 2, L is convex if and
only if the function M(a) + h(a) is convex for a ∈ C, where h(a) = −a1 log a1 − a2 log a2
is the entropy function. It is easy to see that Examples 1 and 2 always satisfy this condition.
However, it can also be demonstrated that Example 3 satisfies this condition if and only if the
Markov transition probabilities satisfy p11 + p22 ≤ 1.

In our proof of the lower bound, we require a technical result showing that every valid
occupancy path γ is close, both in supremum norm and in cost, to an occupancy path for which
each element is bounded away from zero by a power of t . This fact allows us to avoid explictly
considering occupancy paths which are close to the boundary after time t = 0. When the local
rate function is convex, this technical result is easily demonstrated by slightly perturbing the
given occupancy path in the direction of the zero-cost path (which itself avoids the boundary
after t = 0).

We will use a modified form of this argument to establish this result without requiring
convexity of the local rate function. We first show that γ is close to an occupancy path γ̂

whose optimal colorization process x̂ has each component x̂k(t) bounded below by a function
of the form δt for some δ > 0. Secondly, we show that perturbing γ̂ in the direction of the
natural occupancy process γ ∗ corresponding to x̂ yields an occupancy process with the desired
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properties, namely being close to γ in supremum norm and cost and having each urn fraction
bounded away from zero by a power of time t . These steps are undertaken in the following two
lemmas. Let d denote the supremum norm distance.

Lemma 4. Suppose that Assumption 2 holds. Let γ ∈ S be given and let ε > 0. There exists
γ̂ ∈ S, with I (γ̂ ) < ∞ and associated optimal rates x̂ and θ̂ , which satisfies the properties

• I (γ̂ ) ≤ I (γ ) + ε,

• d(γ, γ̂ ) ≤ ε,

• there exists δ > 0 such that x̂k(t) ≥ δt for all t ∈ [0, τ ].
Proof. We will construct γ̂ by following the zero-cost path z of Lemma 3 for a short time

� and then closely tracking the original process γ for t > �. The key step is to construct an
occupancy process γ̃ which has initial condition γ̃ (0) = z(�) and which for sufficiently small
� satisfies d(γ, γ̃ ) ≤ ε/2 and I (γ̃ ) ≤ I (γ ) + ε. Once γ̃ has been constructed, we may then
define

γ̂ (t) =
{

z(t), 0 ≤ t ≤ �,

γ̃ (t − �), � < t ≤ τ.

Since the absolute value of the derivative of each element of an occupancy function with
finite cost is bounded by 1, we immediately have d(γ̂ , γ̃ ) ≤ � and, hence, d(γ̂ , γ ) < ε for
sufficiently small �. Moreover,

I (γ̂ ) = 0 +
∫ τ−�

0
L(γ̃ , ˙̃γ ) dt ≤ I (γ̃ ) ≤ I (γ ) + ε.

Finally, the optimal colorization rate for γ̂ on the interval [0, �] is given by x̂k(t) = akt .
Because the colorization processes are monotonically increasing, we have the bound x̂k(t) ≥
(ak(� ∧ τ)/τ)t for all t ∈ [0, τ ].

It remains to construct an occupancy function γ̃ with the required properties. We define

γ̃ (t) = e−�(γ (t) − γ (0)) + z(�) = e−�γ (t) + (1 − e−�)zc(�),

where z(�) is the zero-cost distribution of Lemma 3 at time � and

zc(�) = z(�) − e−�γ (0)

1 − e−�

is the conditional distribution obtained from z(�) by removing the probability mass from its
(0, 0)th element. As γ̃ is a convex combination of two elements of S, we immediately have
γ̃ ∈ S, and it is also clear that d(γ̃ , γ ) can be made arbitrarily small by decreasing �.

It remains to establish the desired bound on I (γ̃ ). If α ∈ M is the distribution that puts all
of its mass on the (I+, J+)th element, note that T k[α] = 0 for k = 1, 2, reflecting that balls
thrown into I+ or J+ urns have no effect on the occupancy state. Let x and θ be the optimal
rate processes for γ . Then the rates x̃ = x and θ̃ k = e−�θk + (1 − e−�)α satisfy

˙̃x1T
1[θ̃1] + ˙̃x2T

2[θ̃2] = e−�(ẋ1T
1[θ1] + ẋ2T

2[θ2]) = e−�γ̇ = ˙̃γ,
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and are therefore feasible rates for constructing γ̃ . Using x̃ = x and the joint convexity of the
relative entropy, we have

I (γ̃ ) ≤
∫ τ

0

2∑
k=1

˙̃xkR(θ̃k ‖ γ̃ ) dt + J (x̃)

≤ e−�

∫ τ

0

2∑
k=1

ẋkR(θk ‖ γ ) dt

+ (1 − e−�)

∫ τ

0

2∑
k=1

ẋkR(α ‖ zc(�)) dt + J (x)

≤ I (γ ) + τ(1 − e−�)R(α ‖ zc(�)).

Using the bound zI+,J+(�) ≥ PI+1(a1�)PJ+1(a2�), the difference I (γ̃ )− I (γ ) is bounded
by

τ(1 − e−�) log(a−I−1
1 a−J−1

2 �−(I+J+2)(I + 1)! (J + 1)! e�(1 − e−�)),

which approaches zero as � → 0.

Lemma 5. Suppose that Assumption 2 holds. Let γ ∈ S be given such that I (γ ) < ∞, and
let ε > 0. Then there exist δ > 0, K ∈ N, and γ ε ∈ S with the properties

(a) I (γ ε) ≤ I (γ ) + ε,

(b) d(γ ε, γ ) ≤ ε,

(c) γ ε
i,j (t) > δtK for all t ∈ (0, τ ] and (i, j) ∈ {0, 1, . . . , I, I+} × {0, 1, . . . , J, J+}.

Proof. Using Lemma 4, there exist γ̂ and δ̄ > 0 with d(γ, γ̂ ) < ε/2, I (γ̂ ) ≤ I (γ )+ ε, and
x̂k ≥ δ̄t , where x̂ and θ̂ are the optimal rates used in the definition of I (γ̂ ). Let γ ∗ = �(x̂1, x̂2)

be the natural occupancy path corresponding to x̂, and define

γ ε = (1 − λ)γ̂ + λγ ∗.

By the triangle inequality, γ ε will be sufficiently close to γ if λ < ε/4. Note that the rates
xε = x̂ and θk,ε = (1 − λ)θ̂k + λγ ∗ are feasible rates for generating γ̇ ε, so that

I (γ ε) ≤
∫ τ

0

2∑
k=1

˙̂xkR(θk,ε ‖ γ ε) dt + J (x̂)

≤ (1 − λ)I (γ̂ ) + λI (γ ∗)
≤ I (γ̂ )

≤ I (γ ) + ε,

where we have used convexity of the relative entropy and the fact that I (γ ∗) = J (x̂) ≤ I (γ̂ ).
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Finally, for i ≤ I and j ≤ J , the (i, j)th element of γ ε satisfies the lower bound

γ ε
i,j (t) ≥ λγ ∗

i,j (t)

= λ
x̂i

1(t)x̂
j
2 (t)

i! j ! e−t

≥ λ
δ̄i+j e−τ

i! j ! t i+j ,

for all t ∈ [0, τ ]. Similar bounds hold for cases involving i = I+ and j = J+, since
Qi ≥ Pi+1. Hence, γ ε has all of the desired properties.

The final lemma of this section is the principle result that will be used to support the proof
of the lower bound.

Lemma 6. Suppose that Assumption 2 holds. Let γ ∈ S be given such that I (γ ) < ∞
and such that for some δ > 0 and K ∈ N the lower bound γi,j (t) ≥ δtK holds for all
(i, j) ∈ {0, 1, . . . , I, I+} × {0, 1, . . . , J, J+}. Let x, θ1, and θ2 satisfy

γ̇ = ẋ1T
1[θ1] + ẋ2T

2[θ2]
and

I (γ ) =
∫ τ

0
[ẋ1R(θ1 ‖ γ ) + ẋ2R(θ2 ‖ γ )] dt + J (x).

Given ε > 0 there exist γ ∗, θ1,∗, θ2,∗, and σ > 0 with the following properties.

1. γ̇ ∗ = ẋ1T
1[θ1,∗] + ẋ2T

2[θ2,∗] and γ ∗
0,0(0) = 1.

2. I (γ ∗) ≤ ∫ τ

0 [ẋ1R(θ1,∗ ‖ γ ∗
i,j ) + ẋ2R(θ2,∗ ‖ γ ∗

i,j )] dt + J (x) ≤ I (γ ) + ε.

3. d(γ ∗, γ ) ≤ ε.

4. The rate processes θ1,∗ and θ2,∗ are piecewise constant on [0, τ ], with a finite number
of intervals of constancy.

5. When restricted to [0, σ ), the rate processes are pure in the sense that on any interval
of constancy (s1, s2), and for each k = 1, 2, there exists (i, j) ∈ {0, 1, . . . , I, I+} ×
{0, 1, . . . , J, J+} such that θ

k,∗
i,j (t) = 1 for all t ∈ (s1, s2). In addition, for k = 1, 2 and

any interval of constancy on which θ
k,∗
i,j (t) = 1, γ ∗

i,j (t) ≥ δσK .

Proof. Suppose that γ , θ1, θ2, and x satisfy the assumptions of the lemma. Let σ ∈ (0, τ ].
By assumption, we have γi,j (σ ) ≥ δσK . We can choose σ > 0 such that −σ log(δσK) ≤ ε/2,
and such that if γ1 and γ2 are any occupancy processes with the same initial condition, then
‖γ1(s) − γ2(s)‖ ≤ ε for all s ∈ [0, σ ] (here we use the common Lipschitz continuity for
all occupancy functions). A time-reversed induction argument will be used to construct the
pure controls on [0, σ ) described in the lemma. The main idea is that the occupancy path γ ∗
will proceed on [0, σ ] in such a way that each element increases to a maximum level before
decreasing to its final value, γ ∗(σ ) = γ (σ ). Hence, the contents of any given occupancy class
are only reduced at times when that class has at least a fraction δσK of the urns. In other
words, θ

k,∗
i,j (s) > 0 implies that γ ∗

i,j (s) ≥ δσK , allowing the cost of γ ∗ on (0, σ ) to be made
arbitrarily small.
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For a given γ ∈ M, the associated minimum number of balls of each color per urn is given
by applying the linear operators

βe
1(γ ) =

I∑
i=0

J+∑
j=0

iγi,j +
J+∑
j=0

(I + 1)γI+,j ,

βe
2(γ ) =

J∑
j=0

I+∑
i=0

jγi,j +
I+∑
i=0

(J + 1)γi,J+

(14)

(these are only the minimum number per urn because balls may fall into urns with more than
I + 1 or J + 1 of color 1 or color 2, respectively). Because x is a coloring process which
generates γ (σ ), it must satisfy xk(σ ) ≥ βe

k (γ (σ )). As another way to see this point, we may
verify the relations

βe
1(T 1[θ ]) =

I∑
i=0

J+∑
j=0

θi,j , βe
1(T 2[θ ]) = 0,

βe
2(T 1[θ ]) = 0, βe

2(T 2[θ ]) =
I+∑
i=0

J∑
j=0

θi,j .

(15)

The definition of γ̇ in terms of ẋ and θ then implies that 0 ≤ β̇e
k (γ ) ≤ ẋk .

To simplify the exposition, we first assume that xk(σ ) = βe
k (γ (σ )), and subsequently extend

the argument to cover inequality.
For colors k = 1, 2, we define orderings ξk : {0, . . . , I+} × {0, . . . , J+} → N by

ξ1(i, j) = (J + 1)i + j, ξ2(i, j) = i + (I + 1)j,

where strictly speaking we substitute i = I +1 or j = J +1 on the right-hand side when i = I+
or j = J+ appears on the left-hand side. Observe that each class of urns corresponds to a
distinct value of ξk , and that each of these functions induces a strict ordering on {0, . . . , I, I+}×
{0, . . . , J, J+}. For any γ ∈ M, let U(γ ) be the set of pairs (i, j) such that γi,j > 0, and for
k = 1, 2 define

κk(γ ) = max
U(γ )

ξk(i, j),

uk(γ ) = arg max
U(γ )

ξk(i, j).

Thus, uk(γ ) defines the largest (i, j) (according to the ordering ξk) for which γi,j > 0.
To begin the induction, we set τ1 = σ and γ ∗(τ1) = γ (σ ), noting that xk(τ1) = βe

k (γ
∗(τ1)),

and initialize the induction variable as m = 1.
Denote the highest nonempty urn class under the color-k ordering by um

k = uk(γ
∗(τm)),

and denote the corresponding order number by κm
k = ξk(u

m
k ). Now imagine in reverse time

pulling balls from these urns so that mass drains from γum
1

at a rate specified by ẋ1 and from
γum

2
at a rate specified by ẋ2. At some time τm+1 < τm, one of the two urn classes will empty.

If um
1 = um

2 then this time is given by

τm+1 = max

{
t :

2∑
k=1

xk(τm) − xk(t) = γ ∗
u1

1
(τm)

}
,
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and otherwise it is given by

τm+1 = max{t : x1(τm) − x1(t) = γ ∗
um

1
(τm) or x2(τm) − x2(t) = γ ∗

um
2
(τm)}.

Suppose that um
1 = (i, j) for some i > 0. Then we obtain (see (14))

x1(τm) = βe
1(γ ∗(τm)) ≥ γ ∗

um
1
(τm),

so that there must be a solution t ∈ [0, τm) tox1(t) = x1(τm) − γ ∗
um

1
(τm). Together with a similar

analysis ofum
2 , this means that a solution τm+1 ∈ [0, τm) always exists unlessum

1 = um
2 = (0, 0).

In the latter case, all urns are empty at time τm, and κm
1 + κm

2 = 0.
Otherwise, if κm

1 + κm
2 > 0, we define

θ1,∗(t) = eum
1 −(1,0), θ2,∗(t) = eum

2 −(0,1)

for all t ∈ [τm+1, τm), where e(i,j) is the distribution in M which puts all mass on the (i, j)th
element. That is, during the mth interval, in forward time, we are throwing balls into urns with
occupancies um

1 − (1, 0) and um
2 − (0, 1) in order to fill the urn classes um

k . The process γ ∗
is then defined on the interval [τm+1, τm) by the existing terminal condition γ ∗(τm) and the
differential equation γ̇ ∗ = ∑

k ẋkT
k[θk,∗]. Because the θk,∗ put all their mass on urn classes

with i ≤ I and j ≤ J , relations (15) establish that x(τm+1) = βe
k (γ

∗(τm+1)), setting up the
next induction step.

Note that τm+1 was chosen so that at least one of the classes um
k is empty at time τm+1. This

ensures the strict inequality
∑2

k=1 κm+1
k <

∑2
k=1 κm

k , so that the induction must terminate after
a finite number of steps (say M) with κM

1 + κM
2 = 0, meaning that γ ∗(τM) = e(0,0) = γ (0).

Moreover, the fact that xk(τM) = βe
k (γ

∗(τM)) = 0 shows that this occurs at time τM = 0.
This establishes the existence of γ ∗ and θ∗ on [0, σ ) with γ ∗(σ ) = γ (σ ) and with θ∗

consisting of pure, piecewise-constant controls. In addition, γ ∗
i,j (t) increases during intervals

when um
1 = (i − 1, j) or um

2 = (i, j − 1), and it decreases when um
k = (i, j) for k = 1, 2. By

construction, the order numbers κm
k increase monotonically with decreasing m, ensuring that

the intervals on which γ ∗
i,j increases precede the intervals of decrease.

Finally, we extend the argument to the case when xk(σ ) > βe
k (γ (σ )) for some k ∈ 1, 2. Let

sk be the last time in [0, σ ] such that xk(sk) = βe
k (γ (σ )), and assume without loss of generality

that 0 < s2 < s1 < σ . By virtue of (15), the event x1(t) > βe
1(γ (t)) can only occur if balls of

class 1 have been thrown into (I+, j)-occupied urns, which can only happen with finite cost if
these urns hold some mass, i.e.

∑J+
j=0 γI+,j (t) > 0.

On the interval [s1, σ ), we may define θ1,∗ = e(I+,0) and θ2,∗ = e(0,J+). Throwing balls
into such urns has no effect on the occupancy distribution, meaning that γ ∗(t) = γ (σ ) is the
solution on this interval to the equation

γ̇ ∗ =
2∑

k=1

ẋkT
k[θk,∗] = 0.

The desired property that θi,j (t) > 0 implies γi,j (t) ≥ δσ k is trivially satisfied on this interval.
At time s1, we have x1(s1) = βe

1(γ ∗(s1)) and x2(s1) > βe
2(γ ∗(s1)). On the interval [s2, s1),

we use a modified reverse-time induction in which

τm+1 = max{t : x1(τm) − x1(t) = γ ∗
um

1
(τm) or t = s2}.
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On the mth subinterval, the occupancy rates naturally are defined as θ1,∗ = eum
1 −(1,0) and

θ2,∗ = e(0,J+). Using similar arguments to before, it follows that, after a finite number of steps,
the induction terminates with τM = s2, γ ∗

0,J+(s2) ≥ γ0,J+(σ ), and κm
1 strictly decreasing in

m. Since now xk(s2) = βe
k (γ

∗(s2)), k = 1, 2, the original induction argument may be used
to continue the definition of γ ∗ on [0, s2). Now both κm

1 and κm
2 are both strictly decreasing

in m across the entire interval [0, σ ), and we have the desired property that θi,j > 0 implies
γ ∗
i,j (s) ≥ γi,j (σ ) for s ∈ [0, σ ].

This completes the construction of the processes γ ∗, θ1,∗, and θ2,∗ on [0, σ ]. Note that∫ σ

0
[ẋ1R(θ1,∗ ‖ γ ∗) + ẋ2R(θ2,∗ ‖ γ ∗)] ds ≤ −

∫ σ

0
[ẋ1 log(δσK) + ẋ2 log(δσK)] ds

= −σ log(δσK)

≤ ε

2
,

and that γ ∗ deviates by no more than ε from γ on [0, σ ], while ending up at the same place,
i.e. γ ∗(σ ) = γ (σ ).

The construction on [σ, τ ] is simpler. Let M ∈ N, and observe that γi,j (s) is uniformly
bounded away from zero for all i and j and s ∈ [σ, τ ]. We partition [σ, τ ] into M subintervals
of length cM = (τ − σ)/M . On each interval we set

θ
k,∗
i,j (s) =

∫ σ+(l+1)cM

σ+lcM
ẋk(r)θ

k
i,j (r) dr

xk(σ + (l + 1)cM) − xk(σ + lcM)

if σ + lcM ≤ s ≤ σ + (l + 1)cM (the definition is unimportant if xk(σ + (l + 1)cM) −
xk(σ + lcM) = 0). For s ∈ [σ, τ ], let

γ̇ ∗ = ẋ1T
1[θ1,∗] + ẋ2T

2[θ2,∗], γ ∗(σ ) = γ (σ ).

Since γi,j (s) is uniformly bounded away from zero, it is easy to check that, for large enough
M , γ ∗ is a valid occupancy path that is associated with the processes θ1,∗, θ2,∗, and x. The
convergence γ ∗ → γ on [σ, τ ] as M → ∞ is immediate, and it follows from the Lebesgue
dominated convergence theorem that

lim
M→∞

∫ τ

σ

[ẋ1R(θ1,∗ ‖ γ ∗) + ẋ2R(θ2,∗ ‖ γ ∗)] ds =
∫ τ

σ

[ẋ1R(θ1 ‖ γ ) + ẋ2R(θ2 ‖ γ )] ds.

Therefore, all parts of the lemma hold for sufficiently large M .

5. Proof of the large deviation lower bound

In the proof of the lower bound it will be sufficient to work with the occupancy paths with the
properties set out in Lemma 6. Given such a path γ , the overall idea of the proof is to construct a
sequence of measures with sample paths close to γ in distance and with nearly equal costs. We
first show that we may concentrate on coloring processes lying within some small distance from
those obtaining the infimum for γ . Furthermore, urn selection is uniform on each type (i, j)

with mass equal to the (piecewise-constant) derivatives of γ . Finally, by using a stopping time
argument, we show that the sample path under the above measure lies arbitrarily close to γ with
probability approaching 1. Estimates of the cost are readily constructed due to lower bounds
on the components of γ and because the derivatives of the paths in Lemma 6 are piecewise
constant.
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Theorem 4. Under Assumption 2, we have

lim sup
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≤ inf

γ∈S
[I (γ ) + F(γ )].

Proof. Consider any γ for which I (γ ) < ∞. Then it suffices to show that

lim sup
n→∞

[
−1

n
log E exp[−nF(�n)]

]
≤ I (γ ) + F(γ ). (16)

Owing to Lemma 5 and the continuity of F , we can assume without loss of generality that there
exist δ > 0 and K ∈ N such that γi,j (t) ≥ δtK .

We again utilize representation (2). Fix b > 0. According to the representation, inequality
(16) will follow if we can find a sequence {µn, n ∈ N} such that

lim sup
n→∞

1

n
R(µn ‖ �n ⊗ 	n) ≤ I (γ ) + b, (17)

and such that if �̄n is the urn process constructed under the distribution µn, then

lim sup
n→∞

P̄
n{d(�̄n, γ ) > b} ≤ b. (18)

To prove the desired bound we must construct an appropriate sequence of measures µn. For
γ as above, let θ1, θ2, and x̃ denote the corresponding rate and coloration processes which
achieve the infimum. Without loss of generality we can assume that these processes satisfy the
properties ascribed to θ1,∗ and θ2,∗ in Lemma 6.

For a > 0, let G : T → R be continuous and satisfy

G(x) =
⎧⎨
⎩

1

a
if d(x, x̃) ≥ 2a,

0 if d(x, x̃) ≤ a,

and also G(x) ∈ [0, 1/a] for all x ∈ T . Since {Xn, n ∈ N} satisfies a large deviations principle
with rate function J , there exists a sequence {λn, n ∈ N}, satisfying

Ē
n
[

1

n
R(λn ‖ 	n) + G(X̄n)

]
→ inf

x∈T
[J (x) + G(x)]

≤ J (x̃).

We use these measures in constructing µn by setting

µn(du1, . . . , duNn, dy1, . . . , dyNn)

= λn(dy1, . . . , dyNn)

× µn
1(du1 | y1, . . . , yNn) · · · µn

Nn
(duNn | u1, . . . , uNn−1, y1, . . . , yNn).

We will need to know how much λn mass is placed on sequences y1, . . . , y�nτ�+1, such that
if X̄n is the corresponding cumulative coloration process then

sup
t∈[0,τ ]

d(X̄n(t), x̃(t)) ≥ 2a.
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We have

lim sup
n→∞

1

a
P̄

n
{

sup
t∈[0,τ ]

d(X̄n(t), x̃(t)) ≥ 2a
}

≤ lim sup
n→∞

Ē
n[G(X̄n)]

≤ inf
x∈T

[J (x) + G(x)]
≤ J (x̃)

< ∞.

Thus, the probability P̄
n{supt∈[0,τ ] d(X̄n(t), x̃(t)) ≥ 2a} can be made as small as desired for

large n by taking a small. Since ‖F‖∞ < ∞, when constructing the controlled urn process we
will be able to ignore these paths, and can let the measures that select the urns be the original
uniform measure for such points in the underlying probability space. The relative entropy cost
for such paths is then zero. Thus, in the rest of this construction we focus on the case where
the underlying coloration process satisfies

sup
t∈[0,τ ]

d(X̄n(t), x̃(t)) ≤ 2a. (19)

To finish the construction we must specify the conditional distributions of the Un
l . Note that

when specifying these distributions we get to see the complete outcome Yn
1 , . . . , Y n

Nn
of the

coloration process, and can assume that this process satisfies (19).
The construction naturally separates according to the partition [0, τ ] = [0, σ ) ∪ [σ, τ ].

We must specify the distribution of the measures µn
l (or, equivalently, the distribution of the

random measures µ̄n
l ) for l = 1, . . . , Nn. Recall that in general these measures are allowed

to depend on the ‘past’ Un
q , q < l. However, it will turn out that we can assign µn

l based
on just the coloration sequence and the time index l (i.e. ‘open-loop’ controls). Let (sm

1 , sm
2 )

denote the finite collection of intervals on which θk
i,j (t) is constant, so that these intervals are

nonoverlapping, and [0, τ ] \⋃M
m=1(s

m
1 , sm

2 ) consists of a finite number of points. Suppose that
l/n ∈ [sm

1 , sm
2 ).

• If sm
2 ≤ σ then for each k there exists (i, j) such that θk

i,j (t) = 1 for t ∈ (sm
1 , sm

2 ). If
Yn

l = k (the ball at time l is color k) then µn
l is set to be the uniform distribution on all

urns of class (i, j). Note that when we rewrite the relative entropy as in (5) there will be
equality, and in fact

Ē
n[R(µ̄n

l ‖ πn)] = Ē
n
[
R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]

= Ē
n
[ I+, J+∑

i=0, j=0

log

(
νn
i,j (l/n)

�̄n
i,j (l/n)

)
νn
i,j

(
l

n

)]

= −Ē
n

log

(
�̄n

i,j

(
l

n

))
.

• If sm
2 > σ then the controls are no longer ‘pure’. If yl = k then each θk

i,j (t) determines
a ‘weight’ that should be placed on urns of class (i, j). We let µn

l be the measure which
places mass θk

i,j (t) on the urns of class (i, j), and within this class uses the uniform
distribution to apportion mass. We again have equality in the relative entropy in (5), and
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in fact

Ē
n[R(µ̄n

l ‖ πn)] = Ē
n
[
R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]

= Ē
n
[ I+, J+∑

i=0, j=0

log

(
θk
i,j (l/n)

�̄n
i,j (l/n)

)
θk
i,j

(
l

n

)]
.

Note that for the controls constructed in Lemma 6 we have γi,j (t) ≥ δσK for any (i, j)

for which θ1
i,j (t) ∨ θ2

i,j (t) > 0. Owing to the randomness of the prelimit processes, we cannot
guarantee the corresponding result �̄n

i,j (t) ≥ δσK for any (i, j) for which θ1
i,j (t) ∨ θ2

i,j (t) > 0.
We therefore use a stopping time argument in the construction of the measures µn

l . Let l̄n be the
first time l such that �̄n

i,j (l/n) ≤ δσK/2, for some (i, j) for which θ1
i,j (l/n) ∨ θ2

i,j (l/n) > 0.
From time l̄n on, the construction above is modified, in that the measure is selected so that
νn(l/n) = �̄n(l/n) for l ≥ l̄n. Thus, a weight of �̄n

i,j (l/n) is placed on the urns of class
(i, j). Note that with this definition Ē

n[R(νn(l/n) ‖ �̄n(l/n))] = 0 for l ≥ l̄n. We now apply
Theorem 1. Thus, given any subsequence we have convergence along a further subsequence
as indicated in the theorem, with limit (�̄, X̄1, X̄2, θ̄

1, θ̄2). Using the standard argument by
contradiction, it will be enough to prove the convergence of controlled processes and bounds
on the relative entropy cost for this convergent subsequence. Let ρn = (l̄n/n) ∧ τ . Note that
because the applied controls are pure the process �̄n(t) is deterministic prior to σ , and also that
prior to this time the time derivatives of both �̄n(t) and γ (t) are piecewise constant. In fact, the
two derivatives are identical except possibly on a bounded number of intervals of length less
than 1/n (located near the endpoints of the intervals of constancy of γ̇ (t)). Thus, for large n we
cannot have ρn < σ . Since the range of ρn is bounded, we can also assume that ρn converges
(along the same subsequence) in distribution to a limit ρ, and it is easy to check that the limit
control processes almost everywhere satisfy

θ̄ k
i,j (t) =

{
θk
i,j (t) if t ≤ ρ,

�̄i,j (t) if t > ρ.

Owing to the definition of ρn, if ρ < τ then �̄i,j (ρ) = δσK/2 for some (i, j). Recall also that
γi,j (t) ≥ δσK for all t ∈ [σ, τ ].

Observe that the limit processes all implicitly depend on a > 0 through the function G. We
claim that, for each b > 0,

lim
a↓0

P̄{d(�̄, γ ) > b} = 0.

We already know that
lim
a↓0

P̄{d(X̄, x̃) > 2a} = 0.

However, since the rate processes θk
i,j are all piecewise constant, the integral

∫ t

0
( ˙̄X1T

1[θ1] + ˙̄X2T
2[θ2]) ds

converges uniformly to ∫ t

0
( ˙̃x1T

1[θ1] + ˙̃x2T
2[θ2]) ds
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as d(X̄, x̃) → 0. Therefore,

lim
a↓0

P̄
{

sup
0≤t≤ρ

‖�̄(t) − γ (t)‖ > b
}

= 0.

If b > 0 is sufficiently small, then the following three items, all of which hold under ρ < τ ,
form a contradiction:

• �̄i,j (ρ) = δσK/2 for some (i, j),

• γi,j (t) ≥ δσK for all t ∈ [0, τ ],
• sup0≤t≤ρ ‖�̄(t) − γ (t)‖ ≤ b.

We conclude that lima↓0 P̄{ρ < τ } = 0 and, therefore, lima↓0 P̄{d(�̄, γ ) > b} = 0 for all
sufficiently small b > 0. It follows that, given b > 0, for some fixed (sufficiently small) a > 0,
lim supn→∞ P̄{d(�̄n, γ ) > b} ≤ b.

We must also consider the relative entropy costs. However, again using the convergence
lima↓0 P̄{d(�̄, γ ) > b} = 0 and the dominated convergence theorem,

lim sup
a↓0

lim sup
n→∞

Ē
n
[

1

n

Nn∑
l=1

R

(
νn

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))]

= lim sup
a↓0

lim sup
n→∞

Ē
n
[ M∑

m=1

( �nsm
2 �∑

l=�nsm
1 �+1

R

(
θ1

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))

×
(

Xn
1

(
l + 1

n

)
− Xn

1

(
l

n

))

+
�nsm

2 �∑
l=�nsm

1 �+1

R

(
θ2

(
l

n

) ∥∥∥∥ �̄n

(
l

n

))

×
(

Xn
2

(
l + 1

n

)
− Xn

2

(
l

n

)))]

= lim sup
a↓0

Ē

[ M∑
m=1

(∫ sm
2

sm
1

R(θ1(t) ‖ �̄(t)) dX̄1(t) +
∫ sm

2

sm
1

R(θ2(t) ‖ �̄(t)) dX̄2(t)

)]

=
∫ τ

0
[ ˙̃x1(t)R(θ1(t) ‖ γ (t)) + ˙̃x2(t)R(θ2(t) ‖ γ (t))] dt.

When this is combined with the bound

lim sup
n→∞

1

n
R(λn ‖ 	n) ≤ J (x̃),

for small enough a > 0, we have proved (17). Since lima↓0 P̄{d(�̄, γ ) > b} = 0 implies (18)
for small a > 0, the proof is complete.
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