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Abstract

By allowing the programmer to write code that can generate code at run-time, meta-

programming offers a powerful approach to program construction. For instance, meta-

programming can often be employed to enhance program efficiency and facilitate the

construction of generic programs. However, meta-programming, especially in an untyped

setting, is notoriously error-prone. In this paper, we aim at making meta-programming less

error-prone by providing a type system to facilitate the construction of correct meta-programs.

We first introduce some code constructors for constructing typeful code representation in

which program variables are represented in terms of deBruijn indexes, and then formally

demonstrate how such typeful code representation can be used to support meta-programming.

With our approach, a particular interesting feature is that code becomes first-class values,

which can be inspected as well as executed at run-time. The main contribution of the paper lies

in the recognition and then the formalization of a novel approach to typed meta-programming

that is practical, general and flexible.

1 Introduction

Situations often arise in practice where there is a need for writing programs

that can generate programs at run-time. For instance, there are many examples

(kernel implementation (Massalin, 1992), graphics (Pike et al., 1985), interactive

media (Draves, 1998), method dispatch in object-oriented languages (Deutsch &

Schiffman, 1984; Chambers & Ungar, 1989), etc.) where run-time code generation

can be employed to reap significant gain in run-time performance (Leone & Lee,

1996). To illustrate this point, we define a function evalPoly as follows in Scheme

for evaluating a polynomial p at a given point x.

(define (evalPoly p x)

(if (null? p)

0

(+ (car p) (* x (evalPoly (cdr p) x)))))

Note that we use a non-empty list (a0 a1 . . . an) in Scheme to represent the

polynomial anx
n + . . . + a1x + a0. We now define a function sumPoly such that

(sumPoly p xs) returns the sum of the values of a polynomial p at the points listed

in xs.
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(define (sumPoly p xs)

(if (null? xs)

0

(+ (evalPoly p (car xs))

(sumPoly p (cdr xs)))))

When calling sumPoly, we generally need to evaluate a fixed polynomial repeatedly

at different points. This suggests that we implement sumPoly with the following

strategy so as to make sumPoly more efficient.

We first define a function genEvalPoly as follows,

(define (genEvalPoly p)

(define (aux p x)

(if (null? p)

0

‘(+ ,(car p)

(* ,x ,(aux (cdr p) x)))))

‘(lambda (x) ,(aux p ‘x)))

where we make use of the backquote/comma notation in Scheme. When applied to

a polynomial p, genEvalPoly returns an s-expression that represents a procedure (in

Scheme) for evaluating p. For instance, (genEvalPoly ′(3 2 1)) returns the following

s-expression,

(lambda (x) (+ 3 (∗ x (+ 2 (∗ x (+ 1 (∗ x 0)))))))

which represents a procedure for evaluating the polynomial x2 + 2x + 3. Therefore,

given a polynomial p, we can call (eval (genEvalPoly p) ′()) to generate a procedure

proc for evaluating p1; presumably, (proc x) should execute faster than (evalPoly p x)

does. This leads to the following (potentially) more efficient implementation of

sumPoly.

(define (sumPoly p xs)

(define proc (eval (genEvalPoly p) ’()))

(define (aux xs)

(if (null? xs)

0

(+ (proc (car xs)) (aux xs))))

(aux xs))

Meta-programming, though useful, is notoriously error-prone in general and ap-

proaches such as hygienic macros (Dybvig, 1992) have been proposed to address the

issue. Programs generated at run-time often contain type errors or fail to be closed,

and errors in meta-programs are generally more difficult to locate and fix than those

in (ordinary) programs. This naturally leads to a need for typed meta-programming

so that types can be employed to capture errors in meta-programs at compile-time.

1 Note that eval is a built-in function in Scheme that takes an s-expression and an environment as its
arguments and returns the value of the expression represented by the s-expression.
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The first and foremost issue in typed meta-programming is the need for properly

representing typed code. Intuitively, we need a type constructor code(·) such that

for a given type τ, code(τ) is the type for expressions representing code of type τ.

Also, we need a function run such that for a given expression e of type code(τ),

run(e) executes the code represented by e and then returns a value of type τ when

the execution terminates. Note that we cannot in general execute open code, that is,

code containing free program variables. Therefore, for each type τ, the type code(τ)

should only be for expressions representing closed code of type τ.

A common approach to capturing the notion of closed code is through higher-

order abstract syntax (h.o.a.s.) (Church, 1940; Pfenning & Elliott, 1988; Pfenning &

Lee, 1989). For instance, the following declaration in Standard ML (SML) (Milner

et al., 1997) declares a datatype for representing pure untyped closed λ-expressions:

datatype exp = Lam of (exp -> exp) | App of exp * exp

As an example, the representation of the untyped λ-expression λx.λy.y(x) is given

below:

Lam(fn (x:exp) => Lam (fn (y:exp) => App(y, x))

Although it seems difficult, if not impossible, to declare a datatype in ML for

precisely representing typed λ-expressions, this can be readily done if we extend ML

with guarded recursive (g.r.) datatype constructors (Xi et al., 2003). For instance,

we can declare a g.r. datatype constructor HOAS(·) and associate with it two

value constructors HOASlam and HOASapp that are assigned the following types,

respectively:2

∀α.∀β.(HOAS(α) → HOAS(β)) → HOAS(α → β)

∀α.∀β.HOAS(α → β) ∗ HOAS(α) → HOAS(β))

Intuitively, for a given type τ, HOAS(τ) is the type for h.o.a.s. trees that represent

closed code of type τ. As an example, the h.o.a.s. representation of the simply typed

λ-expression λx : int.λy : int → int.y(x) is given below,

HOASlam(fn x:int HOAS =>

HOASlam(fn y:(int -> int) HOAS => HOASapp(y, x)))

which has the type HOAS(int → (int → int) → int).

By associating with HOAS some extra value constructors, we can represent closed

code of type τ as expressions of type HOAS(τ). In other words, we can define code(·)
as HOAS(·). The function run can then be implemented by first translating h.o.a.s.

trees into (untyped) first-order abstract syntax (f.o.a.s.) trees3 and then compiling

the f.o.a.s. trees in a standard manner. Please see a recent paper (Xi et al., 2003) for

more details on such an implementation.

Though clean and elegant, there are some serious problems with representing code

as h.o.a.s trees. In general, it seems rather difficult, if not impossible, to manipulate

2 Note that, unlike a similar inductively defined type constructor (Pfenning & Lee, 1989), HOAS cannot
be inductively defined.

3 For this purpose, we may need to introduce a constructor HOASvar of the type ∀α.string → HOAS(α)
for representing free variables.
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open code in a satisfactory manner when higher-order code representation is chosen.

On the other hand, there is often a need to directly handle open code when meta-

programs are constructed. For instance, in the definition of the function genEvalPoly,

the auxiliary function aux returns some open code containing one free program

variable (which is closed later). We feel that it may make meta-programming too

restrictive if open code manipulation is completely disallowed.

Furthermore, higher-order code representation may lead to a subtle problem in

meta-programming, which we briefly explain as follows. Suppose we need to convert

the following h.o.a.s. tree t, which is assigned the type HOAS(HOAS(int) → int), into

some f.o.a.s. tree in order to run the code represented by t:

HOASlam (fn (x: (int HOAS) HOAS) => run x)

When making this conversion, we then need to apply the function run to a variable

ranging over expressions of type HOAS(HOAS(int)). which unfortunately causes a

run-time error. This is precisely the problem of free variable evaluation, a.k.a. open

code extrusion, which we encounter when trying to evaluate the code:

<fn x:<int> => ~(run <x>)>

in MetaML (Taha & Sheard, 2000). This subtle problem, which seems rather

technical, can lead to serious difficulties in establishing type soundness for typed

meta-programming.

In this paper, we choose a form of first-order abstract syntax tree to represent

code that not only supports direct open code manipulation but also avoids the

subtle problem of free variable evaluation. As for the free program variables in open

code, we use deBruijn indexes (de Bruijn, 1972) to represent them. For instance,

we can declare the following datatype in Standard ML to represent pure untyped

λ-expressions:

datatype exp = One | Shi of exp | Lam of exp | App of exp * exp

We use One for the first free variable in a λ-expression and Shi for shifting each free

variable in a λ-expression by one index. As an example, the expression λx.λy.y(x)

can be represented as follows:

Lam(Lam(App(One, Shi(One))))

For representing typed expressions, we refine exp into types of the form 〈G, τ〉, where

〈·, ·〉 is a binary type constructor and G stands for a type environment, which is to

be represented as a sequence of types; an expression of type 〈G, τ〉 represents some

code of type τ in which the free variables are assigned types according to G, and

therefore the type for closed code of type τ is simply 〈ε, τ〉, where ε stands for the

empty type environment.

It is certainly cumbersome, if not completely impractical, to program with f.o.a.s.

trees, and the direct use of deBruijn indexes further worsens the situation. To address

this issue, we adopt some meta-programming syntax from Scheme and MetaML

to facilitate the construction of meta-programs and then provide a translation to

eliminate the meta-programming syntax. We also provide interesting examples in

support of this design.
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kinds κ ::= type | env

types τ ::= a | τ1 → τ2 | 〈G, τ〉 | ∀a : κ.τ

c-types τc ::= ∀a1 : κ1 . . . ∀am : κm.(τ1, . . . , τn) ⇒ τ

type env. G ::= a | ε | τ :: G

constants c ::= cc | cf

const. fun. cf ::= run

const. con. cc ::= Lift | One | Shi | App | Lam | Fix

expressions e ::= x | f | c(e1, . . . , en) | lam x.e | e1(e2) | fix f.e |
∀+(v) | ∀−(e)

values v ::= x | cc(v1, . . . , vn) | lam x.e | ∀+(v)

exp. var. ctx. Γ ::= ∅ | Γ, xf : τ

typ. var. ctx. ∆ ::= ∅ | ∆, a : κ

Fig. 1. The syntax for λcode .

The main contribution of the paper lies in the recognition and then the formal-

ization of a novel approach to typed meta-programming that is practical, general

and flexible. This approach makes use of a first-order typeful code representation

that not only supports direct open code manipulation but also prevents free variable

evaluation. Furthermore, we facilitate meta-programming by providing certain meta-

programming syntax as well as a type system to directly support it. The formalization

of the type system, which is considerably involved, constitutes the major technical

contribution of the paper.

We organize the rest of the paper as follows. In section 2, we introduce an

internal language λcode and use it as the basis for typed meta-programming. We then

extend λcode to λ+
code with some syntax in section 3 to facilitate meta-programming.

In section 4, we briefly mention an external language that is designed for the

programmer to construct programs that can eventually be translated into those

in λ+
code . We also present some examples in support of the practicality of meta-

programming with λ+
code . In section 5, we introduce additional code constructors

to support more programming features such as references and pattern matching.

Lastly, we mention some related work and then conclude.

2 The language λcode

In this section, we introduce a language λcode , which essentially extends the second-

order polymorphic λ-calculus with general recursion (through a fixed point operator

fix), certain code constructors for constructing typeful code representation and a

special function run for executing closed code. The syntax of λcode is given in Figure 1,

for which we provide some explanation as follows:

• We use the kinds type and env for types and type environments, respectively,

and a for variables ranging over types and type environments. In addition, we

may use α and γ for the variables ranging over types and type environments,

respectively.

• We use τ for types and G for type environments. A type environment assigns

types to free expression variables in code. For instance, bool :: int :: ε is a type

https://doi.org/10.1017/S0956796805005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005617


802 C. Chen and H. Xi

environment which assigns the types bool and int to the first and the second

expression variables, respectively. We use s for either a τ or a G.
• We use 〈G, τ〉 as the type for expressions representing code of type τ in

which each free variable is assigned a type according to the type environment

G. For instance, the expression App(One, Shi(One)) can be assigned the type

〈(int → int) :: int :: ε, int〉, which indicates that the expression represents some

code of type int in which there are at most two free variables such that the

first and the second free variables are assigned the types int and int → int,

respectively.
• The (code) constructors Lift,One, Shi,Lam,App and Fix are used for construct-

ing expressions representing typed code in which variables are replaced with

deBruijn indexes (de Bruijn, 1972), and the function run is for executing typed

closed code represented by such expressions.
• We differentiate lam-variables x from fix-variables f; a lam-variable is a value

but a fix-variable is not; only a value can be substituted for a lam-variable.

We use xf for either a lam-variable or a fix-variable.

• We use ∀+(·) and ∀−(·) to indicate type abstraction and application, respect-

ively. For instance, the expression (Λα.λx : α.x)[int] in the Church style is

represented as ∀−(∀+(lam x.x)). Later, the presence of ∀+ and ∀− allows us to

uniquely determine the rule that is applied last in the typing derivation of a

given expression. Preparing for accommodating effects in λcode , we impose the

usual value restriction (Wright, 1995) by requiring that ∀+ be only applied to

values.

It is straightforward to extend λcode with some base types (e.g. bool and int for

booleans and integers, respectively) and constants and functions related to these

base types. Also, conditional expressions can be readily added into λcode . Later, we

may form examples involving these extra features so as to give a more interesting

presentation.

We assume that a variable can be declared at most once in an expression (type)

variable context Γ (∆). For an expression variable context Γ, we write dom(Γ) for

the set of variables declared in Γ and Γ(xf ) = τ if xf : τ is declared in Γ. A similar

notation also applies to type variable contexts ∆.

We use a signature Σ to assign each constant c a constant type (or c-type, for

short) of the following form,

∀a1 : κ1 . . . ∀am : κm.(τ1, . . . , τn) ⇒ τ

where n indicates the arity of c. We write c(e1, . . . , en) for applying a constant c of

arity n to arguments e1, . . . , en. For a constant c of arity 0, we may write c for c().

The main reason for introducing constant types is to allow Proposition 2.1 to be

stated as is now.

For convenience, we may write ∀∆ for a list of quantifiers ∀a1 : κ1 . . . ∀am : κm,

where ∆ = ∅, a1 : κ1, . . . , am : κm. Also, we may write ∀α and ∀γ for ∀α : type

and ∀γ : env, respectively. In Figure 2, we list the c-types assigned to the code

constructors and the function run. Note that a c-type is not regarded as a (regular)

type.
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Lift : ∀γ.∀α.(α) ⇒ 〈γ, α〉
Lam : ∀γ.∀α1.∀α2.(〈α1 :: γ, α2〉) ⇒ 〈γ, α1 → α2〉
App : ∀γ.∀α1.∀α2.(〈γ, α1 → α2〉, 〈γ, α1〉) ⇒ 〈γ, α2〉
Fix : ∀γ.∀α.(〈α :: γ, α〉) ⇒ 〈γ, α〉
One : ∀γ.∀α.() ⇒ 〈α :: γ, α〉
Shi : ∀γ.∀α1.∀α2.(〈γ, α1〉) ⇒ 〈α2 :: γ, α1〉
run : ∀α.(〈ε, α〉) ⇒ α

Fig. 2. The types of some constants in λcode .

Kinding rules ∆ 
 s : κ

∆(a) = κ

∆ 
 a : κ

∆ 
 τ1 : type ∆ 
 τ2 : type

∆ 
 τ1 → τ2 : type

∆ 
 G : env ∆ 
 τ : type

∆ 
 〈G, τ〉 : type

∆, a : κ 
 τ : type

∆ 
 ∀a : κ.τ : type

∆ 
 ε : env

∆ 
 τ : type ∆ 
 G : env

∆ 
 τ :: G : env

Fig. 3. The kinding rules for λcode .

2.1 Static and dynamic semantics

We present the kinding rules for λcode in Figure 3. We use a judgment of the form

∆ 
 τ : type (∆ 
 G : env) to mean that τ (G) is a well-formed type (type environment)

under ∆. It is certainly possible to use only the kind type in the formulation of λcode .

For instance, we may replace env, ε, :: with type, 1, ∗, respectively, where 1 is the unit

type and ∗ is the type constructor for forming product types. Examples in which

types are used to encode values (e.g. natural numbers) are particularly abundant in

Haskell and are often referred to as pearls in functional programming. For instance,

some of such examples can be found in (Hinze, 2001; Chen et al., 2004b). However,

we feel that the use of env allows for a cleaner presentation of λcode . We use Θ for

finite mappings defined below and dom(Θ) for the domain of Θ.

Θ ::= [] | Θ[a �→ s]

Note that [] stands for the empty mapping and Θ[a �→ s] stands for the mapping

that extends Θ with a link from a to s, where we assume a �∈ dom(Θ). We write

s[Θ] for the result of substituting each a ∈ dom(Θ) with Θ(a) in s. The standard

definition of substitution is omitted here. We write ∆ 
 Θ : ∆0 to mean that for each

a ∈ dom(Θ) = dom(∆0), ∆ 
 Θ(a) : ∆0(a) holds.
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Typing rules ∆; Γ 
 e : τ

∆ 
 Γ [ok] Γ(xf ) = τ

∆; Γ 
 xf : τ
(ty-var)

Σ(c) = ∀∆0.(τ1, . . . , τn) ⇒ τ ∆ 
 Γ [ok]

∆ 
 Θ : ∆0 ∆; Γ 
 ei : τi[Θ] for i = 1, . . . , n

∆; Γ 
 c(e1, . . . , en) : τ[Θ]
(ty-cst)

∆; Γ, x : τ1 
 e : τ2

∆; Γ 
 lam x.e : τ1 → τ2

(ty-lam)

∆; Γ 
 e1 : τ1 → τ2 ∆; Γ 
 e2 : τ1

∆; Γ 
 e1(e2) : τ2

(ty-app)

∆; Γ, f : τ 
 e : τ

∆; Γ 
 fix f.e : τ
(ty-fix)

∆, a : κ; Γ 
 v : τ ∆ 
 Γ [ok]

∆; Γ 
 ∀+(v) : ∀a : κ.τ
(ty-Lam+)

∆; Γ 
 e : ∀a : κ.τ ∆ 
 s : κ

∆; Γ 
 ∀−(e) : τ[a �→ s]
(ty-Lam−)

Fig. 4. The typing rules for λcode .

Given a type variable context ∆ and an expression variable context Γ, we write

∆ 
 Γ [ok] to mean that ∆ 
 Γ(x) : type is derivable for every x ∈ dom(Γ). We use

∆; Γ 
 e : τ for a typing judgment meaning that the expression e can be assigned

the type τ under ∆; Γ, where we require that ∆ 
 Γ [ok] hold.

The typing rules for λcode are listed in Figure 4. In the rule (ty-Lam+), which

introduces ∀+, the premise ∆ 
 Γ [ok] ensures that there are no free occurrences of

a in Γ.

Proposition 2.1

(Canonical Forms) Assume that ∅; ∅ 
 v : τ is derivable. Then we have the following.

• If τ = τ1 → τ2, then v is of the form lam x.e.

• If τ = 〈G, τ1〉, then v is of one of the following forms: Lift(v1), One, Shi(v1),

Lam(v1), App(v1, v2) and Fix(v1).

• If τ = ∀a : κ.τ1, then v is of the form ∀+(v1).

Proof

The proposition follows from a straightforward inspection of the typing rules in

Figure 4. �

Note that the proposition would not hold if we assigned constants (regular) types

instead of c-types (while also allowing them to be values). For instance, One would

then be a value of type ∀γ.∀α.〈α :: γ, α〉, but One certainly is not of the form ∀+(v)

for any v.

We use θ for finite mappings defined below:

θ ::= [] | θ[xf �→ e]
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and write e[θ] for the result of substituting each xf ∈ dom(θ) for θ(xf ) in e. We

write

∆; Γ 
 (Θ; θ) : (∆0; Γ0)

to mean ∆ 
 Θ : ∆0 holds and for each xf ∈ dom(θ) = dom(Γ0), ∆; Γ 
 θ(xf ) :

Γ0(xf )[Θ] holds.

We assign dynamic semantics to λcode through the use of evaluation contexts,

which are defined as follows:

eval. ctx. E ::= [] | c(v1, . . . , vi−1, E, ei+1, . . . , en) | E(e) | v(E) | ∀−(E)

Given an evaluation context E and an expression e, we use E[e] for the expression

obtained from replacing the hole [] in E with e.

We define a function comp as follows, where we use xfs for a sequence of distinct

expression variables xf :

comp(xfs; Lift(v)) = v

comp(xfs, xf ; One) = xf

comp(xfs, xf ; Shi(v)) = comp(xfs; v)

comp(xfs; Lam(v)) = lam x.comp(xfs, x; v) (if x is not in xfs)

comp(xfs; App(v1, v2)) = (comp(xfs; v1))(comp(xfs; v2))

comp(xfs; Fix(v)) = fix f.comp(xfs, f; v) (if f is not in xfs)

Note that comp is a function at meta-level. Intuitively, when applied to a sequence of

distinct expression variables xfs and a value v representing some code, comp returns

the code. For instance, we have:

comp(·, x, f; App(One, Shi(One))) = f(x)

comp(·; Lam(Lam(App(One, Shi(One))))) = lam x1.lam x2.x2(x1)

In practice, comp should probably be implemented as a function that compiles code

representation at run-time into some form of machine code and then properly load

the generated machine code into the run-time system.

Definition 2.2

We define redexes and their reductions as follows.

• (lam x.e)(v) is a redex, and its reduction is e[x �→ v].

• fix f.e is a redex, and its reduction is e[f �→ fix f.e].

• ∀−(∀+(v)) is a redex, and its reduction is v.

• run(v) is a redex if comp(·; v) is defined, and its reduction is comp(·; v).

Given expressions e = E[e1] and e′ = E[e′
1], we write e → e′ and say e reduces to e′

in one step if e1 is a redex and e′
1 is its reduction.

2.2 Key properties

In the following presentation, we may write D :: ∆; Γ 
 e : τ to mean that D is a

typing derivation of ∆; Γ 
 e : τ. We first state the following weakening lemma.
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Lemma 2.3

(Weakening) We have the following.

1. Assume that ∆, a : κ is a valid type variable context. If ∆; Γ 
 e : τ is derivable,

then ∆, a : κ; Γ 
 e : τ is also derivable.

2. Assume that ∆ 
 Γ, xf : τ0 [ok] holds. If ∆; Γ 
 e : τ is derivable, then

∆; Γ, xf : τ0 
 e : τ [ok] is also derivable.

The proof of the weakening lemma is straightforward. We now state the substitution

lemma as follows:

Lemma 2.4

(Substitution) We have the following:

1. Assume that ∆ 
 Θ : ∆0 holds and ∆,∆0 
 s : κ is derivable. Then ∆ 
 s[Θ] : κ

is also derivable.

2. Assume that ∆; Γ 
 (Θ; θ) : (∆0; Γ0) holds and ∆,∆0; Γ,Γ0 
 e : τ is derivable.

Then ∆; Γ 
 e[θ] : τ[Θ] is also derivable.

Proof

The proofs for (1) and (2) are completely standard, and follow from structural

induction on the kinding derivation of ∆,∆0 
 s : κ and the typing derivation of

∆,∆0; Γ,Γ0 
 e : τ, respectively. �

Given a value v of type 〈ε, τ〉, we clearly expect that comp(v) is a closed expression

of type τ. The following lemma establishes a generalized version of this statement,

where the function env(·) is defined as follows that maps a given expression variable

context to a type environment:

env(∅) = ε env(Γ, xf : τ) = τ :: env(Γ)

Lemma 2.5

Let Γ be ∅, xf 1 : τ1, . . . , xf n : τn, where n � 0. If ∅ 
 Γ [ok] holds and ∅; ∅ 
 v :

〈env(Γ), τ〉 is derivable, then comp(xf 1, . . . , xf n; v) is defined and the typing judgment

∅; Γ 
 comp(xf 1, . . . , xf n; v) : τ is derivable.

Proof

Let us use xfs for the sequence of variables xf 1, . . . , xf n. By Proposition 2.1, we

know that v must be of one of the following forms: Lift(v1), One, Shi(v1), Lam(v1),

App(v1, v2) and Fix(v1). The proof now proceeds by structural induction on v.

• v = Lift(v1) for some value v1. Then according to the c-type assigned to Lift, we

know that ∅; ∅ 
 v1 : τ is derivable. By Lemma 2.3, we know that ∅; Γ 
 v1 : τ

is derivable. Note that comp(xfs; v) = v1, and we are done.

• v = One. Then comp(xfs; v) = xf n. Clearly, env(Γ) = τn :: . . . :: τ1 :: ε. Since

∅; ∅ 
 v : 〈env(Γ), τ〉 is derivable, we have τ = τn. Therefore, we know that

∅; Γ 
 comp(xfs; v) : τ is derivable.

• v = Shi(v1) for some value v1. Clearly, Γ is of the form Γ1, xf n, where Γ1 =

∅, xf 1 : τ1, . . . , xf n−1 : τn−1. Hence, comp(xfs; v) = comp(xfs1; v1), where xfs1 =

xf 1, . . . , xf n−1. According to the c-type assigned to Shi, we know that ∅; ∅ 
 v1 :

〈env(Γ1), τ〉 is derivable. By induction hypothesis on v1, ∅; Γ1 
 comp(xfs1; v1) : τ

is derivable. By Lemma 2.3, ∅; Γ 
 comp(xfs; v) : τ is also derivable.
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• v = Lam(v1) for some value v1. According to the c-type assigned to Lam,

we know τ = τ′ → τ′′ for some types τ′ and τ′′, and ∅; ∅ 
 v1 : 〈τ′ ::

env(Γ), τ′′〉 is derivable. Note that comp(xfs; v) = lam x.comp(xfs, x; v1), where

we assume that x does not occur in xfs. Then by induction hypothesis on

v1, we have that ∅; Γ, x : τ′ 
 comp(xfs, x; v1) : τ′′ is derivable. Hence, ∅; Γ 

lam x.comp(xfs, x; v1) : τ′ → τ′′ is derivable. Note that τ = τ′ → τ′′ and

comp(xfs; v) = lam x.comp(xfs, x; v1), and we are done.

• v = App(v1, v2) for some values v1 and v2. According to the c-type assigned to

App, we know that both ∅; ∅ 
 v1 : 〈env(Γ), τ′ → τ〉 and ∅; ∅ 
 v2 : 〈env(Γ), τ〉
are derivable for some type τ′. By induction hypothesis, both ∅; Γ 
 comp(v1) :

τ′ → τ and ∅; Γ 
 comp(v2) : τ′ are derivable. Hence, ∅; Γ 
 comp(v) : τ is

derivable since comp(xfs; v) = (comp(xfs; v1))(comp(xfs; v2)).

• v = Fix(v1) for some value v1. According to the c-type assigned to v1, we

know that ∅; ∅ 
 v1 : 〈τ :: env(Γ), τ〉 is derivable. Note that comp(xfs; Fix(v1)) =

fix f.comp(xfs, f; v1), where we assume that f does not occur in xfs. By

induction hypothesis on v1, ∅; Γ, f : τ 
 comp(xfs, f; v1) : τ is derivable. Hence,

; Γ 
 comp(xfs; v) is also derivable.

We conclude the proof as all the cases are now completed. �

Theorem 2.6

(Subject Reduction) Assume ∅; ∅ 
 e : τ is derivable. If e → e′ holds, then ∅; ∅ 
 e′ : τ

is derivable.

Proof

Let D be the typing derivation of ∅; ∅ 
 e : τ. Assume e = E[e0] for some evaluation

context E and redex e0. The proof proceeds by structural induction on E. We present

below the only interesting case where E = [], that is, e = e0 is a redex. In this case,

we analyze the structure of e as follows.

• e = (lam x.e1)(v). Then the typing derivation D is of the following form:

D′ :: ∅; ∅, x : τ′ 
 e1 : τ′′

∅; ∅ 
 lam x.e1 : τ′ → τ′′ (ty-lam)
∅; ∅ 
 v : τ′

∅; ∅ 
 (lam x.e1)(v) : τ′′ (ty-app)

where τ = τ′′. By Lemma 2.4 (2), we know that ∅; ∅ 
 e1[x �→ v] : τ′′ is

derivable. Note that e′ = e1[x �→ v], and we are done.

• e = fix f.e1. Then the typing derivation D is of the following form:

D′ :: ∅; f : τ 
 e1 : τ

∅; ∅ 
 fix f.e1 : τ
(ty-fix)

By Lemma 2.4 (2), we know that ∅; ∅ 
 e1[f �→ e] : τ is derivable. Note that

e′ = e1[f �→ e], and we are done.

• e = ∀−(∀+(v)). Then the typing derivation D is of the following form:

D′ :: ∅, a : κ; ∅ 
 v : τ0

∅; ∅ 
 ∀+(v) : ∀a : κ.τ0

(ty-Lam+)
∅ 
 s : κ

∅; ∅ 
 ∀−(∀+(v)) : τ0[a �→ s]
(ty-Lam−)
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where τ = τ0[a �→ s]. By Lemma 2.4 (2), we know that ∅; ∅ 
 v : τ is derivable.

Note that e′ = v, and we are done.

• e = run(v) for some value v. According to the c-type assigned to run, we know

that ∅; ∅ 
 v : 〈ε, τ〉 is derivable. Note that e′ = comp(·; v). By Lemma 2.5,

∅; ∅ 
 e′ : τ is derivable. Hence, we are done.

�

Lemma 2.7

Assume that ∅; ∅ 
 e : τ is derivable. Then either e is a value or e = E[e0] for some

evaluation context E and redex e0.

Proof

With Proposition 2.1, the lemma immediately follows from structural induction on

the typing derivation of ∅; ∅ 
 e : τ. �

Theorem 2.8

(Progress) Assume ∅; ∅ 
 e : τ is derivable. Then e is either a value or e → e′ holds

for some expression e′.

Proof

The theorem follows from Lemma 2.7 immediately. �

Combining Theorem 2.6 and Theorem 2.8, we clearly have that the evaluation of a

well-typed closed expression e in λcode either reaches a value or continues forever. In

particular, this implies that the problem of free variable evaluation can never occur

in λcode .

2.3 Meta-programming with λcode

In theory, it is already possible to do meta-programming with λcode . For instance, we

can first form an external language MLcode by extending ML with code constructors

(Lift, One, Shi, App, Lam, Fix) and the special function run, and then employ a type

inference algorithm (e.g. one based on the one described in Damas & Milner (1982))

to elaborate programs in MLcode into programs, or more precisely typing derivations

of programs, in λcode .

As an example, we show that the function genEvalPoly in section 1 can be

implemented as follows, where we use [] for empty type environment ε and <;> for

the type constructor 〈·, ·〉.

val plus = fn x: int => fn y: int => x + y

val mult = fn x: int => fn y: int => x * y

fun genEvalPoly (p) =

let

fun aux (p) =

if null (p) then Lift (0)

else App (App (Lift plus, Lift (hd p)),

App (App (Lift mult, One), aux (tl p)))
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withtype int list -> <int :: []; int>

in

Lam (aux p)

end

withtype int list -> <[]; int -> int>

The withtype clause following the definition of the function aux is a type annotation

indicating that aux expects to be assigned the type list(int) → 〈int :: ε, int〉, that is,

aux takes an integer list and returns some code of type int in which the first and only

free variable has type int. Similarly, the withtype clause for genEvalPoly means that

genEvalPoly takes an integer list and returns some closed code of type int → int.

Given the obvious meaning of null, hd and tl, it should be straightforward to

relate the ML-like concrete syntax used in the above program to the syntax of

(properly extended) λcode . This programming style is unwieldy if not completely

impractical. It is analogous to writing meta-programs in Scheme without using

the backquote/comma notation. Therefore, we are naturally motivated to provide

some syntactic support so as to facilitate meta-programming through typeful code

representation.

2.4 Embedding λcode into λ2,Gµ

Before presenting syntactic support for meta-programming, we show a direct

embedding of λcode in λ2,Gµ, where λ2,Gµ is an internal language that essentially extends

the second order polymorphic λ-calculus with guarded recursive (g.r.) datatypes (Xi

et al., 2003). This simple and interesting embedding, which the reader can skip

without affecting the understanding of the rest of the paper, indicates that the code

constructors in λcode can be readily interpreted through g.r. datatypes.

In Figure 5, we use some concrete syntax of ML2,Gµ to declare a binary g.r.

datatype constructor FOAS(·, ·), where ML2,Gµ (Xi et al., 2003) is an external language

of λ2,Gµ. The code constructors Lift,One, Shi,App,Lam,Fix have their counterparts

FOASlift, FOASone, FOASshi, FOASapp, FOASlam, FOASfix in λ2,Gµ.

We use a type in λ2,Gµ for representing a type environment in λcode; the unit type

1 represents the empty type environment ε, and the type constructor ∗, which is for

constructing product types, represents the type environment constructor ::; the type

constructor FOAS(·, ·) represents 〈·, ·〉. Formally, we define a translation | · | as follows,

|ε| = 1

|τ :: G| = |τ| ∗ |G|
|a| = a

|τ1 → τ2| = |τ1| → |τ2|
|〈G, τ〉| = FOAS(|G|, |τ|)

|∀a : κ.τ| = ∀a.|τ|

which translates type environments and types in λcode into types in λ2,Gµ. The

function run is implemented in Figure 5. We use withtype clauses for supplying

type annotations. The type annotation for run indicates that run is expected to be

assigned the type ∀α.FOAS(1, α) → α, which corresponds to the type ∀α.〈ε, α〉 → α in
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datatype FOAS (type, type) =

{g:type,a:type} FOASlift (g,a) of a

| {g:type,a:type} FOASone (a * g, a)

| {g:type,a1:type,a2:type} FOASshi (a1 * g, a2) of FOAS (g, a2)

| {g:type,a1:type,a2:type} FOASlam (g, a1 -> a2) of FOAS (a1 * g, a2)

| {g:type,a1:type,a2:type}

FOASapp (g, a2) of FOAS (g, a1 -> a2) * FOAS (g, a1)

| {g:type,a:type} FOASfix (g, a) of FOAS (a * g, a)

datatype ENV (type) =

(unit) ENVnil

| {g:type,a:type} ENVcons (a * g) of a * ENV (g)

(* ’fix x => e’ is the fixed point of ’fn x => e’ *)

fun comp (FOASlift v) = (fn env => v)

| comp (FOASone) = (fn (ENVcons (v, _)) => v)

| comp (FOASshi e) =

let

val c = comp e

in

fn (ENVcons (_, env)) => c env

end

| comp (FOASlam e) =

let

val c = comp e

in

fn env => fn v => c (ENVcons (v, env))

end

| comp (FOASapp (e1, e2)) =

let

val c1 = comp e1

val c2 = comp e2

in

fn env => (c1 env) (c2 env)

end

| comp (FOASfix e) =

let

val c = comp e

in

fn env => fix v => c (ENVcons (v, env)

end

withtype {g:type,a:type} FOAS (g,a) -> (ENV (g) -> a)

fun run e = (comp e) (ENVnil)

withtype {a:type} FOAS (unit,a) -> a

Fig. 5. Implementing code constructors and run with guarded recursive datatypes.

λcode . However, it needs to be pointed out that this implementation of run cannot

support run-time code generation, for which we need a (built-in) function that can

perform compilation at run-time and then upload the code generated from the

compilation.
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With this embedding of λcode in λ2,Gµ, we are able to construct programs for

performing analysis on typeful code representation. For instance, the function comp

defined in Figure 5 is just such an example. Also, a typeful implementation of a

continuation-passing style translation on simply typed programs can be found in

Chen & Xi (2003).

In a study on typing dynamic typing (Baars & Swierstra, 2002), an example is

given to demonstrate how a compilation function can be implemented in Haskell in a

typeful manner that translates typeless first-order abstract syntax trees (representing

simply typed terms) into values in Haskell. A key difference between this example and

the one presented in Figure 5 lies in that the former uses typeless code representation

while the latter uses typeful code representation. Recently, we have seen that the

technique developed in Baars & Swierstra (2002) is subsequently employed in an

application involving parsing combinators (Baars & Swierstra, 2004).

3 The language λ+
code

We extend λcode to λ+
code with some meta-programming syntax adopted from Scheme

and MetaML:

expressions e ::= . . . | ‘(e) | ˆ(e)

Loosely speaking, the notation ‘(·) corresponds to the backquote notation in Scheme

(or the notation 〈·〉 in MetaML), and we use ‘(e) as the code representation for e. On

the other hand, ˆ(·) corresponds to the comma notation in Scheme (or the notation

˜(·) in MetaML), and we use ˆ(e) for splicing the code e into some context. We refer

‘(·) and ˆ(·) as meta-programming syntax.

The expression variable context Γ is now defined as follows,

exp. var. ctx. Γ ::= ∅ | Γ, xf @k : τ

where xf @k stands for variables at level k � 0 and we use the name staged variable

for xf @k. Intuitively, an expression e in the empty evaluation context is said to be

at level 0; if an occurrence of e in e0 is at level k, then the occurrence of e in ‘(e0) is

at level k + 1; if an occurrence of e in e0 is at level k + 1, then the occurrence of e

in ˆ(e0) is at level k; if an occurrence of lam x.e1 or fix f.e1 is at level k, then x or f

is bound at level k. A declared staged variable xf @k in Γ simply indicates that xf

is to be bound at level k.

3.1 Static semantics

It is rather involved to formulate rules for typing expressions in λ+
code . We first

introduce as follows some concepts that are needed in further development.

For each natural number k, let posk be the set {1, . . . , k}, or formally {n | 0 < n � k}.
We use G for a finite mapping associating a type environment to each n in posk for

some k. In particular, we use ∅ for the mapping G such that dom(G) = pos0, which

is the empty set. We write ∆ 
G
k Γ [ok] to mean that

1. dom(G) = posk , and

2. ∆ 
 Γ(xf @n) : type for each xf @n ∈ dom(Γ), where n � k is required, and

3. ∆ 
 G(n) : env for each n ∈ dom(G).
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In addition, we introduce the following definitions:

• Given a type environment G, k > 0 and Γ, we define G(k; Γ) as follows.

G(k; ∅) = G ;

G(k; Γ, xf @n : τ) = τ :: G(k; Γ) if n = k;

G(k; Γ, xf @n : τ) = G(k; Γ) if n �= k.

• Given G, Γ and τ, we define G(0; Γ; τ) = τ and

G(k; Γ; τ) = G(k − 1; Γ; 〈G(k; Γ), τ〉)

for k ∈ dom(G), where G = G(k). We write G(Γ; τ) for G(k; Γ; τ) if dom(G) =

posk .

• Given G and G such that dom(G) = posk , we use G + G for the mapping G1

such that dom(G1) = posk+1, G1(n) = G(n) for each n ∈ posk and G1(k+1) = G.

We now provide an example to facilitate the understanding of these concepts.

Example 3.1

Let G = ∅ + γ1 + γ2 + γ3, that is, dom(G) = {1, 2, 3} and G(i) = γi for i = 1, 2, 3. In

addition, let Γ = x0
1@0 : τ0

1, x
1
1@1 : τ1

1, x
2
1@2 : τ2

1, x
2
2@2 : τ2

2, x
3
1@3 : τ3

1. Then for any

type τ, we have

G(1; Γ; τ) = 〈τ1
1 :: γ1, τ〉

G(2; Γ; τ) = 〈τ1
1 :: γ1, 〈τ2

2 :: τ1
2 :: γ2, τ〉〉

G(3; Γ; τ) = 〈τ1
1 :: γ1, τ, 〈τ2

2 :: τ1
2 :: γ2, 〈τ3

1 :: γ3, τ〉〉〉

In general, given G and Γ, we can compute a type environment G(k)(k; Γ) for each

k ∈ dom(G). The need for these type environments is to be explained once the typing

rules for λ+
code are presented.

We use ∆; Γ 
G
k e : τ for a typing judgment in λ+

code , where we require that

∆ 
G
k Γ [ok] hold. Intuitively, G(k) stands for the initial type environment for code

at level k. We present the typing rules for λ+
code in Figure 6, and we may write

D :: ∆; Γ 
G
k e : τ to mean that D is a derivation of ∆; Γ 
G

k e : τ.

The rule (ty-var-0) means that a variable at level 0 can be referred to at any level

k � 0, while the rule (ty-var-1) indicates that a variable at level k > 0 is available

only at level k. In principle, we also have the option to make variables at level k > 0

available at succeeding levels. The reason for not adopting this option is briefly

explained in section 3.3.

The rules (ty-encode) and (ty-decode) are the only ones that can change the level

of a typing judgment in λ+
code . Clearly, if an expression e can be assigned a type τ

under ∆; Γ, then the expression ‘(e) should be assigned a type of the form 〈G, τ〉
under ∆; Γ for some type environment G. The challenging problem, however, is how

such a type environment can be determined. One possible solution is to compute

such a type environment in terms of Γ. While this is a simple solution, its limitation

is rather severe. For instance, we could then only assign the expression ‘(lamx.x) the

type 〈G, int → int〉 for the empty context G = ε, though we should really be allowed
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Typing rules ∆; Γ 
G
k e : τ

∆ 
G
k Γ [ok] Γ(xf @0) = τ

∆; Γ 
G
k xf : τ

(ty-var-0)

∆ 
G
k+1 Γ [ok] Γ(xf @(k + 1)) = τ

∆; Γ 
G
k+1 xf : τ

(ty-var-1)

Σ(c) = ∀∆0.(τ1, . . . , τn) ⇒ τ ∆ 
G
k Γ [ok]

∆ 
 Θ : ∆0 ∆; Γ 
G
k ei : τi[Θ] for i = 1, . . . , n

∆; Γ 
G
k c(e1, . . . , en) : τ[Θ]

(ty-cst)

∆; Γ, x@k : τ1 
G
k e : τ2

∆; Γ 
G
k lam x.e : τ1 → τ2

(ty-lam)

∆; Γ 
G
k e1 : τ1 → τ2 ∆; Γ 
G

k e2 : τ1

∆; Γ 
G
k e1(e2) : τ2

(ty-app)

∆; Γ, f@k : τ 
G
k e : τ

∆; Γ 
G
k fix f.e : τ

(ty-fix)

∆; Γ 
G+G
k+1 e : τ

∆; Γ 
G
k ‘(e) : 〈G(k + 1; Γ), τ〉

(ty-encode)

∆; Γ 
G
k e : 〈G(k + 1; Γ), τ〉

∆; Γ 
G+G
k+1 ˆ(e) : τ

(ty-decode)

∆, a : κ; Γ 
∅
0 v : τ ∆ 
∅

0 Γ [ok]

∆; Γ 
∅
0 ∀+(v) : ∀a : κ.τ

(ty-Lam+)

∆; Γ 
∅
0 e : ∀a : κ.τ ∆ 
 s : κ

∆; Γ 
∅
0 ∀−(e) : τ[a �→ s]

(ty-Lam−)

Fig. 6. The typing rules for λ+
code .

to assign ‘(lam x.x) the type 〈G, int → int〉 for any G.4 To remove the limitation,

each typing judgment is associated with a mapping G that can be combined with

Γ to compute the needed type environment G. Similarly, if an expression e can be

assigned a type 〈G, τ〉 under ∆; Γ, then ˆ(e) should be given a type τ under ∆; Γ.

However, this can happen only if G is in a form required by the rule (ty-decode).

Note that there is a perfect symmetry between (ty-encode) and (ty-decode). As an

example, we present a complete typing derivation in Figure 7, where id is assumed

to be some constant of c-type ∀α.(α) ⇒ α.

Note that polymorphic code is only allowed to occur at level 0. To support

polymorphism at level k > 0, that is, to allow polymorphic code at level k > 0, λcode

needs to be extended to support higher-order polymorphism (as is supported in the

4 For instance, this is necessary if we need to assign a type to the following expression:

(lam code.‘(lam y.ˆ(code)(y)))(‘(lam x.x))

.
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Σ(id) = ∀α.(α) ⇒ α

∅, γ, α; ∅, x@1 : α 
∅+γ
1 : α

(ty-var-1)

∅, γ, α; ∅, x@1 : α 
∅
0 ‘(x) : 〈α :: γ, α〉

(ty-encode)

∅, γ, α; ∅, x@1 : α 
∅
0 id(‘(x)) : 〈α :: γ, α〉

(ty-cst)

∅, γ, α; ∅, x@1 : α 
∅+γ
1 ˆ(id(‘(x))) : α

(ty-decode)

∅, γ, α; ∅ 
∅+γ
1 lam x.ˆ(id(‘(x))) : α → α

(ty-lam)

∅, γ, α; ∅ 
∅
0 ‘(lam x.ˆ(id(‘(x)))) : 〈γ, α → α〉

(ty-encode)

∅, γ; ∅ 
∅
0 ∀+(‘(lam x.ˆ(id(‘(x))))) : ∀α.〈γ, α → α〉

(ty-Lam+)

∅; ∅ 
∅
0 ∀+(∀+(‘(lam x.ˆ(id(‘(x)))))) : ∀γ.∀α.〈γ, α → α〉

(ty-Lam+)

Fig. 7. A complete typing derivation in λ+
code .

higher-order polymorphically typed λ-calculus λω). For instance, the following two

code constructors Alli and Alle are needed for constructing expressions representing

polymorphic code:

Alli : ∀γ.∀a1 : type → type.(∀a2 : type.〈γ, a1(a2)〉) ⇒ 〈γ, ∀a2 : type.a1(a2)〉
Alle : ∀γ.∀a1 : type → type.∀a2 : type.(〈γ, ∀a2 : type.a1(a2)〉) ⇒ 〈γ, a1(a2)〉

Given the complication involved, we are not to deal with such code constructors

in this paper and postpone the issue of representing polymorphic code for future

study.

3.2 Translation from λ+
code into λcode

We introduce some notations needed in the following presentation. For n � 0,

we use ∀+
n (e) for ∀+(. . . (∀+(e)) . . .), where there are n occurrences of ∀+, and we

use ∀−
n (e) similarly. Given an expression e, we write Liftn(e) for Lift(. . . (Lift(e)) . . .),

where there are n occurrences of Lift. We define some functions in Figure 8, which

basically generalize the code constructors we have. Given e, e1, . . . , en, we write

Appn(e)(e1) . . . (en) for e if n = 0, or for

App(Appn−1(e) . . . (en−1), en)

if n > 0; and Appnk(e)(e1) . . . (en) for e if n = 0, or for

∀−
k+2(Appk)(Appn−1

k (e) . . . (en−1))(en)

if n > 0. Given type environments G1, . . . , Gn and type τ, we write 〈G1, . . . , Gn; τ〉 for

〈G1, 〈. . . , 〈Gn, τ〉 . . .〉〉. With this notation, we have

G(Γ; τ) = 〈G1(1; Γ), . . . , Gk(k,Γ); τ〉,

where we assume G = ∅ + G1 + . . . + Gk .

We now use xfs for a sequence of staged variables, that is, xfs is of the form

xf 1@k1, . . . , xf n@kn. We define var1(xfs; xf ) as follows under the assumption that
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Liftn : ∀γ1 . . . ∀γn.∀α.α → 〈γ1, . . . , γn; α〉
Liftn = ∀+

n+1(lam x.Liftn(x))

Lamn : ∀γ1 . . . ∀γn.∀α1.∀α2.〈γ1, . . . , γn−1, α1 :: γn; α2〉 → 〈γ1, . . . , γn; α1 → α2〉
Lam1 = ∀+

3 (lam x.Lam(x))

Lamn+1 = ∀+
n+3(lam x.App(Lift(∀−

n+2(Lamn)), x))

Appn : ∀γ1 . . . ∀γn.∀α1.∀α2.〈γ1, . . . , γn; α1 → α2〉 → 〈γ1, . . . , γn; α1〉 → 〈γ1, . . . , γn; α2〉
App1 = ∀+

3 (lam x1.lam x2.App(x1, x2))

Appn+1 = ∀+
n+3(lam x1.lam x2.App(App(Lift(∀−

n+2(Appn)), x1), x2))

Fixn : ∀γ1 . . . ∀γn.∀α.〈γ1, . . . , γn−1, α :: γn; α〉 → 〈γ1, . . . , γn; α → α〉
Fix1 = ∀+

2 (lam x.Fix(x))

Fixn+1 = ∀+
n+2(lam x.App(Lift(∀−

n+1(Fixn)), x))

Onen : ∀γ1 . . . ∀γn.∀α.〈γ1, . . . , γn−1, α :: γn; α〉
One1 = ∀+

2 (One)

Onen+1 = ∀+
n+2(Lift(∀−

n+1(Onen)))

Shin : ∀γ1 . . . ∀γn.∀α1.∀α2.〈γ1, . . . , γn; α2〉 → 〈γ1, . . . , γn−1, α1 :: γn; α2〉
Shi1 = ∀+

3 (lam x.Shi(x))

Shin+1 = ∀+
n+3(lam x.App(Lift(∀−

n+2(Shin)), x))

Fig. 8. The types of generalized code constructors.

xf @1 occurs in xfs:

var1(xfs; xf ) =




One if xfs = xfs1, xf @1;

Shi(var1(xfs1; xf )) if xfs = xfs1, xf 1@1 and xf 1 �= xf ;

var1(xfs1; xf ) if xfs = xfs1, xf 1@k1 and k1 �= 1

For each k > 1, we define vark(xfs; xf ) as follows under the assumption that xf @k

occurs in xfs:

vark(xfs; xf ) =




∀−
k+1(Onek) if xfs = xfs1, xf @k;

∀−
k+2(Shik)(vark(xfs1; xf )) if xfs = xfs1, xf 1@k and xf 1 �= xf ;

vark(xfs1; xf ) if xfs = xfs1, xf 1@k1 and k1 �= k

Proposition 3.2

Assume that ∆ 
G
k : Γ [ok] holds and Γ = xf 1@k1 : τ1, . . . , xf n@kn : τn. Then the

following typing judgment:

∆; ∅ 
 varki (xf 1@k1, . . . , xf n@kn; xf i) : G(ki; Γ; τi)

is derivable for each 1 � i � n such that 0 < ki � k holds.

Proof

By a straightforward inspection of the related definitions. �

In Figure 9, we define a translation transk(·; ·) for each k � 0 that translates

expressions in λ+
code into ones in λcode . A crucial property of transk(·; ·) is captured by

the following lemma, which consists of the main technical contribution of the paper.
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trans0(·; ·)

trans0(xfs; xf ) = xf if xf @0 occurs in xfs

trans0(xfs; c(e1, . . . , en)) = c(trans0(xfs; e1), . . . , trans0(xfs; en))

trans0(xfs; lam x.e) = lam x.trans0(xfs, x@0; e)

trans0(xfs; e1(e2)) = trans0(xfs; e1)(trans0(xfs; e1))

trans0(xfs; fix f.e) = fix f.trans0(xfs, f@0; e)

trans0(xfs; ∀+(e)) = ∀+(trans0(xfs; e))

trans0(xfs; ∀−(e)) = ∀−(trans0(xfs; e))

trans0(xfs; ‘(e)) = trans1(xfs; e)

trans1(·; ·)

trans1(xfs; xf ) = Lift(xf ) if xf @0 occurs in xfs

trans1(xfs; xf ) = var1(xfs; xf ) if xf @1 occurs in xfs

trans1(xfs; c(e1, . . . , en)) =

Appn(Lift(lam x1 . . . lam xn.c(x1, . . . , xn)))(trans1(xfs; e1)) . . . (trans1(xfs; en))

trans1(xfs; lam x.e) = Lam(trans1(xfs, x@1; e))

trans1(xfs; e1(e2)) = App(trans1(xfs; e1), trans1(xfs; e2))

trans1(xfs; fix f.e) = Fix(trans1(xfs, f@1; e))

trans1(xfs; ‘(e)) = trans2(xfs; e)

trans1(xfs; ˆ(e)) = trans0(xfs; e)

transk(·; ·) for k > 1

transk(xfs; xf ) = Liftk(xf ) if xf @0 occurs in xfs

transk(xfs; xf ) = vark(xfs; xf ) if xf @k occurs in xfs

transk(xfs; c(e1, . . . , en)) =

Appn
k(Liftk(lam x1 . . . lam xn.c(x1, . . . , xn)))(transk(xfs; e1)) . . . (transk(xfs; en))

transk(xfs; lam x.e) = ∀−
k+2(Lamk)(transk(xfs, x@k; e))

transk(xfs; e1(e2)) = ∀−
k+2(Appk)(transk(xfs; e1))(transk(xfs; e2))

transk(xfs; fix f.e) = ∀−
k+1(Fixk)(transk(xfs, f@k; e)

transk(xfs; ‘(e)) = transk+1(xfs; e)

transk(xfs; ˆ(e)) = transk−1(xfs; e)

Fig. 9. The definition of transk(·; ·) for k � 0.

Lemma 3.3

Assume that the typing judgment ∆; Γ 
G
k e : τ is derivable in λ+

code and Γ = xf 1@k1 :

τ1, . . . , xf n@kn : τn. Then the following typing judgment:

∆; (Γ)0 
 transk(xf 1@k1, . . . , xf n@kn; e) : G(Γ; τ)

is derivable in λcode , where (Γ)0 is defined as follows:

(∅)0 = ∅
(Γ, xf @0 : τ)0 = (Γ)0, xf : τ

(Γ, xf @(k + 1) : τ)0 = (Γ)0

Proof

Let us use xfs to denote xf 1@k1, . . . , xf n@kn. The proof follows from structural

induction on the derivation D of the typing judgment ∆; Γ 
G
k e : τ, and we have
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the following cases:

• D is of the following form:

∆ 
G
k Γ [ok] Γ(xf @0) = τ

∆; Γ 
G
k xf : τ

(ty-var-0)

where e = xf . Given that ∆ 
G
k Γ [ok] holds, we have that ∆ 
 (Γ)0 [ok]

holds in λcode . By the definition of (Γ)0, we have (Γ)0(xf ) = τ. Therefore

∆; (Γ)0 
 xf : τ is derivable. We have the following subcases.

— k = 0. Then transk(xfs; e) = xf and G(Γ; τ) = G(0; Γ; τ) = τ. Clearly,

∆; (Γ)0 
 trans0(xfs; e) : G(Γ; τ) is derivable in λcode .

— k � 1. Then transk(xfs; e) = Liftk(xf ) and

G(Γ; τ) = G(k; Γ; τ) = 〈G1(1; Γ), . . . , Gk(k; Γ); τ〉,

where we assume G = ∅ + G1 + . . . + Gk . According to the c-type assigned

to Lift, ∆; (Γ)0 
 transk(xfs; e) : G(Γ; τ) is clearly derivable in λcode .

• D is of the following form:

∆ 
G
k Γ [ok] Γ(xf @k) = τ

∆; Γ 
G
k xf : τ

(ty-var-1)

where e = xf . Note that k > 0 holds. By Proposition 3.2, we know that ∆; ∅ 

vark(xfs; xf ) : G(k; Γ; τ) is derivable. Hence, ∆; (Γ)0 
 vark(xfs, xf ) : G(k; Γ; τ)

is also derivable by Lemma 2.3. Note that transk(xfs; e) = vark(xfs; xf ), and

we are done.

• D is of the following form:

D′ :: ∆; Γ, x@k : τ′ 
G
k e′ : τ′′

∆; Γ 
G
k lam x.e′ : τ′ → τ′′ (ty-lam)

where e = lam x.e′ and τ = τ′ → τ′′. We have the following subcases.

— k = 0. By induction hypothesis on D′, the following typing judgment

∆; (Γ)0, x : τ′ 
 trans0(xfs, x@0; e′) : G(Γ; τ′′)

is derivable. Note that G(Γ; τ′′) = G(0; Γ; τ′′) = τ′′. Therefore, the following

typing judgment

∆; (Γ)0 
 lam x.trans0(xfs, x@0; e′) : τ′ → τ′′

is derivable. Since trans0(xfs; e) = lam x.trans0(xfs, x@0; e′) and G(Γ; τ) =

G(0; Γ; τ) = τ = τ′ → τ′′, we have that ∆; (Γ)0 
 trans0(xfs; e) : G(Γ; τ) is

derivable.

— k = 1. By induction hypothesis on D′, the following typing judgment

∆; (Γ)0, x : τ′ 
 trans1(xfs, x@1; e′) : G(Γ, x@1 : τ′; τ′′)

is derivable. Assume G = ε + G, and we have G(Γ, x@1 : τ′; τ′′) =

G(1; Γ, x@1 : τ′; τ′′) = 〈G(1; Γ, x@1 : τ′), τ〉 = 〈τ′ :: G(1; Γ), τ′′〉. Hence,
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according to the c-type assigned to Lam, the following typing judgment

∆; (Γ)0 
 Lam(trans1(xfs, x@1; e′)) : 〈G(1; Γ), τ′ → τ′′〉

is derivable. Note that trans1(xfs; e) = Lam(trans1(xfs, x@1; e′)) and

G(Γ, τ) = 〈G(1; Γ), τ′ → τ′′〉,
and we are done.

— k > 1. This subcase is similar to the previous one where k = 1, and we

thus omit the details.

• D is of the following form:

D′ :: ∆; Γ 
G
k e′ : τ′ → τ′′ D′′ :: ∆; Γ 
G

k e′′ : τ′

∆; Γ 
G
k e′(e′′) : τ′′ (ty-app)

where e = e′(e′′) and τ = τ′′. We have the following subcases.

— k = 0. By induction hypothesis on D′, the following typing judgment

∆; (Γ)0 
 trans0(xfs; e′) : G(Γ; τ′ → τ′′)

is derivable. Also by induction hypothesis on D′′, the following typing

judgment

∆; (Γ)0 
 trans0(xfs; e′′) : G(Γ; τ′)

is derivable. Note that trans0(xfs; e) = trans0(xfs; e′)(trans0(xfs; e′′)), and

G(Γ; τ′ → τ′′) = G(0; Γ; τ′ → τ′′) = τ′ → τ′′, and G(Γ; τ′) = G(0; Γ; τ′) = τ′,

and G(Γ; τ) = G(0; Γ; τ) = τ = τ′′. Hence, ∆; (Γ)0 
 trans0(xfs; e) : G(Γ; τ)

is also derivable.

— k = 1. By induction hypothesis on D′, the following typing judgment

∆; (Γ)0 
 trans1(xfs; e′) : G(Γ; τ′ → τ′′)

is derivable. Also by induction hypothesis on D′′, the following typing

judgment

∆; (Γ)0 
 trans1(xfs; e′′) : G(Γ; τ′)

is derivable. Assume G = ε + G. Then G(Γ; τ′ → τ′′) = G(1; Γ; τ′ → τ′′) =

〈G(1; Γ), τ′ → τ′′〉 and G(Γ; τ′) = G(1; Γ; τ′) = 〈G(1; Γ), τ′〉. According to

the type assigned to App, we know that the following typing judgment

∆; (Γ)0 
 App(trans1(xfs; e′), trans1(xfs; e′′)) : 〈G(1; Γ), τ′′〉

is derivable. Note that trans1(xfs; e) = App(trans1(xfs; e′), trans1(xfs; e′′))

and G(Γ; τ′′) = G(1; Γ; τ′′) = 〈G(1; Γ), τ′′〉, and we are done.

— k > 1. This subcase is similar to the previous one where k = 1.

• D is of the following form:

D′ :: ∆; Γ 
G+G
k+1 e′ : τ′

∆; Γ 
G
k ‘(e′) : 〈G(k + 1; Γ), τ′〉

(ty-encode)
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where e = ‘(e′) and τ = 〈G(k + 1; Γ), τ′〉. By induction hypothesis on D′, we

can derive ∆; (Γ)0 
 transk+1(xfs; ‘(e′)) : G′(Γ; τ′) in λcode , where G′ = G + G.

Note that transk(xfs; ‘(e′)) = transk+1(xfs; e′) and

G′(Γ; τ′) = G′(k + 1; Γ; τ′) = G(k; Γ; 〈G(k + 1; Γ), τ′〉) = G(Γ; 〈G(k + 1; Γ), τ′〉).

Hence, ∆; (Γ)0 
 transk(xfs; e) : G(Γ; τ) is derivable.

• D is of the following form:

D′ :: ∆; Γ 
G′

k−1 e
′ : 〈G(k; Γ), τ〉

∆; Γ 
G′+G
k ˆ(e′) : τ

(ty-decode)

where G = G′ + G and e = ˆ(e′). Note that k > 0 holds in this case. By

induction hypothesis on D′, the following typing derivation

∆; (Γ)0 
 transk−1(xfs; e′) : G′(Γ; 〈G(k; Γ), τ〉)

is derivable. Note that we have transk+1(xfs; ˆ(e)) = transk(xfs; e) and G(Γ; τ) =

G(k; Γ; τ) = G′(k − 1; Γ; 〈G(k; Γ), τ〉) = G′(Γ; 〈G(k; Γ), τ〉). Hence, the typing

judgment ∆; (Γ)0 
 transk(xfs; e) : G(Γ; τ) is derivable.

The other cases can be handled similarly. For instance, the case where the last rule

applied in D is (ty-cst) is analogous to the one where the last rule applied in D is

(ty-app). We thus omit the further details. �

Given an expression e in λ+
code , we write trans(e) for trans0(∅; e) (if it is well-defined)

and call it the translation of e.

Theorem 3.4

Assume that ∅; ∅ 
∅
0 e : τ is derivable. Then ∅; ∅ 
 trans(e) : τ is derivable.

Proof

This immediately follows from Lemma 3.3. �

The programmer can now write meta-programs in λ+
code that make use of meta-

programming syntax, and these programs can then be translated into λcode automat-

ically. In other words, we may just treat meta-programming syntax merely as a form

of syntactic sugar. This is precisely the significance of Theorem 3.4.

We conclude this section with an example to show how the type system of λ+
code

prevents free variable evaluation. Let us recall the following example in MetaML,

<fn x => ~(run <x>)>

whose evaluation leads to free variable evaluation. In λ+
code , the example corresponds

to e = ‘(lam x.ˆ(run(‘(x)))). Clearly,

trans(e) = trans0(∅; ‘(lam x.ˆ(run(‘(x)))))

= trans1(∅; lam x.ˆ(run(‘(x))))

= Lam(trans1(∅, x@1; ˆ(run(‘(x)))))

= Lam(trans0(∅, x@1; run(‘(x))))

= Lam(run(trans0(∅, x@1; ‘(x))))

= Lam(run(trans1(∅, x@1; x)))

= Lam(run(One))
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Note that the type of the expression One must equal 〈τ :: G, τ〉 for some G and τ

but run is only allowed to be applied to an expression whose type is 〈ε, τ〉 for some

τ. Therefore, trans(e) is ill-typed. By Theorem 3.4, e is also ill-typed in λ+
code and is

thus properly rejected.

To see that e is not typable from a different angle, let us try to assign a type to

e in λ+
code directly. If this is possible, then a derivation D0 of the following form can

be constructed for some G0, τ1, τ2:

· · · · · ·
∅; ∅, x@1 : τ1 
∅

0 run(‘(x)) : 〈τ1 :: G0, τ2〉
(ty-cst)

∅; ∅, x@1 : τ1 
∅+G0

1 ˆ(run(‘(x))) : τ2

(ty-decode)

∅; ∅ 
∅+G0

1 lam x.ˆ(run(‘(x))) : τ1 → τ2

(ty-lam)

∅; ∅ 
∅
0 ‘(lam x.ˆ(run(‘(x)))) : 〈G0, τ1 → τ2〉

(ty-encode)

Note that we can only assign ‘(x) a type of the form 〈τ1 :: G1, τ1〉 for some G1:

∅; ∅, x@1 : τ1 
∅+G1

1 x : τ1

∅; ∅, x@1 : τ1 
∅
0 ‘(x) : 〈τ1 :: G1, τ1〉

(ty-encode)

In other words, ‘(x) cannot be given a type for closed code. Hence, run(‘(x)) is not

typable, and the derivation D0 is impossible to construct.

3.3 Some remarks

We mention a few subtle issues so as to facilitate the understanding of λ+
code .

No Free Named Variables at Level k > 0 In λ+
code , no free named variables are

allowed at any level k > 0. For instance, the expression ‘(x + y) is considered illegal

as it contains free named variables x and y at level 1, which can not be properly

handled by the translation defined in Figure 9. On the other hand, the expression

‘(lam x.lam y.x + y) is legal, where x and y are bound named variables at level 1.

This expression translates into the following expression in λcode:

Lam(Lam(App(App(Lift(+), Shi(Shi(One))), Shi(One))))

Disallowing free named variable at any level k > 0 may cause certain inconvenience

in programming. For instance, the following code, where the syntax should be able

to be easily related to that of λ+
code by someone familiar with ML, involves the use

of free variable names at level 1:

let val code = ’(x + y) in

( ’(fn x => fn y => ^code), ’(fn y => fn x => ^code) )

end

One possible solution here is to rewrite the above code as follows:

let fun code (x, y) = ’(^x + ^y) in

( ’(fn x => fn y => ^(code (’x, ’y))),

’(fn y => fn x => ^(code (’x, ’y))) )

end

thus obviating the need for free variable names at level 1.
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In order to support free named variables at level k > 0, it seems that a notion of

names is needed to be directly incorporated into the type system of the underlying

language, which we think is highly nontrival. We refer the interested reader to

Nanevski & Pfenning (n.d.) for some related work in this direction. We have here

made a design choice to choose the use of nameless variables in code representation.

This choice is partly influenced by our experience with MetaML (Taha & Sheard,

2000), which does not support free named variables at level k > 0, either.

Insertion of Explicit Shifts Suppose that e represents some closed code of type τ.

If e is given the type 〈ε, τ〉, then the following expression cannot be assigned any

type in λ+
code: ‘(lam x.ˆ(e)) as it requires that e be some code containing at least

one free variable. To fix the problem, the code constructor Shi needs to be inserted

explicitly: ‘(lam x.ˆ(Shi(e))). However, if e is instead given the type ∀γ.〈γ, τ〉, which

is more likely than not, then such an insertion becomes unnecessary as γ can be

instantiated properly to represent a context containing at least one variable. For

instance, Example 2, which is to be presented in section 4, sheds some light on this

issue.

Mixed Use of Named and Nameless Variables The translation defined in Figure 9

indicates that named variables at level k > 0 are really just nameless variables, that

is, deBruijn indexes in disguise. For instance, in the expression ‘(lam x.lam y.x + y),

x and y are really just the second (Shi(One)) and the first (One) deBruijn indexes. As

a matter of fact, this expression can be written in various equivalent forms such as:

• ‘(lam x.lam y.ˆ(Shi One) + ˆ(One))

• ‘(lam x.lam y.x + ˆ(One))

• ‘(lam x.lam y.ˆ(Shi One) + y)

• ‘(lam x.lam y.ˆ(Shi ‘(y)) + y)

However, the use of such forms should probably be discouraged unless some specific

reasons are present.

Polymorphic Code As indicated by the typing rules (ty-Lam+) and (ty-Lam-),

polymorphism is only allowed at level 0 in λ+
code . In other words, polymorphic

code cannot be constructed in λ+
code . For example, the code ‘(∀+(lam x.x)) cannot

be assigned any type in λ+
code . On the other hand, the code ∀+‘(lam x.x) can be

given the type ∀γ.∀α.〈γ, α → α〉. However, there is no fundamental limitation on

supporting polymorphic code. For instance, with the introduction of higher-order

polymorphism into λ+
code , polymorphic code can be readily supported (Chen et al.,

2004a). However, higher-order polymorphism can result in many complications in

programming language design and implementation. As is supported by the case of

MetaML (Taha & Sheard, 2000), we feel that meta-programming with no direct

support for polymorphic code is still a viable practice. As to whether there are

realistic cases where polymorphic code is truly needed, the answer is positive. Please

see Chen et al. (2004a) for some distributed meta-programming examples involving

sophisticated use of polymorphic code.
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Bound Variables at Stage k > 0 At level k for some k > 0, a bound variable merely

represents a deBruijn index and a binding may vanish or occur “unexpectedly”. For

instance, let e be the expression ‘(lam x.ˆ(f ‘x)) and e′ = trans(e) = Lam(f(One)).

• Let f be the identity function. Then e′ evaluates to Lam(One), which represents

the code for the identity function lam y.y.

• Let f be the shift function lam y.Shi(y). Then e′ evaluates to Lam(Shi(One)),

which represents the code lam y.z for some free variable z that is distinct from

y; there is no binding between Lam and One in e′.

• Let f be the lift function lam y.Lift(y). Then e′ evaluates to Lam(Lift(One))

and run(e′) evaluates to the function lam y.One (not to lam y.Lift(y)); there

is simply no “expected” binding between Lam and One in e′. Let e0 be the

expression run(run(e′)(1)). Then e0 is rejected as the expression run(e′)(1), which

evaluates to One, cannot be assigned a type of the form 〈ε, τ〉.5

Cross-Stage Persistence In meta-programming, a situation often arises where a value

defined at a previous level needs to be used at a following level. For instance, in

the expression ‘(lam x.x + x), the function +, which is defined at level 0, is used

at level 1. This is called cross-stage persistence (CSP) (Taha & Sheard, 1997). As

is indicated in the typing rules (ty-var-0) and (ty-cst), CSP for both variables and

constants at level 0 is implicit in λ+
code . However, for variables introduced at level

k > 0, CSP needs to be explicit. For instance, ‘(lam x.‘(lam y.y(x))) is ill-typed in

λ+
code as the variable x is introduced at level 1 but used at level 2. To make it typable,

the programmer needs to insert % in front of x: ‘(lam x.‘(lam y.y(%x))), where %

is a shorthand for ˆLift, that is, %(e) represents ˆ(Lift(e)) for any expression e. Note

that Lift can also be defined as ‘%, that is, Lift(e) can be treated as ‘(%e) for any

expression e. We present some further explanation on the issue of lifting variables

across levels.

Cross-Level Variable Lifting The following rule (ty-var-0) indicates that at any level

k � 0 we can refer to a variable at level 0:

∆ 
G
k Γ [ok] Γ(xf @0) = τ

∆; Γ 
G
k xf : τ

(ty-var-0)

Therefore, a natural question is whether at level k we can refer to a variable at level

k0 for any k0 � k? In other words, can we modify the rule (ty-var-0) to the following

one?

∆ 
G
k Γ [ok] Γ(xf @k0) = τ for some k0 � k

∆; Γ 
G
k xf : τ

(ty-var-0’)

5 In ν (Nanevski & Pfenning, n.d.), e0 cannot be typed, either. However, e0 can be typed in the current
implementation of MetaML (Sheard et al., n.d.) and MetaOCaml (Taha et al., n.d.); in the former e0
evaluates to 1 but in the latter the evaluation of e0 raises a run-time exception caused by free variable
evaluation.
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The answer is yes. However, we need to modify the function transk(·; ·) as well for

the case k > 1 in order to accommodate the rule (ty-var-0’):

transk(xfs; xf ) = Liftk0 ,k
(vark0

(xfs; xf )) if xf @k0 occurs in xfs

where Liftk0 ,k
is a function that can be defined as follows:

Liftk0 ,k
: ∀γ1 . . . ∀γk.∀α.〈γ1, . . . , γk0

; α〉 → 〈γ1, . . . , γk; α〉
Liftk0 ,k

= ∀+
k+1(lam x.∀−

k0+2(Appk0
)(Liftk0 (Liftk−k0

))(x))

Theorem 3.4 can then be proven again. Notice that the rule (ty-var-1) is no longer

needed in the presence of the rule (ty-var-0’). While this rule makes it automatic to

lift variables across levels, it also seems to make it difficult to detect staging errors

in practice. Therefore, for some practical reasons we only allow variables at level

0 to be lifted across levels automatically in our design. To lift a variable x at level

k > 0 to the next level, the programmer needs to write %x instead; the symbol %

can be used repeatedly if a variable needs to be lifted across several levels, but such

a situation seems rare at least.

4 Meta-programming with λ+
code

We now need an external language ML+
code for the programmer to construct meta-

programs and then a process to translate such programs into typing derivations

in (properly extended) λ+
code . We present one possible design of ML+

code as follows,

where b is for base types such as bool, int, etc.

types τ ::= b | α | τ → τ | 〈G, τ〉
type env. G ::= γ | ε | τ :: G

type schemes σ ::= τ | ∀α.σ
expressions e ::= x | f | c(e1, . . . , en) | if(e1, e2, e3) |

lam x.e | lam x : τ.e | e1(e2) |
fix f.e | fix f[α1, . . . , αn] : τ.e |
let x = e1 in e2 end | (e : τ)

‘(e) | ˆ(e)

The only unfamiliar syntax is fix f[α1, . . . , αn] : τ.e, which we use to support

polymorphic recursion; this expression is expected to be assigned the type scheme

σ = ∀α1 . . . ∀αn.τ.
We have implemented a type inference algorithm based on the one in Damas &

Milner (1982) that supports the usual let-polymorphism. Like in Haskell (Peyton

Jones et al., 1999), if the type of a recursive function is given, then polymorphic

recursion is allowed in the definition of the function.

4.1 Some meta-programming examples

We are now ready to present some examples of meta-programs in ML+
code.
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fun genAck m =

if m = 0 then ‘(fn n => n+1)

else

‘(fun f (n) =>

let

val f’ = ^(genAck (m-1))

in

if n = 0 then f’ 1 else f’ (f (n-1))

end)

withtype {g} int -> <g; int -> int>

Fig. 10. A staged implementation of the Ackerman function.

Example 1

The previously defined function genEvalPoly can now be implemented as follows,

using no explicit code constructors.

fun genEvalPoly (p) =

let

fun aux p x =

if null (p) then ‘(0) else ‘((hd p) + ^x * ^(aux (tl p) x))

withtype {g} int list -> <g; int> -> <g; int>

in

‘(fn x => ^(aux p ‘x))

end

withtype {g} int list -> <g; int -> int>

Note that the type annotations, which can be automatically inferred, are presented

solely for making the program easier to understand. Also, note a use of the CSP

operator % in this example.

Example 2

The following program implements the Ackerman function.

fun ack m n =

if m = 0 then n + 1

else if n = 0 then ack (m-1) 1

else ack (m-1) (ack m (n-1))

withtype int -> int -> int

We can now define a function genAck in Figure 10 such that the function returns

the code for computing ack(m) when applied to a given natural number m. We use

the syntax ‘(fun f (n) => ...) for

‘(fix f => (fn n => ...))’,

which translates into something of the form Fix(Lam(. . .)). This example shows an

interesting use of recursion at level 1. Also, we point out that polymorphic recursion

is required in this example.6

6 To avoid polymorphic recursion, we need to change genAck(m-1) into Shi(Shi(genAck(m-1))) in
the implementation. However, the dynamic semantics of the program is not affected by the change.
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fun innerProd n = (* unstaged implementation of inner product *)

let

fun aux i v1 v2 sum =

if i < n then aux (i+1) v1 v2 (sum + sub (v1, i) * sub (v2, i))

else sum

withtype int -> int -> int array -> int array -> int

in

fn v1 => fn v2 => aux 0 v1 v2 0

end

withtype int -> int array -> int array -> int

fun genInnerProd n = (* staged implementation of inner product *)

let

fun aux i v1 v2 sum =

if i < n then

aux (i+1) v1 v2 ‘‘(^^sum + %(sub (^v1, i)) * sub (^^v2, i))

else sum

withtype

{g1,g2}

int -> <g1; int array> ->

<g1,g2; int array> -> <g1,g2; int> -> <g1,g2; int>

in

‘(fn v1 => ‘(fn v2 => ^^(aux i ‘v1 ‘‘v2 0)))

end

withtype {g1,g2} int -> <g1; int array -> <g2; int array -> int> >

Fig. 11. A meta-programming example: inner product.

Example 3

We contrast an unstaged implementation of inner product (innerProd) with a staged

implementation of inner product (genInnerProd) in Figure 11. Given a natural

number n, genInnerProd(n) returns the code for some function f1; given an integer

vector v1 of length n, f1 returns the code for some function f2; given an integer

vector v2 of length n, f2 returns the inner product of v1 and v2. For instance, if n = 2,

then f1 is basically equivalent to the function defined below;

fn v1 => ‘(fn v2 =>

0 + %(sub (v1, 0)) * sub (v2, 0) + %(sub (v1, 1)) * sub (v2, 1))

if v1[0] = 6 and v1[1] = 23, then f2 is basically equivalent to the function defined

below.

fn v2 => 0 + 6 * sub (v2, 0) + 23 * sub (v2, 1)

Notice that this example involves expressions at level 2 and a use of the CSP

operator %.
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5 Language extensions

It is straightforward to extend λcode (and subsequently λ+
code) to support additional

language features such as conditionals, pairs, references, etc., and we present a brief

outline as follows.

To support conditional expressions of the form if(e1, e2, e3), we introduce a code

constructor If and assign it the following c-type:

∀γ.∀α.(〈γ, bool 〉, 〈γ, α〉, 〈γ, α〉) ⇒ 〈γ, α〉

We then define Ifn as follows for n � 1:

Ifn : ∀γ1 . . . ∀γn.∀α.
〈γ1, . . . , γn; bool〉 → 〈γ1, . . . , γn; α〉 → 〈γ1, . . . , γn; α〉 → 〈γ1, . . . , γn; α〉

If1 = ∀+
2 (lam x1.lam x2.lam x3.If(x1, x2, x3))

Ifn+1 = ∀+
n+2(lam x1.lam x2.lam x3.App(App(App(Lift(∀−

n+1(Ifn)), x1), x2), x3))

In addition, we need to extend the definition of comp(·; ·), trans0(·; ·) trans1(·; ·) and

transk(·; ·) (for k > 1) as follows:

comp(xfs; If(v1, v2, v3)) = if(comp(xfs; v1), comp(xfs; v2), comp(xfs; v3))

trans0(xfs; if(e1, e2, e3)) = if(trans0(xfs; e1), trans0(xfs; e2), trans0(xfs; e3))

trans1(xfs; if(e1, e2, e3)) = If(trans1(xfs; e1), trans1(xfs; e2), trans1(xfs; e3))

transk(xfs; if(e1, e2, e3)) = (for k > 1)

∀−
k+1(If)(transk(xfs; e1))(transk(xfs; e2))(transk(xfs; e3))

The rest is then a routine check to verify that Lemma 3.3 holds, which subsequently

implies Theorem 3.4.

It is completely straightforward to extend λcode with pairs and we omit the related

details. In order to support references, all we need is to assume the existence of a

type constructor ref(·) and the following functions of the given c-types,

ref : ∀α.(α) ⇒ ref(α)

deref : ∀α.(ref(α)) ⇒ α

update : ∀α.(ref(α), α) ⇒ 1

where 1 stands for the unit type. As an example, the expression below:

‘(lam x.lam y.update(y, deref(x)))

is translated into the following expression,

Lam(Lam(App(App(update1,One),App(deref1, Shi(One)))))

where update1 = lam x1.lam x2.update(x1, x2) and deref1 = lam x.deref(x).

In Calcagno et al. (2003), it is argued that a program corresponding to the

following one would cause the problem of free variable evaluation to occur in

MetaML (Taha & Sheard, 2000) as the reference r stores some open code when it

is dereferenced.

let val r = ref ‘1
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val f = ‘(fn x => ^(r := ‘(x+1); ‘2)

in run (!r) end

This, however, cannot occur in λ+
code as the above program is ill-typed: If r is assigned

the type ref(〈ε, int〉), then it cannot be used to store open code; if r is assigned a

type ref(〈G, int 〉) for some non-empty type environment G, then the code stored in

it cannot be run.

With value restriction, it is also straightforward to support let-polymorphism in

code: we can simply treat let x = v in e end as syntactic sugar for e[x �→ v].

What seems difficult is to deal with pattern matching in code. One possible

approach is to translate general pattern matching into the following fixed form of

pattern matching for sum types,

case e0 of inl(x1) ⇒ e1 | inr(x2) ⇒ e2

and then introduce three code constructors Inl, Inr and CaseOf of the following

c-types, respectively:

Inl : ∀γ.∀α1.∀α2.(〈γ, α1〉) ⇒ 〈γ, α1 + α2〉
Inr : ∀γ.∀α1.∀α2.(〈γ, α2〉) ⇒ 〈γ, α1 + α2〉

CaseOf : ∀γ.∀α1.∀α2.∀α3.(〈γ, α1 + α2〉, 〈α1 :: γ, α3〉, 〈α2 :: γ, α3〉) ⇒ 〈γ, α3〉

The rest becomes straightforward and we omit the details.

5.1 Typeful code representation for general pattern matching

When typeful code representation is concerned, it is certainly appealing to handle

general pattern matching directly without the translation mentioned above. We

now present as follows an approach to representing code involving general pattern

matching. We first extend the syntax of λcode as follows,

types τ ::= . . . | pat(G1, τ, G2) | cla(G, τ1, τ2)

patterns p ::= x | cc(p1, . . . , pn)

expressions e ::= . . . | case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en)

where pat(·, ·, ·) and cla(·, ·, ·) are two new type constructors. Given a pattern p, we

use pvs(p) for the sequence of variables x1, . . . , xn occurring in p, from left to right.

As usual, we assume that each variable may occur at most once in a pattern. Given

G, τ, τ1, . . . , τn, the type pat(G, τ, τn :: . . . :: τ1 :: G) is for an expression that represents

a pattern p such that pvs(p) = x1, . . . , xn and p is assigned the type τ if xi are assigned

types τi for 1 � i � n. Given G, τ1, τ2, the type cla(G, τ1, τ2) is for an expression that

represents a clause p ⇒ e such that the representation for p is assigned the type

pat(G, τ1, G
′) for some G′ and the representation for e is assigned the type 〈G′, τ2〉.

We now introduce some constructors for constructing expressions that represent

patterns. We use var for representing a variable pattern:

var : ∀γ.∀α.() ⇒ pat(γ, α, α :: γ)
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Given a constructor cc of type ∀∆0.(τ1, . . . , τn) ⇒ τ, we introduce a new constructor

cc:

cc : ∀∆0.∀γ0 . . . ∀γn.(pat(γ0, τ1, γ1), . . . , pat(γn−1, τn, γn)) ⇒ pat(γ0, τ, γn)

where for 0 � i � n, γi are assumed to have no occurrences in ∆0. Let p be a pattern

of the form cc(p1, . . . , pn), the cc(e1, . . . , en) is the representation for p, where e1, . . . , en
are assumed to be the representations for p1, . . . , pn, respectively.

The following constructor Clause is for constructing expressions that represent

clauses:

Clause : ∀γ.∀α1.∀γ′.∀α2.(pat(γ, α1, γ
′), 〈γ′, α2〉) ⇒ cla(γ, α1, α2)

Given a clause p ⇒ e, Clause(e1, e2) is the representation for the clause if e1 and e2

are representations for p and e, respectively.

Let list be the usual list type constructor, that is, list(τ) is the type for lists in

which each element is of the type τ. We introduce the following code constructor

CaseOf for constructing typeful code representation for case-expressions:

CaseOf : ∀γ.∀α1.∀α2.(〈γ, α1〉, list(cla(γ, α1, α2))) ⇒ 〈γ, α2〉

We then define Clausen and CaseOfn for n � 1 as follows:

Clausen : ∀γ1 . . . ∀γn−1.∀γn.∀α1.∀γ′
n.∀α2.

〈γ1, . . . , γn−1; pat(γn, α1, γ
′
n)〉 → 〈γ1, . . . , γn−1, γ

′
n; α2〉 →

〈γ1, . . . , γn−1; cla(γn, α1, α2)〉
Clause1 = ∀+

4 (lam x1.lam x2.Clause(x1, x2))

Clausen+1 = ∀+
n+4(lam x1.lam x2.App(App(Lift(∀−

n+3(Clausen)), x1), x2))

CaseOfn : ∀γ1 . . . ∀γn−1.∀γn.∀α1.∀α2.

〈γ1, . . . , γn−1, γn; α1〉 → 〈γ1, . . . , γn−1; list(cla(γn, α1, α2))〉 →
〈γ1, . . . , γn−1, γn; α2〉

CaseOf1 = ∀+
3 (lam x1.lam x2.CaseOf(x1, x2))

CaseOfn+1 = ∀+
n+3(lam x1.App(Lift(∀−

n+2(CaseOfn)), x))

We now extend the definition of trans0(·; ·), trans1(·; ·) and transk(·; ·) for k > 1. Let

e = case e0 of (p1 ⇒ e1 | · · · | pn ⇒ en), and pvs(pi) = xi,1, . . . , xi,ki for 1 � i � n; we

define trans0(xfs; e) as

case trans0(xfs; e0) of (p1 ⇒ e′
1 | · · · | pn ⇒ e′

n)

where for each 1 � i� k, e′
i = trans0(xfs, xi,1@0, . . . , xi,ki@0; ei); we define trans1(xfs; e)

as

CaseOf(trans1(xfs; e0), [cl1, . . . , cln])

where [cl1, . . . , cln] stands for the list consisting of cl1, . . . , cln and for each 1 � i � n,

cli = Clause(vpi , trans1(xfs, xi,1@1, . . . , xi,ki@1; ei)) and vpi is the representation for pi;

for k > 1, we define transk(xfs; e) as

∀−
k+2(CaseOfk)(transk(xfs; e0))([cl

k
1 , . . . , cl

k
n ]k−1)
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fun listInnerProd v1 v2 =

let

fun aux v1 v2 sum =

case v1 of

nil => sum

| cons (x1, v1) =>

(case v2 of

nil => sum

| cons (x2, v2) => aux v1 v2 (x1 * x2 + sum))

withtype int list -> int list -> int -> int

in

aux v1 v2 0

end

withtype int list -> int list -> int

fun genListInnerProd v1 =

let

fun aux v1 v2 sum =

case v1 of

nil => sum

| cons (x1, v1) =>

‘(case ^v2 of

nil => ^sum

| cons (x2, v2) => ^(aux v1 ‘v2 ‘(^x1 * x2 + ^sum)))

withtype {g} int list -> <g; int list> -> <g; int> -> <g; int>

in

‘(fn v2 => ^(aux v1 ‘v2 0))

end

withtype {g} int list -> <g; int list -> int>

Fig. 12. A meta-programming example involving pattern matching at level 1.

where [clk1 , . . . , cl
k
n ]k−1 is a list at level k− 1 consisting of elements clk1 , . . . , cl

k
n , and for

each 1 � i � n,

clki = ∀−
k+3(Clausek)(Liftk−1(vpi ))(transk(xfs, xi,1@k, . . . , xi,ki@k; ei)).

It should be clear how the definition of comp(·, ·) needs to be extended, and we omit

the further details.

Lastly, we present an example in Figure 12, which involves the use of pattern

matching at level 1: The function listInnerProd computes the inner product of two

integer vectors represented as two integer lists, and the function genListInnerProd

is a staged implementation such that given an integer list v1, genListInnerProd(v1)

returns the representation for a program that computes listInnerProd(v1)(v2) when

given an integer list v2.

6 Related work and conclusion

Meta-programming, which can offer a uniform and high-level view of the techniques

for program generation, partial evaluation and run-time code generation, has been

studied extensively in the literature.
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An early reference to partial evaluation can be found in Futamura (1971),

where the three Futamura projections are presented for generating compilers from

interpreters. The notion of generating extensions, which is now often called staged

computation, is introduced in Ershov (1977) and later expanded into multi-level

staged computation (Jones et al., 1985; Glück & Jørgensen, 1997). Most of the

work along this line attempts to stage programs automatically (e.g. by performing

binding-time analysis) and is done in an untyped setting.

In Davies & Pfenning (2001), a lambda-calculus λ based on the intuitionistic

modal logic S4 is presented for studying staged computation in a typed setting.

Given a type A, a type constructor , which corresponds to a modality operator

in the logic S4, can be applied to A to form a type A for (closed) code of type

A. With this feature, it becomes possible to verify whether a program with explicit

staging annotations is indeed staged correctly. However, only closed code is allowed

to be constructed in λ , and this can be a rigid restriction in practice. For instance,

the usual power function, which is defined below,

fun power n x = (* it returns the nth power of x *)

if n = 0 then 1 else x * power (n-1) x

can be staged in λ+
code as follows in two different manners:

fun power1 n =

if n = 0 then ‘(fn x => 1) else ‘(fn x => x * ^(power1 (n-1)) x)

fun power2 n =

let

fun aux i x =

if i = 0 then ‘1 else ‘(^x * ^(aux (i-1) x))

in

‘(fn x => ^(aux n ‘x))

end

Note that power1(2) essentially generates the following code:

’(fn x => x * (fn x => x * (fn x => 1) x) x)

while power2(2) outputs the following code:

’(fn x => x * (x * 1))

So normally power2 is much more desirable than power1. However, the function

power2 does not have a counterpart in λ as it involves the use of open code: there

is a free variable in the code produced by (aux n ‘x).

An approach to addressing the limitation is given in Davies (1996), where a

type constructor © is introduced, which corresponds to the modality in discrete

temporal logic for propositions that are true at the subsequent time moment. Given

a type A, the type ©A is for code, which may contain free variables, of type A.7

7 Note that the function run is not present in λ© for otherwise the problem of free variable evaluation
would occur.

https://doi.org/10.1017/S0956796805005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005617


Meta-programming through typeful code representation 831

This approach is essentially used in the development of MetaML (Taha & Sheard,

2000), an extension of ML that supports typed meta-programming by allowing

the programmer to manually stage programs with explicit staging annotations.

On the one hand, when compared to untyped meta-programming in Scheme, the

type system of MetaML offers an effective approach to capturing (pervasive) staging

errors that occur during the construction of meta-programs. On the other hand, when

compared to partial evaluation that performs automatic staging (e.g. in Similix), the

explicit staging annotations in MetaML offer the programmer more flexibility and

expressiveness.

However, as was first pointed out by Rowan Davies, the original type system of

MetaML contained a defect caused by free variable evaluation (as the function run

is available in MetaML) and there have since been a number of attempts to fix the

defect. For instance, in Moggi et al. (1999), types for (potentially) open code are

refined and it then becomes possible to form types for closed code only. In general,

a value can be assigned a type for closed code only if the value does not depend

on any free program variables. This approach is further extended (Calcagno et al.,

2003) to handle references. Though sound, this approach also rules out code that

is safe to run but does contain free program variables. We now use an example to

illustrate this point. Let e1 be the following expressions in λ+
code ,

lam f.‘(lam x.ˆ(run(f(‘x))))

and e2 = trans(e1) = lam f.Lam(run(f(One))). Clearly, e2 can be assigned a type of

the following form:8

(〈τ1 :: G1, τ1〉 → 〈ε, 〈τ2 :: G2, τ3〉〉) → 〈G2, τ2 → τ3〉

However, e2 cannot be assigned a type in Moggi et al. (1999) or Calcagno et al. (2003),

as the type systems there cannot assign f(‘x) a “closed code” type. Though this is a

highly contrived example, it nonetheless indicates some inadequacy in the notion of

closed types captured by these type systems.

In Taha & Nielsen (2003) there is another type system that aims at assigning

more accurate types to meta-programs in MetaML. In the type system, a notion of

environment classifiers is introduced. Generally speaking, environment classifiers are

used to explicitly name the stages of computation, and code is considered to be closed

with respect to an environment classifier α if α can be abstracted. This approach

is similar (at least in spirit) to the typing of runST in Haskell (Launchbury &

Peyton-Jones, 1995). To some extent, an environment classifier resembles a type

environment variable γ in λ+
code and the type (α)〈t〉α for code of type t that is closed

with respect to an environment α relates to the type ∀γ.〈γ, t〉 in λ+
code . However,

further study indicates that there are some semantic mismatches between λ+
code and

the type system in Taha & Nielsen (2003), making an encoding of classifiers in λ+
code

unlikely (unless certain significant modifications are made on classifiers).

8 For example, this means e2 can be applied to the function lam x.Lift(x) (and the application evaluates
to Lam(One)) but not to the function lam x.x.
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Another approach to addressing the limitation of λ is presented in Nanevski &

Pfenning (n.d.). Instead of refining the notion of (potentially open) code in λ©, the

calculus ν in Nanevski & Pfenning (n.d.) relaxes the notion of closed code in λ

by extending λ with a notion of names that is inspired by some developments

in Nominal Logic (Pitts, 2003) and FreshML (Pitts & Gabbay, 2000). Given an

expression representing some code, the free variables in the code are represented as

certain distinct names; the set of these names, which is called the support of the

expression, is reflected in the type of the expression. The code represented by an

expression can be executed only if the support of the expression is empty. Clearly,

the notion of a support in ν corresponds to the notion of a type environment in

λcode . The primary difference between ν and λcode as we see is that the development

of the former is guided, implicitly or explicitly, by the notion of higher-order abstract

syntax while the latter is based on a form of first-order abstract syntax.

There were certainly earlier attempts in forming typeful code representation. For

instance, in a dependent type system such as LF, it is fairly straightforward to form

a type exp(t) in the meta-language for representing closed expressions of type t in the

object language. Unfortunately, such typeful code representation seems unsuitable for

meta-programming as the strict distinction between the meta-language and the object

language makes it impossible for expressions in the meta-language to be handled in

the object language. In particular, note that the code constructor Lift is no longer

definable with this approach. An early approach to typeful code representation

can be found in Pfenning & Lee (1989), where an inductively defined datatype is

formed to support typeful representation for terms in the second-order polymorphic

λ-calculus. This representation is higher-order and supports both reflection (i.e. to

map the representation of an expression to the expression itself) and reification

(i.e. to map an expression to the representation of the expression). However, it

handles reification for complex values such as functions in a manner that seems

too limited to support (practical) meta-programming. In Danvy & Rhiger (2001),

an approach is presented that implements (a form of) typeful h.o.a.s. in Haskell-like

languages to represent simply typed λ-terms. With this approach, it is shown that

an implementation of the normalizing function for simply typed λ-terms preserves

types. However, the limitation of the approach is also severe: It does not support

functions that take typeful h.o.a.s. as input (e.g. a function like run in λcode).

Template Haskell is a recent extension of Haskell (Sheard & Peyton Jones,

2002) with support for compile-time meta-programming. Unlike in λ+
code , programs

generated at compile-time (from a well-typed program) in Template Haskell are not

guaranteed to be well-typed in Haskell. Instead, each generated program needs to

be type-checked. On the other hand, Template Haskell is rather flexible in allowing

the construction of many useful programs that cannot be done in λ+
code because of

the restriction of the type system of λ+
code . For instance, Template Haskell allows a

direct implementation of the printf function that supports more or less the same

syntax in C.

In this paper, we present a novel approach to typed meta-programming that

makes use of a form of first-order typeful code representation in which program

variables are replaced with deBruijn indexes. We form a language λcode in which
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expressions representing code can be constructed through code constructors and

then executed through a special function run. Although λcode suffices to establish

a theoretical foundation for meta-programming, it lacks proper syntax to support

practical meta-programming. We address the issue by extending λcode into λ+
code with

some meta-programming syntax adopted from Scheme and MetaML; we first form

rules to directly type programs in λ+
code and then define a translation from λ+

code into

λcode for assigning dynamic semantics to λ+
code . We also present examples in support

of meta-programming with λ+
code .

Furthermore, we feel that the concrete code representation in λcode can be of

great use in facilitating the understanding of meta-programming. For instance, the

considerably subtle difference between 〈%〈e〉〉 and 〈〈%e〉〉 (Taha & Nielsen, 2003)

can be readily explained in λcode , where 〈e〉 corresponds to the notation ‘(e) in

λ+
code; the former and the latter are translated into Lift(e′) and App(Lift(lift), e′),

respectively, where e′ is the translation trans1(∅; e) of e and lift is lam x.Lift(x);

run(Lift(e′)) reduces to e′ and run(App(Lift(lift), e′)) reduces to Lift(v′), where v′ is

the value of run(e′) (assuming e′ represents closed code); so the difference between

〈%〈e〉〉 and 〈〈%e〉〉 is clear: the former means e is not executed until the second

stage while the latter, which requires e to be closed, indicates that e is executed at

the first stage and its value is lifted into the second stage.

We also show that λcode can be embedded into λ2,Gµ in a straightforward manner,

establishing an intimate link between code constructors and guarded recursive

datatypes. This embedding immediately gives rise to the possibility of constructing

programs that perform analysis on code.

In future, we are interested in integrating this approach to meta-programming

through typeful code representation into a full-fledged functional programming

language, making it available for the purpose of practical programming.
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