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Abstract. In this paper, we investigate the distributive properties of square-free divisors
over square-full integers. We first compute the mean value of the number of such divisors
and obtain the error term which appears in its asymptotic formula. We then show that if
one assumes the Riemann Hypothesis then the omega estimate of such error term can be
drastically improved. Finally, we compute the omega estimate of the mean square of such
an error term.

1. Introduction

Let d(n) denote the number of positive divisors of an integer n. The distribution of d(n)
over integers has been widely studied. Apart from studying the asymptotic estimates of
divisor sums

∑
n≤x d(n), one can also study different kinds of restricted divisor sums, and

these restrictions can be considered either on the range of values of n or on the nature of the
divisors of n or on both.

The case when the divisors of n belong to square-free integers was first studied by Mertens
[13] in 1874. Let k be an integer greater than or equal to 2. Then an integer n is called k-free

if pk does not divide n for any prime p. Let d(k)(n) denotes the number of k-free divisor of
an integer n and define the summatory function

D(k)(x) :=
∑
n≤x

d(k)(n).

The asymptotic formula for D(k)(x) is

D(k)(x) =
1

ζ(k)
x log x+

(
2γ − 1

ζ(k)
− kζ ′(k)

ζ2(k)

)
x+ ∆(k)(x),

where ∆(k)(x) is the error term. Mertens [13] first computed the trivial bound ∆(2)(x) =

O(x
1
2 log x). In 1932, Holder [7] considered the general case and established the estimates

∆(k)(x) =


x

1
2 if k = 2,

x
1
3 if k = 3,

x
33
100 if k ≥ 4.

However, one can improve the previous error terms under the assumption of the Rie-
mann Hypothesis. In particular, Nowak and Schmeier [15] obtained the estimate ∆(2)(x) =
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O(x
15
38

+ε). Baker [1] in 1994 improved this further to O(x
3
8
+ε) by reducing the problem to

the estimation of the bilinear sum∑
µ(m)d(n)e(m−1

√
xn),

and applying a method of Heath-Brown [6].

In contrast to the above problem, naturally one can ask for the distribution of the sum-
matory function of the divisor function where the sum is taken over the k-free integers. A
similar question can be asked when the sum is taken over the k-full integers where a k-full
integer n is an integer if pk|n for every prime factor p of n. It is worth mentioning that
the study of distributions of square full integers was initiated by Erdös and Szekeres [5] in
1934. Batman and Grosswald studied the distribution of k-full integers [3] in 1958. Later,
in 1973, Suryanarayana and Rao [17] improved the result of Batman and Grosswald [3]. Un-
fortunately, there are no extensive studies on the distribution of the divisor functions over
k-free integers or k-full integers available in the literature. However, in 2010, Ledoan and
Zaharescu [11], investigated some general real moments associated with square-full divisors
of square-full numbers and computed the contribution to these moments given by the square
divisors. Naturally, the distribution of square-free divisors over square-full numbers remains
to be studied.

In this paper, we are interested in studying the following divisor function

d
(2)
2 (n) =

{
2w(n) if n is square-full,

0 otherwise,
(1)

where w(n) counts the number of prime divisors of n. Thus, d
(2)
2 (n) counts the number of

square-free divisors of square-full integer n. Let us define

D
(2)
2 (x) :=

∑
n≤x

d
(2)
2 (n). (2)

Before starting the main results, we need to introduce the following two constants given
by the convergent series

C1 =
1

2

∞∑
n=1

d(n)

n
3
2

, (3)

and

C2 =
3

2

∞∑
n=1

d(n) log n

n
3
2

. (4)

Define the Dirichlet series

F (s) =
∞∑
n=1

d
(2)
2 (n)

ns
. (5)

Note that F (s) is absolutely convergent for <(s) > 1
2 . Then, define the Dirichlet series

R(s) =
F (s)

ζ2(2s)ζ2(3s)
. (6)

Similarly, R(s) is absolutely convergent for <(s) > 1
4 . Our first main result is given below.
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Theorem 1.1. Let D
(2)
2 (x) be the summatory function defined in (2) and R(s) be the Dirichlet

series defined in (6). Then for any x ≥ 1, we have

D
(2)
2 (x) = C1x

1
2 log x+ C2x

1
2 + δ

(2)
2 (x),

where C1 = C1R
(
1
2

)
, C2 = (2(2γ − 1)C1 − C2)R

(
1
2

)
+C1R

′ (1
2

)
, and δ

(2)
2 (x) is the error term

given by

δ
(2)
2 (x) = O(x

1
4 exp(−D′(log x)

3
5 (log log x)−

1
5 ),

where D′ > 0 is a constant.

Next, we investigate the error term further. More specifically, we study the Ω-type estimate
for the error term and the Ω-type estimate of the mean square of the error term under the
assumption of the Riemann Hypothesis.

The statements of the results are given in the following.

Theorem 1.2. Assume the Riemann Hypothesis. Then we have

δ
(2)
2 (x) = Ω(x

3
20 ).

Theorem 1.3. Assume the Riemann Hypothesis. Then we have∫ X

1
(δ

(2)
2 (x))2dx = Ω(X1+ 3

10 ).

The paper is organised as follows. We gather some preliminary results in Section 2. We
prove Theorem 1.1 in Section 3. We give a proof of Theorem 1.2 and Theorem 1.3 in Section
4.

2. Preliminaries

In this section, we present the necessary results which will be used to prove the Theorems.

Lemma 2.1. Let F (s) be the Dirichlet series defined in (5). Then for <(s) > 1
2 , we have

F (s) =
ζ2(2s)ζ2(3s)

ζ(4s)ζ2(5s)ζ3(6s)
H(s), (7)

where H(s) is a Dirichlet series absolutely and uniformly convergent in any compact set in
the half-plane <(s) ≥ 1

7 + δ for any δ > 0.

Proof. By (1), for <(s) > 1
2 , the Euler product representation of F (s) gives

F (s) =
∏
p

(1 + 2p−2s + 2p−3s + 2p−4s + . . .). (8)

Now, for any X with |X| < 1 one has

1 + 2X2 + 2X3 + 2X4 + . . .

=(1−X2)−2(1−X3)−2(1−X4)(1−X5)2(1−X6)3(1 +X7P (X)). (9)

where P (X) = −2+O(X). Next, we put X = p−s in (9) and substitute the resulting identity
back in (8) to get

F (s) =
∏
p

(1 + 2p−2s + 2p−3s + 2p−4s + . . .) =
ζ2(2s)ζ2(3s)

ζ(4s)ζ2(5s)ζ3(6s)
H(s),
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where the series H(s) converges absolutely and uniformly for <(s) > 1/7. �

Let us denote

ζ(4s)ζ2(5s)ζ3(6s) = G(s). (10)

Clearly, G(s) is absolutely convergent for <(s) > 1
4 . We also note that R(s) defined in (6)

can be expressed as

R(s) =
∞∑
n=1

r(n)

ns
= G−1(s)H(s) for <(s) >

1

4
, (11)

where H(s) is defined in (7). Denote

ζ2(2s)ζ2(3s) = A(s) =

∞∑
n=1

a(n)

ns
for <(s) >

1

2
. (12)

Let us assume ε > 0 to be any arbitrary small positive real number which may not be the
same at each occurrence. We need the following lemma for estimating the sum

∑
n≤x |r(n)|.

Lemma 2.2. Let x ≥ 1 be any real number. Then for the arithmetical function r(n) defined
in (11) we have ∑

n≤x
|r(n)| = Bx

1
4 +O(x

1
5
+ε), (13)

where B is an explicit positive constant.

Proof. From the expression in (6) and (9), one can observe the Euler product representation
for R(s) is given by∏

p

(1− p−4s − 2p−5s − 3p−6s + 2p−7s + 4p−8s + 2p−9s − p−10s − 2p−11s),

for <(s) > 1
4 . Hence, the Euler product representation for the series

∑∞
n=1

|r(n)|
ns is∏

p

(1 + p−4s + 2p−5s + 3p−6s + 2p−7s + 4p−8s + 2p−9s + p−10s + 2p−11s)

= ζ(4s)
∏
p

(1 + 2p−5s + 3p−6s + 2p−7s + 3p−8s − 2p−10s − 4p−12s − 2p−13s − p−14s − 2p−15s),

(14)

for <(s) > 1
4 . If T (s) =

∑∞
n=1

t(n)
ns denotes the Dirichlet series associated with the second

Euler product in (14), then for any k-full integer n with k ≥ 5 we have

|t(n)| ≤ 4ω(n) ≤ d(n)2 � nε,

where ε > 0 be any real number and ω(n) denotes the number of distinct prime factors of n.
We will also note that t(n) takes the value zero otherwise. Therefore, we can write

∞∑
n=1

|r(n)|
ns

= ζ(4s)T (s), (15)
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where T (s) given by the infinite product in (14) converges absolutely for <(s) > 1
5 . From

(15), we can write

|r(n)| =
∑
d4f=n

t(f) =
∑
d4|n

t
( n
d4

)
.

Consequently, we will get∑
n≤x
|r(n)| =

∑
f≤x

t(f)
∑

d≤
(
x
f

) 1
4

1

= x
1
4

∞∑
f=1

(
t(f)

f
1
4

)
+O

∑
f≤x
|t(f)|

+O

x 1
4

∑
f>x

(
|t(f)|
f

1
4

) , (16)

where in the last step, we have used the fact that T (s) converges absolutely for <(s) > 1
5 . It

remains to estimate the error terms in (16).

The first error term can be estimated as∑
f≤x
|t(f)| ≤ x

1
5
+ε
∞∑
f=1

|t(f)|
f

1
5
+ε
� x

1
5
+ε, (17)

using the fact T (s) converges absolutely for <(s) > 1
5 . Similarly, for the second error term,

one can show ∑
f>x

(
|t(f)|
f

1
4

)
=
∑
f>x

|t(f)|
f

1
5
+εf

1
20
−ε
� x−

1
20

+ε. (18)

Substituting (17) and (18) in (16) we get the desired result. �

The following version of Perron’s formula is the key ingredient in obtaining the bound of
the error term.

Lemma 2.3 (Liu and Ye [12, p. 483, Theorem 2.1]). Let f(s) =
∑∞

n=1
an
ns be a Dirichlet

series such that B(σ) :=
∑∞

n=1

∣∣an
ns

∣∣ =
∑∞

n=1
|an|
nσ is convergent for σ > σa. If b > σa and

x, T,H ≥ 2, then we have

∑
n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds+O

 ∑
x−x/H<n≤x+x/H

|an|

+O

(
xbHB(b)

T

)
. (19)

Next, we will derive some lemmas needed to complete the proof of Theorem 1.1. Their
proofs are based on the well-known result concerning the classical divisor function [8, p. 83]∑

n≤X
d(n) = X logX + (2γ − 1)X +O

(
X

1
3

)
, (20)

where γ is the Euler constant.

Lemma 2.4. Let β and X be any positive real numbers with X ≥ 1. Then∑
n≤X

d(n)

nβ
=

1

1− β
X1−β logX + cβX

1−β +O
(
X

1
3
−β
)
,

where cβ = (2γ−1)
1−β −

β
(1−β)2 .
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Proof. We get the desired result by employing the result in (20) and partial summation. �

Lemma 2.5. Let β and X be any positive real numbers with X ≥ 1. Then∑
n≤X

d(n) log n

nβ
=

1

1− β
X1−β(logX)2 − 1

(1− β)2
X1−β logX +

1

(1− β)3
X1−β +O

(
X

1
3
−β
)
.

Proof. Employing the result in (20) and partial summation, we get the desired result. �

Next, we will recall a result due to Montgomery and Vaughan [14], concerned with the
mean value theorems for the summatory functions of a class of the Dirichlet series. Let {an}
be a sequence of complex numbers such that for any ε > 0, an � nε for any ε > 0. Define
the Dirichlet polynomial

A(s) =
∑
n≤N

ann
−s.

Then, by Montgomery and Vaughan’s mean value theorem [14] one has∫ T

0
|A(s)|2dt =

∑
n≤N
|an|2n−2σ (T +O(n)) . (21)

Then, we recall a zero-free region of the Riemann zeta-function ζ(s) which can be written by

σ > 1− A

(log t)2/3(log log t)1/3
, t ≥ T0, (22)

for some positive constants A and T0. We provide a lower bound of ζ(s) in the next lemma.

Lemma 2.6. [8, Lemma 12.3] We have

1

ζ(s)
= O((log t)2/3(log log t)1/3),

in the region

σ ≥ 1− A

(log t)2/3(log log t)1/3
and t ≥ T0.

Upon assuming the Riemann Hypothesis, one has a better lower bound.

Lemma 2.7. [18, Lemma 1] Assume the Riemann Hypothesis. For every sufficiently large
number T and for any ε > 0, we have

1

ζ(s)
= Oε((|t|+ 2)ε) in <(s) ≥ 1

2
+ ε,

provided <(z) 6= 0 for <(z) ≥ 1
2 + ε, |=(z)−=(s)| ≤ (log T )5, and |=(s)| ≥ 1.

Next, we will state a zero density estimate of ζ(s) due to Ingham [18].

Lemma 2.8. [4, Lemma 13]. The number of zeros of ζ(s) in <(s) ≥ 1
2 + ε and |=(s)| ≤ T

is O(T 1− 11ε
10 ).
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3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Before proceeding further, let us first
state and prove a lemma required to prove the theorem.

Lemma 3.1. For any x ≥ 1 and r(n) defined in (11), we have∑
n≤x

r(n)� x
1
4 exp(−D(log x)

3
5 (log2 x)−

1
5 ),

where D > 0 is a constant.

Proof. First we employ f(s) = R(s) which is defined in (11) and

B(σ) =

∞∑
n=1

|rn|
nσ

,

where R(s) and r(n) are defined in (11). Next, we will take x ≥ 4, T ≥ 4, H ≥ 2, and
b = 1/4 + 1/ log x. Note that, by the Laurent series expansion of ζ(s) at s = 1 one finds
B(b)� log x. Hence,

∑
n≤x

r(n) =
1

2πi

∫ b+iT/4

b−iT/4
R(s)

xs

s
ds

+O

 ∑
x−x/H<n≤x+x/H

|r(n)|

+O

(
x1/4H log x

T

)
. (23)

Now, we focus on the integral in (23). Consider a positively oriented rectangular contour C
consisting of the line segments [b− iT/4, b+ iT/4], [b+ iT/4, d+ iT/4], [d+ iT/4, d− iT/4],
and [d− iT/4, b− iT/4], where

d =
1

4
− A

(log T )2/3(log log T )1/3
,

and A > 0 is the constant given in (22). From Lemma 2.6 we have G(s) 6= 0 in the region

σ >
1

4
− A

(log 4t)2/3(log log 4t)1/3
, T0 < t ≤ T/4.

In this zero free region of G(s), we have

1

G(s)
� (log T )2/3(log log T )1/3. (24)

The above bound can be readily obtained from Lemma 2.6. Now, appealing to Cauchy’s
residue theorem, we get
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I : =
1

2πi

∫ b+iT/4

b−iT/4
G−1(s)H(s)

xs

s
ds

=
1

2πi

∫ d+iT/4

d−iT/4
G−1(s)H(s)

xs

s
ds︸ ︷︷ ︸

= I1

+
1

2πi

∫ b+iT/4

d+iT/4
G−1(s)H(s)

xs

s
ds︸ ︷︷ ︸

= I2

+
1

2πi

∫ d−iT/4

b−iT/4
G−1(s)H(s)

xs

s
ds︸ ︷︷ ︸

= I3

(25)

Employing the bound given in (24) we find that

I1 � xd
∫ T/4

T0

|G−1(d+ it)| dt

|d+ it|
+ xd

� xd(log T )
5
3 (log log T )

1
3 + xd. (26)

Similarly,

I2, I3 �
1

2πi

∫ b

d
|G−1(σ ± iT/4)|H(σ ± iT/4)| xσ

|σ ± iT/4|
ds

� (log x)−1T−1(log T )2/3(log log T )1/3 max
(
xb, xd

)
� x

1
4T−1(log x)−1(log T )

2
3 (log log T )

1
3 . (27)

At this point, we choose T = exp (C0(log x)
3
5 (log2 x)−

1
5 ) with C0 > 0 a constant and substi-

tute the estimates (26) and (27) in (25). Therefore

I = O
(
x

1
4 exp(−C0(log x)

3
5 (log2 x)−

1
5 )
)
. (28)

By Lemma 2.2, we can estimate the sum in the error term in (23),∑
x−x/H<n≤x+x/H

|r(n)| � x
1
4H−1 + x

1
5
+ε.

Taking H =
√
T = exp (C0

2 (log x)
3
5 (log2 x)−

1
5 ) we obtain∑

x−x/H<n≤x+x/H

|r(n)| � x
1
4 exp(−C ′1(log x)

3
5 (log2 x)−

1
5 ). (29)

With the above choice of H, the second error term in (23), is estimated as

� x
1
4 exp(−C ′2(log x)

3
5 (log2 x)−

1
5 ). (30)

Substituting (28), (29) and (30) in (23), we get the desired result. �

Now employing Lemma 3.1 and partial summation, we obtain following results.

Lemma 3.2. Let x ≥ 1 be any real number and r(n) be the arithmetical function defined in
(11). Then we have∑

n≤x

r(n)

n
1
2

= R

(
1

2

)
+O(x−

1
4 exp(−D1(log x)

3
5 (log2 x)−

1
5 ), (31)
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and ∑
n≤x

r(n) log n

n
1
2

= −R′
(

1

2

)
+O(x−

1
4 exp(−D2(log x)

3
5 (log2 x)−

1
5 ), (32)

where D1, D2 > 0 are the constants.

Proof. The proof follows from Lemma 3.1 and partial summation. �

The next result is also instrumental to our proof of the theorem.

Lemma 3.3. Let x ≥ 1 be any real number and let a(n) be the arithmetical function defined
in (12) with A(x) =

∑
n≤x a(n). Then

A(x) = C1x
1
2 log x+ (2(2γ − 1)C1 − C2)x

1
2 +O(x

1
3 log x), (33)

where C1 and C2 are defined in (3) and (4) respectively.

Proof. We evaluate A(x) using the Dirichlet hyperbola method. From (12), one can find that
the arithmetic function a(n) supported over the integers of the form m2n3. Then

A(x) =
∑
n≤x

a(n) =
∑

m2n3≤x

d(n)d(m) = S1 + S2 − S3 (34)

where

S1 =
∑
m≤M

d(m)
∑

n≤ 3
√

x
m2

d(n), S2 =
∑
n≤N

d(n)
∑

m≤
√

x
n3

d(m) and S3 =
∑
n≤N

d(n)
∑
m≤M

d(m).

(35)

The values of M and N will be chosen later. Now, we compute the sum S1. We have

S1 =
∑
m≤M

d(m)

(
1

3

( x

m2

) 1
3

(log x− 2 logm) + (2γ − 1)
( x

m2

) 1
3

+O

(( x

m2

) 1
9

))

=

(
x

1
3 log x

3
+ (2γ − 1)x

1
3

) ∑
m≤M

d(m)

m
2
3

− 2x
1
3

3

∑
m≤M

d(m) logm

m
2
3

+ +O

x 1
9

∑
m≤M

d(m)

m
2
9


= x

1
3M

1
3 log x logM − 2x

1
3M

1
3 (logM)2 +

c 2
3

3
x

1
3M

1
3 log x+ (

c 2
3

3
+ 6)x

1
3M

1
3 logM

− 18x
1
3M

1
3 +O

(
x

1
3M−

1
3 log x

)
+O

(
x

1
9M

1
3 logM

)
.

(36)

where c 2
3

= 3(2γ − 3). In a similar fashion

S2 =
x

1
2 log x

2

∑
n≤N

d(n)

n
3
2

− 3x
1
2

2

∑
n≤N

d(n) log n

n
3
2

+ (2γ − 1)x
1
2

∑
n≤N

d(n)

n
3
2

+O

x 1
6

∑
n≤N

d(n)

n
1
2


= C1x

1
2 log x+ (2(2γ − 1)C1 − C2)x

1
2 +O(x

1
2N−

1
2 log x logN) +O(x

1
6N

1
2 logN), (37)

https://doi.org/10.4153/S0008439524000225 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000225


10 DEBIKA BANERJEE AND MAKOTO T. MINAMIDE

and

S3 =
∑
n≤N

d(n)
∑
m≤M

d(m)

= MN logM logN + (2γ − 1)MN logN + (2γ − 1)MN logM + (2γ − 1)2MN

+O(M
1
3N logN) +O(N

1
3M logM). (38)

Then we replace logM and logN by log x and M by x
1
2

N
3
2

and substitute (36), (37) and (38)

in (34), to get

|A(x)− C1x
1
2 log x− (2(2γ − 1)C1 − C2)x

1
2 | � x

1
2N−

1
2 log2 x+ x

1
6N

1
2 log x. (39)

Next, we choose N = x
1
3 and thus obtain the error term of order x

1
3 log2 x. This completes

the proof of the lemma. �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will use the Lemmas 3.2 and 3.3 in the proof. Let ρ be a real
number such that 0 < ρ < 1. Then we split the sum as follows

D
(2)
2 (x) =

∑
n≤x

d
(2)
2 (n) =

∑
de≤x

r(d)a(e),= S1 + S2, (40)

where

S1 =
∑
d≤ρx

∑
1
ρ
<e≤x

d

r(d)a(e) and S2 =
∑
e≤ 1

ρ

∑
d≤x

e

r(d)a(e).

We will first evaluate S1. Employing (31), (32) and (33) in the sum S1 we have

S1 =
∑
d≤ρx

r(d)

(
C1

(x
d

) 1
2

log
x

d
+ (2(2γ − 1)C1 − C2)

(x
d

) 1
2

+O

((x
d

) 1
3

log2
x

d

))

= C1x
1
2 log x

∑
d≤ρx

r(d)

d
1
2

− C1x
1
2

∑
d≤ρx

r(d) log d

d
1
2

+ (2(2γ − 1)C1 − C2)
∑
d≤ρx

r(d)

d
1
2

+O(x
1
4 ρ−

1
12 log2 x)

= C1x
1
2 log x+ C2x

1
2 +O(x

1
4 ρ−

1
4 exp(−D3(log ρx)

3
5 (log log ρx)−

1
5 ). (41)

where C1 = C1R
(
1
2

)
and C2 = (2(2γ − 1)C1 − C2)R

(
1
2

)
+C1R

′ (1
2

)
. To estimate S2, we will

use Lemma 3.1, and the asymptotic (33). Then we have

S2 � x
1
4 exp(−D4(log ρx)

3
5 (log log ρx)−

1
5 )
∑
e≤ρ−1

a(e)

e
1
4

� x
1
4 exp(−D4(log ρx)

3
5 (log log ρx)−

1
5 )ρ−

1
4 log ρ−1. (42)

Substituting (41) and (42) in (40) and then taking ρ = exp(−D5(log x)
3
5 (log log x)−

1
5 ) where

D5 > 0 is a constant, we complete the proof of the theorem.

�

Remark 3.1. It is useful to note that our technique can be used to generalize Theorem
1.1 to understand the distribution of l-free divisors over any k-full numbers for any integers
k, l ≥ 2.
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4. Proof of Theorem 1.2 and 1.3

The proof of Theorem 1.2 directly follows from the result of Nowak [10, Theorem 2] by
substituting

α =
4− 1

2(3 + 3 + 2 + 2)
=

3

20
.

The estimate in Theorem 1.2 directly follows from the result in [10]. To get the mean square
estimate in Theorem 1.3 our method relies on techniques of Ivic [9] and Balasubramanian,
Ramachandra and Subbarao in [4]. let us introduce some notations. Consider a constant
c ≤ α where α is given above. Let T be a large positive number. We define the sets

J =

{
T 1−c ≤ t ≤ 2T : |t−=(z)| ≤ (log T )20 when G(z) 6= 0 for <(z) >

1

7

}
,

and

K =

{
T 1−c − (log T )4 ≤ t ≤ 2T + (log T )4 : |t−=(z)| ≤ (log T )15 when G(z) 6= 0 for <(z) >

1

7

}
.

Now, we state a few lemmas which give some required bounds.

Lemma 4.1. Assume the Riemann Hypothesis. If <(s) ≥ 1
7 , l ≥ 4 and t ∈ K, then 1

ζ(ls) =

O((|t|+ 2)ε) for any ε > 0.

Proof. The proof is a direct consequence of Lemma 2.7. �

As an application of the above Lemma, we have

Corollary 4.2. Assume the Riemann Hypothesis. Let F (s) be the Dirichlet series defined in
(7). For <(s) > 1

7 and t ∈ K, and a suitable constant A > 0, one has

F (s) = O((|t|+ 2)A),

for a suitable constant A > 0.

Proof. The proof follows from lemma 4.1. �

Before proceeding further, we need a few results related to J . Define

J(x) = J ∩ [x, 2x] for any x with T 1−c ≤ x ≤ 2T,

and let N(x) be the number of zeros of G(s) with t ∈ [x, 2x]. Next, we need the following
form of zero-density result which is an immediate consequence of Lemma 2.8.

Lemma 4.3. We have

N(x)� x1−
11ε
10 .

Proof. The proof follows from Lemma 2.8. �

Next consider the interval [x, 2x]. Corresponding to every zero ρ = β+iγ with β ≥ 1
7+ε and

x−(log T )20 ≤ γ ≤ 2x+(log T )20 of G(s), if we remove the interval [γ−(log T )20, γ+(log T )20],
then the remaining portion gives us J(x). As there are N(x) zeros in [x, 2x], so there are
N(x) disjoint intervals and the total length of J(x) is � x. Now we can delete from J(x)
the connected components, each of length ≤ xε. The total length of the deleted portion
O(N(x)xε) = O(x1−

ε
10 ). Hence if J (2)(x) is the remaining portion, the total length of J (2)(x)

is � x.

To complete our proof of Theorem 1.3, we need the following estimate related to the error

term δ
(2)
2 (x).
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Lemma 4.4. For any ε > 0 and T ε � H ≤ T ,

H−1
∫ H

0
δ
(2)
2 (T + u)du = δ

(2)
2 (T ) +O (HT ε) .

Proof. Employing the trivial bound d
(2)
2 (n)� nε, we see that that D

(2)
2 (u+ T )−D(2)

2 (T )�
uT ε−1 and using Theorem 1.1, we have

δ
(2)
2 (u+ T )− δ(2)2 (T )� uT ε.

Now using the above expression we can infer that

H−1
∫ H

0
(δ

(2)
2 (T + u)− δ(2)2 (T ))du� HT ε,

and hence the result. �

Lemma 4.5. Let sα = α+ it with t ∈ J . If∫
J(2)(x)

|F (sα)|2

|sα|2
dt� log T, (43)

then ∫ X

1
(δ

(2)
2 (x))2dx = Ω(X1+2α logX). (44)

Proof. Consider the Mellin integral

e−U
h

=
1

2πi

∫ 2+i∞

2−i∞
U−wΓ(1 + wh−1)w−1dw, (45)

where h, U > 0. We shall take h = (log T )2. Then setting U = n
Y in (45) with Y = TB and

B is a sufficiently large constant, we have

∞∑
n=1

d
(2)
2 (n)

nsα
e−(

n
Y
)h =

1

2πi

∫ 2+i∞

2−i∞
F (sα + w)Y wΓ(1 + wh−1)w−1dw.

Now we break off the portion of the integral into two parts

∞∑
n=1

d
(2)
2 (n)

nsα
e−(

n
Y
)h =

1

2πi

∫ 2+i(log T )4

2−i(log T )4
F (sα + w)Γ(1 + wh−1)Y ww−1dw

+
1

2πi

∫
|τ |≥(log T )4

F (sα + 2 + iτ)Γ(1 + (2 + iτ)h−1)Y 2+iτ

(2 + iτ)
dτ, (46)

where τ = =w. Next, we recall the asymptotic behaviour of Γ(s) [16, p. 38] in a vertical
strip, for s=σ + it with a ≤ σ ≤ b and |t| ≥ 1,

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2
π|t|
(

1 +O

(
1

|t|

))
, (47)

Upon using the above formula, the second integral in (46) becomes

� T 2B

∫
|τ |≥(log T )4

|τ |−1/2+2h−1
e−

1
2
π|τ |h−1

dτ � 1,
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as h = (log T )2. Therefore, employing the above estimate in (46), we arrive at

∞∑
n=1

d
(2)
2 (n)

nsα
e−(

n
Y
)h =

1

2πi

∫ 2+i(log T )4

2−i(log T )4

F (sα + w)Γ(1 + wh−1)Y w

w
dw +O(1). (48)

We shift the line of integration to <(w) = 1
7 + ε − sα and encounter a pole at w = 0. Now,

using the estimate given in the Corollary 4.2 and using the fact t± =(w) ∈ K (as t ∈ J , we
see that the value of the integral on the horizontals as well as vertical is small), we obtain

F (sα) =
∞∑
n=1

d
(2)
2 (n)

nsα
e−(

n
Y
)h +O(1). (49)

Then we split the sum (49) in two parts

F (sα) =
∑
n≤T

d
(2)
2 (n)

nsα
e−(

n
Y
)h +

∑
T<n≤2Y

d
(2)
2 (n)

nsα
e−(

n
Y
)h +O(1). (50)

Note that the infinite sum
∑

n>2Y
d
(2)
2 (n)
nsα e−(

n
Y
)h can be estimated as O(1). The sum D

(2)
2 (x) =∑

n≤x d
(2)
2 (n) is already estimated in Theorem 1.1. We may write

∑
T<n≤2Y

d
(2)
2 (n)

nsα
e−(

n
Y
)h =

∫ 2Y

T
x−sαe−(

x
Y
)hdD

(2)
2 (x)

=

∫ 2Y

T
x−sαe−(

x
Y
)hdδ

(2)
2 (x)︸ ︷︷ ︸

= IT

+

1∑
j=0

Cj
∫ 2Y

T
x−

1
2
−sαe−(

x
Y
)h(log x)jdx︸ ︷︷ ︸

= JT

.

(51)

For the integral JT we use integration by parts and see that∫ 2Y

T
x−

1
2
−sαe−(

x
Y
)h(log x)j−1dx

=x
1
2
−sαe−(

x
Y
)h(log x)j−1

∣∣2Y
T

+

∫ 2Y

T
x

1
2
−sαe−(

x
Y
)h
(
−hx

h−1

Y h
+ j(log x)jx−1

)
dx

=O
(
T

1
2
−sα+ε

)
.

Hence using the above estimate, one can obtain

JT � T
1
2
−sα+ε. (52)

For the integral IT we have

IT = x−sαe−(
x
Y
)hδ

(2)
2 (x)|2YT + sα

∫ 2Y

T
x−sα−1e−(

x
Y
)hδ

(2)
2 (x)dx

+ hY −h
∫ 2Y

T
xh−sα−1e−(

x
Y
)hδ

(2)
2 (x)dx. (53)
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Therefore using (52) and (53) in (51), we obtain

F (sα)

sα
=

1

sα

∑
n≤T

d
(2)
2 (n)

nsα
e−(

n
Y
)h +O

(
1

t

)
+O

(
δ
(2)
2 (T )

Tαt

)
+O

(
T

1
2
−α+ε

t

)

+

∫ 2Y

T
x−sα−1e−(

x
Y
)hδ

(2)
2 (x)dx︸ ︷︷ ︸

= KT

+
h

sα
Y −h

∫ 2Y

T
xh−sα−1e−(

x
Y
)hδ

(2)
2 (x)dx︸ ︷︷ ︸

= LT

.

Now upon squaring and integrating the above expression over t ∈ J , we have∫
J

|F (sα)|2

|sα|2
dt�

∫ 2T

T 1−c

∣∣∣∣∣∣
∑
n≤T

d
(2)
2 (n)

nsα
e−(

n
Y
)h

∣∣∣∣∣∣
2

|sα|−2dt+ (δ
(2)
2 (T ))2T c−2α−1 + T c−1

+ T 2c−2α−1+ε +

∫ 2T

T 1−c
(|KT |2 + |LT |2)dt. (54)

We observe that the fact d
(2)
2 (n) � nε for any ε > 0. Applying the mean value theorem of

Dirichlet polynomials (21), the first integral in (54) can be estimated as the following∫ 2T

T 1−c

∣∣∣∣∣∣
∑
n≤T

d
(2)
2 (n)

nsα
e−(

n
Y
)h

∣∣∣∣∣∣
2

t−2dt

� T 2c−2
∑
j≥1

2−2j
∫ 2jT 1−c

2j−1T 1−c

∣∣∣∣∣∣
∑
n≤T

d
(2)
2 (n)

nsα
e−(

n
Y
)h

∣∣∣∣∣∣
2

dt

� T 2c−2
∑
j≥1

2−2j
∑
n≤T

(d
(2)
2 (n))2

n2α
(n+ 2jT 1−c)� T 2c−2α+ε, (55)

whenever c ≤ 1
2(α− ε) and any 0 < ε < α. For the second expression, we use Lemma 4.4 to

get

δ
(2)
2 (T ) = H−1

∫ H

0
δ
(2)
2 (T + u)du+O (HT ε) ,

and then by Cauchy-Schwartz inequality

(δ
(2)
2 (T ))2 � H−1

∫ H

0
(δ

(2)
2 (T + u))2du+H2T ε

� H−1Y h

∫ H

0
(δ

(2)
2 (T + u))2u−hdu+H2T ε

� H−1
∫ T+H

T
(δ

(2)
2 (x))2e−2(

x
Y
)hdx+H2T ε.

Next putting H = T ε+c in the above expression, we have

(δ
(2)
2 (T ))2T c−2α−1 � T−2ε + T−ε

∫ T c+ε

T
(δ

(2)
2 (x))2x−2α−1e−2(

x
Y
)hdt

� T−ε
(∫ 2Y

T
(δ

(2)
2 (x))2x−2α−1e−2(

x
Y
)hdx+ 1

)
, (56)
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whenever c ≤ 1
3(1 + 2α − 5ε). Thus our choice for c = min(12(α − ε), 13(1 + 2α − 5ε)). Now

again by (21),∫ 2T

T 1−c
|KT |2dt ≤

∫ 1

0

∫ 2T

T 1−c

∣∣∣∣∣∣
∑

T≤n≤2Y−1
δ
(2)
2 (n+ v)(n+ v)−sα−1e−(

(n+v)
Y

)h

∣∣∣∣∣∣
2

dtdv

�
∫ 1

0

∑
T≤n≤2Y−1

(δ
(2)
2 (n+ v))2(n+ v)−2α−1e−2(

(n+v)
Y

)hdv

=

∫ 2Y

T
(δ

(2)
2 (x))2x−2α−1e−2(

x
Y
)hdx, (57)

if T and Y are non integers. Then it remains to estimate the integral
∫ 2T
T 1−c |LT |2dt. If T and

Y are not integers, then by Cauchy-Schwartz inequality, we have∫ 2T

T 1−c
|LT |2dt�

∫ 2Y

T
(δ

(2)
2 (x))2x−2α−1e−2(

x
Y
)hdx. (58)

Now collecting (55), (56), (57) and (58) and substituting back them in (54) we get∫
J

|F (sα)|2

|sα|2
dt�

∫ 2Y

T
δ
(2)
2 (x))2x−2α−1e−2(

x
Y
)hdx. (59)

Covering the interval J into dyadic interval of the form [2j−1T 1−c, 2jT 1−c] ∩ J , and then by
(43), we have∫

J

|F (sα)|2

|sα|2
dt�

c(T )∑
j=1

∫
J(2)(2j−1T 1−c)

|F (sα)|2

|sα|2
dt�

c(T )∑
j=1

log T � (log T )2, (60)

where c(T ) = c log Tlog 2 . Now from (59) and (60) and assuming (44) false, we infer from that

(log T )2 �
∫
J

|F (sα)|2

|sα|2
dt�

∫ 2Y

T
(δ

(2)
2 (x))2x−2α−1e−2(

x
Y
)hdx

=

(∫ x

1
(δ

(2)
2 (y))2dy

)
x−2α−1e−2(

x
Y
)h
∣∣2Y
T

+

∫ 2Y

T

(∫ x

1
(δ

(2)
2 (y))2dy

)
× ((2α+ 1)x−2α−2 + 2xh−2α−2Y −h)e−2(

x
Y
)hdx

= o(log T ) + o

(∫ 2Y

T
x−1 log x e−2(

x
Y
)hdx

)
= o(log2 T ),

as T →∞ giving a contradiction and proving the lemma. �

Now if we can show
∫
J(2)(x)

|F (sα)|2
|sα|2 dt � log T , then we will be done with our proof of

Theorem 1.3.

Lemma 4.6. We have for any A > 0,∫ A+H

A
|F (sα)|2dt� HA for H ≥ Aε.

Proof. Let sα = α+ it. Now, employing the functional equation of ζ(s)

ζ(s) = χ(s)ζ(1− s),
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where χ(s) = (2π)s−12 sin πs
2 Γ(1− s), and (47), one finds

|F (sα)| = |ζ2(2sα)ζ2(3sα)G−1(sα)H(sα)|
= |χ2(2sα)χ2(3sα)ζ2(1− 2sα)ζ2(1− 3sα)G−1(sα)H(sα)|

� |t2(
1
2
−2α)t2(

1
2
−3α)ζ2(1− 2sα)ζ2(1− 3sα)G−1(sα)H(sα)|

= |t|
1
2 |ζ2(1− 2sα)ζ2(1− 3sα)G−1(sα)H(sα)|.

Hence we obtain that

|F (sα)|2 � |t||ζ4(1− 2sα)ζ4(1− 3sα)G−2(sα)H2(sα)|.

Next, we consider U(s) := ζ4(1 − 2s)ζ4(1 − 3s)G−2(s)H2(s) and employ [2, Theorem 3] to
get that ∫ H+A

A
|U(sα)|2dt0 � H for H ≥ Aε, (61)

and hence the result. �

Proof of Theorem 1.3. Now applying Lemma 4.6 to each connected component of J (2)(x) and
summing them we get ∫

J(2)(x)

|F (sα)|2

|sα|2
dt� log T.

This result together with Lemma 4.5 would imply statement Theorem 1.3.

�
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