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Graded rings and graded modules

Graded rings appear in many circumstances, both in elementary and advanced
areas. Here are two examples.

1 In elementary school when we distribute 10 apples giving 2 apples to each
person, we have

10 Apples : 2 Apples = 5 People.

The psychological problem caused to many kids as to exactly how the word
“People” appears in the equation can be overcome by correcting it to

10 Apples : 2 Apples / People = 5 People.

This shows that already at the level of elementary school arithmetic, children
work in a much more sophisticated structure, i.e., the graded ring

Z[x±1
1 , . . . , x

±1
n ]

of Laurent polynomial rings! (see the interesting book of Borovik [23, §4.7]
on this).

2 If A is a commutative ring generated by a finite number of elements of degree
1, then by the celebrated work of Serre [85], the category of quasicoherent
sheaves on the scheme is equivalent to QGr-A � Gr-A/Fdim-A, where Gr-A
is the category of graded modules over A and Fdim-A is the Serre subcate-
gory of (direct limits of) finite dimensional submodules. In particular when
A = K[x0, x1, . . . , xn], where K is a field, then QCoh-Pn is equivalent to
QGr-A[x0, x1, . . . , xn] (see [85, 9, 79] for more precise statements and rela-
tions with noncommutative algebraic geometry).

This book treats graded rings and the category of graded modules over a
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6 Graded rings and graded modules

graded ring. This category is an abelian category (in fact a Grothendieck cate-
gory). Many of the classical invariants constructed for the category of modules
can be constructed, mutatis mutandis, starting from the category of graded
modules. The general viewpoint of this book is that, once a ring has a natu-
ral graded structure, graded invariants capture more information than the non-
graded counterparts.

In this chapter we give a concise introduction to the theory of graded rings.
We introduce grading on matrices, study graded division rings and introduce
gradings on graph algebras that will be the source of many interesting exam-
ples.

1.1 Graded rings

1.1.1 Basic definitions and examples

A ring A is called a Γ-graded ring, or simply a graded ring, if A =
⊕
γ∈ΓAγ,

where Γ is an (abelian) group, each Aγ is an additive subgroup of A and AγAδ ⊆
Aγ+δ for all γ, δ ∈ Γ.

If A is an algebra over a field K, then A is called a graded algebra if A is a
graded ring and for any γ ∈ Γ, Aγ is a K-vector subspace.

The set Ah =
⋃
γ∈Γ Aγ is called the set of homogeneous elements of A. The

additive group Aγ is called the γ-component of A and the nonzero elements of
Aγ are called homogeneous of degree γ. We write deg(a) = γ if a ∈ Aγ\{0}. We
call the set

ΓA =
{
γ ∈ Γ | Aγ � 0

}
the support of A. We say the Γ-graded ring A has a trivial grading, or A is
concentrated in degree zero, if the support of A is the trivial group, i.e., A0 = A
and Aγ = 0 for γ ∈ Γ\{0}.

For Γ-graded rings A and B, a Γ-graded ring homomorphism f : A → B is
a ring homomorphism such that f (Aγ) ⊆ Bγ for all γ ∈ Γ. A graded homo-
morphism f is called a graded isomorphism if f is bijective and, when such a
graded isomorphism exists, we write A �gr B. Notice that if f is a graded ring
homomorphism which is bijective, then its inverse f −1 is also a graded ring
homomorphism.

If A is a graded ring and R is a commutative graded ring, then A is called
a graded R-algebra if A is an R-algebra and the associated algebra homomor-
phism φ : R → A is a graded homomorphism. When R is a field concentrated
in degree zero, we retrieve the definition of a graded algebra above.
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1.1 Graded rings 7

Proposition 1.1.1 Let A =
⊕
γ∈Γ Aγ be a Γ-graded ring. Then

(1) 1A is homogeneous of degree 0;
(2) A0 is a subring of A;
(3) each Aγ is an A0-bimodule;
(4) for an invertible element a ∈ Aγ, its inverse a−1 is homogeneous of degree
−γ, i.e., a−1 ∈ A−γ.

Proof (1) Suppose 1A =
∑
γ∈Γ aγ for aγ ∈ Aγ. Let b ∈ Aδ, δ ∈ Γ, be an

arbitrary nonzero homogeneous element. Then b = b1A =
∑
γ∈Γ baγ, where

baγ ∈ Aδ+γ for all γ ∈ Γ. Since the decomposition is unique, baγ = 0 for all
γ ∈ Γ with γ � 0. But as b was an arbitrary homogeneous element, it follows
that baγ = 0 for all b ∈ A (not necessarily homogeneous), and in particular
1Aaγ = aγ = 0 if γ � 0. Thus 1A = a0 ∈ A0.

(2) This follows since A0 is an additive subgroup of A with A0A0 ⊆ A0 and
1 ∈ A0.

(3) This is immediate.

(4) Let b =
∑
δ∈Γ bδ, with deg(bδ) = δ, be the inverse of a ∈ Aγ, so that

1 = ab =
∑
δ∈Γ abδ, where abδ ∈ Aγ+δ. By (1), since 1 is homogeneous of

degree 0 and the decomposition is unique, it follows that abδ = 0 for all δ � −γ.
Since a is invertible, b−γ � 0, so b = b−γ ∈ A−γ as required. �

The ring A0 is called the 0-component ring of A and plays a crucial role in
the theory of graded rings. The proof of Proposition 1.1.1(4), in fact, shows
that if a ∈ Aγ has a left (or right) inverse then that inverse is in A−γ. In The-
orem 1.6.9, we characterise Z-graded rings such that A1 has a left (or right)
invertible element.

Example 1.1.2 Group rings

For a group Γ, the group ring Z[Γ] has a natural Γ-grading

Z[Γ] =
⊕
γ∈Γ

Z[Γ]γ, where Z[Γ]γ = Zγ.

In §1.1.4, we construct crossed products which are graded rings and are gen-
eralisations of group rings and skew groups rings. A group ring has a natural
involution which makes it an involutary graded ring (see §1.9).

In several applications (such as K-theory of rings, Chapter 6) we deal with
Z-graded rings with support in N, the so called positively graded rings.

Example 1.1.3 Tensor algebras as positively graded rings

Let A be a commutative ring and M be an A-module. Denote by Tn(M),
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8 Graded rings and graded modules

n ≥ 1, the tensor product of n copies of M over A. Set T0(M) = A. Then the
natural A-module isomorphism Tn(M) ⊗A Tm(M) → Tn+m(M), induces a ring
structure on

T (M) :=
⊕
n∈N

Tn(M).

The A-algebra T (M) is called the tensor algebra of M. Setting

T (M)n := Tn(M)

makes T (M) a Z-graded ring with support N. From the definition, we have
T (M)0 = A.

If M is a free A-module, then T (M) is a free algebra over A, generated by
a basis of M. Thus free rings are Z-graded rings with the generators being
homogeneous elements of degree 1. We will systematically study the grading
of free rings in §1.6.1.

Example 1.1.4 Formal matrix rings as graded rings

Let R and S be rings, M a R−S-bimodule and N a S−R-bimodule. Consider
the set

T :=
{ (

r m
n s

) ∣∣∣ r ∈ R, s ∈ S ,m ∈ M, n ∈ N
}
.

Suppose that there are bimodule homomorphisms φ : M ⊗S N → R and
ψ : N ⊗R M → S such that (mn)m′ = m(nm′), where we denote φ(m, n) =

mn and ψ(n,m) = nm. One can then check that T with matrix addition and
multiplication forms a ring with an identity. The ring T is called the formal
matrix ring and denoted also by

T =

(
R M
N S

)
.

For example, the Morita ring of a module is a formal matrix ring (see §2.3
and (2.6)).

Considering

T0 =

(
R 0
0 S

)
, T1 =

(
0 M
N 0

)
,

it is easy to check that T becomes a Z2-graded ring. In the cases that the images
of φ and ψ are zero, these rings have been extensively studied (see [57] and
references therein).

When N = 0, the ring T is called a formal triangular matrix ring. In this
case there is no need to consider the homomorphisms φ and ψ. Setting further
Ti = 0 for i � 0, 1 makes T also a Z-graded ring.
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1.1 Graded rings 9

One specific example of such a grading on (subrings of) formal triangular
matrix rings is used in representation theory. Recall that for a field K, a finite
dimensional K-algebra R is called Frobenius algebra if R � R∗ as right R-
modules, where R∗ := HomK(R,K). Note that R∗ has a natural R-bimodule
structure.

Starting from a finite dimensional K-algebra R, one constructs the trivial ex-
tension of R which is a Frobenius algebra and has a natural Z-graded structure
as follows. Consider A := R

⊕
R∗, with addition defined component-wise and

multiplication defined as

(r1, q1)(r2, q2) = (r1r2, r1q1 + q2r2),

where r1, r2 ∈ R and q1, q2 ∈ R∗. Clearly A is a Frobenius algebra with identity
(1, 0). Moreover, setting

A0 = R ⊕ 0,

A1 = 0 ⊕ R∗,

Ai = 0, otherwise,

makes A into a Z-graded ring with support {0, 1}. In fact this ring is a subring
of the formal triangular matrix ring

T0 =

(
R R∗

0 R

)
,

consisting of elements
(
a q
0 a

)
.

These rings appear in representation theory (see [46, §2.2]). The graded ver-
sion of this contraction is carried out in Example 1.2.9.

Example 1.1.5 The graded ring A as A0-module

Let A be a Γ-graded ring. Then A can be considered as an A0-bimodule. In
many cases A is a projective A0-module, for example in the case of group rings
(Example 1.1.2) or when A is a strongly graded ring (see §1.1.3 and Theo-
rem 1.5.12). Here is an example that this is not the case in general. Consider
the formal matrix ring T

T =

(
R M
0 0

)
,

where M is a left R-module which is not a projective R-module. Then by Ex-
ample 1.1.4, T is a Z-graded ring with T0 = R and T1 = M. Now T as a
T0-module is R ⊕M as an R-module. Since M is not projective, R ⊕M is not a
projective R-module. We also get that T1 is not a projective T0-module.

https://doi.org/10.1017/CBO9781316717134.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316717134.002


10 Graded rings and graded modules

1.1.2 Partitioning graded rings

Let A be a Γ-graded ring and f : Γ → Δ be a group homomorphism. Then one
can assign a natural Δ-graded structure to A as follows: A =

⊕
δ∈Δ Aδ, where

Aδ =

⎧⎪⎪⎨⎪⎪⎩
⊕
γ∈ f −1(δ) Aγ if f −1(δ) � ∅;

0 otherwise.

In particular, for a subgroup Ω of Γ we have the following constructions.

Subgroup grading The ring AΩ :=
⊕
ω∈Ω Aω forms a Ω-graded ring. In par-

ticular, A0 corresponds to the trivial subgroup of Γ.

Quotient grading Considering

A =
⊕

Ω+α∈Γ/Ω
AΩ+α,

where

AΩ+α :=
⊕
ω∈Ω

Aω+α,

makes A a Γ/Ω-graded ring. (Note that if Γ is not abelian, then for
this construction, Ω needs to be a normal subgroup.) Notice that with
this grading, A0 = AΩ. If ΓA ⊆ Ω, then A, considered as a Γ/Ω-graded
ring, is concentrated in degree zero.

This construction induces a forgetful functor (or with other inter-
pretations, a block, or a coarsening functor) from the category of Γ-
graded rings RΓ to the category of Γ/Ω-graded rings RΓ/Ω, i.e.,

U : RΓ → RΓ/Ω.

If Ω = Γ, this gives the obvious forgetful functor from the category
of Γ-graded rings to the category of rings. We give a specific example
of this construction in Example 1.1.8 and others in Examples 1.1.20
and 1.6.1.

Example 1.1.6 Tensor product of graded rings

Let A be a Γ-graded and B a Ω-graded ring. Then A⊗Z B has a natural Γ×Ω-
graded ring structure as follows. Since Aγ and Bω, γ ∈ Γ,ω ∈ Ω, are Z-modules
then A ⊗Z B can be decomposed as a direct sum

A ⊗Z B =
⊕

(γ,ω)∈Γ×Ω
Aγ ⊗ Bω

(to be precise, Aγ ⊗ Bω is the image of Aγ ⊗Z Bω in A ⊗Z B).
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1.1 Graded rings 11

Now, if Ω = Γ and

f : Γ × Γ −→ Γ,

(γ1, γ2) �−→ γ1 + γ2,

then we get a natural Γ-graded structure on A ⊗Z B. Namely,

A ⊗Z B =
⊕
γ∈Γ

(A ⊗ B)γ,

where

(A ⊗ B)γ =
{∑

i

ai ⊗ bi | ai ∈ Ah, bi ∈ Bh, deg(ai) + deg(bi) = γ
}
.

We give specific examples of this construction in Example 1.1.7. One can re-
place Z by a field K, if A and B are K-algebras and Aγ, Bγ are K-modules.

Example 1.1.7 Let A be a ring with identity and Γ be a group. We consider
A as a Γ-graded ring concentrated in degree zero. Then, by Example 1.1.6,

A[Γ] � A ⊗Z Z[Γ]

has a Γ-graded structure, i.e., A[Γ] =
⊕
γ∈ΓAγ. If A itself is a (nontrivial) Γ-

graded ring A =
⊕
γ∈ΓAγ, then by Example 1.1.6, A[Γ] has also a Γ-grading

A[Γ] =
⊕
γ∈ΓAγ, where Aγ =

⊕
γ=ζ+ζ′Aζζ

′. (1.1)

A specific example is when A is a positively graded Z-graded ring. Then
A[x] � A ⊗ Z[x] is a Z-graded ring with support N, where

A[x]n =
⊕
i+ j=n

Aix j.

This graded ring will be used in §6.2.4 when we prove the fundamental the-
orem of K-theory. Such constructions are systematically studied in [72] (see
also [75, §6]).

Example 1.1.8 Let A be a Γ × Γ-graded ring. Define a Γ-grading on A as
follows. For γ ∈ Γ, set

A′γ =
∑
α∈Γ

Aγ−α,α.

It is easy to see that A =
⊕
γ∈Γ A′γ is a Γ-graded ring. When A is Z×Z-graded,

then the Z-grading on A is obtained from considering all the homogeneous
components on a diagonal together, as Figure 1.1 shows.
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12 Graded rings and graded modules

x

y

−3 −2 −1 1 2 3

A′0 A′1 A′2A′−1

−3

−2

−1

1

2

3

A1,1

A−1,0

A1,−2

A−2,1

A1,−1

A4,0

A−1,1

A1,2A−2,2

A1,3

A0,2

A0,3

A1,1

A−1,2

A−1,3

A2,1 A3,1

A2,2

A−2,3

A0,1

A2,−1 A3,−1

A3,−2A2,−2

A0,−1

A0,0 A1,0 A2,0 A3,0

Figure 1.1

In fact this example follows from the general construction given in §1.1.2.
Consider the homomorphism Γ×Γ→ Γ, (α, β) �→ α+β. Let Ω be the kernel of
this map. Clearly (Γ×Γ)/Ω � Γ. One can check that the (Γ×Γ)/Ω-graded ring
A gives the graded ring constructed in this example (see also Remark 1.1.26).

Example 1.1.9 The direct limit of graded rings

Let Ai, i ∈ I, be a direct system of Γ-graded rings, i.e., I is a directed partially
ordered set and for i ≤ j there is a graded homomorphism φi j : Ai → Aj

which is compatible with the ordering. Then A := lim−−→ Ai is a Γ-graded ring
with homogeneous components Aα = lim−−→ Aiα. For a detailed construction of
such direct limits see [24, II, §11.3, Remark 3].

As an example, the ring A = Z[xi | i ∈ N], where A = lim−−→i∈N Z[x1, . . . , xi],
with deg(xi) = 1 is a Z-graded ring with support N. We give another specific
example of this construction in Example 1.1.10.

We will study in detail one type of these graded rings, i.e., graded ultra-
matricial algebras (Chapter 5, Definition 5.2.1) and will show that the graded
Grothendieck group (Chapter 3) classifies these graded rings completely.

Example 1.1.10 Let A =
⊕
γ∈ΓAγ and B =

⊕
γ∈ΓBγ be Γ-graded rings.

Then A × B has a natural grading given by A × B =
⊕
γ∈Γ(A × B)γ where

(A × B)γ = Aγ × Bγ.
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1.1 Graded rings 13

Example 1.1.11 Localisation of graded rings

Let S be a central multiplicative closed subset of the Γ-graded ring A, con-
sisting of homogeneous elements. Then S −1A has a natural Γ-graded structure.
Namely, for a ∈ Ah, define deg(a/s) = deg(a) − deg(s) and for γ ∈ Γ,

(S −1A)γ =
{
a/s | a ∈ Ah, deg(a/s) = γ

}
.

It is easy to see that this is well-defined and makes S −1A a Γ-graded ring.

Many rings have a “canonical” graded structure, among them are crossed
products (group rings, skew group rings, twisted group rings), edge algebras,
path algebras, incidence rings, etc. (see [53] for a review of these ring con-
structions). We will study some of these rings in this book.

Remark 1.1.12 Rings graded by a category

The use of groupoids as a suitable language for structures whose operations
are partially defined has now been firmly recognised. There is a generalised
notion of groupoid graded rings as follows. Recall that a groupoid is a small
category with the property that all morphisms are isomorphisms. As an exam-
ple, let G be a group and I a nonempty set. The set I × G × I, considered as
morphisms, forms a groupoid where the composition is defined by

(i, g, j)( j, h, k) = (i, gh, k).

One can show that this forms a connected groupoid and any connected groupoid
is of this form ([62, Ch. 3.3, Prop. 6]). If I = {1, . . . , n}, we denote I ×G × I by
n ×G × n.

Let Γ be a groupoid and A be a ring. A is called a Γ-groupoid graded ring
if A =

⊕
γ∈ΓAγ, where γ is a morphism of Γ, each Aγ is an additive subgroup

of A and AγAδ ⊆ Aγδ if the morphism γδ is defined and AγAδ = 0 otherwise.
For a group Γ, considering it as a category with one element and Γ as the set
of morphisms, we recover the Γ-group graded ring A (see Example 2.3.1 for an
example of a groupoid graded ring).

One can develop the theory of groupoid graded rings in parallel and similarly
to the group graded rings. See [65, 66] for this approach. Since adjoining a zero
to a groupoid gives a semigroup, a groupoid graded ring is a special case of
rings graded by semigroups (see Remark 1.1.13). For a general notion of a ring
graded by a category see [1, §2], where it is shown that the category of graded
modules (graded by a category) is a Grothendieck category.
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14 Graded rings and graded modules

Remark 1.1.13 Rings graded by a semigroup

In the definition of a graded ring (§1.1.1), one can replace the group grad-
ing with a semigroup. With this setting, the tensor algebras of Example 1.1.3
are N-graded rings. A number of results on group graded rings can also be es-
tablished in the more general setting of rings graded by cancellative monoids
or semigroups (see for example [24, II, §11]). However, in this book we only
consider group graded rings.

Remark 1.1.14 Graded rings without identity

For a ring without identity, one defines the concept of the graded ring exactly
as when the ring has an identity. The concept of the strongly graded ring is
defined similarly. In several occasions in this book we construct graded rings
without an identity. For example, Leavitt path algebras arising from infinite
graphs are graded rings without an identity, §1.6.4. See also §1.6.1, the graded
free rings. The unitisation of a (nonunital) graded ring has a canonical grading.
This is studied in relation with graded K0 of nonunital rings in §3.5 (see (3.25)).

1.1.3 Strongly graded rings

Let A be a Γ-graded ring. By Proposition 1.1.1, 1 ∈ A0. This implies A0Aγ = Aγ
and AγA0 = Aγ for any γ ∈ Γ. If these equalities hold for any two arbitrary
elements of Γ, we call the ring a strongly graded ring. Namely, a Γ-graded ring
A =
⊕
γ∈ΓAγ is called a strongly graded ring if AγAδ = Aγ+δ for all γ, δ ∈ Γ.

A graded ring A is called crossed product if there is an invertible element in
every homogeneous component Aγ of A; that is, A∗ ∩ Aγ � ∅ for all γ ∈ Γ,
where A∗ is the group of all invertible elements of A. We define the support of
invertible homogeneous elements of A as

Γ∗A = { γ ∈ Γ | A∗γ � ∅ }, (1.2)

where A∗γ := A∗ ∩ Aγ. It is easy to see that Γ∗A is a group and Γ∗A ⊆ ΓA (see
Proposition 1.1.1(4)). Clearly A is a crossed product if and only if Γ∗A = Γ.

Proposition 1.1.15 Let A =
⊕
γ∈Γ Aγ be a Γ-graded ring. Then

(1) A is strongly graded if and only if 1 ∈ AγA−γ for any γ ∈ Γ;
(2) if A is strongly graded then the support of A is Γ;
(3) any crossed product ring is strongly graded;
(4) if f : A→ B is a graded homomorphism of graded rings, then B is strongly

graded (resp. crossed product) if A is so.
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1.1 Graded rings 15

Proof (1) If A is strongly graded, then 1 ∈ A0 = AγA−γ for any γ ∈ Γ. For the
converse, the assumption 1 ∈ AγA−γ implies that A0 = AγA−γ for any γ ∈ Γ.
Then for σ, δ ∈ Γ,

Aσ+δ = A0Aσ+δ = (AσA−σ)Aσ+δ = Aσ(A−σAσ+δ) ⊆ AσAδ ⊆ Aσ+δ,

proving Aσδ = AσAδ, so A is strongly graded.
(2) By (1), 1 ∈ AγA−γ for any γ ∈ Γ. This implies Aγ � 0 for any γ,

i.e., ΓA = Γ.
(3) Let A be a crossed product ring. By definition, for γ ∈ Γ, there exists

a ∈ A∗ ∩ Aγ. So a−1 ∈ A−γ by Proposition 1.1.1(4) and 1 = aa−1 ∈ AγA−γ.
Thus A is strongly graded by (1).

(4) Suppose A is strongly graded. By (1), 1 ∈ AγA−γ for any γ ∈ Γ. Thus

1 ∈ f (Aγ) f (A−γ) ⊆ BγB−γ.

Again (1) implies B is strongly graded. The case of the crossed product follows
easily from the definition. �

The converse of (3) in Proposition 1.1.15 does not hold. One can prove that
if A is strongly graded and A0 is a local ring, then A is a crossed product
algebra (see [75, Theorem 3.3.1]). In §1.6 we give examples of a strongly
graded algebra A such that A is crossed product but A0 is not a local ring. We
also give an example of a strongly Z-graded ring A such that A0 is not local
and A is not crossed product (Example 1.6.22). Using graph algebras we will
produce large classes of strongly graded rings which are not crossed product
(see Theorems 1.6.15 and 1.6.16).

If Γ is a finitely generated group, generated by the set {γ1, . . . , γn}, then (1)
in Proposition 1.1.15 can be simplified to the following: A is strongly graded
if and only if 1 ∈ Aγi A−γi and 1 ∈ A−γi Aγi , where 1 ≤ i ≤ n. Thus if Γ = Z,
in order for A to be strongly graded, we only need to have 1 ∈ A1A−1 and
1 ∈ A−1A1. This will be used, for example, in Proposition 1.6.6 to show that
certain corner skew Laurent polynomial rings (§1.6.2) are strongly graded.

Example 1.1.16 Constructing strongly graded rings via tensor products

Let A and B be Γ-graded rings. Then by Example 1.1.6, A⊗Z B is a Γ-graded
ring. If one of the rings is strongly graded (resp. crossed product) then A ⊗Z B
is so. Indeed, suppose A is strongly graded (resp. crossed product). Then the
claim follows from Proposition 1.1.15(4) and the graded homomorphism A→
A ⊗Z B, a �→ a ⊗ 1.

As a specific case, suppose A is a Z-graded ring. Then

A[x, x−1] = A ⊗ Z[x, x−1]
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16 Graded rings and graded modules

is a strongly graded ring. Notice that with this grading, A[x, x−1]0 � A.

Example 1.1.17 Strongly graded as a Γ/Ω-graded ring

Let A be a Γ-graded ring. Using Proposition 1.1.15, it is easy to see that if A
is a strongly Γ-graded ring, then it is also a strongly Γ/Ω-graded ring, where Ω
is a subgroup of Γ. However the strongly gradedness is not a “closed” property,
i.e, if A is a strongly Γ/Ω-graded ring and AΩ is a strongly Ω-graded ring, it
does not follow that A is strongly Γ-graded.

1.1.4 Crossed products

Natural examples of strongly graded rings are crossed product algebras (see
Proposition 1.1.15(3)). They cover, as special cases, the skew group rings and
twisted groups rings. We briefly describe the construction here.

Let A be a ring, Γ a group (as usual we use the additive notation), and let
φ : Γ → Aut(A) and ψ : Γ × Γ → A∗ be maps such that for any α, β, γ ∈ Γ and
a ∈ A,

(i) α(βa) = ψ(α, β) α+βaψ(α, β)−1,

(ii) ψ(α, β)ψ(α + β, γ) = αψ(β, γ)ψ(α, β + γ),
(iii) ψ(α, 0) = ψ(0, α) = 1

Here for α ∈ Γ and a ∈ A, φ(α)(a) is denoted by αa. The map ψ is called a
2-cocycle map. Denote by Aφψ[Γ] the free left A-module with the basis Γ, and
define the multiplication by

(aα)(bβ) = a αbψ(α, β)(α + β). (1.3)

One can show that with this multiplication, Aφψ[Γ] is a Γ-graded ring with
homogeneous components Aγ, γ ∈ Γ. In fact γ ∈ Aγ is invertible, so Aφψ[Γ] is
a crossed product algebra [75, Proposition 1.4.1].

On the other hand, any crossed product algebra is of this form (see [75,
§1.4]): for any γ ∈ Γ choose uγ ∈ A∗ ∩ Aγ and define φ : Γ → Aut(A0) by
φ(γ)(a) = uγau−1

γ for γ ∈ Γ and a ∈ A0. Moreover, define the cocycle map

ψ : Γ × Γ −→ A∗0,

(ζ, η) �−→ uζuηu−1
ζ+η.

Then

A = A0
φ
ψ[Γ] =

⊕
γ∈ΓA0γ,

with multiplication

(aζ)(bη) = aζbψ(ζ, η)(ζ + η),
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1.1 Graded rings 17

where ζb is defined as φ(ζ)(b).
Note that when Γ is cyclic, one can choose ui = ui

1 for u1 ∈ A∗ ∩A1 and thus
the cocycle map ψ is trivial, φ is a homomorphism and the crossed product is
a skew group ring. In fact, if Γ = Z, then the skew group ring becomes the
so-called skew Laurent polynomial ring, denoted by A0[x, x−1, φ]. Moreover, if
u1 is in the centre of A, then φ is the identity map and the crossed product ring
reduces to the group ring A0[Γ]. A variant of this construction, namely corner
skew polynomial rings, is studied in §1.6.2.

Skew group rings If ψ : Γ × Γ → A∗ is a trivial map, i.e., ψ(α, β) = 1
for all α, β ∈ Γ, then Conditions (ii) and (iii) trivially hold, and Condition (i)
reduces to α(βa) = α+βa which means that φ : Γ → Aut(A) becomes a group
homomorphism. In this case Aφψ[Γ], denoted by A �φ Γ, is a skew group ring
with multiplication

(aα)(bβ) = a αb (α + β). (1.4)

Twisted group ring If φ : Γ → Aut(A) is trivial, i.e., φ(α) = 1A for all
α ∈ Γ, then Condition (i) implies that ψ(α, β) ∈ C(A) ∩ A∗ for any α, β ∈ Γ.
Here C(A) stands for the centre of the ring A. In this case Aφψ[Γ], denoted by
Aψ[Γ], is a twisted group ring with multiplication

(aα)(bβ) = abψ(α, β)(α + β). (1.5)

A well-known theorem in the theory of central simple algebras states that
if D is a central simple F-algebra with a maximal subfield L such that L/F is
a Galois extension and [A : F] = [L : F]2, then D is a crossed product, with
Γ = Gal(L/F) and A = L (see [35, §12, Theorem 1]).

Some of the graded rings we treat in this book are of the form K[x, x−1],
where K is a field. This is an example of a graded field.

A Γ-graded ring A =
⊕
γ∈Γ Aγ is called a graded division ring if every

nonzero homogeneous element has a multiplicative inverse. If A is also a com-
mutative ring, then A is called a graded field.

Let A be a Γ-graded division ring. It follows from Proposition 1.1.1(4) that
ΓA is a group, so we can write A =

⊕
γ∈ΓA

Aγ. Then, as a ΓA-graded ring, A is
a crossed product and it follows from Proposition 1.1.15(3) that A is strongly
ΓA-graded. Note that if ΓA � Γ, then A is not strongly Γ-graded. Also note that
if A is a graded division ring, then A0 is a division ring.

Remark 1.1.18 Graded division rings and division rings which are graded

Note that a graded division ring and a division ring which is graded are
different. By definition, A is a graded division ring if and only if Ah\{0} is
a group. A simple example is the Laurent polynomial ring D[x, x−1], where
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18 Graded rings and graded modules

D is a division ring (Example 1.1.19). Other examples show that a graded
division ring does not need to be a domain (Example 1.1.21). However, if the
grade group is totally ordered, then a domain which is also graded has to be
concentrated in degree zero. Thus a division ring which is graded by a totally
ordered grade group Γ is of the form A =

⊕
γ∈Γ Aγ, where A0 is a division ring

and Aγ = 0 for γ � 0. This will not be the case if Γ is not totally ordered (see
Example 1.1.20).

In the following we give some concrete examples of graded division rings.

Example 1.1.19 The Veronese subring

Let A =
⊕
γ∈Γ Aγ be a Γ-graded ring, where Γ is a torsion-free group. For

n ∈ Z\{0}, the nth-Veronese subring of A is defined as A(n) =
⊕
γ∈Γ Anγ. This

is a Γ-graded ring with A(n)
γ = Anγ. It is easy to see that the support of A(n) is

Γ if the support of A is Γ. Note also that if A is strongly graded, so is A(n).
Clearly A(1) = A and A(−1) is the graded ring with the components “flipped”,
i.e., A(−1)

γ = A−γ. For the case of A(−1) we don’t need to require the grade group
to be torsion-free.

Let D be a division ring and let A = D[x, x−1] be the Laurent polynomial
ring. The elements of A consist of finite sums

∑
i∈Z aixi, where ai ∈ D. Then

A is a Z-graded division ring with A =
⊕

i∈Z Ai, where Ai = {axi | a ∈
D}. Consider the nth-Veronese subring A(n) which is the ring D[xn, x−n]. The
elements of A(n) consist of finite sums

∑
i∈Z aixin, where ai ∈ D. Then A(n)

is a Z-graded division ring, with A(n) =
⊕

i∈Z Ain. Here both A and A(n) are
strongly graded rings.

There is also another way to consider the Z-graded ring B = D[xn, x−n]
such that it becomes a graded subring of A = D[x, x−1]. Namely, we define
B =
⊕

i∈Z Bi, where Bi = Dxi if i ∈ nZ and Bi = 0 otherwise. This way B is a
graded division ring and a graded subring of A. The support of B is clearly the
subgroup nZ of Z. With this definition, B is not strongly graded.

Example 1.1.20 Different gradings on a graded division ring

Let H = R⊕Ri⊕R j⊕Rk be the real quaternion algebra, with multiplication
defined by i2 = −1, j2 = −1 and i j = − ji = k. It is known that H is a
noncommutative division ring with centre R. We give H two different graded
division ring structures, with grade groups Z2 × Z2 and Z2 respectively as
follows.

Z2 × Z2-grading Let H = R(0,0) ⊕ R(1,0) ⊕ R(0,1) ⊕ R(1,1), where

R(0,0) = R, R(1,0) = Ri, R(0,1) = R j, R(1,1) = Rk.
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1.1 Graded rings 19

It is routine to check that H forms a strongly Z2 ×Z2-graded division
ring.

Z2-grading Let H = C0⊕C1, where C0 = R⊕Ri and C1 = C j = R j⊕Rk. One
can check that C0C0 = C0, C0C1 = C1C0 = C1 and C1C1 = C0. This
makes H a strongly Z2-graded division ring. Note that this grading on
H can be obtained from the first part by considering the quotient grade
group Z2 × Z2/0 × Z2 (§1.1.2). Quaternion algebras are examples of
Clifford algebras (see Example 1.1.24).

The following generalises the above example of quaternions as a Z2 × Z2-
graded ring.

Example 1.1.21 Symbol algebras

Let F be a field, ξ be a primitive nth root of unity and let a, b ∈ F∗. Let

A =

n−1⊕
i=0

n−1⊕
j=0

Fxiy j

be the F-algebra generated by the elements x and y, which are subject to the
relations xn = a, yn = b and xy = ξyx. By [35, Theorem 11.1], A is an n2-
dimensional central simple algebra over F. We will show that A forms a graded
division ring. Clearly A can be written as a direct sum

A =
⊕

(i, j)∈Zn⊕Zn

A(i, j), where A(i, j) = Fxiy j

and each A(i, j) is an additive subgroup of A. Using the fact that ξ−k jxky j = y jxk

for each j, k, with 0 ≤ j, k ≤ n − 1, we can show that

A(i, j)A(k,l) ⊆ A([i+k],[ j+l]),

for i, j, k, l ∈ Zn. A nonzero homogeneous element f xiy j ∈ A(i, j) has an inverse

f −1a−1b−1ξ−i j xn−iyn− j,

proving A is a graded division ring. Clearly the support of A is Zn × Zn, so A
is strongly Zn × Zn-graded.

These examples can also be obtained from graded free rings (see Exam-
ple 1.6.3).

Example 1.1.22 A good counter-example

In the theory of graded rings, in many instances it has been established that if
the grade group Γ is finite (or in some cases, finitely generated), then a graded
property implies the corresponding nongraded property of the ring (i.e., the
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20 Graded rings and graded modules

property is preserved under the forgetful functor). For example, one can prove
that if a Z-graded ring is graded Artinian (Noetherian), then the ring is Ar-
tinian (Noetherian). One good example which provides counter-examples to
such phenomena is the following graded field.

Let K be a field and A = K[x±1
1 , x

±1
2 , x

±1
3 , . . . ] a Laurent polynomial ring

in countably many variables. This ring is a graded field with its “canonical”⊕
∞ Z-grading and thus it is graded Artinian and Noetherian. However, A is

not Noetherian.

1.1.5 Graded ideals

Let A be a Γ-graded ring. A two-sided ideal I of A is called a graded ideal (or
homogeneous ideal) if

I =
⊕
γ∈Γ

(I ∩ Aγ). (1.6)

Thus I is a graded ideal if and only if for any x ∈ I, x =
∑

xi, where xi ∈ Ah,
implies that xi ∈ I.

The notions of a graded subring, a graded left and a graded right ideal are
defined similarly.

Let I be a graded ideal of A. Then the quotient ring A/I forms a graded ring,
with

A/I =
⊕
γ∈Γ

(A/I)γ, where (A/I)γ = (Aγ + I)/I. (1.7)

With this grading (A/I)0 � A0/I0, where I0 = A0 ∩ I. From (1.6) it follows
that an ideal I of A is a graded ideal if and only if I is generated as a two-
sided ideal of A by homogeneous elements. Also, for a two-sided ideal I of A,
if (1.7) induces a grading on A/I, then I has to be a graded ideal. By Propo-
sition 1.1.15(4), if A is strongly graded or a crossed product, so is the graded
quotient ring A/I.

Example 1.1.23 Symmetric and exterior algebras as Z-graded rings

Recall from Example 1.1.3 that for a commutative ring A and an A-module
M, the tensor algebra T (M) is a Z-graded ring with support N. The symmetric
algebra S (M) is defined as the quotient of T (M) by the ideal generated by
elements x ⊗ y − y ⊗ x, x, y ∈ M. Since these elements are homogeneous of
degree two, S (M) is a Z-graded commutative ring.

Similarly, the exterior algebra of M, denoted by
∧

M, is defined as the quo-
tient of T (M) by the ideal generated by homogeneous elements x ⊗ x, x ∈ M.
So
∧

M is a Z-graded ring.
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1.1 Graded rings 21

Let I be a two-sided ideal of a Γ-graded ring A generated by a subset {ai} of
not necessarily homogeneous elements of A. If Ω is a subgroup of Γ such that
{ai} are homogeneous elements in Γ/Ω-graded ring A (see §1.1.2), then clearly
I is a Γ/Ω-graded ideal and consequently A/I is a Γ/Ω-graded ring.

Example 1.1.24 Clifford algebras as Z2-graded rings

Let V be a F-vector space and q : V → F be a quadratic form with its
associated nondegenerate symmetric bilinear form B : V × V → F.

The Clifford algebra associated with (V, q) is defined as

Cl(V, q) := T (V)/〈v ⊗ v + q(v)〉.
Considering T (V) as a Z/2Z-graded ring (see §1.1.2), the elements v ⊗ v −
q(v) are homogeneous of degree zero. This induces a Z2-graded structure on
Cl(V, q). Identifying V with its image in the Clifford algebra Cl(V, q), V lies in
the odd part of the Clifford algebra, i.e., V ⊂ Cl(V, q)1.

If char(F) � 2, as B is nondegenerate, there exist x, y ∈ V such that B(x, y) =
1/2, and thus

xy + yx = 2B(x, y) = 1 ∈ Cl(V, q)1 Cl(V, q)1.

Similarly, if char(F) = 2, there exist x, y ∈ V such that B(x, y) = 1, so

xy + yx = B(x, y) = 1 ∈ Cl(V, q)1 Cl(V, q)1.

It follows from Proposition 1.1.15 that Clifford algebras are strongly Z2-
graded rings.

Recall that for Γ-graded rings A and B, a Γ-graded ring homomorphism f :
A→ B is a ring homomorphism such that f (Aγ) ⊆ Bγ for all γ ∈ Γ. It can easily
be shown that ker( f ) is a graded ideal of A and im( f ) is a graded subring of B.
It is also easy to see that f is injective (surjective/bijective) if and only if for
any γ ∈ Γ, the restriction of f on Aγ is injective (surjective/bijective).

Note that if Γ is an abelian group, then the centre of a graded ring A, C(A), is
a graded subring of A. More generally, the centraliser of a set of homogeneous
elements is a graded subring.

Example 1.1.25 The centre of the graded ring

If a group Γ is not abelian, then the centre of a Γ-graded ring may not be a
graded subring. For example, let Γ = S 3 = {e, a, b, c, d, f } be the symmetric
group of order 3, where

a = (23), b = (13), c = (12), d = (123), f = (132).
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22 Graded rings and graded modules

Let A be a ring, and consider the group ring R = A[Γ], which is a Γ-graded ring
by Example 1.1.2. Let x = 1d+1 f ∈ R, where 1 = 1A, and we note that x is not
homogeneous in R. Then x ∈ Z(R), but the homogeneous components of x are
not in the centre of R. As x is expressed uniquely as the sum of homogeneous
components, we have x �

⊕
γ∈Γ(Z(R) ∩ Rγ).

This example can be generalised by taking a nonabelian finite group Γ with
a subgroup Ω which is normal and noncentral. Let A be a ring and consider the
group ring R = A[Γ] as above. Then x =

∑
ω∈Ω 1ω is in the centre of R, but the

homogeneous components of x are not all in the centre of R.

Remark 1.1.26 Let Γ and Λ be two groups. Let A be a Γ-graded ring and B be
a Λ-graded ring. Suppose f : A→ B is a ring homomorphism and g : Γ→ Λ a
group homomorphism such that for any γ ∈ Γ, f (Aγ) ⊆ Bg(γ). Then f is called
a Γ−Λ-graded homomorphism. In the case Γ = Λ and g = id, we recover the
usual definition of a Γ-graded homomorphism. For example, if Ω is a subgroup
of Γ, then the identity map 1A : A → A is a Γ−Γ/Ω-graded homomorphism,
where A is considered as Γ and Γ/Ω-graded rings, respectively (see §1.1.2).

Throughout this book, we fix a given group Γ and we work with the Γ-
graded category and all our considerations are within this category. (See Re-
mark 2.3.14 for references to literature where mixed grading is studied.)

1.1.6 Graded prime and maximal ideals

A graded ideal P of Γ-graded ring A is called a graded prime ideal of A if
P � A and for any two graded ideals I, J, IJ ⊆ P, implies I ⊆ P or J ⊆ P. If
A is commutative, we obtain the familiar formulation that P is a graded prime
ideal if and only if for x, y ∈ Ah, xy ∈ P implies that x ∈ P or y ∈ P. Note that
a graded prime ideal is not necessarily a prime ideal.

A graded ideal P is called a graded semiprime ideal if for any graded ideal I
in A, I2 ⊆ P, implies I ⊆ P. A graded ring A is called a graded prime (graded
semiprime) ring if the zero ideal is a graded prime (graded semiprime) ideal.

A graded maximal ideal of a Γ-graded ring A is defined to be a proper graded
ideal of A which is maximal among the set of proper graded ideals of A. Using
Zorn’s lemma, one can show that graded maximal ideals exist, and it is not
difficult to show that a graded maximal ideal is a graded prime. For a graded
commutative ring, a graded ideal is maximal if and only if its quotient ring is a
graded field. There are similar notions of graded maximal left and right ideals.

Parallel to the nongraded setting, for a Γ-graded ring A, the graded Jacobson
radical, Jgr(A), is defined as the intersection of all graded left maximal ideals
of A. This coincides with the intersection of all graded right maximal ideals and
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so Jgr(A) is a two-sided ideal (see [75, Proposition 2.9.1]). We denote by J(A)
the usual Jacobson radical. It is a theorem of G. Bergman that for a Z-graded
ring A, J(A) is a graded ideal and J(A) ⊆ Jgr(A) (see [19]).

1.1.7 Graded simple rings

A nonzero graded ring A is said to be graded simple if the only graded two-
sided ideals of A are {0} and A. The structure of graded simple Artinian rings
are known (see Remark 1.4.8). Following [52] we prove that a graded ring A
is simple if and only if A is graded simple and C(A), the centre of A, is a field.

For a Γ-graded ring A, recall the support ΓA of A, from §1.1.1. For a ∈ A,
writing a =

∑
γ∈Γ aγ where aγ ∈ Ah, define the support of a to be

Γa =
{
γ | aγ � 0

}
.

We also need the notion of minimal support. A finite set X of Γ is called a
minimal support with respect to an ideal I if X = Γa for 0 � a ∈ I and there is
no b ∈ I such that b � 0 and Γb � Γa.

We start with a lemma.

Lemma 1.1.27 Let A be a Γ-graded simple ring and I an ideal of A. Let
0 � a ∈ I with Γa = {γ1, . . . , γn}. Then for any α ∈ ΓA, there is a 0 � b ∈ I with
Γb ⊆ {γ1 − γn + α, . . . , γn − γn + α}.
Proof Let 0 � x ∈ Aα, where α ∈ ΓA and 0 � a ∈ I with Γa = {γ1, . . . , γn}.
Write a =

∑n
i=1 aγi , where deg(aγi ) = γi. Since A is graded simple,

x =
∑

l

rlaγn sl, (1.8)

where rl, sl ∈ Ah. Thus there are rk, sk ∈ Ah such that rkaγn sk � 0 which implies
that b := rkask ∈ I is not zero. Comparing the degrees in Equation (1.8), it
follows that α = deg(rk) + deg(sk) + γn, or deg(rk) + deg(sk) = α − γn. So

Γb ⊆ Γa + deg(rk) + deg(sk) = { γ1 − γn + α, . . . , γn − γn + α }. �

Theorem 1.1.28 Let A be a Γ-graded ring. Then A is a simple ring if and only
if A is a graded simple ring and C(A) is a field.

Proof One direction is straightforward.
Suppose A is graded simple and C(A) is a field. We will show that A is a

simple ring. Suppose I is a nontrivial ideal of A and 0 � a ∈ I with Γa a
minimal support with respect to I. For any x ∈ Ah, with deg(x) = α and γ ∈ Γa,
we have

Γaxaγ−aγxa � Γa + (γ + α). (1.9)
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24 Graded rings and graded modules

Set b = axaγ − aγxa ∈ I. Suppose b � 0. By (1.9),

Γb � { γ1 + γ + α, . . . , γn + γ + α }.
Applying Lemma 1.1.27 with, say, γn + γ + α ∈ Γb and γn ∈ ΓA, we obtain a
0 � c ∈ I such that

Γc ⊆ Γb + (γn − γn − γ − α) � Γa.

This is, however, a contradiction as Γa was a minimal support. Thus b = 0,
i.e., axaγ = aγxa. It follows that for any γi ∈ Γa

aγi xaγ = aγxaγi . (1.10)

Consider the R-bimodule map

φ : R = 〈aγi〉 −→ 〈aγ j〉 = R,∑
l

rlaγi sl �−→
∑

l

rlaγ j sl.

To show that φ is well-defined, since φ(t+ s) = φ(t)+φ(s), it is enough to show
that if t = 0 then φ(t) = 0, where t ∈ 〈aγi〉. Suppose

∑
l rlaγi sl = 0. Then for

any x ∈ Ah, using (1.10) we have

0 = aγ j x
(∑

l

rlaγi sl
)
=
∑

l

aγ j xrlaγi sl =
∑

l

aγi xrlaγ j sl = aγi x
(∑

l

rlaγ j sl
)
.

Since A is graded simple, 〈aγi〉 = 1. It follows that
∑

l rlaγ j sl = 0. Thus φ is
well-defined, injective and also clearly surjective. Then aγ j = φ(aγi ) = aγiφ(1).
But φ(1) ∈ C(A). Thus a =

∑
j aγ j = aγi c where c ∈ C(A). But C(A) is a field,

so aγi = ac−1 ∈ I. Again, since R is graded simple, it follows that I = R. This
finishes the proof. �

Remark 1.1.29 If the grade group is not abelian, in order for Theorem 1.1.28
to be valid, the grade group should be hyper-central; A hyper-central group is
a group such that any nontrivial quotient has a nontrivial centre. If A is strongly
graded, and the grade group is torsion-free hyper-central, then A is simple if
and only if A is graded simple and C(A) ⊆ A0 (see [52]).

Remark 1.1.30 Graded simplicity implying simplicity

There are other cases that the graded simplicity of a ring implies that the
ring itself is simple. For example, if a ring is graded by an ordered group (such
as Z), and has a finite support, then graded simplicity implies the simplicity of
the ring [10, Theorem 3].
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1.1.8 Graded local rings

Recall that a ring is a local ring if the set of noninvertible elements form a
two-sided ideal. When A is a commutative ring, then A is local if and only if A
has a unique maximal ideal.

A Γ-graded ring A is called a graded local ring if the two-sided ideal M
generate by noninvertible homogeneous elements is a proper ideal. One can
easily observe that the graded ideal M is the unique graded maximal left, right,
and graded two-sided ideal of A. When A is a graded commutative ring, then
A is graded local if and only if A has a unique graded maximal ideal.

If A is a graded local ring, then the graded ring A/M is a graded division
ring. One can further show that A0 is a local ring with the unique maximal
ideal A0 ∩ M. In fact we have the following proposition.

Proposition 1.1.31 Let A be a Γ-graded ring. Then A is a graded local ring
if and only if A0 is a local ring.

Proof Suppose A is a graded local ring. Then by definition, the two-sided
ideal M generated by noninvertible homogeneous elements is a proper ideal.
Consider m = A0 ∩ M which is a proper ideal of A0. Suppose x ∈ A0\m. Then
x is a homogeneous element which is not in M. Thus x has to be invertible in
A and consequently in A0. This shows that A0 is a local ring with the unique
maximal ideal m.

Conversely, suppose A0 is a local ring. We first show that any left or right
invertible homogeneous element is a two-sided invertible element. Let a be a
left invertible homogeneous element. Then there is a homogeneous element b
such that ba = 1. If ab is not right invertible, then ab ∈ m, where m is the
unique maximal ideal of the local ring A0. Thus 1 − ab � m which implies that
1 − ab is invertible. But (1 − ab)a = a − aba = a − a = 0, and since 1 − ab
is invertible, we get a = 0 which is a contradiction to the fact that a has a left
inverse. Thus a has a right inverse and so is invertible. A similar argument can
be written for right invertible elements. Now let M be the ideal generated by
all noninvertible homogeneous elements of A. We will show that M is proper,
and thus A is a graded local ring. Suppose M is not proper. Thus 1 =

∑
i riaisi,

where ai are noninvertible homogeneous elements and ri, si are homogeneous
elements such that deg(riaisi) = 0. If riaisi is invertible for some i, using the
fact that right and left invertibles are invertibles, it follows that ai is invertible,
which is a contradiction. Thus riaisi, for all i, are homogeneous elements of
degree zero and not invertible. So they are all in m. This implies that 1 ∈ m,
which is a contradiction. Thus M is a proper ideal of A. �

https://doi.org/10.1017/CBO9781316717134.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316717134.002


26 Graded rings and graded modules

For more on graded local rings (graded by a cancellative monoid) see [64].
In §3.8 we determine the graded Grothendieck group of these rings.

1.1.9 Graded von Neumann regular rings

The von Neumann regular rings constitute an important class of rings. A unital
ring A is von Neumann regular if for any a ∈ A, we have a ∈ aAa. There are
several equivalent module theoretical definitions, such as A is von Neumann
regular if and only if any module over A is flat. This gives a comparison with
the class of division rings and semisimple rings. A ring is a division ring if and
only if any module is free. A semisimple ring is characterised by the property
that any module is projective. Goodearl’s book [40] is devoted to the class of
von Neumann regular rings. The definition extends to a nonunital ring in an
obvious manner.

If a ring has a graded structure, one defines the graded version of regularity
in a natural way: the graded ring A is called graded von Neumann regular if for
any homogeneous element a ∈ A we have a ∈ aAa. This means, for any homo-
geneous element a ∈ A, one can find a homogeneous element b ∈ A such that
a = aba. As an example, a direct sum of graded division rings is a graded von
Neumann regular ring. Many of the module theoretic properties established
for von Neumann regular rings can be extended to the graded setting; for ex-
ample, A is graded regular if and only if any graded module is (graded) flat.
We refer the reader to [74, C, I.5] for a treatment of such rings and [11, §2.2]
for a concise survey. Several of the graded rings we construct in this book are
graded von Neumann regular, such as Leavitt path algebras (Corollary 1.6.17)
and corner skew Laurent series (Proposition 1.6.8).

In this section, we briefly give some of the properties of graded von Neu-
mann regular rings. The following proposition is the graded version of [40,
Theorem 1.1] which has a similar proof.

Proposition 1.1.32 Let A be a Γ-graded ring. The following statements are
equivalent:

(1) A is a graded von Neumann regular ring;
(2) any finitely generated right (left) graded ideal of A is generated by a ho-

mogeneous idempotent.

Proof (1)⇒ (2) First we show that any principal graded ideal is generated by
a homogeneous idempotent. So consider the principal ideal xA, where x ∈ Ah.
By the assumption, there is y ∈ Ah such that xyx = x. This immediately implies
xA = xyA. Now note that xy is homogeneous idempotent.
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Next we will prove the claim for graded ideals generated by two elements.
The general case follows by an easy induction. So let xA+yA be a graded ideal
generated by two homogeneous elements x, y. By the previous paragraph, xA =

eA for a homogeneous idempotent e. Note that y−ey ∈ Ah and y−ey ∈ xA+yA.
Thus

xA + yA = eA + (y − ey)A. (1.11)

Again, the previous paragraph gives us a homogeneous idempotent f such that
(y − ey)A = f A. Let g = f − f e ∈ A0. Notice that e f = 0, which implies that
e and g are orthogonal idempotents. Moreover, f g = g and g f = f . It then
follows that gA = f A = (y − ey)A. Now from (1.11) we get

xA + yA = eA + gA = (e + g)A.

(2)⇒ (1) Let x ∈ Ah. Then xA = eA for some homogeneous idempotent e.
Thus x = ea and e = xy for some a, y ∈ Ah. Then x = ea = eea = ex = xyx. �

Proposition 1.1.33 Let A be a Γ-graded von Neumann regular ring. Then

(1) any graded right (left) ideal of A is idempotent;
(2) any graded ideal is graded semiprime;
(3) any finitely generated right (left) graded ideal of A is a projective module.

Moreover, if A is a Z-graded regular ring then

(4) J(A) = Jgr(A) = 0.

Proof The proofs of (1)–(3) are similar to the nongraded case [40, Corol-
lary 1.2]. We provide the easy proofs here.

(1) Let I be a graded right ideal. For any homogeneous element x ∈ I there
is y ∈ Ah such that x = xyx. Thus x = (xy)x ∈ I2. It follows that I2 = I.

(2) This follows immediately from (1).
(3) By Proposition 1.1.32, any finitely generated right ideal is generated by

a homogeneous idempotent. However, this latter ideal is a direct summand of
the ring, and so is a projective module.

(4) By Bergman’s observation, for a Z-graded ring A, J(A) is a graded ideal
and J(A) ⊆ Jgr(A) (see [19]). By Proposition 1.1.32, Jgr(A) contains an idem-
potent, which then forces Jgr(A) = 0. �

If the graded ring A is strongly graded then one can show that there is a
one-to-one correspondence between the right ideals of A0 and the graded right
ideals of A (similarly for the left ideals) (see Remark 1.5.6). This is always the
case for the graded regular rings as the following proposition shows.
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28 Graded rings and graded modules

Proposition 1.1.34 Let A be a Γ-graded von Neumann regular ring. Then
there is a one-to-one correspondence between the right (left) ideals of A0 and
the graded right (left) ideals of A.

Proof Consider the following correspondences between the graded right ide-
als of A and the right ideals of A0. For a graded right ideal I of A assign I0 in
A0 and for a right ideal J in A0 assign the graded right ideal JA in A. Note that
(JA)0 = J. We show that I0A = I. It is enough to show that any homogeneous
element a of I belongs to I0A. Since A is graded regular, axa = a for some
x ∈ Ah. But ax ∈ I0 and thus a = axa ∈ I0A. A similar proof gives the left ideal
correspondence. �

In Theorem 1.2.20 we give yet another characterisation of graded von Neu-
mann regular rings based on the concept of divisible modules.

Later, in Corollary 1.5.10, we show that if A is a strongly graded ring, then
A is graded von Neumann regular if and only if A0 is a von Neumann regular
ring. The proof uses the equivalence of suitable categories over the rings A and
A0. An element-wise proof of this fact can also be found in [96, Theorem 3].

1.2 Graded modules

1.2.1 Basic definitions

Let A be a Γ-graded ring. A graded right A-module M is defined to be a right
A-module M with a direct sum decomposition M =

⊕
γ∈Γ Mγ, where each Mγ

is an additive subgroup of M such that MλAγ ⊆ Mλ+γ for all γ, λ ∈ Γ.
For Γ-graded right A-modules M and N, a Γ-graded module homomorphism

f : M → N is a module homomorphism such that f (Mγ) ⊆ Nγ for all γ ∈ Γ.
A graded homomorphism f is called a graded module isomorphism if f is
bijective and, when such a graded isomorphism exists, we write M �gr N.
Notice that if f is a graded module homomorphism which is bijective, then its
inverse f −1 is also a graded module homomorphism.

1.2.2 Shift of modules

Let M be a graded right A-module. For δ ∈ Γ, we define the δ-suspended or
δ-shifted graded right A-module M(δ) as

M(δ) =
⊕
γ∈Γ

M(δ)γ, where M(δ)γ = Mδ+γ.
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This shift plays a pivotal role in the theory of graded rings. For example, if M
is a Z-graded A-module, then the following table shows how the shift like “the
tick of the clock” moves the homogeneous components of M to the left.

degrees -3 -2 -1 0 1 2 3

M M−1 M0 M1 M2

M(1) M−1 M0 M1 M2

M(2) M−1 M0 M1 M2

Let M be a Γ-graded right A-module. A submodule N of M is called a graded
submodule if

N =
⊕
γ∈Γ

(N ∩ Mγ).

Example 1.2.1 aA as a graded ideal and a graded module

Let A be a Γ-graded ring and a ∈ A a homogeneous element of degree α.
Then aA is a graded right A-module with γ ∈ Γ homogeneous component
defined as

(aA)γ := aAγ−α ⊆ Aγ.

With this grading aA is a graded submodule (and graded right ideal) of A. Thus
for β ∈ Γ, a is a homogenous element of the graded A-module aA(β) of degree
α−β. This will be used throughout the book, for example in Proposition 1.2.19.

However, note that defining the grading on aA as

(aA)γ := aAγ ⊆ Aγ+α

makes aA a graded submodule of A(α), which is the image of the graded ho-
momorphism A→ A(α), r �→ ar.

There are similar notions of graded left and graded bi-submodules (§1.2.5).
When N is a graded submodule of M, the factor module M/N forms a graded
A-module, with

M/N =
⊕
γ∈Γ

(M/N)γ, where (M/N)γ = (Mγ + N)/N. (1.12)

Example 1.2.2 Let A be a Γ-graded ring. Define a grading on the matrix
ring Mn(A) as follows. For α ∈ Γ, Mn(A)α = Mn(Aα) (for a general theory of
grading on matrix rings see §1.3). Let eii ∈Mn(A), 1 ≤ i ≤ n, be a matrix unit,
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30 Graded rings and graded modules

i.e., a matrix with 1 in the (i, i) position and zero everywhere else, and consider
eii Mn(A). By Example 1.2.1, eii Mn(A) is a graded right Mn(A)-module and

n⊕
i=1

eii Mn(A) = Mn(A).

This shows that the graded module eii Mn(A) is a projective module. This is an
example of a graded projective module (see §1.2.9).

Example 1.2.3 Let A be a commutative ring. Consider the matrix ring Mn(A)
as a Z-graded ring concentrated in degree zero. Moreover, consider Mn(A) as a
graded Mn(A)-module with the grading defined as follows: Mn(A)i = eii Mn(A)
for 1 ≤ i ≤ n and zero otherwise. Note that all nonzero homogeneous elements
of this module are zero-divisors, and thus can’t constitute a linear independent
set. We will use this example to show that a free module which is graded is not
necessarily a graded free module (§1.2.4).

Example 1.2.4 Modules with no shift

It is easy to construct modules whose shifts don’t produce new (nonisomor-
phic) graded modules. Let M be a graded A-module and consider

N =
⊕
γ∈Γ

M(γ).

We show that N �gr N(α) for any α ∈ Γ. Define the map fα : N → N(α) on
homogeneous components as follows and extend it to N,

Nβ =
⊕
γ∈Γ

Mγ+β −→
⊕
γ∈Γ

Mγ+α+β = N(α)β

{mγ} �−→ {m′γ},
where m′γ = mγ+α (i.e., shift the sequence α “steps”). It is routine to see that this
gives a graded A-module homomorphism with inverse homomorphism f−α. For
another example, see Corollary 1.3.18.

1.2.3 The Hom groups and the category of graded modules

For graded right A-modules M and N, a graded A-module homomorphism of
degree δ is an A-module homomorphism f : M → N, such that

f (Mγ) ⊆ Nγ+δ

for any γ ∈ Γ. Let HomA(M,N)δ denote the subgroup of HomA(M,N) consist-
ing of all graded A-module homomorphisms of degree δ, i.e.,

HomA(M,N)δ = { f ∈ HomA(M,N) | f (Mγ) ⊆ Nγ+δ, γ ∈ Γ}. (1.13)
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1.2 Graded modules 31

For graded A-modules, M,N and P, under the composition of functions, we
then have

HomA(N, P)γ × HomA(M,N)δ −→ Hom(M, P)γ+δ. (1.14)

Clearly a graded module homomorphism defined in §1.2.1 is a graded ho-
momorphism of degree 0.

By Gr-A (or GrΓ-A to emphasise the grade group of A), we denote a cate-
gory that consists of Γ-graded right A-modules as objects and graded homo-
morphisms as the morphisms. Similarly, A-Gr denotes the category of graded
left A-modules. Thus

HomGr-A(M,N) = HomA(M,N)0.

Moreover, for α ∈ Γ, as a set of functions, one can write

HomGr-A
(
M(−α),N

)
= HomGr-A

(
M,N(α)

)
= HomA(M,N)α. (1.15)

A full subcategory of Gr-A consisted of all graded finitely generated A-
modules is denoted by gr-A.

For α ∈ Γ, the α-suspension functor or shift functor

Tα : Gr-A −→ Gr-A,

M �−→ M(α),

(1.16)

is an isomorphism with the property TαTβ = Tα+β, where α, β ∈ Γ.

Remark 1.2.5 Let A be a Γ-graded ring and Ω be a subgroup of Γ such that
ΓA ⊆ Ω ⊆ Γ. Then the ring A can be considered naturally as a Ω-graded
ring. Similarly, if A, B are Γ-graded rings and f : A → B is a Γ-graded homo-
morphism and ΓA,ΓB ⊆ Ω ⊆ Γ, then the homomorphism f can be naturally
considered as a Ω-graded homomorphism. In this case, to make a distinction,
we write GrΓ-A for the category of Γ-graded A-modules and GrΩ-A for the
category of Ω-graded A-modules.

Theorem 1.2.6 For graded right A-modules M and N, such that M is finitely
generated, the abelian group HomA(M,N) has a natural decomposition

HomA(M,N) =
⊕
γ∈Γ

HomA(M,N)γ. (1.17)

Moreover, the endomorphism ring HomA(M,M) is Γ-graded.

Proof Let f ∈ HomA(M,N) and λ ∈ Γ. Define a map fλ : M → N as follows:
for m ∈ M,

fλ(m) =
∑
γ∈Γ

f (mγ−λ)γ, (1.18)
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32 Graded rings and graded modules

where m =
∑
γ∈Γ mγ. One can check that fλ ∈ HomA(M,N).

Now let m ∈ Mα, α ∈ Γ. Then (1.18) reduces to

fλ(m) = f (m)α+λ ⊆ Mα+λ.

This shows that fλ ∈ HomA(M,N)λ. Moreover, fλ(m) is zero for all but a finite
number of λ ∈ Γ and ∑

λ

fλ(m) =
∑
λ

f (m)α+λ = f (m).

Now since M is finitely generated, there are a finite number of homogeneous
elements which generate any element m ∈ M. The above argument shows that
only a finite number of the fλ(m) are nonzero and f =

∑
λ fλ. This in turn

shows that

HomA(M,N) =
∑
γ∈Γ

HomA(M,N)γ.

Finally, it is easy to see that HomA(M,N)γ, γ ∈ Γ constitutes a direct sum.
For the second part, replacing N by M in (1.17), we get

HomA(M,M) =
⊕
γ∈Γ

HomA(M,M)γ.

Moreover, by (1.14) if f ∈ HomA(M,M)γ and g ∈ HomA(M,M)λ then

f g ∈ HomA(M,M)γ+λ.

This shows that when M is finitely generated HomA(M,M) is a Γ-graded ring.
�

Let M be a graded finitely generated right A-module. Then the usual dual of
M, i.e., M∗ = HomA(M, A), is a left A-module. Moreover, using Theorem 1.2.6,
one can check that M∗ is a graded left A-module. Since

HomA(M,N)(α) = HomA(M(−α),N) = HomA(M,N(α)),

we have

M(α)∗ = M∗(−α). (1.19)

This should also make sense: the dual of “pushing forward” M by α, is the
same as “pulling back” the dual M∗ by α.

Note that although HomA(M,N) is defined in the category Mod-A, the graded
structures of M and N are intrinsic in the grading defined on HomA(M,N).
Thus if M is isomorphic to N as a nongraded A-module, then EndA(M) is not
necessarily graded isomorphic to EndA(N). However if M �gr N(α), α ∈ Γ,
then one can observe that EndA(M) �gr EndA(N) as graded rings.
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1.2 Graded modules 33

When M is a free module, HomA(M,M) can be represented as a matrix ring
over A. Next we define graded free modules. In §1.3 we will see that if M is
a graded free module, the graded ring HomA(M,M) can be represented as a
matrix ring over A with a very concrete grading.

Example 1.2.7 The Veronese submodule

For a Γ-graded ring A, recall the construction of nth-Veronese subring

A(n) =
⊕
γ∈Γ

Anγ

(Example 1.1.19). In a similar fashion, for a graded A-module M and n ∈ Z,
define the nth-Veronese module of M as

M(n) =
⊕
γ∈Γ

Mnγ.

This is a Γ-graded A(n)-module. Clearly there is a natural “forgetful” functor

U : Gr-A −→ Gr-A(n),

which commutes with suspension functors as follows TαU = UTnα, i.e.,

M(n)(α) = M(nα)(n),

for α ∈ Γ and n ∈ Z (see §1.2.7 for more on forgetful functors).

1.2.4 Graded free modules

A Γ-graded (right) A-module F is called a graded free A-module if F is a free
right A-module with a homogeneous base. Clearly a graded free module is a
free module but the converse is not correct, i.e., a free module which is graded
is not necessarily a graded free module. As an example, for A = R[x] consid-
ered as a Z-graded ring, A ⊕ A(1) is not a graded free A ⊕ A-module, whereas
A ⊕ A is a free A ⊕ A-module (see also Example 1.2.3). The definition of free
given here is consistent with the categorical definition of free objects over a set
of homogeneous elements in the category of graded modules ([50, I, §7]).

Consider a Γ-graded A-module
⊕

i∈I A(δi), where I is an indexing set and
δi ∈ Γ. Note that for each i ∈ I, the element ei of the standard basis (i.e., 1 in
the ith component and zero elsewhere) is homogeneous of degree −δi. The set
{ei}i∈I forms a base for

⊕
i∈I A(δi), which by definition makes this a graded free

A-module. On the other hand, a graded free A-module F with a homogeneous
base {bi}i∈I , where deg(bi) = −δi is graded isomorphic to

⊕
i∈I A(δi). Indeed
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one can easily observe that the map induced by

ϕ :
⊕

i∈I A(δi) −→ F (1.20)

ei �−→ bi

is a graded A-module isomorphism.
If the indexing set I is finite, say I = {1, . . . , n}, then⊕

i∈I A(δi) = A(δ1) ⊕ · · · ⊕ A(δn),

is also denoted by An(δ1, . . . , δn) or An(δ), where δ = (δ1, . . . , δn).
In §1.3.4, we consider the situation when the graded free right A-modules

An(δ) and Am(α), where δ = (δ1, . . . , δn) and α = (α1, . . . , αm), are isomorphic.
In §1.7, we will also consider the concept of graded rings with the graded
invariant basis numbers.

1.2.5 Graded bimodules

The notion of graded left A-modules is developed similarly. The category of
graded left A-modules with graded homomorphisms is denoted by A-Gr. In a
similar manner for Γ-graded rings A and B, we can consider the graded A−B-
bimodule M. That is, M is a A−B-bimodule and additionally M =

⊕
γ∈Γ Mγ is

a graded left A-module and a graded right B-module, i.e.,

AαMγBβ ⊆ Mα+γ+β,

where α, γ, β ∈ Γ. The category of graded A-bimodules is denoted by Gr-A-Gr.

Remark 1.2.8 Shift of nonabelian group graded modules

If the grade group Γ is not abelian, then in order that the shift of components
matches, for a graded left A-module M one needs to define

M(δ)γ = Mγδ,

whereas for the graded right M-module A, shift is defined by

M(δ)γ = Mδγ.

With these definitions, for Tα,Tβ : Gr-A → Gr-A, we have TαTβ = Tβα,
whereas for Tα,Tβ : A-Gr → A-Gr, we have TαTβ = Tαβ. For this reason,
in the nonabelian grade group setting, several books choose to work with the
graded left modules as opposed to the graded right modules we have adopted
in this book.
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1.2.6 Tensor product of graded modules

Let A be a Γ-graded ring and Mi, i ∈ I, be a direct system of Γ-graded A-
modules, i.e., I is a directed partially ordered set and for i ≤ j, there is a graded
A-homomorphism φi j : Mi → Mj which is compatible with the ordering.
Then M := lim−−→Mi is a Γ-graded A-module with homogeneous components
Mα = lim−−→Miα (see Example 1.1.9 for the similar construction for rings).

In particular, let {Mi | i ∈ I} be Γ-graded right A-modules. Then
⊕

i∈I Mi has
a natural graded A-module given by (

⊕
i∈I Mi)α =

⊕
i∈I Miα, α ∈ Γ.

Let M be a graded right A-module and N be a graded left A-module. We
will observe that the tensor product M ⊗A N has a natural Γ-graded Z-module
structure. Since each of Mγ, γ ∈ Γ, is a right A0-module and similarly Nγ,
γ ∈ Γ, is a left A0-module, then M ⊗A0 N can be decomposed as a direct sum

M ⊗A0 N =
⊕
γ∈Γ

(M ⊗ N)γ,

where

(M ⊗ N)γ =
{∑

i

mi ⊗ ni | mi ∈ Mh, ni ∈ Nh, deg(mi) + deg(ni) = γ
}
.

Now note that M ⊗A N � (M ⊗A0 N)/J, where J is a subgroup of M ⊗A0 N
generated by the homogeneous elements

{ma ⊗ n − m ⊗ an | m ∈ Mh, n ∈ Nh, a ∈ Ah}.
This shows that M ⊗A N is also a graded module. It is easy to check that, for
example, if N is a graded A-bimodule, then M⊗A N is a graded right A-module.
It follows from the definition that

M ⊗ N(α) = M(α) ⊗ N = (M ⊗ N)(α). (1.21)

Observe that for a graded right A-module M, the map

M ⊗A A(α) −→ M(α), (1.22)

m ⊗ a �−→ ma,

is a graded isomorphism. In particular, for any α, β ∈ Γ, there is a graded
A-bimodule isomorphism

A(α) ⊗A A(β) �gr A(α + β). (1.23)

Example 1.2.9 Graded formal matrix rings

The construction of formal matrix rings (Example 1.1.4) can be carried over
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to the graded setting as follows. Let R and S be Γ-graded rings, M be a graded
R−S-bimodule and N be a graded S−R-bimodule. Suppose that there are graded
bimodule homomorphisms φ : M ⊗S N → R and ψ : N ⊗R M → S such that
(mn)m′ = n(nm′), where we denote φ(m, n) = mn and ψ(n,m) = nm. Consider
the ring

T =

(
R M
N S

)
,

and define, for any γ ∈ Γ,

Tγ =
(
Rγ Mγ
Nγ S γ

)
.

One checks that T is a Γ-graded ring, called a graded formal matrix ring. One
specific type of such rings is a Morita ring which appears in graded Morita
theory (§2.3).

1.2.7 Forgetting the grading

Most forgetful functors in algebra tend to have left adjoints, which have a
“free” construction. One such example is the forgetful functor from the cat-
egory of abelian groups to abelian monoids that we will study in Chapter 3 in
relation to Grothendieck groups. However, some of the forgetful functors in
the graded setting naturally have right adjoints, as we will see below.

Consider the forgetful functor

U : Gr-A −→ Mod-A, (1.24)

which simply assigns to any graded module M in Gr-A its underlying module
M in Mod-A, ignoring the grading. Similarly, the graded homomorphisms are
sent to the same homomorphisms, disregarding their graded compatibilities.

There is a functor F : Mod-A → Gr-A which is a right adjoint to U. The
construction is as follows: let M be an A-module. Consider the abelian group
F(M) :=

⊕
γ∈Γ Mγ, where Mγ is a copy of M. Moreover, for a ∈ Aα and

m ∈ Mγ define m.a = ma ∈ Mα+γ. This defines a graded A-module structure
on F(M) and makes F an exact functor from Mod-A to Gr-A. One can prove
that for any M ∈ Gr-A and N ∈ Mod-A, we have a bijective map

HomMod-A
(
U(M),N

) φ−→ HomGr-A
(
M, F(N)

)
,

f �−→ φ f ,

where φ f (mα) = f (mα) ∈ Nα.
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Remark 1.2.10 It is not difficult to observe that for any M ∈ Gr-A,

FU(M) �gr

⊕
γ∈Γ

M(γ).

By Example 1.2.4, we have FU(M) �gr FU(M)(α) for any α ∈ Γ. We also
note that if Γ is finite, then F is also a left adjoint functor of U. Further, if U
has a left adjoint functor, then one can prove that Γ is finite (see [75, §2.5] for
details).

1.2.8 Partitioning graded modules

Let f : Γ → Δ be a group homomorphism. Recall from §1.1.2 that there
is a functor from the category of Γ-graded rings to the category of Δ-graded
rings which gives the natural forgetful functor when Δ = 0. This functor has
a right adjoint functor (see [75, Proposition 1.2.2] for the case of Δ = 0). The
homomorphism f induces a forgetful functor on the level of module categories.
We describe this here.

Let A be a Γ-graded ring and consider the corresponding Δ-graded structure
induced by the homomorphism f : Γ → Δ (§1.1.2). Then one can construct
a functor U f : GrΓ-A → GrΔ-A which has a right adjoint. In particular, for a
subgroup Ω of Γ, we have the following canonical “forgetful” functor (a block
functor or a coarsening functor)

U : GrΓ-A→ GrΓ/Ω-A,

such that when Ω = Γ, it gives the functor (1.24). The construction is as fol-
lows. Let M =

⊕
α∈Γ Mα be a Γ-graded A-module. Write

M =
⊕

Ω+α∈Γ/Ω
MΩ+α, (1.25)

where

MΩ+α :=
⊕
ω∈Ω

Mω+α. (1.26)

One can easily check that M is a Γ/Ω-graded A-module. Moreover,

U(M(α)) = M(Ω + α).

We will use this functor to relate the Grothendieck groups of these categories
in Examples 3.1.10 and 3.1.11.

In a similar manner we have the following functor

(−)Ω : GrΓ-A −→ GrΩ-AΩ,
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where GrΩ-A is the category of Ω-graded (right) AΩ-modules, where Ω =

ker( f ).
The above construction motivates the following which will establish a rela-

tion between the categories GrΓ-A and GrΩ-AΩ.
Consider the quotient group Γ/Ω and fix a complete set of coset representa-

tives {αi}i∈I . Let β ∈ Γ and consider the permutation map ρβ:

ρβ : Γ/Ω −→ Γ/Ω,

Ω + αi �−→ Ω + αi + β = Ω + α j.

This defines a bijective map (called ρβ again) ρβ : {αi}i∈I → {αi}i∈I . Moreover,
for any αi, since

Ω + αi + β = Ω + α j = Ω + ρβ(αi),

there is a unique wi ∈ Ω such that

αi + β = ωi + ρβ(αi). (1.27)

Recall that if C is an additive category,
⊕

I C, where I is a nonempty index
set, is defined in the obvious manner, with objects

⊕
i∈I Mi, where Mi are

objects of C and morphisms accordingly.
Define the functor

P : GrΓ-A −→
⊕
Γ/Ω

GrΩ-AΩ,

M �−→
⊕

Ω+αi∈Γ/Ω
MΩ+αi ,

(1.28)

where

MΩ+αi =
⊕
ω∈Ω

Mω+αi .

Since MΩ+α, α ∈ Γ, as defined in (1.26), can be naturally considered as an
Ω-graded AΩ-module, where

(MΩ+α)ω = Mω+α, (1.29)

it follows that the functor P defined in (1.28) is well-defined. Note that the ho-
mogeneous components defined in (1.29) depend on the coset representation,
thus choosing another complete set of coset representatives gives a different
functor between these categories.
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For any β ∈ Γ, define a shift functor

ρβ :
⊕
Γ/Ω

GrΩ-AΩ −→
⊕
Γ/Ω

GrΩ-AΩ,

⊕
Ω+αi∈Γ/Ω

MΩ+αi �−→
⊕

Ω+αi∈Γ/Ω
M(ωi)Ω+ρβ(αi), (1.30)

where ρβ(αi) and ωi are defined in (1.27). The action of ρβ on morphisms are
defined accordingly. Note that in the left hand side of (1.30) the graded AΩ-
module which appears in Ω + αi component is denoted by MΩ+αi . When M is
a Γ-graded module, then MΩ+αi has a Ω-structure as described in (1.26).

We are in a position to prove the next theorem.

Theorem 1.2.11 Let A be a Γ-graded ring and Ω a subgroup of Γ. Then for
any β ∈ Γ, the following diagram is commutative,

GrΓ-A P ��

Tβ

��

⊕
Γ/Ω GrΩ-AΩ

ρβ

��
GrΓ-A P ��

⊕
Γ/Ω GrΩ-AΩ,

(1.31)

where the functors P and ρβ are defined in (1.28) and (1.30), respectively.
Moreover, if ΓA ⊆ Ω, then the functor P induces an equivalence of categories.

Proof We first show that Diagram (1.31) is commutative. Let β ∈ Γ and M
be a Γ-graded A-module. As in (1.27), let {αi} be a fixed complete set of coset
representative and

αi + β = ωi + ρβ(αi).

Then

P(Tβ(M)) = P(M(β)) =
⊕

Ω+αi∈Γ/Ω
M(β)Ω+αi . (1.32)

But

M(β)Ω+αi =
⊕
ω∈Ω

M(β)ω+αi =
⊕
ω∈Ω

Mω+αi+β =
⊕
ω∈Ω

Mω+ωi+ρβ(αi) =⊕
ω∈Ω

M(ωi)ω+ρβ(αi) = M(ωi)Ω+ρβ(αi).

Replacing this into Equation (1.32) we have

P(Tβ(M)) =
⊕

Ω+αi∈Γ/Ω
M(ωi)Ω+ρβ(αi). (1.33)
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On the other hand, by (1.30),

ρβP(M) = ρβ(
⊕

Ω+αi∈Γ/Ω
MΩ+αi ) =

⊕
Ω+αi∈Γ/Ω

M(ωi)Ω+ρβ(αi). (1.34)

Comparing (1.33) and (1.34) shows that Diagram (1.31) is commutative.
For the last part of the theorem, suppose ΓA ⊆ Ω. We construct a functor

P′ :
⊕
Γ/Ω

GrΩ-AΩ −→ GrΓ-A,

which depends on the coset representative {αi}i∈I of Γ/Ω. First note that any
α ∈ Γ can be written uniquely as α = αi + ω, for some i ∈ I and ω ∈ Ω. Now
let ⊕

Ω+αi∈Γ/Ω
NΩ+αi ∈

⊕
Γ/Ω

GrΩ-AΩ,

where NΩ+αi is an Ω-graded AΩ-module. Define a Γ-graded A-module N as
follows: N =

⊕
α∈Γ Nα, where Nα := (NΩ+αi )ω and α = αi + ω. We check that

N is a Γ-graded A-module, i.e., NαAγ ⊆ Nα+γ, for α, γ ∈ Γ. If γ � Ω, since
ΓA ⊆ Ω, Aγ = 0 and thus 0 = NαAγ ⊆ Nα+γ. Let γ ∈ Ω. Then

NαAγ = (NΩ+αi )ωAγ ⊆ (NΩ+αi )ω+γ = Nα+γ,

as α + γ = αi + ω + γ.
We define P′(

⊕
Ω+αi∈Γ/Ω NΩ+αi ) = N for the objects and similarly for the

morphisms. It is now not difficult to check that P′ is an inverse of the functor
P. This finishes the proof. �

The above theorem will be used to compare the graded K-theories with re-
spect to Γ and Ω (see Example 3.1.11).

Corollary 1.2.12 Let A be a Γ-graded ring concentrated in degree zero. Then

Gr-A ≈
⊕
Γ

Mod-A.

The action of Γ on
⊕

Γ
Mod-A described in (1.30) reduces to the following:

for β ∈ Γ,

ρβ
(⊕
α∈Γ

Mα
)
=
⊕
α∈Γ

M(β)α =
⊕
α∈Γ

Mα+β. (1.35)

Proof This follows by replacing Ω by a trivial group in Theorem 1.2.11. �

The following corollary, which is a more general case of Corollary 1.2.12
with a similar proof, will be used in the proof of Lemma 6.1.6.
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Corollary 1.2.13 Let A be a Γ × Ω graded ring which is concentrated in Ω.
Then

GrΓ×Ω-A �
⊕
Γ

GrΩ-A.

The action of Γ×Ω on
⊕

Γ
GrΩ-A described in (1.30) reduces to the following:

for (β, ω) ∈ Γ ×Ω,

ρ(β,ω)

(⊕
α∈Γ

Mα
)
=
⊕
α∈Γ

Mα+β(ω).

1.2.9 Graded projective modules

Graded projective modules play a crucial role in this book. They will appear
in the graded Morita theory in Chapter 2 and will be used to define the graded
Grothendieck groups in Chapter 3. Moreover, the graded higher K-theory is
constructed from the exact category consisting of graded finitely generated pro-
jective modules (see Chapter 6). In this section we define the graded projective
modules and give several equivalent criteria for a module to be graded projec-
tive. As before, unless stated otherwise, we work in the category of (graded)
right modules.

A graded A-module P is called a graded projective module if it is a projective
object in the abelian category Gr-A. More concretely, P is graded projective if
for any diagram of graded modules and graded A-module homomorphisms

P

j

��

h

��
M g

�� N �� 0,

(1.36)

there is a graded A-module homomorphism h : P→ M with gh = j.
In Proposition 1.2.15 we give some equivalent characterisations of graded

projective modules, including the one that shows an A-module is graded pro-
jective if and only if it is graded and projective as an A-module. By Pgr-A (or
PgrΓ-A to emphasise the grade group of A) we denote a full subcategory of
Gr-A, consisting of graded finitely generated projective right A-modules. This
is the primary category we are interested in. The graded Grothendieck group
(Chapter 3) and higher K-groups (Chapter 6) are constructed from this exact
category (see Definition 3.12.1).

We need the following lemma, which says if a graded map factors into two
maps, with one being graded, then we can replace the other one with a graded
map as well.
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42 Graded rings and graded modules

Lemma 1.2.14 Let P,M,N be graded A-modules, with A-module homomor-
phisms f , g, h

M
g

��
P

h
��

f
�� N

such that f = gh, where f is a graded A-module homomorphism. If g (resp.
h) is a graded A-homomorphism then there exists a graded homomorphism
h′ : P→ M (resp. g′ : M → N) such that f = gh′ (resp. f = g′h).

Proof Suppose g : M → N is a graded A-module homomorphism. Define
h′ : P → M as follows: for p ∈ Pα, α ∈ Γ, let h′(p) = h(p)α and extend this
linearly to all elements of P, i.e., for p ∈ P with p =

∑
α∈Γ pα,

h(p) =
∑
α∈Γ

h(pα)α.

One can easily see that h′ : P → M is a graded A-module homomorphism.
Moreover, for p ∈ Pα, α ∈ Γ, we have

f (p) = gh(p) = g
(∑
γ∈Γ

h(p)γ
)
=
∑
γ∈Γ

g
(
h(p)γ
)
.

Since f and g are graded homomorphisms, comparing the degrees of the ho-
mogeneous elements of each side of the equation, we get

f (p) = g(h(p)α) = gh′(p).

Using the linearity of f , g, h′ it follows that f = gh′. This proves the lemma for
the case g. The other case is similar. �

We are in a position to give equivalent characterisations of graded projective
modules.

Proposition 1.2.15 Let A be a Γ-graded ring and P be a graded A-module.
Then the following are equivalent:

(1) P is graded and projective;
(2) P is graded projective;
(3) HomGr-A(P,−) is an exact functor in Gr-A;
(4) every short exact sequence of graded A-module homomorphisms

0 −→ L
f−→ M

g−→ P −→ 0

splits via a (graded) map;
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(5) P is graded isomorphic to a direct summand of a graded free A-module.

Proof (1)⇒ (2) Consider the diagram

P

j

��
M g

�� N �� 0,

where M and N are graded modules, g and j are graded homomorphisms and
g is surjective. Since P is projective, there is an A-module homomorphism
h : P → M with gh = j. By Lemma 1.2.14, there is a graded A-module
homomorphism h′ : P → M with gh′ = j. This gives that P is a graded
projective module.

(2) ⇒ (3) In exactly the same way as the nongraded setting, we can show
(with no assumption on P) that HomGr-A(P,−) is left exact (see [50, §IV, The-
orem 4.2]). The right exactness follows immediately from the definition of
graded projective modules that any diagram of the form (1.36) can be com-
pleted.

(3)⇒ (4) Let

0 −→ L
f−→ M

g−→ P −→ 0 (1.37)

be a short exact sequence. Since HomGr-A(P,−) is exact,

HomGr-A(P,M) −→ HomGr-A(P, P)

h �−→ gh

is an epimorphism. In particular, there is a graded homomorphism h such that
gh = 1, i.e., the short exact sequence (1.37) is spilt.

(4) ⇒ (5) First note that P is a homomorphic image of a graded free A-
module as follows: Let {pi}i∈I be a homogeneous generating set for P, where
deg(pi) = δi. Let

⊕
i∈I A(−δi) be the graded free A-module with standard ho-

mogeneous basis {ei}i∈I where deg(ei) = δi. Then there is an exact sequence

0 −→ ker(g)
⊆−→
⊕

i∈I
A(−δi) g−→ P −→ 0, (1.38)

as the map

g :
⊕

i∈I
A(−δi) −→ P,

ei �−→ pi,

is a surjective graded A-module homomorphism. By the assumption, there is
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a A-module homomorphism h : P → ⊕i∈I A(−δi) such that gh = idP. By
Lemma 1.2.14 one can assume h is a graded homomorphism.

Since the exact sequence (1.38) is, in particular, a split exact sequence of A-
modules, we know from the nongraded setting [67, Proposition 2.5] that there
is an A-module isomorphism

θ : P ⊕ ker(g) −→
⊕

i∈I A(−δi)
(p, q) �−→ h(p) + q.

Clearly this map is also a graded A-module homomorphism, so

P ⊕ ker(g) �gr

⊕
i∈I

A(−δi).

(5)⇒ (1) Graded free modules are free, so P is isomorphic to a direct sum-
mand of a free A-module. From the nongraded setting, we know that P is pro-
jective. �

The proof of Proposition 1.2.15 (see in particular (4)⇒ (5) and (5)⇒ (1))
shows that a graded A-module P is a graded finitely generated projective A-
module if and only if

P ⊕ Q �gr An(α) (1.39)

for some α = (α1, . . . , αn), αi ∈ Γ. This fact will be used frequently throughout
this book.

Remark 1.2.16 Recall the functor P from (1.28). It is easy to see that if M is
a Γ-graded projective A-module, then MΩ+α is aΩ-graded projective AΩ-graded
module. Thus the functor P restricts to

P : PgrΓ-A −→
⊕
Γ/Ω

PgrΩ-AΩ,

M �−→
⊕

Ω+αi∈Γ/Ω
MΩ+αi .

(1.40)

This will be used later in Examples 3.1.5, 3.1.11 and Lemma 6.1.6.

Theorem 1.2.17 (The dual basis lemma) Let A be a Γ-graded ring and P be a
graded A-module. Then P is graded projective if and only if there exists pi ∈ Ph

with deg(pi) = δi and fi ∈ HomGr-A(P, A(−δi)), for some indexing set I, such
that

(1) for every p ∈ P, fi(p) = 0 for all but a finite subset of i ∈ I,
(2) for every p ∈ P,

∑
i∈I fi(p)pi = p.
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Proof Since P is graded projective, by Proposition 1.2.15(5), there is a graded
module Q such that P ⊕ Q �gr

⊕
i A(−δi). This gives two graded maps

φ : P→
⊕

i

A(−δi) and π :
⊕

i

A(−δi)→ P,

such that πφ = 1P. Let

πi :
⊕

i

A(−δi) −→ A(−δi),

{ai}i∈I �−→ ai

be the projection on the ith component. So if

a = {ai}i∈I ∈
⊕

i

A(−δi),

then ∑
i

πi(a)ei = a,

where {ei}i∈I is the standard homogeneous basis of
⊕

i A(−δi). Now let pi =

π(ei) and fi = πiφ. Note that deg(pi) = δi and

fi ∈ HomGr-A(P, A(−δi)).
Clearly fi(p) = πiφ(p) is zero for all but a finite number of i ∈ I. This gives
(1). Moreover,∑

i

pi fi(p) =
∑

i

piπiφ(p) =
∑
π(ei)πiφ(p) = π

(∑
i

eiπiφ(p)
)
= πφ(p) = p.

This gives (2).
Conversely, suppose that there exists a dual basis {pi, fi | i ∈ I}. Consider

the maps

φ : P −→
⊕

i

A(−δi),

p �−→ { fi(p)}i∈I
and

π :
⊕

i

A(−δi) −→ P,

{ai}i∈I �−→
∑

i

piai.
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One sees easily that φ and π are graded right A-module homomorphisms and
πφ = 1P. Therefore the exact sequence

0 −→ ker(π) −→
⊕

i

A(−δi) π−→ P −→ 0

splits. Thus P is a direct summand of the graded free module
⊕

i A(−δi). By
Proposition 1.2.15, P is a graded projective. �

Remark 1.2.18 Graded injective modules
Proposition 1.2.15 shows that an A-module P is graded projective if and

only if P is graded and projective. However, the similar statement is not valid
for graded injective modules. A graded A-module I is called a graded injective
module if for any diagram of graded modules and graded A-module homomor-
phisms

0 �� N
g ��

j
��

M

h
��

I

there is a graded A-module homomorphism h : M → I with hg = j.
Using Lemma 1.2.14 one can show that if a graded module is injective, then

it is also graded injective. However, a graded injective module is not neces-
sarily injective. The reason for this difference between projective and injective
behaviour is that the forgetful functor U : Gr-A → Mod-A is a left adjoint
functor (see Remark 1.2.7). In detail, consider a graded projective module P
and the diagram

P

j

��
M g

�� N �� 0,

where M and N are A-modules. Since the diagram below is commutative

HomMod-A(U(P),M) � ��

��

HomGr-A(P, F(M))

��
HomMod-A(U(P),N) � �� HomGr-A(P, F(N))
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and there is a graded homomorphism h′ : P→ F(M) such that the diagram

P

j′

��

h′

��
F(M)

F(g)
�� F(N) �� 0,

is commutative, there is a homomorphism h : P → M such that gh = j. So P
is projective (see Proposition 1.2.15 for another proof).

If the grade group is finite, then the forgetful functor is right adjoint as well
(see Remark 1.2.7) and a similar argument as above shows that a graded injec-
tive module is injective.

1.2.10 Graded divisible modules

Here we define the notion of graded divisible modules and we give yet another
characterisation of graded von Neumann regular rings (see §1.1.9).

Let A be a Γ-graded ring and M a graded right A-module. We say m ∈ Mh

(a homogeneous element of M) is divisible by a ∈ Ah if m ∈ Ma, i.e., there is
a homogeneous element n ∈ M such that m = na. We say that M is a graded
divisible module if for any m ∈ Mh and any a ∈ Ah, where annr(a) ⊆ ann(m),
we have that m is divisible by a. Note that for m ∈ Mh, the annihilator of m,

ann(m) := { a ∈ A | ma = 0 }
is a graded ideal of A.

Proposition 1.2.19 Let A be a Γ-graded ring and M a graded right A-module.
Then the following are equivalent:

(1) M is a graded divisible module;
(2) for any a ∈ Ah, γ ∈ Γ, and any graded A-module homomorphism f :

aA(γ)→ M, the following diagram can be completed:

0 �� aA(γ) ⊆ ��

f
��

A(γ)

f��
M.

Proof (1) ⇒ (2) Let f : aA(γ) → M be a graded A-homomorphism. Set
m := f (a). Note that deg(m) = α − γ, where deg(a) = α (see Example 1.2.1).
If x ∈ annr(a) then 0 = f (ax) = f (a)x = mx, thus x ∈ ann(m). Since M is
graded divisible, m is divisible by a, i.e., m = na for some n ∈ M. It follows
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that deg(n) = −γ. Define f : A(γ) → M by f (1) = n and extend it to A(γ).
Thisis a graded A-module. Since f (a) = f (1)a = na = m, f extends f .

(2) ⇒ (1) Let m ∈ Mh and a ∈ Ah, where annr(a) ⊆ ann(m). Suppose
deg(a) = α and deg(m) = β. Let γ = α− β and define the map f : aA(γ)→ M,
by f (a) = m and extend it to aA(γ). The following shows that f is in fact a
graded A-homomorphism:

f
((

aA(γ)
)
δ

)
⊆ f
(
(aA)γ+δ

) ⊆ f
(
aAγ+δ−α

)
= f
(
aAδ−β
)
= mAδ−β ⊆ Mδ.

Thus there is an f : A(γ) → M which extends f . So m = f (a) = f (a) =
f (1)a = na, where f (1) = n. This means m is divisible by a and the proof is
complete. �

Theorem 1.2.20 Let A be a Γ-graded ring. Then A is graded von Neumann
regular if and only if any graded right A-module is divisible.

Proof Let A be a graded regular ring. Consider the exact sequence of graded
right A-modules

0 −→ aA(γ)
⊆−→ A(γ) −→ A(γ)/aA(γ) −→ 0.

Define

f : A(γ) −→ aA(γ),

x �−→ abx.

Since deg(ab) = 0 this gives a split graded homomorphism for the exact se-
quence above. Thus aA(γ) is a direct summand of A(γ). This shows that any
graded A-module homomorphism f : aA(γ)→ M can be extend to A(γ).

Conversely, consider the diagram

0 �� aA ⊆ ��

∩
��

A

f��
aA.

Since aA is divisible, there is an f which completes this diagram. Set f (1) =
ab, where b ∈ Ah. We then have a = f (a) = f (1)a = aba. Thus A is a graded
regular ring. �

Example 1.2.21 Graded rings associated with filter rings

A ring A with identity is called a filtered ring if there is an ascending family
{Ai | i ∈ Z} of additive subgroups of A such that 1 ∈ A0 and AiAj ⊆ Ai+ j, for all
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i, j ∈ Z. Let A be a filtered ring and M be a right A-module. M is called a fil-
tered module if there is an ascending family {Mi | i ∈ Z} of additive subgroups
of M such that MiAj ⊆ Mi+ j, for all i, j ∈ Z. An A-module homomorphism
f : M → N of filtered modules M and N is called a filtered homomorphism
if f (Mi) ⊆ Ni for i ∈ Z. A category consisting of filtered right A-modules for
objects and filtered homomorphisms as morphisms is denoted by Filt-A. If M
is a filtered A-module then

gr(M) :=
⊕
i∈Z

Mi/Mi−1

is a Z-graded gr(A) :=
⊕

i∈Z Ai/Ai−1-module. The operations here are defined
naturally. This gives a functor gr : Filt-A → Gr-gr(A). In Example 1.4.7 we
use a variation of this construction to associate a graded division algebra with
a valued division algebra.

In the theory of filtered rings, one defines the concepts of filtered free and
projective modules and under certain conditions the functor gr sends these ob-
jects to the corresponding objects in the category Gr-gr(A). For a comprehen-
sive study of filtered rings see [73].

1.3 Grading on matrices

Let A be an arbitrary ring and Γ an arbitrary group. Then one can consider Γ-
gradings on the matrix ring Mn(A) which, at first glance, might look somewhat
artificial. However, these types of gradings on matrices appear quite naturally
in the graded rings arising from graphs. In this section we study the grading on
matrices. We then include a section on graph algebras (including path algebras
and Leavitt path algebras, §1.6). These algebras give us a wealth of examples
of graded rings and graded matrix rings.

For a free right A-module V of dimension n, there is a ring isomorphism
EndA(V) �Mn(A). When A is a Γ-graded ring and V is a graded free module of
finite rank, by Theorem 1.2.6, EndA(V) has a natural Γ-grading. This induces a
graded structure on the matrix ring Mn(A). In this section we study this grading
on matrices. For an n-tuple (δ1, . . . , δn), δi ∈ Γ, we construct a grading on the
matrix ring Mn(A), denoted by Mn(A)(δ1, . . . , δn), and we show that

EndA
(
A(−δ1) ⊕ A(−δ2) ⊕ · · · ⊕ A(−δn)

)
�gr Mn(A)(δ1, . . . , δn).

We will see that these graded structures on matrices appear very naturally
when studying the graded structure of path algebras in §1.6.
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1.3.1 Graded calculus on matrices

Let A be a Γ-graded ring and let M = M1 ⊕ · · · ⊕ Mn, where Mi are graded
finitely generated right A-modules. Then M is also a graded right A-module
(see §1.2.6). Let

(
Hom(Mj,Mi)

)
1≤i, j≤n :=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HomA(M1,M1) HomA(M2,M1) · · · HomA(Mn,M1)
HomA(M1,M2) HomA(M2,M2) · · · HomA(Mn,M2)

...
...

. . .
...

HomA(M1,Mn) HomA(M2,Mn) · · · HomA(Mn,Mn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is easy to observe that
(

Hom(Mj,Mi)
)
1≤i, j≤n forms a ring with component-

wise addition and matrix multiplication. Moreover, for λ ∈ Γ, assigning the
additive subgroup⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HomA(M1,M1)λ HomA(M2,M1)λ · · · HomA(Mn,M1)λ
HomA(M1,M2)λ HomA(M2,M2)λ · · · HomA(Mn,M2)λ

...
...

. . .
...

HomA(M1,Mn)λ HomA(M2,Mn)λ · · · HomA(Mn,Mn)λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.41)

as a λ-homogeneous component of
(

Hom(Mj,Mi)
)
1≤i, j≤n, using Theorem 1.2.6

and (1.14), it follows that
(

Hom(Mj,Mi)
)
1≤i, j≤n is a Γ-graded ring.

Let π j : M → Mj and κ j : Mj → M be the (graded) projection and injection
homomorphisms. For the next theorem, we need the following identities:

n∑
i=1

κiπi = idM and πiκ j = δi j idM j , (1.42)

where δi j is the Kronecker delta.

Theorem 1.3.1 Let A be a Γ-graded ring and M = M1 ⊕ · · · ⊕ Mn, where
Mi are graded finitely generated right A-modules. Then there is a graded ring
isomorphism

Φ : EndA(M) −→ (Hom(Mj,Mi)
)
1≤i, j≤n

defined by f �→ (πi f κ j), 1 ≤ i, j ≤ n.

Proof The map Φ is clearly well-defined. Since for f , g ∈ EndA(M),

Φ( f + g) =
(
πi( f + g)κ j

)
1≤i, j≤n =

(
πi f κ j + πigκ j

)
1≤i, j≤n

=
(
πi f κ j
)
1≤i, j≤n +

(
πigκ j
)
1≤i, j≤n = Φ( f ) + Φ(g)
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and

Φ( f g) =
(
πi f gκ j

)
1≤i, j≤n =

(
πi f (

n∑
l=1

κlπl)gκ j

)
1≤i, j≤n

=
( n∑

l=1

(πi f κl)(πlgκ j)
)

1≤i, j≤n
= Φ( f )Φ(g),

Φ is a ring homomorphism. Moreover, if f ∈ EndA(M)λ, λ ∈ Γ, then

πi f κ j ∈ HomA(Mj,Mi)λ,

for 1 ≤ i, j ≤ n. This (see (1.41)) shows thatΦ is a graded ring homomorphism.
Define the map

Ψ :
(

Hom(Mj,Mi)
)
1≤i, j≤n −→ EndA(M),

(gi j)1≤i, j≤n �−→
∑

1≤i, j≤n

κigi jπ j.

Using the identities (1.42), one can observe that the compositions ΨΦ and ΦΨ
give the identity maps of the corresponding rings. Thus Φ is an isomorphism.

�

For a graded ring A, consider A(δi), 1 ≤ i ≤ n, as graded right A-modules
and observe that

Φδ j,δi : HomA
(
A(δi), A(δ j)

)
�gr A(δ j − δi), (1.43)

as graded left A-modules such that

Φδk ,δi (g f ) = Φδk ,δ j (g)Φδ j,δi ( f ),

where f ∈ Hom(A(δi), A(δ j)) and g ∈ Hom(A(δ j), A(δk)) (see (1.17)). If

V = A(−δ1) ⊕ A(−δ2) ⊕ · · · ⊕ A(−δn),

then by Theorem 1.3.1,

EndA(V) �gr

(
Hom
(
A(−δ j), A(−δi)))1≤i, j≤n

.

Applying Φδ j,δi defined in (1.43) to each entry, we have

EndA(V) �gr

(
Hom
(
A(−δ j), A(−δi)))1≤i, j≤n

�gr
(
A(δ j − δi))1≤i, j≤n.

Denoting the graded matrix ring
(
A(δ j − δi))1≤i, j≤n by Mn(A)(δ1, . . . , δn), we

have
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Mn(A)(δ1, . . . , δn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(δ1 − δ1) A(δ2 − δ1) · · · A(δn − δ1)
A(δ1 − δ2) A(δ2 − δ2) · · · A(δn − δ2)
...

...
. . .

...

A(δ1 − δn) A(δ2 − δn) · · · A(δn − δn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.44)

By (1.41), Mn(A)(δ1, . . . , δn)λ, the λ-homogeneous elements, are the n × n-
matrices over A with the degree shifted (suspended) as follows:

Mn(A)(δ1, . . . , δn)λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aλ+δ1−δ1 Aλ+δ2−δ1 · · · Aλ+δn−δ1
Aλ+δ1−δ2 Aλ+δ2−δ2 · · · Aλ+δn−δ2
...

...
. . .

...

Aλ+δ1−δn Aλ+δ2−δn · · · Aλ+δn−δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.45)

This also shows that for x ∈ Ah,

deg(ei j(x)) = deg(x) + δi − δ j, (1.46)

where ei j(x) is a matrix with x in the i j-position and zero elsewhere.
In particular the zero homogeneous component (which is a ring) is of the

form

Mn(A)(δ1, . . . , δn)0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 Aδ2−δ1 · · · Aδn−δ1
Aδ1−δ2 A0 · · · Aδn−δ2
...

...
. . .

...

Aδ1−δn Aδ2−δn · · · A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.47)

Setting δ = (δ1, . . . , δn) ∈ Γn, one denotes the graded matrix ring (1.44) by
Mn(A)(δ). To summarise, we have shown that there is a graded ring isomor-
phism

EndA
(
A(−δ1) ⊕ A(−δ2) ⊕ · · · ⊕ A(−δn)

)
�gr Mn(A)(δ1, . . . , δn). (1.48)

Remark 1.3.2 Matrix rings of a nonabelian group grading

If the grade group Γ is nonabelian, the homogeneous components of the
matrix ring take the following form:

Mn(A)(δ1 . . . , δn)λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aδ1λδ−1
1

Aδ1λδ−1
2
· · · Aδ1λδ−1

n

Aδ2λδ−1
1

Aδ2λδ−1
2
· · · Aδ2λδ−1

n

...
...

. . .
...

Aδnλδ−1
1

Aδnλδ−1
2
· · · Aδnλδ−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Consider the graded A-bimodule An(δ) = A(δ1) ⊕ · · · ⊕ A(δn). Then one can
check that An(δ) is a graded right Mn(A)(δ)-module and An(−δ) is a graded
left Mn(A)(δ)-module, where −δ = (−δ1, . . . ,−δn). These will be used in the
graded Morita theory (see Proposition 2.1.1).

One can easily check the graded ring R = Mn(A)(δ), where δ = (δ1, . . . δn),
δi ∈ Γ, has the support

ΓR =
⋃

1≤i, j≤n

ΓA + δi − δ j. (1.49)

One can rearrange the shift, without changing the graded matrix ring, as the
following theorem shows (see also [75, pp. 60–61]).

Theorem 1.3.3 Let A be a Γ-graded ring and δi ∈ Γ, 1 ≤ i ≤ n.

(1) If α ∈ Γ, and π ∈ S n is a permutation then

Mn(A)(δ1, . . . , δn) �gr Mn(A)(δπ(1) + α, . . . , δπ(n) + α). (1.50)

(2) If τ1, . . . , τn ∈ Γ∗A, then

Mn(A)(δ1, . . . , δn) �gr Mn(A)(δ1 + τ1, . . . , δn + τn). (1.51)

Proof (1) Let V be a graded free module over A with a homogeneous basis
v1, . . . , vn of degree λ1, . . . , λn, respectively. It is easy to see that ((1.20))

V �gr A(−λ1) ⊕ · · · ⊕ A(−λn),

and thus EndA(V) �gr Mn(A)(λ1, . . . , λn) (see (1.48)). Now let π ∈ S n. Re-
arranging the homogeneous basis as vπ(1), . . . , vπ(n) and defining the A-graded
isomorphism φ : V → V by φ(vi) = vπ−1(i), we get a graded isomorphism in the
level of endomorphism rings, called φ again

Mn(A)(λ1, . . . , λn) �gr EndA(V)
φ−→ EndA(V) �gr Mn(A)(λπ(1), . . . , λπ(n)).

(1.52)
Moreover, (1.45) shows that it does not make any difference adding a fixed
α ∈ Γ to each of the entries in the shift. This gives us (1.50).

In fact, the isomorphism φ in (1.52) is defined as φ(M) = PπMP−1
π , where

Pπ is the n × n permutation matrix with entries at (i, π(i)), 1 ≤ i ≤ n, being 1
and zero elsewhere.

(2) For (1.51), let τi ∈ Γ∗A, 1 ≤ i ≤ n, that is, τi = deg(ui) for some units
ui ∈ Ah. Consider the basis viui, 1 ≤ i ≤ n for V . With this basis,

EndA(V) �gr Mn(A)(δ1 + τ1, . . . , δn + τn).

Consider the A-graded isomorphism id : V → V , by id(vi) = (viui)u−1
i . A
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54 Graded rings and graded modules

similar argument as Part (1) now gives (1.51). The isomorphism is given by
φ(M) = P−1MP, where P = D[u1, . . . , un] is the diagonal matrix. �

Note that if A has a trivial Γ-grading, i.e., A =
⊕
γ∈Γ Aγ, where A0 = A and

Aγ = 0, for 0 � γ ∈ Γ, this construction induces a good grading on Mn(A).
By definition, this is a grading on Mn(A) such that the matrix unit ei j, the
matrix with 1 in the i j-position and zero everywhere else, is homogeneous, for
1 ≤ i, j ≤ n. This particular group gradings on matrix rings have been studied
by Dăscălescu et al. [34] (see Remark 1.3.9). Therefore, for x ∈ A,

deg(ei j(x)) = δi − δ j. (1.53)

One can easily check that for a ring A with trivial Γ-grading, the graded ring
Mn(A)(δ), where δ = (δ1, . . . δn), δi ∈ Γ, has the support { δi − δ j | 1 ≤ i, j ≤ n }.
(This follows also immediately from (1.49).)

The grading on matrices appears quite naturally in the graded rings arising
from graphs. We will show that the graded structure Leavitt path algebras of
acyclic and comet graphs are in effect the graded matrix rings as constructed
above (see §1.6, in particular, Theorems 1.6.19 and 1.6.21).

Example 1.3.4 Let A be a ring, Γ a group and A graded trivially by Γ, i.e., A
is concentrated in degree zero (see §1.1.1). Consider the Γ-graded matrix ring

R = Mn(A)(0,−1, . . . ,−n + 1),

where n ∈ N.By (1.49) the support of R is the set {−n+1,−n+2, . . . , n−2, n−1}.
By (1.45), for k ∈ Z we have the following arrangements for the homogeneous
elements of R:

Rk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ak Ak−1 . . . Ak+1−n

Ak+1 Ak . . . Ak+2−n
...

...
. . .

...

Ak+n−1 Ak+n−2 . . . Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus the 0-component ring is

R0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 . . . 0
0 A . . . 0
...
...
. . .

...

0 0 . . . A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
A 0 . . . 0
...
. . .

. . .
...

0 . . . A 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . . ,R−n+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0
...
...
. . .

...

A 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A . . . 0

0 0
. . .

...
...
...
. . . A

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . . , Rn−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . A
0 0 . . . 0
...
...
. . .

...

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In Chapter 2, we will see that R is graded Morita equivalent to the trivially
graded ring A.

Example 1.3.5 Let S be a ring, S [x, x−1] the Z-graded Laurent polynomial
ring and A = S [x3, x−3] the Z-graded subring with support 3Z (see Exam-
ple 1.1.19). Consider the Z-graded matrix ring

M6(A)(0, 1, 1, 2, 2, 3).

By (1.45), the homogeneous elements of degree 1 have the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A0 A0 A−1 A−1 A−2

A2 A1 A1 A0 A0 A−1

A2 A1 A1 A0 A0 A−1

A3 A2 A2 A1 A1 A0

A3 A2 A2 A1 A1 A0

A4 A3 A3 A2 A2 A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 S S 0 0 0
0 0 0 S S 0
0 0 0 S S 0

S x3 0 0 0 0 S
S x3 0 0 0 0 S

0 S x3 S x3 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 1.3.6 Let K be a field. Consider the Z-graded ring

R = M5(K)(0, 1, 2, 2, 3).

Then the support of this ring is {0,±1,±2} and by (1.47) the zero homogeneous
component (which is a ring) is

R0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K 0 0 0 0
0 K 0 0 0
0 0 K K 0
0 0 K K 0
0 0 0 0 K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� K ⊕ K ⊕M2(K) ⊕ K.

Example 1.3.7 Mn(A)(δ1, . . . , δn) with Γ = {δ1, . . . , δn} is a skew group ring
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Let A be a Γ-graded ring, where Γ = {δ1, . . . , δn} is a finite group. Consider
Mn(A)(δ1, . . . , δn), which is a Γ-graded ring with its homogeneous components
described by (1.45). We will show that this graded ring is the skew group ring
Mn(A)0�Γ. In particular, by Proposition 1.1.15(3), it is a strongly graded ring.
Consider the matrix uα ∈ Mn(A)(δ1, . . . , δn)α, where in each row i, we have 1
in the (i, j) position, where δ j − δi + α = 0, and zero everywhere else. One can
easily see that uα is a permutation matrix with exactly one 1 in each row and
column. Moreover, for α, β ∈ Γ, uαuβ = uα+β. Indeed, consider the ith row of
uα, with the only 1 in the jth column where δ j − δi + α = 0. Now, consider the
jth row of uβ with a kth column such that δk − δ j + β = 0 and so with 1 in the
( j, k) row. Thus, multiplying uα with uβ, we have zero everywhere in the ith
row except in the (i, k)th position. On the other hand, since δk − δi + α+ β = 0,
in the ith row of uα+β we have zero except in the (i, k)th position. Repeating
this argument for each row of uα shows that uαuβ = uα+β.

Now defining φ : Γ → Aut(Mn(A)0) by φ(α)(a) = uαauα−1, and setting the
2-cocycle ψ trivial, by §1.1.4, R = Mn(A)0 �φ Γ.

This was observed in [76], where it was proved that Mn(A)(δ1, . . . , δn)0 is
isomorphic to the smash product of Cohen and Montgomery [29] (see Re-
mark 2.3.13).

Example 1.3.8 The following examples (from [34, Example 1.3]) provide
two instances of Z2-grading on M2(K), where K is a field. The first grading is
a good grading, whereas the second one is not a good grading.

1 Let R = M2(K) with the Z2-grading defined by

R0 =

{(
a 0
0 b

)
| a, b ∈ K

}
and R1 =

{(
0 c
d 0

)
| c, d ∈ K

}
.

Since e11, e22 ∈ R0 and e12, e21 ∈ R1, by definition, this is a good grading.
Note that R = M2(K)(0, 1).

2 Let S = M2(K) with the Z2-grading defined by

S 0 =

{(
a b − a
0 b

)
| a, b ∈ K

}
and S 1 =

{(
d c
d −d

)
| c, d ∈ K

}
.

Then S is a graded ring, such that the Z2-grading is not a good grading,
since e11 is not homogeneous. Moreover, comparing S 0 with (1.47), shows
that the grading on S does not come from the construction given by (1.44).

Consider the map

f : R −→ S ;
(
a b
c d

)
�−→
(
a + c b + d − a − c

c d − c

)
.
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This map is in fact a graded ring isomorphism, and so R �gr S . This shows
that the good grading is not preserved under graded isomorphisms.

Remark 1.3.9 Good gradings on matrix algebras

Let K be a field and Γ be an abelian group. One can put a Γ-grading on
the ring Mn(K), by assigning a degree (an element of the group Γ) to each
matrix unit ei j, 1 ≤ i, j ≤ n. This is called a good grading or an elemen-
tary grading. This grading has been studied in [34]. In particular it has been
shown that a grading on Mn(K) is good if and only if it can be described as
Mn(K)(δ1, . . . , δn) for some δi ∈ Γ. Moreover, any grading on Mn(K) is a good
grading if Γ is torsion free. It has also been shown that if R = Mn(K) has a
Γ-grading such that ei j is a homogeneous for some 1 ≤ i, j ≤ n, then there
exists a good grading on S = Mn(K) with a graded isomorphism R � S . It is
shown that if Γ is finite, then the number of good gradings on Mn(K) is |Γ|n−1.
Moreover, (for a finite Γ) the class of strongly graded and crossed product good
gradings of Mn(K) have been classified.

Remark 1.3.10 Let A be a Γ-graded ring and Ω a subgroup of Γ. Then A can
be considered as Γ/Ω-graded ring. Recall that this gives the forgetful functor
U : RΓ → RΓ/Ω (§1.1.2). Similarly, on the level of modules, one has (again)
the forgetful functor U : GrΓ-A→ GrΓ/Ω-A (§1.2.8).

If M is a finitely generated A-module, then by Theorem 1.2.6, End(M) is a
Γ-graded ring. One can observe that

U(End(M)) = End(U(M)).

In particular, Mn(A)(δ1, . . . , δn) as a Γ/Ω-graded ring coincides with

Mn(A)(Ω + δ1, . . . ,Ω + δn),

where A here in the latter case is considered as a Γ/Ω ring.

Remark 1.3.11 Grading on matrix rings with infinite rows and columns

Let A be a Γ-graded ring and I an index set which can be uncountable. Denote
by MI(A) the matrix ring with entries indexed by I × I, namely, ai j ∈ A, where
i, j ∈ I, which are all but a finite number nonzero. For i ∈ I, choose δi ∈ Γ and
following the grading on usual matrix rings (see (1.46)) for a ∈ Ah, define

deg(ai j) = deg(a) + δi − δ j. (1.54)

This makes MI(A) a Γ-graded ring. Clearly if I is finite, then this graded ring
coincides with Mn(A)(δ1, . . . , δn), where |I| = n.
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1.3.2 Homogeneous idempotents calculus

The idempotents naturally arise in relation to the decomposition of rings and
modules. The following facts about idempotents are well known in the non-
graded setting and one can check that they translate into the graded setting
with similar proofs (see [60, §21]). Let Pi, 1 ≤ i ≤ l, be graded right ideals
of A such that A = P1 ⊕ · · · ⊕ Pl. Then there are homogeneous orthogonal
idempotents ei (hence of degree zero) such that 1 = e1 + · · · + el and eiA = Pi.

Let e and f be homogeneous idempotent elements in the graded ring A.
(Note that, in general, there are nonhomogeneous idempotents in a graded
ring.) Let θ : eA → f A be a right A-module homomorphism. Then θ(e) =

θ(e2) = θ(e)e = f ae for some a ∈ A and for b ∈ eA, θ(b) = θ(eb) = θ(e)b. This
shows that there is a map

HomA(eA, f A)→ f Ae, (1.55)

θ �→ θ(e)

and one can easily check this is a group isomorphism. We have

f Ae =
⊕
γ∈Γ

f Aγe

and by Theorem 1.2.6,

HomA(eA, f A) �
⊕
γ∈Γ

HomA(eA, f A)γ.

Then one can see that the homomorphism (1.55) respects the graded decom-
position.

Now if θ : eA → f A(α), where α ∈ Γ, is a graded A-isomorphism, then
x = θ(e) ∈ f Aαe and y = θ−1( f ) ∈ eA−α f , where x and y are homogeneous of
degrees α and −α, respectively, such that yx = e and xy = f .

Finally, for f = 1, the map (1.55) gives that

HomA(eA, A)→ Ae

is a graded left A-module isomorphism and for f = e,

EndA(eA)→ eAe

is a graded ring isomorphism. In particular, we have a ring isomorphism

EndA(eA)0 = EndGr-A(eA) � eA0e.

These facts will be used later in Theorem 5.1.3.
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1.3.3 Graded matrix units

Let A be a Γ-graded ring. Modelling on the properties of the matrix units ei j,
we call a set of homogeneous elements { ei j ∈ A | 1 ≤ i, j ≤ n }, a set of graded
matrix units if

ei jekl = δ jkeil, (1.56)

where δ jk are the Kronecker deltas. Let deg(ei1) = δi. From (1.56) it follows
that deg(eii) = 0, deg(e1i) = −δi and

deg(ei j) = δi − δ j. (1.57)

The above set is called a full set of graded matrix units if
∑n

i=1 eii = 1. If
a graded ring contains a full set of graded matrix units, then the ring is of
the form of a matrix ring over an appropriate graded ring (Lemma 1.3.12).
We can use this to characterise the two-sided ideals of graded matrix rings
(Corollary 1.3.14). For this we adopt Lam’s presentation [61, §17A] to the
graded setting.

Lemma 1.3.12 Let R be a Γ-graded ring. Then R = Mn(A)(δ1, . . . , δn) for
some graded ring A if and only if R has a full set of graded matrix units { ei j ∈
R | 1 ≤ i, j ≤ n }.
Proof One direction is obvious. Suppose {ei j ∈ R | 1 ≤ i, j ≤ n} is a full set of
graded matrix units in R and A is its centraliser in R which is a graded subring
of R. We show that R is a graded free A-module with the basis {ei j}. Let x ∈ R
and set

ai j =

n∑
k=1

ekixe jk ∈ R.

Since ai jeuv = euixe jv = euvai j, it follows that ai j ∈ A. Let u = i, v = j. Then
ai jei j = eiixe j j, and since {ei j} is full,

∑
i, j ai jei j =

∑
i j eiixe j j = x. This shows

that {ei j} generates R as an A-module. It is easy to see that {ei j | 1 ≤ i, j ≤ n}
is linearly independent as well. Let deg(ei1) = δi. Then (1.57) shows that the
map

R −→Mn(A)(δ1, . . . , δn),

aei j �−→ ei j(a)

induces a graded isomorphism. �

Corollary 1.3.13 Let A, R and S be Γ-graded rings. Suppose

R = Mn(A)(δ1, . . . , δn)
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60 Graded rings and graded modules

and there is a graded ring homomorphism f : R→ S . Then

S = Mn(B)(δ1, . . . , δn),

for a graded ring B and f is induced by a graded homomorphism f0 : A→ B.

Proof Consider the standard full graded matrix units {ei j | 1 ≤ i, j ≤ n} in
R. Then { f (ei j)} is a set of full graded matrix units in S . Since f is a graded
homomorphism, deg( f (ei j)) = deg(ei j) = δi − δ j. Let B be the centraliser of
this set in S . By Lemma 1.3.12 (and its proof),

S = Mn(B)(0, δ2 − δ1, . . . , δn − δ1) = Mn(B)(δ1, δ2, . . . , δn).

Since A is the centraliser of {ei j}, f sends A to B and thus induces the map on
the matrix algebras. �

Corollary 1.3.14 Let A be a Γ-graded ring, R = Mn(A)(δ1, . . . , δn) and I be
a graded ideal of R. Then I = Mn(I0)(δ1, . . . , δn), where I0 is a graded ideal of
A.

Proof Consider the canonical graded quotient homomorphism f : R → R/I.
Set I0 = ker( f |A). One can easily see Mn(I0)(δ1, . . . , δn) ⊆ I. By Lemma 1.3.12,
R/I = Mn(B)(δ1, . . . , δn), where B is the centraliser of the set { f (ei j)}. Since
A is the centraliser of {ei j}, f (A) ⊆ B. Now for x ∈ I, write x =

∑
i, j ai jei j,

ai j ∈ A. Then 0 = f (x) =
∑

i, j f (ai j) f (ei j), which implies f (ai j) = 0 as f (ei j)
are linear independent (see the proof of Lemma 1.3.12). Thus ai, j ∈ I0. This
shows I ⊆Mn(I0)(δ1, . . . , δn), which finishes the proof. �

Corollary 1.3.14 shows that there is a one-to-one inclusion preserving corre-
spondence between the graded ideals of A and the graded ideals of Mn(A)(δ),
where δ = (δ1, . . . , δn).

1.3.4 Mixed shift

For a Γ-graded ring A, α = (α1, . . . αm) ∈ Γm and δ = (δ1, . . . , δn) ∈ Γn, set

Mm×n(A)[α][δ] :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aα1−δ1 Aα1−δ2 · · · Aα1−δn
Aα2−δ1 Aα2−δ2 · · · Aα2−δn
...

...
. . .

...

Aαm−δ1 Aαm−δ2 · · · Aαm−δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So Mm×n(A)[α][δ] consists of matrices with the i j-entry in Aαi−δ j .
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If a ∈Mm×n(A)[α][δ], then one can easily check that multiplying a from the
left induces a graded right A-module homomorphism

φa : An(δ) −→ Am(α), (1.58)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�−→ a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Conversely, suppose φ : An(δ) → Am(α) is graded right A-module homomor-
phism. Let e j denote the standard basis element of An(δ) with 1 in the j-th
entry and zeros elsewhere. Let φ(e j) = (a1 j, a2 j, . . . , am j), 1 ≤ j ≤ n. Since
φ is a graded map, comparing the grading of both sides, one can observe that
deg(ai j) = αi − δ j. So that the map φ is represented by the left multiplication
with the matrix a = (ai j)m×n ∈Mm×n(A)[α][δ].

In particular Mm×m(A)[α][α] represents End(Am(α), Am(α))0. Combining this
with (1.48), we get

Mm×m(A)[α][α] = Mm(A)(−α)0. (1.59)

The mixed shift will be used in §3.2 to describe graded Grothendieck groups
by idempotent matrices. The following simple lemma comes in handy.

Lemma 1.3.15 Let a ∈ Mm×n(A)[α][δ] and b ∈ Mn×k(A)[δ][β]. Then ab ∈
Mm×k(A)[α][β].

Proof Let φa : An(δ)→ Am(α) and φb : Ak(β)→ An(δ) be the graded right A-
module homomorphisms induced by multiplications with a and b, respectively
(see 1.58). Then

φab = φaφb : Ak(β) −→ Am(α).

This shows that ab ∈ Mm×k(A)[α][β]. (This can also be checked directly, by
multiplying the matrices a and b and taking into account the shift arrange-
ments.) �

Proposition 1.3.16 Let A be a Γ-graded ring and let α = (α1, . . . , αm) ∈ Γm,
δ = (δ1, . . . , δn) ∈ Γn. Then the following are equivalent:

(1) Am(α) �gr An(δ) as graded right A-modules;
(2) Am(−α) �gr An(−δ) as graded left A-modules;
(3) there exist a = (ai j) ∈ Mn×m(A)[δ][α] and b = (bi j) ∈ Mm×n(A)[α][δ] such

that ab = In and ba = Im.
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Proof (1) ⇒ (3) Let φ : Am(α) → An(δ) and ψ : An(δ) → Am(α) be graded
right A-module isomorphisms such that φψ = 1 and ψφ = 1. The paragraph
prior to Lemma 1.3.15 shows that the map φ is represented by the left multi-
plication with a matrix a = (ai j)n×m ∈ Mn×m(A)[δ][α]. In the same way one
can construct b ∈ Mm×n(A)[α][δ] which induces ψ. Now φψ = 1 and ψφ = 1
translate to ab = In and ba = Im.

(3) ⇒ (1) If a ∈ Mn×m(A)[δ][α], then multiplication from the left induces
a graded right A-module homomorphism φa : Am(α) −→ An(δ). Similarly b
induces ψb : An(δ) −→ Am(α). Now ab = In and ba = Im translate to φaψb = 1
and ψbφa = 1.

(2) ⇐⇒ (3) This part is similar to the previous cases by considering the
matrix multiplication from the right. Specifically, the graded left A-module
homomorphism φ : Am(−α) → An(−δ) represented by a matrix multiplication
from the right of the form Mm×n(A)[α][δ] and similarly ψ gives a matrix in
Mn×m(A)[δ][α]. The rest follows easily. �

The following corollary shows that A(α) �gr A as graded right A-modules
if and only if α ∈ Γ∗A. In fact, replacing m = n = 1 in Proposition 1.3.16 we
obtain the following.

Corollary 1.3.17 Let A be a Γ-graded ring and α ∈ Γ. Then the following are
equivalent:

(1) A(α) �gr A as graded right A-modules;
(2) A(−α) �gr A as graded right A-modules;
(3) A(α) �gr A as graded left A-modules;
(4) A(−α) �gr A as graded left A-modules;
(5) there is an invertible homogeneous element of degree α;
(6) there is an invertible homogeneous element of degree −α.

Proof This follows from Proposition 1.3.16. �

Corollary 1.3.18 Let A be a Γ-graded ring. Then the following are equiva-
lent:

(1) A is crossed product;
(2) A(α) �gr A, as graded right A-modules, for all α ∈ Γ;
(3) A(α) �gr A, as graded left A-modules, for all α ∈ Γ;
(4) the shift functor Tα : Gr-A → Gr-A is isomorphic to identity functor, for

all α ∈ Γ.

Proof This follows from Corollary 1.3.17, (1.22) and the definition of the
crossed product rings (§1.1.3). �
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The Corollary above will be used to show that the action of Γ on the graded
Grothendieck group of a crossed product algebra is trivial (see Example 3.1.9).

Example 1.3.19 The Leavitt algebra L(1, n)

In [63] Leavitt considered the free associative ring A with coefficient in Z
generated by symbols {xi, yi | 1 ≤ i ≤ n} subject to the relations

xiy j = δi j, for all 1 ≤ i, j ≤ n, (1.60)
n∑

i=1

yixi = 1,

where n ≥ 2 and δi j is the Kronecker delta. The relations guarantee the right
A-module homomorphism

φ : A −→ An (1.61)

a �→ (x1a, x2a, . . . , xna)

has an inverse

ψ : An −→ A (1.62)

(a1, . . . , an) �→ y1a1 + · · · + ynan,

so A � An as right A-modules. He showed that A is universal with respect to
this property, of type (1, n − 1) (see §1.7) and it is a simple ring.

Leavitt’s algebra constructed in (1.60) has a natural grading; assigning 1 to
yi and −1 to xi, 1 ≤ i ≤ n, since the relations are homogeneous (of degree
zero), the ring A is a Z-graded ring (see §1.6.1 for a general construction of
graded rings from free algebras). The isomorphism (1.61) induces a graded
isomorphism

φ : A −→ A(−1)n (1.63)

a �−→ (x1a, x2a, . . . , xna),

where A(−1) is the suspension of A by −1. In fact, letting

y = (y1, . . . , yn) and

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we have y ∈ M1×n(A)[α][δ] and x ∈ Mn×1(A)[δ][α], where α = (0) and δ =
(−1, . . . ,−1). Thus by Proposition 1.3.16, A �gr A(−1)n.
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Motivated by this algebra, the Leavitt path algebras were introduced in [2,
5], which associate with a direct graph a certain algebra. When the graph has
one vertex and n loops, the algebra corresponds to this graph is the Leavitt
algebra constructed in (1.60) and is denoted by L(1, n) or Ln. The Leavitt path
algebras will provide a vast array of examples of graded algebras. We will
study these algebras in §1.6.4.

1.4 Graded division rings

Graded fields and their noncommutative version, i.e., graded division rings,
are among the simplest graded rings. With a little effort, we can completely
compute the invariants of these algebras which we are interested in, namely, the
graded Grothendieck groups (§3.7) and the graded Picard groups (Chapter 4).

Recall from §1.1.4 that a Γ-graded ring A =
⊕
γ∈Γ Aγ is called a graded divi-

sion ring if every nonzero homogeneous element has a multiplicative inverse.
Throughout this section we consider graded right modules over graded divi-
sion rings. Note that we work with the abelian grade groups, however, all the
results are valid for nonabelian grading as well. We first show that for graded
modules over a graded division ring, there is well-defined notion of dimension.
The proofs follow the standard proofs in the nongraded setting (see [50, §IV,
Theorem 2.4, 2.7, 2.13]), or the graded setting (see [75, Proposition 4.6.1], [90,
Chapter 2]).

Proposition 1.4.1 Let A be a Γ-graded ring. Then A is a graded division ring
if and only if any graded A-module is graded free. If M is a graded module over
graded division ring A, then any linearly independent subset of M consisting
of homogeneous elements can be extended to a homogeneous basis of M.

Proof Suppose any graded (right) module is graded free. Let I be a right ideal
of A. Consider A/I as a right A-module, which is graded free by assumption.
Thus I = ann(A/I) = 0. This shows that the only graded right ideal of A is the
zero ideal. This gives that A is a graded division ring.

For the converse, note that if A is a graded division ring (i.e., all homoge-
neous elements are invertible), then for any m ∈ Mh, {m} is a linearly indepen-
dent subset of M. This immediately gives the converse of the statement of the
theorem as a consequence of the second part of the theorem.

Fix a linearly independent subset X of M consisting of homogeneous ele-
ments. Let

F =
{
Q ⊆ Mh | X ⊆ Q and Q is A-linearly independent

}
.
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This is a nonempty partially ordered set with inclusion, and every chain Q1 ⊆
Q2 ⊆ . . . in F has an upper bound

⋃
Qi ∈ F. By Zorn’s lemma, F has a maxi-

mal element, which we denote by P. If 〈P〉 � M, then there is a homogeneous
element m ∈ Mh \ 〈P〉. We will show that P ∪ {m} is a linearly independent set
containing X, contradicting the maximality of P.

Suppose ma +
∑

piai = 0, where a, ai ∈ A, pi ∈ P with a � 0. Then there
is a homogeneous component of a, say aλ, which is also nonzero. Considering
the λ + deg(m)-homogeneous component of this sum, we have

m = maλa−1
λ = −

∑
pia′ia

−1
λ

for a′i homogeneous, which contradicts the assumption m ∈ Mh \ 〈P〉. Hence
a = 0, which implies each ai = 0. This gives the required contradiction, so
M = 〈P〉, completing the proof. �

The following proposition shows in particular that a graded division ring has
graded invariant basis number (we discuss this type of ring in §1.7).

Proposition 1.4.2 Let A be a Γ-graded division ring and M be a graded
A-module. Then any two homogeneous bases of M over A have the same car-
dinality.

Proof By [50, §IV, Theorem 2.6], if a module M has an infinite basis over
a ring, then any other basis of M has the same cardinality. This proves the
proposition in the case where the homogeneous basis is infinite.

Now suppose that M has two finite homogeneous bases X and Y . Then X =

{x1, . . . , xn} and Y = {y1, . . . , ym}, for xi, yi ∈ Mh \ 0. As X is a basis for M, we
can write

ym = x1a1 + · · · + xnan,

for some ai ∈ Ah, where deg(ym) = deg(ai) + deg(xi) for each 1 ≤ i ≤ n. Since
ym � 0, we have at least one ai � 0. Let ak be the first nonzero ai, and we note
that ak is invertible as it is nonzero and homogeneous in A. Then

xk = yma−1
k − xk+1ak+1a−1

k − · · · − xnana−1
k ,

and the set X′ = { ym, x1, . . . , xk−1, xk+1, . . . , xn } spans M since X spans M. So

ym−1 = ymbm + x1c1 + · · · + xk−1ck−1 + xk+1ck+1 + · · · + xncn,

for bm, ci ∈ Ah. There is at least one nonzero ci, since if all the ci are zero,
then either ym and ym−1 are linearly dependent or ym−1 is zero, which are not
the case. Let c j denote the first nonzero ci. Then x j can be written as a linear
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combination of ym−1, ym and those xi with i � j, k. Therefore the set

X′′ = { ym−1, ym } ∪ { xi : i � j, k }
spans M since X′ spans M.

Continuing this process of adding a y and removing an x gives, after the kth
step, a set which spans M consisting of ym, ym−1, . . . , ym−k+1 and n− k of the xi.
If n < m, then after the nth step, we would have that the set {ym, . . . , ym−n+1}
spans M. But if n < m, then m − n + 1 ≥ 2, so this set does not contain y1,
and therefore y1 can be written as a linear combination of the elements of this
set. This contradicts the linear independence of Y , so we must have m ≤ n.
Repeating a similar argument with X and Y interchanged gives n ≤ m, so
n = m. �

The Propositions 1.4.1 and 1.4.2 above show that for a graded module M
over a graded division ring A, M has a homogeneous basis and any two ho-
mogeneous bases of M have the same cardinality. The cardinal number of any
homogeneous basis of M is called the dimension of M over A, and it is denoted
by dimA(M) or [M : A].

Proposition 1.4.3 Let A be a Γ-graded division ring and M be a graded A-
module. If N is a graded submodule of M, then

dimA(N) + dimA(M/N) = dimA(M).

Proof By Proposition 1.4.1, the submodule N is a graded free A-module with
a homogeneous basis Y which can be extended to a homogeneous basis X of
M. We will show that U = {x+N | x ∈ X \Y} is a homogeneous basis of M/N.
Note that by (1.12), U consists of homogeneous elements. Let t ∈ (M/N)h.
Again by (1.12), t = m + N, where m ∈ Mh and m =

∑
xiai +

∑
y jb j where ai,

b j ∈ A, y j ∈ Y and xi ∈ X \ Y . So m + N =
∑

(xi + N)ai, which shows that U
spans M/N. If

∑
(xi + N)ai = 0, for ai ∈ A, xi ∈ X \ Y , then

∑
xiai ∈ N which

implies that
∑

xiai =
∑

ykbk for bk ∈ A and yk ∈ Y , which implies that ai = 0
and bk = 0 for all i, k. Therefore U is a homogeneous basis for M/N and as we
can construct a bijective map X \ Y → U, we have |U | = |X \ Y |. Then

dimA M = |X| = |Y | + |X \ Y | = |Y | + |U | = dimA N + dimA(M/N). �

The following statement is the graded version of a similar statement on sim-
ple rings (see [50, §IX.1]). This is required for the proof of Theorem 1.4.5.

Proposition 1.4.4 Let A and B be Γ-graded division rings. If

Mn(A)(λ1, . . . , λn) �gr Mm(B)(γ1, . . . , γm)
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as graded rings, where λi, γ j ∈ Γ, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then n = m and
A �gr B.

Proof The proof follows the nongraded case (see [50, §IX.1]) with an extra
attention given to the grading. We refer the reader to [71, §4.3] for a detailed
proof. �

We can further determine the relations between the shift (λ1, . . . , λn) and
(γ1, . . . , γm) in the above proposition. For this we need to extend [27, Theo-
rem 2.1] (see also [75, Theorem 9.2.18]) from fields (with trivial grading) to
graded division algebras. The following theorem states that two graded matrix
algebras over a graded division ring with two shifts are isomorphic if and only
if one can obtain one shift from the other by applying (1.50) and (1.51).

Theorem 1.4.5 Let A be a Γ-graded division ring. Then for λi, γ j ∈ Γ, 1 ≤
i ≤ n, 1 ≤ j ≤ m,

Mn(A)(λ1, . . . , λn) �gr Mm(A)(γ1, . . . , γm) (1.64)

if and only if n = m and for a suitable permutation π ∈ S n, we have λi =

γπ(i) + τi + σ, 1 ≤ i ≤ n, where τi ∈ ΓA and a fixed σ ∈ Γ, i.e., (λ1, . . . , λn) is
obtained from (γ1, . . . , γm) by applying (1.50) and (1.51).

Proof One direction is Theorem 1.3.3, noting that since A is a graded division
ring, ΓA = Γ∗A.

We now prove the converse. That n = m follows from Proposition 1.4.4.
By (1.4.1) one can find ε = (ε1, . . . , ε1, ε2, . . . , ε2, . . . , εk, . . . , εk) in Γ such that
Mn(A)(λ1, . . . , λn) �gr Mn(A)(ε) as in (1.68). Now set

V = A(−ε1) × · · · × A(−ε1) × · · · × A(−εk) × · · · × A(−εk)

and pick the (standard) homogeneous basis ei, 1 ≤ i ≤ n and define Ei j ∈
EndA(V) by Ei j(et) = δ j,tei, 1 ≤ i, j, t ≤ n. One can easily see that Ei j is a
A-graded homomorphism of degree εsi − εs j where εsi and εs j are ith and jth
elements in ε. Moreover, EndA(V) �gr Mn(A)(ε) and Ei j corresponds to the
matrix ei j in Mn(A)(ε). In a similar manner, one can find

ε′ = (ε′1, . . . , ε
′
1, ε
′
2, . . . , ε

′
2, . . . , ε

′
k′ , . . . , ε

′
k′ )

and a graded A-vector space W such that

Mn(A)(γ1, . . . , γn) �gr Mn(A)(ε′),

and EndA(W) �gr Mn(A)(ε′). Therefore (1.64) provides a graded ring isomor-
phism

θ : EndA(V)→ EndA(W).
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Define E′i j := θ(Ei j) and E′ii(W) = Qi, for 1 ≤ i, j ≤ n. Since {Eii | 1 ≤ i ≤ n} is
a complete system of orthogonal idempotents, so is {E′ii | 1 ≤ i ≤ n}. It follows
that

W �gr
⊕

1≤ j≤nQj.

Moreover, E′i jE
′
tr = δ j,tE′ir and E′ii acts as identity on Qi. These relations show

that restricting E′i j on Qj induces an A-graded isomorphism E′i j : Qj → Qi of
degree εsi −εs j (same degree as Ei j). So Qj �gr Q1(εs1 −εs j ) for any 1 ≤ j ≤ n.
Therefore

W �gr
⊕

1≤ j≤nQ1(εs1 − εs j ).

By dimension count (see Proposition 1.4.3), it follows that dimA Q1 = 1.
A similar argument for the identity map id : EndA(V)→ EndA(V) produces

V �gr
⊕

1≤ j≤nP1(εs1 − εs j ),

where P1 = E11(V), with dimA P1 = 1.
Since P1 and Q1 are A-graded vector spaces of dimension 1, there is σ ∈ Γ,

such that Q1 �gr P1(σ). Using the fact that for an A-graded module P and
α, β ∈ Γ, P(α)(β) = P(α + β) = P(β)(α), we have

W �gr
⊕

1≤ j≤nQ1(εs1 − εs j ) �gr
⊕

1≤ j≤nP1(σ)(εs1 − εs j )

�gr
⊕

1≤ j≤nP1(εs1 − εs j )(σ) �gr V(σ). (1.65)

We denote this A-graded isomorphism with φ : W → V(σ). Let e′i , 1 ≤ i ≤ n be
a (standard) homogeneous basis of degree ε′si

in W. Then φ(e′i) =
∑

1≤ j≤n e ja j,
where a j ∈ Ah and e j are homogeneous of degree εs j − σ in V(σ). Since
deg(φ(e′i)) = ε

′
si

, any e j with nonzero a j in the sum has the same degree. For if
εs j − σ = deg(e j) � deg(el) = εsl − σ, then since deg(e ja j) = deg(elal) = ε′si

it follows that εs j − εsl ∈ ΓA which is a contradiction as ΓA + εs j and ΓA +

εsl are distinct. Thus ε′si
= εs j + τ j − σ, where τ j = deg(a j) ∈ ΓA. In the

same manner one can show that ε′si
= ε′si′ in ε′ if and only if εs j and εs j′

assigned to them by the previous argument are also equal. This shows that ε′

can be obtained from ε by applying (1.50) and (1.51). Since ε′ and ε are also
obtained from γ1, . . . , γn and λ1, . . . , λn, respectively, by applying (1.50) and
(1.51), putting these together shows that λ1, . . . , λn and γ1, . . . , γn have similar
relations, i.e., λi = γπ(i)+τi+σ, 1 ≤ i ≤ n, where τi ∈ ΓA and a fixed σ ∈ Γ. �

A graded division algebra A is defined to be a graded division ring with
centre R such that [A : R] < ∞. Note that since R is a graded field, by Proposi-
tions 1.4.1 and 1.4.2, A has a well-defined dimension over R. A graded division
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algebra A over its centre R is said to be unramified if ΓA = ΓR and totally ram-
ified if A0 = R0.

Let A be a graded division ring and let R be a graded subfield of A which is
contained in the centre of A. It is clear that R0 = R ∩ A0 is a field and A0 is a
division ring. The group of invertible homogeneous elements of A is denoted
by Ah∗, which is equal to Ah\0. Considering A as a graded R-module, since R is
a graded field, there is a uniquely defined dimension [A : R] by Theorem 1.4.1.
The proposition below has been proven in [90, Chapter 5] for two graded fields
R ⊆ S with a torsion-free abelian grade group.

Proposition 1.4.6 Let A be a graded division ring and let R be a graded
subfield of A which is contained in the centre of A. Then

[A : R] = [A0 : R0]|ΓA : ΓR|.
Proof Since A is a graded division ring, A0 is a division ring. Moreover, R0

is a field. Let {xi}i∈I be a basis for A0 over R0. Consider the cosets of ΓA over
ΓR and let {δ j} j∈J be a coset representative, where δ j ∈ ΓA. Take {y j} j∈J ⊆ Ah∗

such that deg(y j) = δ j for each j. We will show that {xiy j} is a basis for A over
F.

Consider the map

ψ : Ah∗ −→ ΓA/ΓR,

a �−→ deg(a) + ΓR.

This is a group homomorphism with kernel A0Rh∗, since for any a ∈ ker(ψ)
there is some r ∈ Rh∗ with ar−1 ∈ A0. For a ∈ A, a =

∑
γ∈Γ aγ, where aγ ∈ Aγ

and ψ(aγ) = γ+ΓR = δ j +ΓF for some δ j in the coset representative of ΓA over
ΓR. Then there is some y j with deg(y j) = δ j and aγy−1

j ∈ ker(ψ) = A0Rh∗. So

aγy−1
j = (
∑

i

xiri)g

for g ∈ Rh∗ and ri ∈ R0. Since R is in the centre of A, it follows that aγ =∑
i xiy jrig. So a can be written as an R-linear combination of the elements of
{xiy j}.

To show linear independence, suppose
n∑

i=1

xiyiri = 0, (1.66)

for ri ∈ R. Write ri as the sum of its homogeneous components, and then
consider a homogeneous component of the sum (1.66), say

∑m
k=1 xkykr′k, where

deg(xkykr′k) = α. Since xk ∈ A0, deg(r′k) + deg(yk) = α for all k, so all of the yk
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are the same. This implies that
∑

k xkr′k = 0, where all of the r′k have the same
degree. If r′k = 0 for all k then ri = 0 for all i we are done. Otherwise, for some
r′l � 0, we have

∑
k xk(r′kr′−1

l ) = 0. Since {xi} forms a basis for A0 over R0, this
implies r′k = 0 for all k and thus ri = 0 for all 1 ≤ i ≤ n. �

Example 1.4.7 Graded division algebras from valued division algebras

Let D be a division algebra with a valuation. To this one associates a graded
division algebra gr(D) =

⊕
γ∈ΓD

gr(D)γ, where ΓD is the value group of D
and the summands gr(D)γ arise from the filtration on D induced by the val-
uation (see details below and also Example 1.2.21). As is illustrated in [90],
even though computations in the graded setting are often easier than work-
ing directly with D, it seems that not much is lost in passage from D to its
corresponding graded division algebra gr(D). This has provided motivation
to systematically study this correspondence, notably by Hwang, Tignol and
Wadsworth [90], and to compare certain functors defined on these objects,
notably the Brauer group [90, Chapter 6] and the reduced Whitehead group
SK1 [90, Chapter 11]. We introduce this correspondence here and in Chapter 3
we calculate their graded Grothendieck groups (Example 3.7.5).

Let D be a division algebra finite dimensional over its centre F, with a valu-
ation v : D∗ → Γ. So Γ is a totally ordered abelian group, and for any a, b ∈ D∗,
v satisfies the following conditions:

(i) v(ab) = v(a) + v(b);
(ii) v(a + b) ≥ min{ v(a), v(b) } (b � −a).

Let

VD = { a ∈ D∗ : v(a) ≥ 0 } ∪ {0}, the valuation ring of v;

MD = {a ∈ D∗ : v(a) > 0 } ∪ {0}, the unique maximal left and right ideal of VD;

D = VD/MD, the residue division ring of v on D; and

ΓD = im(v), the value group of the valuation.

For background on valued division algebras, see [90, Chapter 1]. One asso-
ciates to D a graded division algebra as follows. For each γ ∈ ΓD, let

D≥γ = { d ∈ D∗ : v(d) ≥ γ } ∪ {0}, an additive subgroup of D ;

D>γ = { d ∈ D∗ : v(d) > γ } ∪ {0}, a subgroup of D≥γ; and

gr(D)γ = D≥γ
/
D>γ.

Then define

gr(D) =
⊕
γ∈ΓD

gr(D)γ.
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Because D>γD≥δ + D≥γD>δ ⊆ D>(γ+δ) for all γ, δ ∈ ΓD, the multiplication
on gr(D) induced by multiplication on D is well-defined, giving that gr(D)
is a Γ-graded ring, called the associated graded ring of D. The multiplicative
property (i) of the valuation v implies that gr(D) is a graded division ring.
Clearly, we have gr(D)0 = D, and Γgr(D) = ΓD. For d ∈ D∗, we write d̃ for the
image d + D>v(d) of d in gr(D)v(d). Thus, the map given by d �→ d̃ is a group
epimorphism D∗ → gr(D)∗ with kernel 1 + MD.

The restriction v|F of the valuation on D to its centre F is a valuation on F,
which induces a corresponding graded field gr(F). Then it is clear that gr(D)
is a graded gr(F)-algebra, and one can prove that for

[gr(D) : gr(F)] = [D : F] |ΓD : ΓF | ≤ [D : F] < ∞.
Now let F be a field with a henselian valuation v, i.e., the valuation v has a

unique extension to any algebraic extension of F. It was proved that (see [90,
Chapter 1]) the valuation v extends uniquely to D as well. With respect to this
valuation, D is said to be tame if Z(D) is separable over F and

char(F) � ind(D)
/(

ind(D)[Z(D) : F]
)
.

It is known ([90, Chapter 8]) that D is tame if and only if

[gr(D) : gr(F)] = [D : F]

and Z(gr(D)) = gr(F).
We compute the graded Grothendieck group and the graded Picard group of

these division algebras in Examples 3.7.5 and 4.2.6.

1.4.1 The zero component ring of a graded central simple ring

Let A be a Γ-graded division ring and Mn(A)(λ1, . . . , λn) be a graded simple
ring, where λi ∈ Γ, 1 ≤ i ≤ n. Since A is a graded division ring, ΓA is a
subgroup of Γ. Consider the quotient group Γ/ΓA and let ΓA + ε1, . . . ,ΓA + εk

be the distinct elements in Γ/ΓA representing the cosets ΓA + λi, 1 ≤ i ≤ n, and
for each εl, let rl be the number of i with ΓA + λi = ΓA + εl. It was observed in
[90, Chapter 2] that

Mn(A)(λ1, . . . , λn)0 �Mr1 (A0) × · · · ×Mrk (A0) (1.67)

and in particular, Mn(A)(λ1, . . . , λn)0 is a simple ring if and only if k = 1.
Indeed, using (1.50) and (1.51) we get

Mn(A)(λ1, . . . , λn) �gr Mn(A)(ε1, . . . , ε1, ε2, . . . , ε2, . . . , εk, . . . , εk), (1.68)
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with each εl occurring rl times. Now (1.45) for λ = 0 and

(δ1, . . . , δn) = (ε1, . . . ε1, ε2, . . . , ε2, . . . , εk, . . . , εk)

immediately gives (1.67).

Remark 1.4.8 The graded Artin–Wedderburn structure theorem

The Artin–Wedderburn theorem shows that division rings are the basic “build-
ing blocks” of ring theory, i.e., if a ring A satisfies some finite condition, for
example A is right Artinian, then A/J(A) is isomorphic to a finite product of
matrix rings over division rings. A graded version of the Artin–Wedderburn
structure theorem also holds. We state the statement here without proof. We
refer the reader to [75, 90] for proofs of these statements.

A Γ-graded ring B is isomorphic to Mn(A)(λ1, . . . , λn), where A is a Γ-graded
division ring and λi ∈ Γ, 1 ≤ i ≤ n, if and only if B is graded right Artinian
(i.e., a decreasing chain of graded right ideals becomes stationary) and graded
simple.

A Γ-graded ring B is isomorphic to a finite product of matrix rings overs
graded division rings (with suitable shifts) if and only if B is graded right
Artinian and graded primitive (i.e., Jgr(B) = 0).

1.5 Strongly graded rings and Dade’s theorem

Let A be a Γ-graded ring and Ω be a subgroup of Γ. Recall from §1.1.2 that
A has a natural Γ/Ω-graded structure and AΩ =

⊕
γ∈Ω Aγ is a Ω-graded ring.

If A is a Γ/Ω-strongly graded ring, then one can show that the category of
Γ-graded A-modules, GrΓ-A, is equivalent to the category of Ω-graded AΩ-
modules, GrΩ-AΩ. In fact, the equivalence

GrΓ-A ≈ GrΩ-AΩ,

under the given natural functors (see Theorem 1.5.7) implies that A is a Γ/Ω-
strongly graded ring. This was first proved by Dade [32] in the case of Ω = 0,
i.e., when GrΓ-A ≈ Mod-A0. We prove Dade’s theorem (Theorem 1.5.1) and
then state this more general case in Theorem 1.5.7.

Let A be a Γ-graded ring. For any right A0-module N and any γ ∈ Γ, we
identify the right A0-module N ⊗A0 Aγ with its image in N ⊗A0 A. Since A =⊕
γ∈Γ Aγ and Aγ are A0-bimodules, N ⊗A0 A is a Γ-graded right A-module, with

N ⊗A0 A =
⊕
γ∈Γ

(
N ⊗A0 Aγ

)
. (1.69)
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Consider the restriction functor

G := (−)0 : Gr-A −→ Mod-A0

M �−→ M0

ψ �−→ ψ|M0

and the induction functor defined by

I := − ⊗A0 A : Mod-A0 −→ Gr-A

N �−→ N ⊗A0 A

φ �−→ φ ⊗ idA .

One can easily check that G ◦ I � idA0 with the natural transformation

G I(N) = G(N ⊗A0 A) = N ⊗A0 A0 −→ N, (1.70)

n ⊗ a �→ na.

On the other hand, there is a natural transformation

I G(M) = I(M0) = M0 ⊗A0 A −→ M, (1.71)

m ⊗ a �→ ma.

The theorem below shows that I ◦G � idA (under (1.71)), if and only if A is
a strongly graded ring. Theorem 1.5.1 was proved by Dade [32, Theorem 2.8]
(see also [75, Theorem 3.1.1]).

Theorem 1.5.1 (Dade’s theorem) Let A be a Γ-graded ring. Then A is strongly
graded if and only if the functors

(−)0 : Gr-A→ Mod-A0

and

− ⊗A0 A : Mod-A0 → Gr-A

form mutually inverse equivalences of categories.

Proof One can easily check that (without using the assumption that A is
strongly graded) G ◦ I � idA0 (see (1.70)). Suppose A is strongly graded. We
show that I ◦G � idA .

For a graded A-module M, we have I ◦G(M) = M0 ⊗A0 A. We show that the
natural homomorphism

φ : M0 ⊗A0 A→ M,

m ⊗ a �→ ma,
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is a Γ-graded A-module isomorphism. The map φ is clearly graded (see (1.69)).
Since A is strongly graded, it follows that for γ, δ ∈ Γ,

Mγ+δ = Mγ+δA0 = Mγ+δA−γAγ ⊆ MδAγ ⊆ Mγ+δ. (1.72)

Thus MδAγ = Mγ+δ. Therefore, φ(M0 ⊗A0 Aγ) = M0Aγ = Mγ, which implies
that φ is surjective.

Let N = ker(φ), which is a graded A-submodule of M0 ⊗A0 A, so N0 =

N ∩ (M0 ⊗A0 A0). However, the restriction of φ to M0 ⊗A0 A0 → M0 is the
canonical isomorphism, so N0 = 0. Since N is a graded A-module, a similar
argument as (1.72) shows Nγ = N0Aγ = 0 for all γ ∈ Γ. It follows that φ
is injective. Thus I ◦G(M) = M0 ⊗A0 A � M. Since all the homomorphisms
involved are natural, this shows that I ◦G � idA.

For the converse, suppose I and G are mutually inverse (under (1.71) and
(1.70)). For any graded A-module M, I ◦G(M) �gr M, which gives that the
map

M0 ⊗A0 Aα −→ Mα,

m ⊗ a �→ ma

is bijective, where α ∈ Γ. This immediately implies

M0Aα = Mα. (1.73)

Now for any β ∈ Γ, consider the graded A-module A(β). Replacing M by A(β)
in (1.73), we get A(β)0Aα = A(β)α, i.e., AβAα = Aβ+α. This shows that A is
strongly graded. �

Corollary 1.5.2 Let A be a Γ-graded ring and Ω a subgroup of Γ such that A
is a Γ/Ω-strongly graded ring. Then the functors

(−)0 : GrΓ/Ω-A −→ Mod-AΩ

and

− ⊗AΩ
A : Mod-AΩ −→ GrΓ/Ω-A

form mutually inverse equivalences of categories.

Proof The result follows from Theorem 1.5.1. �

Remark 1.5.3 Recall that gr-A denotes the category of graded finitely gen-
erated right A-modules and Pgr-A denotes the category of graded finitely gen-
erated projective right A-modules. Note that in general the restriction functor
(−)0 : Gr-A → Mod-A0 does not induce a functor (−)0 : Pgr-A → Pr-A0. In
fact, one can easily produce a graded finitely generated projective A-module
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P such that P0 is not a projective A0-module. As an example, consider the
Z-graded ring T of Example 1.1.5. Then T (1) is clearly a graded finitely gen-
erated projective T -module. However T (1)0 = M is not T0 = R-module.

Remark 1.5.4 The proof of Theorem 1.5.1 also shows that A is strongly
graded if and only if gr-A � mod-A0, if and only if Pgr-A � Pr-A0, (see Re-
mark 1.5.3) via the same functors (−)0 and − ⊗A0 A of the Theorem 1.5.1.

Remark 1.5.5 Strongly graded modules

Let A be a Γ-graded ring and M be a graded A-module. Then M is called a
strongly graded A-module if

MαAβ = Mα+β, (1.74)

for any α, β ∈ Γ. The proof of Theorem 1.5.1 shows that A is strongly graded
if and only if any graded A-module is strongly graded. Indeed, if A is strongly
graded then (1.72) shows that any graded A-module is strongly graded. Con-
versely, if any graded module is strongly graded, then considering A as a
graded A-module, (1.74) for M = A, shows that AαAβ = Aα+β for any α, β ∈ Γ.

Remark 1.5.6 Ideals correspondence between A0 and A

The proof of Theorem 1.5.1 shows that there is a one-to-one correspon-
dence between the right ideals of A0 and the graded right ideals of A (similarly
for the left ideals). However, this correspondence does not hold between two-
sided ideals. As an example, A = M2(K[x2, x−2])(0, 1), where K is a field, is
a strongly Z-graded simple ring, whereas A0 � K ⊗ K is not a simple ring.
(See §1.4.1. Also see Proposition 4.2.9 for a relation between simplicity of A0

and A.)
In the same way, the equivalence Gr-A ≈ Mod-A0 of Theorem 1.5.1 gives

a correspondence between several (one-sided) properties of graded objects in
A with objects over A0. For example, one can easily show that A is graded
right (left) Noetherian if and only if A0 is right (left) Noetherian (see also
Corollary 1.5.10).

Using Theorem 1.5.1, we will see that the graded Grothendieck group of a
strongly graded ring coincides with the (classical) Grothendieck group of its
0-component ring (see §3.1.3).

We need a more general version of grading defined in (1.69) in order to
extend Dade’s theorem. Let A be a Γ-graded ring and Ω a subgroup of Γ. Let N
be a Ω-graded right AΩ-module. Then N ⊗AΩ

A is a Γ-graded right A-module,
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with the grading defined by

(N ⊗AΩ
A)γ =

{∑
i

ni ⊗ ai | ni ∈ Nh, ai ∈ Ah, deg(ni) + deg(ai) = γ
}
.

A similar argument as in §1.2.6 for tensor products will show that this grading
is well-defined. Note that with this grading,

(N ⊗AΩ
A)Ω = N ⊗AΩ

AΩ � N,

as graded right AΩ-modules.

Theorem 1.5.7 Let A be a Γ-graded ring and Ω be a subgroup of Γ. Consider
A as a Γ/Ω-graded ring. Then A is a Γ/Ω-strongly graded ring if and only if

(−)Ω : GrΓ-A −→ GrΩ-AΩ

M �−→ MΩ

ψ �−→ ψ|MΩ

and

− ⊗A0 A : GrΩ-AΩ −→ GrΓ-A

N �−→ N ⊗AΩ
A

φ �−→ φ ⊗ idA

form mutually inverse equivalences of categories.

Proof The proof is similar to the proof of Theorem 1.5.1 and it is omitted. �

Remark 1.5.8 Compare Theorem 1.5.7, with the following statement. Let A
be a Γ-graded ring and Ω be a subgroup of Γ. Then A is Γ-strongly graded ring
if and only if

(−)Ω : GrΓ-A −→ GrΩ-AΩ

M �−→ MΩ

ψ �−→ ψ|MΩ

and

− ⊗A0 A : GrΩ-AΩ −→ GrΓ-A

N �−→ N0 ⊗A0 A

φ �−→ φ0 ⊗ idA

form mutually inverse equivalences of categories.
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Example 1.5.9 Let A be a Γ × Ω-graded ring such that 1 ∈ A(α,Ω)A(−α,Ω) for
any α ∈ Γ, where A(α,Ω) =

⊕
ω∈Ω A(α,ω). Then by Theorem 1.5.7

GrΓ×Ω-A ≈ GrΩ-A(0,Ω).

This example will be used in §6.4. Compare this also with Corollary 1.2.13.

Another application of Theorem 1.5.1 is to provide a condition when a
strongly graded ring is a graded von Neumann ring (§1.1.9). This will be used
later in Corollary 1.6.17 to show that the Leavitt path algebras are von Neu-
mann regular rings.

Corollary 1.5.10 Let A be a strongly graded ring. Then A a is graded von
Neumann regular ring if and only if A0 is a von Neumann regular ring.

Sketch of proof Since any (graded) flat module is a direct limit of (graded)
projective modules, from the equivalence of categories Gr-A ≈gr Mod-A0

(Theorem 1.5.1), it follows that A is graded von Neumann regular if and only
if A0 is von Neumann regular. �

Remark 1.5.11 An element-wise proof of Corollary 1.5.10 can also be found
in [96, Theorem 3].

For a Γ-graded ring A, and α, β ∈ Γ, one has an A0-bimodule homomorphism

φα,β : Aα ⊗A0 Aβ −→ Aα+β (1.75)

a ⊗ b �−→ ab.

The following theorem gives another characterisation for strongly graded rings.

Theorem 1.5.12 Let A be a Γ-graded ring. Then A is a strongly graded ring
if and only if for any γ ∈ Γ, the homomorphism

φγ,−γ : Aγ ⊗A0 A−γ −→ A0,

a ⊗ b �−→ ab

is an isomorphism. In particular, if A is strongly graded, then the homogeneous
components Aγ, γ ∈ Γ, are finitely generated projective A0-modules.

Proof Suppose that for any γ ∈ Γ, the map φγ,−γ : Aγ ⊗ A−γ → A0 is an
isomorphism. Thus there are ai ∈ Aγ, bi ∈ A−γ such that∑

i

aibi = φγ,−γ
(∑

i

ai ⊗ bi

)
= 1.

So 1 ∈ AγA−γ. Now by Proposition 1.1.15(1) A is strongly graded.
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Conversely, suppose A is a strongly graded ring. We prove that the homo-
morphism (1.75) is an isomorphism. The definition of strongly graded implies
that φα,β is surjective. Suppose

φα,β
(∑

i

ai ⊗ bi

)
=
∑

i

aibi = 0. (1.76)

Using Proposition 1.1.15(1), write 1 =
∑

j x jy j, where x j ∈ A−β and y j ∈ Aβ.
Then∑

i

ai ⊗ bi =
(∑

i

ai ⊗ bi

) (∑
j

x jy j

)
=
∑

i

(
ai ⊗
∑

j

bix jy j

)
=
∑

i

(∑
j

(aibix j ⊗ y j)
)
=
∑

j

∑
i

(
aibix j ⊗ y j

)
=
∑

j

(∑
i

(aibi)x j ⊗ y j)
)
= 0.

This shows that φα,β is injective. Now setting α = γ and β = −γ finishes the
proof.

Finally, if A is strongly graded, the above argument shows that the homoge-
neous components Aγ, γ ∈ Γ, are invertible A0-modules, which in turn implies
that Aα are finitely generated projective A0-modules. �

1.5.1 Invertible components of strongly graded rings

Let A and B be rings and P be an A−B-bimodule. Then P is called an invertible
A−B-bimodule if there is a B−A-bimodule Q such that P ⊗B Q � A as A−A-
bimodules and Q⊗A P � B as B−B-bimodules and the following diagrams are
commutative:

P ⊗B Q ⊗A P ��

��

A ⊗A P

��
P ⊗B B �� P

Q ⊗A P ⊗B Q ��

��

B ⊗B Q

��
Q ⊗A A �� Q

One can prove that P is a finitely generated projective A and B-module.
Now Theorem 1.5.12 shows that for a strongly Γ-graded ring A, the A0-

bimodules Aγ, γ ∈ Γ, are invertible modules and thus are finitely generated
projective A0-modules. This in return implies that A is a projective A0-module.
Note that, in general, one can easily construct a graded ring A where A is not
projective over A0 (see Example 1.1.5) and Aγ is not a finitely generated A0-
module, such as the Z-graded ring Z[xi | i ∈ N] of Example 1.1.9.
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Remark 1.5.13 Other terminologies for strongly graded rings

The term “strongly graded” for such rings was coined by E. Dade in [32]
and is now commonly in use. Other terms for these rings are fully graded and
generalised crossed products. See [33] for a history of the development of such
rings in literature.

1.6 Grading on graph algebras

1.6.1 Grading on free rings

Let X be a nonempty set of symbols and Γ be a group. (As always we assume
the groups are abelian, although the entire theory can be written for an arbitrary
group.) Let d : X → Γ be a map. One can extend d in a natural way to a map
from the set of finite words on X to Γ, which is called d again. For example if
x, y, z ∈ X and xyz is a word, then d(xyz) = d(x) + d(y) + d(z). One can easily
see that if w1,w2 are two words, then d(w1w2) = d(w1)+ d(w2). If we allow an
empty word, which will be the identity element in the free ring, then we assign
the identity of Γ to this word.

Let R be a ring and R(X) be the free ring (with or without identity) on a
set X with coefficients in R. The elements of R(X) are of the form

∑
w rww,

where rw ∈ R and w stands for a word on X. The multiplication is defined by
convolution, i.e.,(∑

w

rww
) (∑

v

rvv
)
=
∑

z

( ∑
{w,v|z=wv, rw,rv�0}

rwrv

)
z.

In order to make R(X) into a graded ring, define

R(X)γ =
{ ∑

w

rww | d(w) = γ
}
.

One can check that R(X) =
⊕
γ∈Γ R(X)γ. Thus R(X) is a Γ-graded ring. Note

that if we don’t allow the empty word in the construction, then R(X) is a graded
ring without identity (see Remark 1.1.14). It is easy to see that R(X) is never a
strongly graded ring.

Example 1.6.1 Let R be a ring and R(X) be the free ring on a set X with a
graded structure induced by a map d : X → Γ. Let Ω be a subgroup of Γ and
consider the map

d : X −→ Γ/Ω,

x �−→ Ω + d(x).
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The map d induces a Γ/Ω-graded structure on R(X) which coincides with the
general construction of quotient grading given in §1.1.2.

Example 1.6.2 Let X = {x} be a set of symbols with one element and Zn

be the cyclic group with n elements. Assign 1 ∈ Zn to x and generate the free
ring with identity on X with coefficients in a field F. This ring is the usual
polynomial ring F[x] which, by the above construction, is equipped with a
Zn-grading. Namely,

F[x] =
⊕
k∈Zn

(∑
l∈N,
l=k

Fxl
)
,

where l is the image of l in the group Zn. For a ∈ F, since the polynomial xn−a
is a homogeneous element of degree zero, the ideal 〈xn−a〉 is a graded ideal and
thus the quotient ring F[x]/〈xn−a〉 is also a Zn-graded ring (see §1.1.5). In par-
ticular, if xn−a is an irreducible polynomial in F[x], then the field F[x]/〈xn−a〉
is a Zn-graded field as well.

Example 1.6.3 Let {x, y} be a set of symbols. Assign 1 ∈ Z2 to x and y and
consider the graded free ring R(x, y). The ideal generated by homogeneous
elements {x2 + 1, y2 + 1, xy + yx} is graded and thus we retrieve the Z2-graded
Hamilton quaternion algebra of Example 1.1.20 as follows:

H � R(x, y)/〈x2 + 1, y2 + 1, xy + yx〉.

Moreover, assigning (1, 0) ∈ Z2 ×Z2 to x and (0, 1) ∈ Z2 ×Z2 to y we obtained
the Z2 × Z2-graded quaternion algebra of Example 1.1.20.

Example 1.6.4 TheWeyl algebra

For a (commutative) ring R, the Weyl algebra R(x, y)/〈xy − yx − 1〉 can be
considered as a Z-graded ring by assigning 1 to x and −1 to y.

Example 1.6.5 The Leavitt algebra L(n, k + 1)

Let K be a field, n and k positive integers and A be the free associative K-
algebra with identity generated by symbols {xi j, y ji | 1 ≤ i ≤ n + k, 1 ≤ j ≤ n}
subject to relations (coming from)

Y · X = In,n and X · Y = In+k,n+k,
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where

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 y12 . . . y1,n+k

y21 y22 . . . y2,n+k
...

...
. . .

...

yn,1 yn,2 . . . yn,n+k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1,n

x21 x22 . . . x2,n
...

...
. . .

...

xn+k,1 xn+k,2 . . . xn+k,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.77)

To be concrete, the relations are

n+k∑
j=1

yi jx jl = δi,l, 1 ≤ i, l ≤ n,

n∑
j=1

xi jy jl = δi,l, 1 ≤ i, l ≤ n + k.

In Example 1.3.19 we studied a special case of this algebra when n = 1
and k = n − 1. This algebra was studied by Leavitt in relation with its type
in [63, p.130] where it is shown that for arbitrary n and k the algebra is of type
(n, k) (see §1.7) and when n ≥ 2 they are domains. We denote this algebra by
L(n, k + 1). (Cohn’s notation in [28] for this algebra is Vn,n+k.)

Assigning

deg(y ji) = (0, . . . , 0, 1, 0 . . . , 0),

deg(xi j) = (0, . . . , 0,−1, 0 . . . , 0),

for 1 ≤ i ≤ n + k, 1 ≤ j ≤ n, in
⊕

n Z, where 1 and −1 are in the jth
entries respectively, makes the free algebra generated by xi j and y ji a graded
ring. Moreover, one can easily observe that the relations coming from (1.77)
are all homogeneous with respect to this grading, so that the Leavitt algebra
L(n, k + 1) is a

⊕
n Z-graded ring. In particular, L(1, k) is a Z-graded ring

(Example 1.3.19).

1.6.2 Corner skew Laurent polynomial rings

Let R be a ring with identity and p an idempotent of R. Let φ : R → pRp be
a corner isomorphism, i.e, a ring isomorphism such that φ(1) = p. A corner
skew Laurent polynomial ring with coefficients in R, denoted by R[t+, t−, φ], is
a unital ring which is constructed as follows: The elements of R[t+, t−, φ] are
the formal expressions

t j
−r− j + t j−1

− r− j+1 + · · · + t−r−1 + r0 + r1t+ + · · · + riti
+,
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82 Graded rings and graded modules

where r−n ∈ pnR and rn ∈ Rpn, for all n ≥ 0, where p0 = 1 and pn = φn(p0).
The addition is component-wise, and the multiplication is determined by the
distribution law and the following rules:

t−t+ = 1, t+t− = p, rt− = t−φ(r), t+r = φ(r)t+. (1.78)

The corner skew Laurent polynomial rings are studied in [6], where their
K1-groups are calculated. This construction is a special case of the so-called
fractional skew monoid rings constructed in [7]. Assigning −1 to t− and 1 to t+
makes A := R[t+, t−, φ] a Z-graded ring with A =

⊕
i∈Z Ai, where

Ai = Rpiti
+, for i > 0,

Ai = ti
−p−iR, for i < 0,

A0 = R,

(see [7, Proposition 1.6]). Clearly, when p = 1 and φ is the identity map, then
R[t+, t−, φ] reduces to the familiar ring R[t, t−1].

In the next three propositions we will characterise those corner skew Lau-
rent polynomials which are strongly graded rings (§1.1.3), crossed products
(§1.1.4) and graded von Neumann regular rings (§1.1.9).

Recall that an idempotent element p of the ring R is called a full idempotent
if RpR = R.

Proposition 1.6.6 Let R be a ring with identity and A = R[t+, t−, φ] a corner
skew Laurent polynomial ring. Then A is strongly graded if and only if φ(1) is
a full idempotent.

Proof First note that A1 = Rφ(1)t+ and A−1 = t−φ(1)R. Moreover, since
φ(1) = p, we have

r1φ(1)t+t−φ(1)r2 = r1φ(1)pφ(1)r2 = r1 pppr2 = r1φ(1)r2.

Suppose A is strongly graded. Then 1 ∈ A1A−1. That is

1 =
∑

i

(
riφ(1)t+

) (
t−φ(1)r′i

)
=
∑

i

riφ(1)r′i , (1.79)

where ri, r′i ∈ R. So Rφ(1)R = R, that is φ(1) is a full idempotent.
On the other hand suppose φ(1) is a full idempotent. Since Z is generated

by 1, in order to prove that A is strongly graded, it is enough to show that
1 ∈ A1A−1 and 1 ∈ A−1A1 (see §1.1.3). But

t−φ(1)φ(1)t+ = t−1φ(1)t+ = 1t−t+ = 1,

which shows that 1 ∈ A−1A1. Since φ(1) is a full idempotent, there are ri, r′i ∈ R,
i ∈ I such that

∑
riφ(1)r′i = 1. Then Equation (1.79) shows that 1 ∈ A1A−1. �

https://doi.org/10.1017/CBO9781316717134.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316717134.002


1.6 Grading on graph algebras 83

Recall that a ring R is called Dedekind finite or directly finite if any one-
sided invertible element is two-sided invertible. That is, if ab = 1, then ba = 1,
where a, b ∈ R. For example, left (right) Noetherian rings are Dedekind finite.

Proposition 1.6.7 Let R be a ring with identity which is Dedekind finite and
A = R[t+, t−, φ] a corner skew Laurent polynomial ring. Then A is crossed
product if and only if φ(1) = 1.

Proof If φ(1) = 1, then from relations (1.78) it follows that t−t+ = t+t− = 1.
Therefore all homogeneous components contain invertible elements and thus
A is crossed product.

Suppose A is crossed product. Then there are a, b ∈ R such that (t−a)(bt+) =
1 and (bt+)(t−a) = 1. Using relations (1.78), the first equality gives ab = p and
the second one gives bpa = 1, where φ(1) = p. Now

1 = bpa = bppa = babpa = ba.

Since R is Dedekind finite, it follows ab = 1 and thus p = φ(1) = 1. �

Proposition 1.6.8 Let R be a ring with identity and A = R[t+, t−, φ] a corner
skew Laurent polynomial ring. Then A is a graded von Neumann regular ring
if and only if R is a von Neumann regular ring.

Proof If a graded ring is graded von Neumann regular, then it is easy to see
that its zero component ring is von Neumann regular. This proves one direction
of the theorem. For the converse, suppose R is regular. Let x ∈ Ai, where i > 0.
So x = rpiti

+, for some r ∈ R, where pi = φi(1). By relations (1.78) and
induction, we have ti

+ti− = φi(p0) = pi. Since R is regular, there is an s ∈ R
such that rpisrpi = rpi. Then, choosing y = ti−pis, we have

xyx = (rpiti
+)(ti

−pis)(rpiti
+) = (rpiti

+ti
−pis)(rpiti

+) = rpi pi pisrpiti
+ = rpiti

+ = x.

A similar argument shows that for x ∈ Ai, where i < 0, there is a y such that
xyx = x. This shows that A is a graded von Neumann regular ring. �

Note that in a corner skew Laurent polynomial ring R[t+, t−, φ], t+ is a left
invertible element with a right inverse t− (see the relations (1.78)). In fact
this property characterises such rings. Namely, a graded ring A =

⊕
i∈Z Ai

such that A1 has a left invertible element is a corner skew Laurent polynomial
ring, as the following theorem shows. The following theorem (first established
in [7]) will be used to realise Leavitt path algebras (§1.6.4) as corner skew
Laurent polynomial rings (Example 1.6.14).
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Theorem 1.6.9 Let A be a Z-graded ring which has a left invertible element
t+ ∈ A1. Then t+ has a right inverse t− ∈ A−1, and A = A0[t+, t−, φ], where

φ : A0 −→ t+t−A0t+t−, (1.80)

a �−→ t+at−.

Proof Since t+ has a right inverse, it follows easily that there is a t− ∈ A−1

with t−t+ = 1. Moreover t+t− = t+t−t+t− is a homogeneous idempotent of de-
gree zero. Observe that the map (1.80) is a (unital) ring isomorphism. Consider
the corner skew Laurent polynomial ring Ã = A0[̃t+, t̃−, φ]. Since φ(a) = t+at−,
it follows that t−φ(a) = at− and φ(a)t+ = t+a. Thus t+ and t− satisfy all the
relations in (1.78). Therefore there is a well-defined map ψ : Ã→ A, such that
ψ(̃t±) = t± and the restriction of ψ on A0 is the identity and

ψ
( j∑

k=1

t̃k−a−k + a0 +

i∑
k=1

ait̃i
+

)
=

j∑
k=1

tk
−a−k + a0 +

i∑
k=1

aiti
+.

This also shows that ψ is a graded homomorphism. In order to show that ψ is
an isomorphism, it suffices to show that its restriction to each homogeneous
component ψ : Ãi → Ai is a bijection. Suppose x ∈ Ãi, i > 0 such that
ψ(x) = 0. Then x = dt̃i

+ for some d ∈ A0 pi where pi = φ
i(1) and ψ(x) = dti

+.
Note that φi(1) = ti

+ti−. Thus dφi(1) = dti
+ti− = ψ(x)ti− = 0. It now follows that

x = dt̃i
+ = dφi(1)t̃i

+ = 0 in Ãi. This shows ψ is injective. Suppose y ∈ Ai. Then
yti− ∈ A0 and yti−ti

+ti− = yti−φi(1) ∈ A0φ
i(1) = A0 pi. This shows yti−ti

+ti− t̃i
+ ∈ Ãi.

But ψ(yti−ti
+ti− t̃i

+) = yti−ti
+ti−ti

+ = y. This shows that ψ : Ãi → Ai, i > 0 is a
bijection. A similar argument can be written for the case of i < 0. The case
i = 0 is obvious. This completes the proof. �

1.6.3 Graphs

In this subsection we gather some graph-theoretic definitions which are needed
for the construction of path algebras in §1.6.4.

A directed graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and
maps r, s : E1 → E0. The elements of E0 are called vertices and the elements
of E1 edges. If s−1(v) is a finite set for every v ∈ E0, then the graph is called
row-finite. In this book we will only consider row-finite graphs. In this setting,
if the number of vertices, i.e., |E0|, is finite, then the number of edges, i.e., |E1|,
is finite as well and we call E a finite graph.

For a graph E = (E0, E1, r, s), a vertex v for which s−1(v) is empty is called
a sink, while a vertex w for which r−1(w) is empty is called a source. An edge
with the same source and range is called a loop. A path μ in a graph E is a
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sequence of edges μ = μ1 . . . μk, such that r(μi) = s(μi+1), 1 ≤ i ≤ k − 1. In
this case, s(μ) := s(μ1) is the source of μ, r(μ) := r(μk) is the range of μ, and
k is the length of μ which is denoted by |μ|. We consider a vertex v ∈ E0 as a
trivial path of length zero with s(v) = r(v) = v. If μ is a nontrivial path in E,
and if v = s(μ) = r(μ), then μ is called a closed path based at v. If μ = μ1 . . . μk

is a closed path based at v = s(μ) and s(μi) � s(μ j) for every i � j, then μ
is called a cycle. Throughout, we denote a cycle of length n by Cn. We call a
graph without cycles a acyclic graph. A graph consisting of only one cycle and
all the paths ending on this cycle is called a comet graph. A Cn-comet graph is
a comet graph with a cycle of length n. Here are examples of an acyclic and a
2-comet graph.

•
��

•
��• �� • �� • • �� • 		•

 •��

For two vertices v and w, the existence of a path with the source v and the
range w is denoted by v ≥ w. Here we allow paths of length zero. By v ≥n w,
we mean there is a path of length n connecting these vertices. Therefore v ≥0 v
represents the vertex v. Also, by v > w, we mean a path from v to w where
v � w. In this book, by v ≥ w′ ≥ w it is understood that there is a path
connecting v to w and going through w′ (i.e., w′ is on the path connecting v to
w). For n ≥ 2, we define En to be the set of paths of length n and E∗ =

⋃
n≥0 En,

the set of all paths.
For a graph E, let nv,w be the number of edges with the source v and range

w. Then the adjacency matrix of the graph E is AE = (nv,w). Usually one
orders the vertices and then writes AE based on this ordering. Two different
orderings of vertices give different adjacency matrices. However, if AE and A′E
are two adjacency matrices of E, then there is a permutation matrix P such that
A′E = PAE P−1.

A graph E is called essential if E does not have sinks and sources. Moreover,
a graph is called irreducible if for every ordered pair of vertices v and w there
is a path from v to w.

1.6.4 Leavitt path algebras

A path algebra, with coefficients in the field K, is constructed as follows: con-
sider a K-vector space with finite paths as the basis and define the multiplica-
tion by concatenation of paths. A path algebra has a natural graded structure by
assigning paths as homogeneous elements of degree equal to their lengths. A
formal definition of path algebras with coefficients in a ring R is given below.
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Definition 1.6.10 For a graph E and a ring R with identity, we define the
path algebra of E, denoted by PR(E), to be the algebra generated by the sets
{v | v ∈ E0}, {α | α ∈ E1} with coefficients in R, subject to the relations

1 viv j = δi jvi for every vi, v j ∈ E0;
2 s(α)α = αr(α) = α for all α ∈ E1.

Here the ring R commutes with the generators
{
v, α | v ∈ E0, α ∈ E1}. When

the coefficient ring R is clear from the context, we simply write P(E) instead
of PR(E). When R is not commutative, then we consider PR(E) as a left R-
module. Using the above two relations, it is easy to see that when the number
of vertices is finite, then PR(E) is a ring with identity

∑
v∈E0 v.

When the graph has one vertex and n loops, the path algebra associated with
this graph is isomorphic to R〈x1, . . . , xn〉, i.e., a free associative unital algebra
over R with n noncommuting variables.

Setting deg(v) = 0 for v ∈ E0 and deg(α) = 1 for α ∈ E1, we obtain a
natural Z-grading on the free R-ring generated by {v, α | v ∈ E0, α ∈ E1}
(§1.6.1). Since the relations in Definition 1.6.10 are all homogeneous, the ideal
generated by these relations is homogeneous and thus we have a natural Z-
grading on PR(E). Note that P(E) is positively graded, and for any m, n ∈ N,

P(E)m P(E)n = P(E)m+n.

However, by Proposition 1.1.15(2), P(E) is not a strongly Z-graded ring.
The theory of Leavitt path algebras was introduced in [2, 5] which associate

to directed graphs certain types of algebras. These algebras were motivated by
Leavitt’s construction of universal non-IBN rings [63]. Leavitt path algebras
are quotients of path algebras by relations resembling those in the construction
of algebras studied by Leavitt (see Example 1.3.19).

Definition 1.6.11 For a row-finite graph E and a ring R with identity, we
define the Leavitt path algebra of E, denoted by LR(E), to be the algebra gen-
erated by the sets {v | v ∈ E0}, {α | α ∈ E1} and {α∗ | α ∈ E1} with the
coefficients in R, subject to the relations

1 viv j = δi jvi for every vi, v j ∈ E0;
2 s(α)α = αr(α) = α and r(α)α∗ = α∗s(α) = α∗ for all α ∈ E1;
3 α∗α′ = δαα′r(α), for all α, α′ ∈ E1;
4
∑
{α∈E1,s(α)=v} αα∗ = v for every v ∈ E0 for which s−1(v) is nonempty.

Here the ring R commutes with the generators
{
v, α, α∗ | v ∈ E0, α ∈ E1}.

When the coefficient ring R is clear from the context, we simply write L(E)
instead of LR(E). When R is not commutative, then we consider LR(E) as a
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left R-module. The elements α∗ for α ∈ E1 are called ghost edges. One can
show that LR(E) is a ring with identity if and only if the graph E is finite
(otherwise, LR(E) is a ring with local identities, see [2, Lemma 1.6]).

Setting deg(v) = 0, for v ∈ E0, deg(α) = 1 and deg(α∗) = −1 for α ∈ E1,
we obtain a natural Z-grading on the free R-ring generated by

{
v, α, α∗ | v ∈

E0, α ∈ E1}. Since the relations in Definition 1.6.11 are all homogeneous, the
ideal generated by these relations is homogeneous and thus we have a natural
Z-grading on LR(E).

If μ = μ1 . . . μk, where μi ∈ E1, is an element of L(E), then we denote by μ∗

the element μ∗k . . . μ
∗
1 ∈ L(E). Further, we define v∗ = v for any v ∈ E0. Since

α∗α′ = δαα′r(α), for all α, α′ ∈ E1, any word in the generators
{
v, α, α∗ | v ∈

E0, α ∈ E1} in L(E) can be written as μγ∗, where μ and γ are paths in E (recall
that vertices were considered paths of length zero). The elements of the form
μγ∗ are called monomials.

If the graph E is infinite, LR(E) is a graded ring without identity (see Re-
mark 1.1.14).

Taking the grading into account, one can write

LR(E) =
⊕

k∈Z LR(E)k,

where

LR(E)k =
{ ∑

i

riαiβ
∗
i | αi, βi are paths, ri ∈ R, and |αi| − |βi| = k for all i

}
.

For simplicity we denote LR(E)k, the homogeneous elements of degree k, by
Lk.

Example 1.6.12 A graded ring whose modules are all graded

Consider the infinite line graph

E : �� u−1
e0 �� u0

e1 �� u1 ��

Then the Leavitt path algebra L(E) is a Z-graded ring. Let X be a right L(E)-
module. Set

Xi = Xui, i ∈ Z,
and observe that X =

⊕
i∈Z Xi. It is easy to check that X becomes a graded

L(E)-module. Moreover, any module homomorphism is a graded homomor-
phism. Note, however, that the module category Mod-L(E) is not equivalent
to Gr-L(E). Also notice that although any ideal is a graded module over L(E),
they are not graded ideals of L(E).
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The following theorem was proved in [47] and determines the finite graphs
whose associated Leavitt path algebras are strongly graded.

Theorem 1.6.13 Let E be a finite graph and K a field. Then LK(E) is strongly
graded if and only if E does not have sinks.

The proof of this theorem is quite long and does not fit the purpose of this
book. However, we can realise the Leavitt path algebras of finite graphs with
no source in terms of corner skew Laurent polynomial rings (see §1.6.2). Using
this representation, we can provide a short proof for the above theorem when
the graph has no sources.

Example 1.6.14 Leavitt path algebras as corner skew Laurent rings

Let E be a finite graph with no source and E0 = {v1, . . . , vn} the set of all
vertices of E. For each 1 ≤ i ≤ n, we choose an edge ei such that r(ei) = vi and
consider t+ = e1 + · · · + en ∈ L(E)1. Then t− = e∗1 + · · · + e∗n is its right inverse.
Thus by Theorem 1.6.9, L(E) = L(E)0[t+, t−, φ], where

φ : L(E)0 −→ t+t− L(E)0t+t−
a �−→ t+at−

Using this interpretation of Leavitt path algebras we are able to prove the
following theorem.

Theorem 1.6.15 Let E be a finite graph with no source and K a field. Then
LK(E) is strongly graded if and only if E does not have sinks.

Proof Write L(E) = L(E)0[t+, t−, φ], where φ(1) = t+t− (see Example 1.6.14).
The theorem now follows from an easy to prove observation that t+t− is a
full idempotent if and only if E does not have sinks, along with Proposi-
tion 1.6.6, that φ(1) is a full idempotent if and only if L(E)0[t+, t−, φ] is strongly
graded. �

In the following theorem, we use the fact that L(E)0 is an ultramatricial
algebra, i.e., it is isomorphic to the union of an increasing countable chain of
a finite product of matrix algebras over a field K (see §3.9.3).

Theorem 1.6.16 Let E be a finite graph with no source and K a field. Then
LK(E) is crossed product if and only if E is a cycle.

Proof Suppose E is a cycle with edges {e1, e2, . . . , en}. It is straightforward to
check that e1 + e2 + · · ·+ en is an invertible element of degree 1. It then follows
that each homogeneous component contains invertible elements and thus L(E)
is crossed product.
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Suppose now L(E) is crossed product. Write L(E) = L(E)0[t+, t−, φ], where
φ(1) = t+t− and t+ = e1 + · · · + en ∈ L(E)1 (see Example 1.6.14). Since L(E)0

is an ultramatricial algebra, it is Dedekind finite, and thus by Proposition 1.6.7,

φ(1) = e1e∗1 + e2e∗2 + · · · + ene∗n = v1 + v2 + · · · + vn.

From this it follows that (after suitable permutation), eie∗i = vi, for all 1 ≤ i ≤
n. This in turn shows that only one edge emits from each vertex, i.e., E is a
cycle. �

As a consequence of Theorem 1.6.13, we can show that Leavitt path algebras
associated with finite graphs with no sinks are graded regular von Neumann
rings (§1.1.9).

Corollary 1.6.17 Let E be a finite graph with no sinks and K a field. Then
LK(E) is a graded von Neumann regular ring.

Proof Since L(E) is strongly graded (Theorem 1.6.13), by Corollary 1.5.10,
L(E) is von Neumann regular if L(E)0 is a von Neumann regular ring. But we
know that the zero component ring L(E)0 is an ultramatricial algebra (§3.9.3)
which is von Neumann regular (see the proof of [5, Theorem 5.3]). This fin-
ishes the proof. �

Example 1.6.18 Leavitt path algebras are not graded unit regular rings

By analogy with the nongraded case, a graded ring is graded von Neumann
unit regular (or graded unit regular for short) if for any homogeneous element
x, there is an invertible homogeneous element y such that xyx = x. Clearly any
graded unit regular ring is von Neumann regular. However, the converse is not
the case. For example, Leavitt path algebras are not in general unit regular as
the following example shows. Consider the graph:

E : •
y1

��

y2





Then it is easy to see that there is no homogeneous invertible element x such
that y1xy1 = y1 in L(E).

The following theorem determines the graded structure of Leavitt path alge-
bras associated with acyclic graphs. It turns out that such algebras are natural
examples of graded matrix rings (§1.3).

Theorem 1.6.19 Let K be a field and E a finite acyclic graph with sinks
{v1, . . . , vt}. For any sink vs, let R(vs) =

{
pvs

1 , . . . , p
vs
n(vs)
}

denote the set of all
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paths ending at vs. Then there is a Z-graded isomorphism

LK(E) �gr

t⊕
s=1

Mn(vs)(K)(|pvs
1 |, . . . , |pvs

n(vs)
|). (1.81)

Sketch of proof Fix a sink vs and denote R(vs) = {p1, . . . , pn(vs)}. The set

Ivs =
{ ∑

kpi p∗j | k ∈ K, pi, p j ∈ R(vs)
}

is an ideal of LK(E), and we have an isomorphism

φ : Ivs −→Mn(vs)(K),

kpi p∗j �−→ k(ei j),

where k ∈ K, pi, p j ∈ R(vs) and ei j is the standard matrix unit. Now, consid-
ering the grading on Mn(vs)(K)(|pvs

1 |, . . . , |pvs
n(vs)
|), we show that φ is a graded

isomorphism. Let pi p∗j ∈ Ivs . Then

deg(pi p∗j) = |pi| − |p j| = deg(ei j) = deg(φ(pi p∗j)).

So φ respects the grading. Hence φ is a graded isomorphism. One can check
that

LK(E) =
t⊕

s=1

Ivs �gr

t⊕
s=1

Mn(vs)(K)(|pvs
1 |, . . . , |pvs

n(vs)
|). �

Example 1.6.20 Consider the following graphs:

•
��•
��

•
��

•
��

•
��

•
��

E1 : • �� • �� • E2 : • �� • �� • E3 : • �� • �� •
Theorem 1.6.19 shows that the Leavitt path algebras of the graphs E1 and E2

with coefficients from the field K are graded isomorphic to M5(K)
(
0, 1, 1, 2, 2)

and thus L(E1) �gr L(E2). However

L(E3) �gr M5(K)(0, 1, 2, 2, 3).

Similar to Theorem 1.6.19, we can characterise the graded structure of Leav-
itt path algebras associated with comet graphs.

Theorem 1.6.21 Let K be a field and E a Cn-comet with the cycle C of length
n ≥ 1. Let v be a vertex on the cycle C and e be the edge in the cycle with
s(e) = v. Eliminate the edge e and consider the set {pi | 1 ≤ i ≤ m} of all paths
with end in v. Then

LK(E) �gr Mm(K[xn, x−n])(|p1|, . . . , |pm|). (1.82)
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Sketch of proof One can show that the set of monomials{
piCk p∗j | 1 ≤ i, j ≤ m, k ∈ Z

}
is a basis of LK(E) as a K-vector space. Define a map

φ : LK(E) −→Mm(K[xn, x−n])(|p1|, . . . , |pm|), by φ(piCk p∗j) = ei j(xkn),

where ei j(xkn) is a matrix with xkn in the i j-position and zero elsewhere. Extend
this linearly to LK(E). We have

φ((piCk p∗j)(prCt p∗s)) = φ(δ jr piCk+t p∗s)

= δ jreis(x(k+t)n)

= (ei j xkn)(ersxtn)

= φ(piCk p∗j)φ(prCt p∗s).

Thus φ is a homomorphism. Also, φ sends the basis to the basis, so φ is an
isomorphism.
We now need to show that φ is graded. We have

deg(piCk p∗j) = |piCk p∗j | = nk + |pi| − |p j|
and

deg(φ(piCk p∗j)) = deg(ei j(xkn)) = nk + |pi| − |p j|.
Therefore φ respects the grading. This finishes the proof. �

Example 1.6.22 Consider the Leavitt path algebra LK(E), with coefficients
in a field K, associated with the following graph:

•

��
E : • ��•��

•

��

By Theorem 1.6.13, LK(E) is strongly graded. Now by Theorem 1.6.21,

LK(E) �gr M4(K[x2, x−2])(0, 1, 1, 1). (1.83)

However, this algebra is not crossed product. Set B = K[x, x−1] with the grad-
ing B =

⊕
n∈ZKxn and consider A = K[x2, x−2] as a graded subring of B with
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An = Kxn if n ≡ 0 (mod 2), and An = 0 otherwise. Using the graded isomor-
phism of (1.83), by (1.45) a homogeneous element of degree 1 in LK(E) has
the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A2 A2

A0 A1 A1 A1

A0 A1 A1 A1

A0 A1 A1 A1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Since A1 = 0, the determinants of these matrices are zero, and thus no homo-
geneous element of degree 1 is invertible. Thus LK(E) is not crossed product
(see §1.1.3).

Now consider the following graph:

E : • f �� •

g

��•

h

�� •e��

By Theorem 1.6.21,

LK(E) �gr M4(K[x2, x−2])(0, 1, 1, 2). (1.84)

Using the graded isomorphism of (1.84), by (1.47) homogeneous elements of
degree 0 in LK(E) have the form

LK(E)0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A0 A1 A1 A2

A−1 A0 A0 A1

A−1 A0 A0 A1

A−2 A−1 A−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
K 0 0 Kx2

0 K K 0
0 K K 0
Kx−2 0 0 K

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In the same manner, homogeneous elements of degree 1 have the form

LK(E)1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 Kx2 Kx2 0
K 0 0 Kx2

K 0 0 Kx2

0 K K 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Choose

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 x2 0
0 0 0 x2

1 0 0 x2

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ L(E)1
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and observe that u is invertible; this matrix corresponds to the element

g + h + f ge∗ + eh f ∗ ∈ LK(E)1.

Thus LK(E) is crossed product and therefore a skew group ring as the grad-
ing is cyclic (see §1.1.4), i.e.,

LK(E) �gr

⊕
i∈Z

LK(E)0ui

and a simple calculation shows that one can describe this algebra as follows:

LK(E)0 �M2(K) ×M2(K)

and

LK(E) �gr
(
M2(K) ×M2(K)

)
�τ Z, (1.85)

where

τ
( (a11 a12

a21 a22

)
,

(
b11 b12

b21 b22

) )
=
( (b22 b21

b12 b11

)
,

(
a22 a21

a12 a11

) )
.

Remark 1.6.23 Noncanonical gradings on Leavitt path algebras

For a graph E, the Leavitt path algebra LK(E) has a canonical Z-graded
structure. This grading was obtained by assigning 0 to vertices, 1 to edges and
−1 to ghost edges. However, one can equip LK(E) with other graded structures
as well. Let Γ be an arbitrary group with the identity element e. Let w : E1 → Γ

be a weight map and further define w(α∗) = w(α)−1, for any edge α ∈ E1 and
w(v) = e for v ∈ E0. The free K-algebra generated by the vertices, edges
and ghost edges is a Γ-graded K-algebra (see §1.6.1). Moreover, the Leavitt
path algebra is the quotient of this algebra by relations in Definition 1.6.11
which are all homogeneous. Thus LK(E) is a Γ-graded K-algebra. One can
write Theorems 1.6.19 and 1.6.21 with this general grading.

As an example, consider the graphs

E : • f �� • e
��

F : •

g

��•

h

��

and assign 1 for the degree of f , 2 for the degree of e in E and 1 for the degrees
of g and h in F. Then the proof of Theorem 1.6.21 shows that

LK(E) �M2(K[x2, x−2])(0, 1)
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and

LK(F) �M2(K[x2, x−2])(0, 1)

are Z-graded rings. So with these gradings, LK(E) �gr LK(F).

Example 1.6.24 Leavitt path algebras are strongly Z2-graded

Let E be a (connected) row-finite graph with at least one edge. By Re-
mark 1.6.23, A = LK(E) has a Z2-grading induced by assigning 0 to ver-
tices and 1 ∈ Z2 to edges and ghost edges. Since the defining relations of
Leavitt path algebras guarantee that for any v ∈ E0, v ∈ A1A1, one can easily
check that LK(E) is strongly Z2-graded for any graph (compare this with The-
orem 1.6.13). In contrast to the canonical grading, in this case the 0-component
ring is not necessarily an ultramatricial ring (see §3.9.3).

1.7 The graded IBN and graded type

A ring A with identity has an invariant basis number (IBN) or invariant basis
property if any two bases of a free (right) A-module have the same cardinality,
i.e., if An � Am as A-modules, then n = m. When A does not have IBN, the
type of A is defined as a pair of positive integers (n, k) such that An � An+k

as A-modules and these are the smallest number with this property, that is,
(n, k) is the minimum under the usual lexicographic order. This means any two
bases of a free A-module have the unique cardinality if one of the bases has
the cardinality less than n and, further, if a free module has rank n, then a free
module with the smallest cardinality (other than n) isomorphic to this module
is of rank n + k. Another way to describe a type (n, k) is that An � An+k is the
first repetition in the list A, A2, A3, . . . .

It was shown that if A has type (n, k), then Am � Am′ if and only if m = m′

or m,m′ ≥ n and m ≡ m′ (mod k) (see [28, p. 225], [63, Theorem 1]).
One can show that a (right) Noetherian ring has IBN. Moreover, if there is

a ring homomorphism A→ B, (which preserves 1), and B has IBN then A has
IBN as well. Indeed, if Am � An then

Bm � Am ⊗A B � An ⊗A B � Bn, (1.86)

so n = m. One can describe the type of a ring by using the monoid of isomor-
phism classes of finitely generated projective modules (see Example 3.1.4).
For nice discussions about these rings see [21, 28, 67].

A graded ring A has a graded invariant basis number (gr-IBN) if any two
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homogeneous bases of a graded free (right) A-module have the same cardinal-
ity, i.e., if Am(α) �gr An(δ), where α = (α1, . . . , αm) and δ = (δ1, . . . , δn), then
m = n. Note that, in contrast to the nongraded case, this does not imply that
two graded free modules with bases of the same cardinality are graded isomor-
phic (see Proposition 1.3.16). A graded ring A has IBN in gr-A, if Am �gr An

then m = n. If A has IBN in gr-A, then A0 has IBN. Indeed, if Am
0 � An

0 as
A0-modules, then, similarly to (1.86),

Am �gr Am
0 ⊗A0 A � An

0 ⊗A0 A �gr An,

so n = m (see [75, p. 215]).
When the graded ring A does not have gr-IBN, the graded type of A is de-

fined as a pair of positive integers (n, k) such that An(δ) �gr An+k(α) as A-
modules, for some δ = (δ1, . . . , δn) and α = (α1, . . . , αn+k) and these are the
smallest number with this property. In Proposition 1.7.1 we show that the Leav-
itt algebra L(n, k + 1) (see Example 1.6.5) has graded type (n, k).

Parallel to the nongraded setting, one can show that a graded (right) Noethe-
rian ring has gr-IBN. Moreover, if there is a graded ring homomorphism A →
B, (which preserves 1), and B has gr-IBN then A has gr-IBN as well. Indeed,
if Am(α) �gr An(δ), where α = (α1, . . . , αm) and δ = (δ1, . . . , δn), then

Bm(α) �gr Am(α) ⊗A B � An(δ) ⊗A B �gr Bn(δ),

which implies n = m. Using this, one can show that any graded commutative
ring has gr-IBN. For, there exists a graded maximal ideal and its quotient ring
is a graded field which has gr-IBN (see §1.1.5 and Proposition 1.4.2).

Let A be a Γ-graded ring such that Am(α) �gr An(δ), where α = (α1, . . . , αm)
and δ = (δ1, . . . , δn). Then there is a universal Γ-graded ring R such that

Rm(α) �gr Rn(δ)

and a graded ring homomorphism R → A which induces the graded isomor-
phism

Am(α) �gr Rm(α) ⊗R A �gr Rn(δ) ⊗R A �gr An(δ).

Indeed, by Proposition 1.3.16, there are matrices a = (ai j) ∈ Mn×m(A)[δ][α]
and b = (bi j) ∈ Mm×n(A)[α][δ] such that ab = In and ba = Im. The free ring
generated by symbols in place of ai j and bi j subject to relations imposed by
ab = In and ba = Im is the desired universal graded ring. In detail, let F be
a free ring generated by xi j, 1 ≤ i ≤ n, 1 ≤ j ≤ m and yi j, 1 ≤ i ≤ m,
1 ≤ j ≤ n. Assign the degrees deg(xi j) = δi − α j and deg(yi j) = αi − δ j (see
§1.6.1). This makes F a Γ-graded ring. Let R be a ring F modulo the relations∑m

s=1 xisysk = δik, 1 ≤ i, k ≤ n and
∑n

t=1 yit xtk = δik, 1 ≤ i, k ≤ m, where δik is
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the Kronecker delta. Since all the relations are homogeneous, R is a Γ-graded
ring. Clearly the map sending xi j to ai j and yi j to bi j induces a graded ring
homomorphism R→ A. Again Proposition 1.3.16 shows that Rm(α) �gr Rn(δ).

Proposition 1.7.1 Let R = L(n, k + 1) be the Leavitt algebra of type (n, k).
Then

(1) R is a universal
⊕

n Z-graded ring which does not have gr-IBN;
(2) R has graded type (n, k);
(3) for n = 1, R has IBN in gr-R.

Proof (1) Consider the algebra L(n, k + 1) constructed in Example 1.6.5,
which is a

⊕
n Z-graded ring and is universal. Moreover, (1.77) combined with

Proposition 1.3.16(3) shows that Rn �gr Rn+k(α). Here α = (α1, . . . , αn+k),
where αi = (0, . . . , 0, 1, 0 . . . , 0) and 1 is in the ith entry. This shows that
R = L(n, k + 1) does not have gr-IBN.

(2) By [28, Theorem 6.1], R is of type (n, k). This immediately implies the
graded type of R is also (n, k).

(3) Suppose Rn �gr Rm as graded R-modules. Then Rn
0 � Rm

0 as R0-modules.
But R0 is an ultramatricial algebra, i.e., the direct limit of an increasing chain
of a finite product of matrices over a field. Since IBN respects direct limits
([28, Theorem 2.3]), R0 has IBN. Therefore, n = m. �

Remark 1.7.2 Assignment of deg(yi j) = 1 and deg(xi j) = −1, for all i, j,
makes R = L(n, k + 1) a Z-graded algebra of graded type (n, k) with Rn �gr

Rn+k(1).

Remark 1.7.3 Let A be a Γ-graded ring. In [77, Proposition 4.4], it was shown
that if Γ is finite then A has gr-IBN if and only if A has IBN.

1.8 The graded stable rank

The notion of stable rank was defined by H. Bass [14] to study the K1-group
of rings that are finitely generated over commutative rings with finite Krull
dimension. For a concise introduction to the stable rank, we refer the reader
to [59, 60], and for its applications to K-theory to [13, 14]. It seems that the
natural notion of graded stable rank in the context of graded ring theory has not
yet been investigated in the literature. In this section we propose a definition
for the graded stable rank and study the important case of graded rings with
graded stable rank 1. This will be used later in Chapter 3 in relation to graded
Grothendieck groups.
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A row (a1, . . . , an) of homogeneous elements of a Γ-graded ring A is called a
graded left unimodular row if the graded left ideal generated by ai, 1 ≤ i ≤ n,
is A.

Lemma 1.8.1 Let (a1, . . . , an) be a row of homogeneous elements of a Γ-
graded ring A. The following are equivalent:

(1) (a1, . . . , an) is a left unimodular row;
(2) (a1, . . . , an) is a graded left unimodular row;
(3) the graded homomorphism

φ(a1,...,an) : An(α) −→ A,

(x1, . . . , xn) �−→
n∑

i=1

xiai,

where α = (α1, . . . , αn) and αi = − deg(ai), is surjective.

Proof The proof is straightforward. �

When n ≥ 2, a graded left unimodular row (a1, . . . , an) is called stable if
there exist homogeneous elements b1, . . . , bn−1 of A such that the graded left
ideal generated by homogeneous elements ai + bian, 1 ≤ i ≤ n − 1, is A.

The graded left stable rank of a ring A is defined to be n, denoted srgr(A) = n,
if any graded unimodular row of length n + 1 is stable, but there exists an
unstable unimodular row of length n. If such an n does not exist (i.e., there
are unstable unimodular rows of arbitrary length) we say that the graded stable
rank of A is infinite.

In order that this definition is well-defined, one needs to show that if any
graded unimodular row of fixed length n is stable, so is any unimodular row
of a greater length. This can be proved similarly to the nongraded case and we
omit the proof (see for example [59, Proposition 1.3]).

When the grade group Γ is a trivial group, the above definitions reduce to
the standard definitions of unimodular rows and stable ranks.

The case of graded stable rank 1 is of special importance. Suppose A is a
Γ-graded with srgr(A) = 1. Then from the definition it follows that, if a, b ∈ Ah

such that Aa + Ab = A, then there is a homogeneous element c such that the
homogeneous element a + cb is left invertible. When srgr(A) = 1, any left
invertible homogeneous element is in fact invertible. For, suppose c ∈ Ah is
left invertible, i.e., there is an a ∈ Ah such that ac = 1. Then the row (a, 1− ca)
is graded left unimodular. Thus, there is an s ∈ Ah such that u := a+ s(1−ca) is
left invertible. But uc = 1. Thus u is (left and right) invertible and consequently,
c is an invertible homogeneous element.
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The graded stable rank 1 is quite a strong condition. In fact if srgr(A) = 1 then
ΓA = Γ∗A. For, if a ∈ Aγ is a nonzero element, then since (a, 1) is unimodular
and srgr(A) = 1, there is a c ∈ Ah, such that a + c is an invertible homogeneous
element, necessarily of degree γ. Thus γ ∈ Γ∗A.

Example 1.8.2 Graded division rings have graded stable rank 1

Since any nonzero homogeneous element of a graded division ring is in-
vertible, one shows easily that its graded stable rank is 1. Thus for a field K,
srgr(K[x, x−1]) = 1, whereas sr(K[x, x−1]) = 2.

Example 1.8.3 For a strongly graded ring A, srgr(A) � sr(A0)

Let A = L(1, 2) be the Leavitt algebra generated by x1, x2, y1, y2 (see Ex-
ample 1.3.19). Then relations (1.60) show that y1 is left invertible but it is not
invertible. This shows that srgr(A) � 1. On the other hand, since A0 is an ultra-
matricial algebra, sr(A0) = 1 (see §3.9.3, [59, Corollary 5.5] and [40]).

We have the following theorem which is a graded version of the cancellation
theorem with a similar proof (see [60, Theorem 20.11]).

Theorem 1.8.4 (Graded cancellation theorem) Let A be a Γ-graded ring and
let M,N, P be graded right A-modules, with P being finitely generated. If the
graded ring EndA(P) has graded left stable rank 1, then P ⊕ M �gr P ⊕ N as
A-modules implies M �gr N as A-modules.

Proof Set E := EndA(P). Let h : P ⊕ M → P ⊕ N be a graded A-module
isomorphism. Then the composition of the maps

P
i1−→ P ⊕ M

h−→ P ⊕ N
π1−→ P,

M
i2−→ P ⊕ M

h−→ P ⊕ N
π1−→ P

induces a graded split epimorphism of degree zero, denoted by ( f , g) : P⊕M →
P. Here ( f , g)(p,m) = f (p) + g(m), where f = π1hi1 and g = π1hi2. It is clear

that ker( f , g) �gr N. Let
(

f ′

g′

)
: P→ P ⊕ M be the split homomorphism. Thus

1 = ( f , g)
(

f ′

g′

)
= f f ′ + gg′.

This shows that the left ideal generated by f ′ and gg′ is E. Since E has graded
stable rank 1, it follows there is an e ∈ E of degree 0 such that u := f ′+e(gg′) is

an invertible element of E. Writing u = (1, eg)
(

f ′

g′

)
implies that both ker( f , g)
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and ker(1, eg) are graded isomorphic to

P ⊕ M/ Im
(

f ′

g′

)
.

Thus ker( f , g) �gr ker(1, eg). But ker( f , g) �gr N and ker(1, eg) �gr M. Thus
M �gr N. �

The following corollary will be used in Chapter 3 to show that for a graded
ring with graded stable rank 1, the monoid of graded finitely generated projec-
tive modules injects into the graded Grothendieck group (see Corollary 3.1.8).

Corollary 1.8.5 Let A be a Γ-graded ring with graded left stable rank 1 and
M,N, P be graded right A-modules. If P is a graded finitely generated pro-
jective A-module, then P ⊕ M �gr P ⊕ N as A-modules implies M �gr N as
A-modules.

Proof Suppose P ⊕ M �gr P ⊕ N as A-modules. Since P is a graded finitely
generated A-module, there is a graded A-module Q such that P ⊕ Q �gr An(α)
(see (1.39)). It follows that

An(α) ⊕ M �gr An(α) ⊕ N.

We prove that if

A(α) ⊕ M �gr A(α) ⊕ N, (1.87)

then M �gr N. The corollary then follows by an easy induction.
By (1.48) there is a graded ring isomorphism EndA(A(α)) �gr A. Since A has

graded stable rank 1, so does EndA(A(α)). Now by Theorem 1.8.4, from (1.87)
it follows that M �gr N. This finishes the proof. �

The stable rank imposes other finiteness properties on rings such as the IBN
property (see [95, Exercise I.1.5(e)]).

Theorem 1.8.6 Let A be a Γ-graded ring such that A �gr Ar(α) as left A-
modules, for some α = (α1, . . . , αr), r > 1. Then the graded stable rank of A is
infinite.

Proof Suppose the graded stable rank of A is n. Then one can find α =

(α1, . . . , αr), where r > n and Ar(α) �gr A. Suppose φ : Ar(α) → A is this
given graded isomorphism. Set ai = φ(ei), 1 ≤ i ≤ r, where {ei | 1 ≤ i ≤ r} are
the standard (homogeneous) basis of Ar. Then for any x ∈ Ar(α),

φ(x) = φ(
r∑

i=1

xiei) =
r∑

i=1

xiai = φ(a1,...,ar)(x1, . . . , xr).
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Since φ is an isomorphism, by Lemma 1.8.1, the row (a1, . . . , ar) is graded left
unimodular. Since r > srgr(A), there is a homogeneous row (b1, . . . , br−1) such
that (a1 + b1ar, . . . , ar−1 + br−1ar) is also left unimodular. Note that deg(bi) =
αr − αi. Consider the graded left A-module homomorphism

ψ : Ar−1(α1, . . . , αr−1) −→ Ar(α1, . . . , αr−1, αr),

(x1, . . . , xr−1) �−→ (x1, . . . , xr−1,

r−1∑
i=1

xibi)

and the commutative diagram

Ar−1(α1, . . . , αr−1)
ψ ��

φ(a1+b1ar ,...,ar−1+br−1ar )
��

Ar(α1, . . . , αr−1, αr) .

φ(a1 ,...,ar )

��A

Since φ(a1,...,ar) is an isomorphism and φ(a1+b1ar ,...,ar−1+br−1ar) is an epimorphism, ψ
is also an epimorphism. Thus there is (x1, . . . , xr−1) such that ψ(x1, . . . , xr−1) =
(0, . . . , 0, 1) which immediately gives a contradiction. �

Corollary 1.8.7 The graded stable rank of the Leavitt algebra L(1, n) is infi-
nite.

Proof This follows from Proposition 1.7.1 and Theorem 1.8.6. �

Example 1.8.8 Graded von Neumann regular rings with stable rank 1
One can prove, similarly to the nongraded case [40, Proposition 4.12], that

a graded von Neumann regular ring has a stable rank 1 if and only if it is a
graded von Neumann unit regular.

1.9 Graded rings with involution

Let A be a ring with an involution denoted by ∗, i.e., ∗ : A → A, a �→ a∗, is an
anti-automorphism of order two. Throughout this book we call A also a ∗-ring.
If M is a right A-module, then M can be given a left A-module structure by
defining

am := ma∗. (1.88)

This gives an equivalent

Mod-A ≈ A-Mod, (1.89)
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where Mod-A is the category of right A-modules and A-Mod is the category of
left A-modules.

Now let A =
⊕
γ∈Γ Aγ be a Γ-graded ring. We call A a graded ∗-ring if there

is an involution on A such that for a ∈ Aγ, a∗ ∈ A−γ, where γ ∈ Γ. It follows
that A∗γ = A−γ, for any γ ∈ Γ.

Remark 1.9.1 Depending on the circumstances, one can also set another
definition that A∗γ = Aγ, where γ ∈ Γ.

If A is a graded ∗-ring, and M is a graded right A-module, then the mul-
tiplication in (1.88) makes M a graded left A(−1)-module and makes M(−1) a
graded left A-module, where A(−1) and M(−1) are Veronese rings and modules
(see Examples 1.1.19 and 1.2.7). These give graded equivalences

I : Gr-A −→ A(−1)-Gr, (1.90)

M �−→ M

and

J : Gr-A −→ A-Gr, (1.91)

M �−→ M(−1).

Here for α ∈ Γ, I(M(α)) = I(M)(α) (i.e., I is a graded functor, see Defini-
tion 2.3.3), whereas J(M(α)) = J(M)(−α).

Clearly, if the grade group Γ is trivial, the equivalences (1.90) and (1.91)
both reduce to (1.89).

Let A be a graded ∗-field (i.e., a graded field with ∗-involution) and R a
graded A-algebra with involution denoted by ∗ again. Then R is a graded ∗-
A-algebra if (ar)∗ = a∗r∗ (i.e., the graded homomorphism A → R is a ∗-
homomorphism).

Example 1.9.2 Group rings

For a group Γ (denoted multiplicatively here), the group ring Z[Γ] with a
natural Γ-grading

Z[Γ] =
⊕
γ∈Γ

Z[Γ]γ, where Z[Γ]γ = Zγ,

and the natural involution ∗ : Z[Γ]→ Z[Γ], γ �→ γ−1 is a graded ∗-ring.

Example 1.9.3 Hermitian transpose

If A is a graded ∗-ring, then for a = (ai j) ∈Mn(A)(δ1, . . . , δn), the Hermitian
transpose a∗ = (a∗ji), makes Mn(A)(δ1, . . . , δn) a graded ∗-ring (see 1.45).
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Example 1.9.4 Leavitt path algebras are graded ∗-algebras
A Leavitt path algebra has a natural ∗-involution. Let K be a ∗-field (i.e., a

field with ∗-involution). Define a homomorphism from the free K-algebra gen-
erated by the vertices, edges and ghost edges of the graph E to L(E)op, by
k �→ k∗, v �→ v, α �→ α∗ and α∗ �→ α, where k ∈ K, v ∈ E0, α ∈ E1 and α∗ is
the ghost edge. The relations in the definition of a Leavitt path algebra, Defini-
tion 1.6.11, show that this homomorphism induces an isomorphism from L(E)
to L(E)op. This makes L(E) a ∗-algebra. Moreover, considering the grading, it
is easy to see that in fact, L(E) is a graded ∗-algebra.

Example 1.9.5 Corner skew Laurent rings as graded ∗-algebras
Recall the corner skew Laurent polynomial ring A = R[t+, t−, φ], where R is

a ring with identity and φ : R→ pRp a corner isomorphism (see §1.6.2). Let R
be a ∗-ring, p a projection (i.e., p = p∗ = p2), and φ a ∗-isomorphism. Then A
has a ∗-involution defined on generators by (t j

−r− j)∗ = r∗− jt
j
+ and (riti

+)∗ = ti−r∗i .
With this involution A becomes a graded ∗-ring. A ∗-ring is called ∗-proper, if
xx∗ = 0 implies x = 0. It is called positive-definite if

∑n
i=1 xixi

∗ = 0, n ∈ N,
implies xi = 0, 1 ≤ i ≤ n. A graded ∗-ring is called graded ∗-proper, if x ∈ Ah

and xx∗ = 0 then x = 0. The following lemma is easy to prove and we leave
part of it to the reader.

Lemma 1.9.6 Let R be a ∗-ring and A = R[t+, t−, φ] a ∗-corner skew Laurent
polynomial ring. We have

(1) R is positive-definite if and only if A is positive-definite.
(2) R is ∗-proper if and only if A is graded ∗-proper.

Proof (1) Since R is a ∗-subring of A, if A is positive-definite, then so is R.
For the converse, suppose R is positive-definite and

l∑
k=1

xk x∗k = 0, (1.92)

where xk ∈ A. Write

xk = t jk− rk
− jk + t jk−1

− rk
− jk+1 + · · · + t−rk

−1 + rk
0 + rk

1t+ + · · · + rk
ik t

ik
+ .

It is easy to observe that the constant term of xk x∗k is

φ− jk (rk
− jk r

k∗
− jk ) + · · · + φ−1(rk

−1rk∗
−1) + rk

0rk∗
0 + rk

1rk∗
1 + · · · + rk

ik r
k∗

ik .

Now Equation 1.92 implies that the sum of these constant terms are zero. Since
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R is positive-definite and φ is an ∗-isomorphism, it follows that all rk
− jk

and rk
ik

for 1 ≤ k ≤ l are zero and thus xk = 0. This finishes the proof of (1).
(2) The proof is similar to (1) and is left to the reader. �
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