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POPULATION-SIZE-DEPENDENT, AGE-STRUCTURED
BRANCHING PROCESSES LINGER AROUND

THEIR CARRYING CAPACITY

BY PETER JAGERS AND FIMA C. KLEBANER

Abstract

Dependence of individual reproduction upon the size of the whole population is studied
in a general branching process context. The particular feature under scrutiny is that
of reproduction changing from supercritical in small populations to subcritical in large
populations. The transition occurs when the population size passes a critical threshold,
known in ecology as the carrying capacity. We show that populations either die out
directly, never coming close to the carrying capacity, or grow quickly towards the carrying
capacity, subsequently lingering around it for a time that is expected to be exponentially
long in terms of a carrying capacity tending to infinity.
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1. Introduction

The notion of a carrying capacity is fundamental in biological population dynamics. It is
vague but common knowledge that a virgin population either dies out while small or else it
grows roughly exponentially until coming close to the capacity of its habitat. Then it levels
away, and indeed is subcritical above the carrying capacity. Such behaviour underlies many
phenomena in evolutionary biology and ecological theory, in particular in adaptive dynamics
(see [3], [8], [15], [18], and [19], just to mention a few titles in the vast literature). Our purpose
is to render this knowledge more precise.

In an earlier paper we studied the pattern in terms of a simple but nevertheless illustrative
Galton–Watson-type process with binary splitting, i.e. individuals obtaining zero or two children
after living one season, [14]. Let K denote the carrying capacity, and assume that the probability
of an individual splitting into two is p = K/(K +z), if the season population size is z. Clearly,
the mean reproduction 2K/(K+z) decreases in z and passes 1 precisely at the carrying capacity;
the process is supercritical below and subcritical above K .

This toy model can easily be rendered slightly more serious, or at least general, by replacing
binary splitting by general, population-size-dependent reproduction with a mean mK

z , larger
than 1 only when z < K . From there, the step is short to age- and size-dependent Bellman–
Harris branching processes where individuals do not necessarily have the same life span but
live for random times independently, producing a random number of offspring in a population-
size-dependent manner at death.

Such processes can be further generalised by allowing life spans to also be influenced by
population size, through a hazard rate hK

z (a) of an a-aged individual in a population of size z.
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250 P. JAGERS AND F. C. KLEBANER

(Not to complicate matters, we assume that life spans are continuous.) Pushing generality one
step further, we may let the number of offspring at death depend upon the mother’s age, a, thus
obtaining a function mK

z (a) for the mean offspring. In a final step we may follow classical
demographic theory and also allow (female) individuals to give birth according to age-specific
birth rates, now to be taken as size dependent. What unites these types of process and renders
them amenable to analysis is that they are Markovian in the age structure [10, p. 208].

The broadest possible framework would be completely general branching processes, super-
critical below and subcritical above the carrying capacity, though some care has to be exercised
in such descriptions, since the age distribution plays a role in the fertility of the population.
Indeed, denote the expected reproduction of an individual of age a in a population of size z

by µz(da). The most natural criticality concept might then be that of annealed criticality:
a population is annealed critical at size z if and only if µz(∞) = 1. Being critical in this
sense would, however, not exclude the population tending to increase or decrease for certain
age configurations. That goal is attained if the population is strictly critical, meaning that
µz(da) = Lz(da) for all a, where Lz is the individual life span distribution in a population of
size z. Here and in the sequel, dependence upon K is often not spelled out.

We give a rigorous formulation of age- and population-size-dependent processes which
are Markovian in the age structure and have well-defined intensities of birth and death. We
intend to treat the general case elsewhere. However, the reader might note that the present
framework encompasses virtually all classical population dynamics, such as age-dependent
branching processes as well as birth-and-death processes with age-dependent intensities, and
various deterministic frameworks, such as age-structured population dynamics. In the case of
Bellman–Harris processes, where reproduction distributions are unaffected by the mother’s age
at death (but not of population size), conditions simplify substantially.

Consider a collection of individuals with ages (a1, . . . , az) = A, where z = |A| is the
number of elements in A. It is convenient to regard the collection of ages A as a measure

A =
z∑

i=1

δai
,

where δa denotes the point measure at a. As usual, the following notation is used for a function
f on R and measure A:

(f, A) =
∫

f (x)A(dx) =
z∑

i=1

f (ai).

The expression on the right-hand side follows of course only if the measure is purely atomic.
In such a z-sized population, an individual of age a has a random life span with hazard

rate hz(a). During life she gives birth to single children with intensity bz(a) at age a. If she
dies, she splits into a random number of children which follows a distribution that may depend
upon z. Its expectation is denoted by mz(a) and the second moment by vz(a), if the mother’s
age at death was a.

Let us emphasize that we take the basic parameters bz, hz, and mz to be dependent upon
the population size z, rather than upon the whole array A, because we wish to focus only upon
essentials. The following general theory would work equally well if the parameters could be
influenced by the age distribution at hand as well as by the population size. We shall also allow
ourselves a slight inconsistency in notation, suffixing parameters sometimes by the population
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size, sometimes by the whole age distribution A, and sometimes by the population ‘density’
x = z/K .

If there are no deaths and no births, the population changes only by ageing. When an
individual dies, its point mass disappears and an offspring number of point masses appear at 0.
Similarly, when she gives birth during life, a point mass appears at the origin. Thus, population
evolution is given by a measure-valued process {AK

t ; t ≥ 0}. Since process parameters depend
upon K , there is a family of such processes indexed by K .

In terms of the intensities and the mean number of children at birth, the population is strictly
critical at size z if and only if bz(a) + hz(a)(mz(a) − 1) = 0 for all a. If bz = 0 and mz is
independent of age, the process reduces to a Bellman–Harris age-dependent branching process
with population-size dependence. Then strict and annealed criticality coincide, and reduce to
the classical condition mz = 1. Generally, strict criticality implies annealed. We note that there
is a third concept of criticality: a population is critical with respect to the age composition A if
and only if

(b|A| + h|A|(m|A| − 1), A) = 0.

Clearly, strict criticality implies not only annealed but also composition criticality. In the next
section we shall see that there is no trend to population change, neither to growth nor to decline,
when the population is composition critical. Then change is random in the sense that it has a
martingale character.

Under fairly general assumptions, we prove first that a small population either dies out
directly, without approaching the carrying capacity, or else comes close to K , i.e. reaches any
band [(1 − ε)K, (1 + ε)K], 0 < ε < 1, in a time of order log K . Once the population size has
reached such a level, it stays there for an exponentially long time, i.e. its expected persistence
time is O(ecK) for some c > 0. Usually, such results are derived from a large deviation
principle, yielding the time to exit from a domain of attraction of a fixed point; cf. [7]. Here,
we give a new proof using an exponential martingale inequality.

In the past, populations have been studied using measure-valued Markov processes with
various setups; see, e.g. [2], [3], [5], [6, Section 9.4], [16], [17], and [18]. We take the state
space to be the finite positive Borel measures on R

+ with the topology of weak convergence,
i.e. limn→∞ µn = µ if and only if limn→∞(f, µn) = (f, µ) for any bounded and continuous
function f on R

+. Métivier [16] and Borde-Boussion [2] embedded the space of measures into
a weighted Sobolev space. Oelschläger [17] used yet another topology for the state space of the
set of signed measures. Our model is closest to Oelschläger’s, and the French school around
Méléard (cf. [3], [18], and other papers), but formulated in terms of branching rather than birth-
and-death processes. As in this paper, Tran [18] added an age structure to the birth-and-death
framework. He considered large populations, scaled them, and studied the limit behaviour. In
the case of a size-independent birth rate, no splitting, and a logistic death rate (i.e. one of the
form hz(a) = d(a) + ηz for a fixed base-line death rate d plus a component proportional to
size), he obtained results on large deviations from a limiting process.

In some literature branching populations are also allowed to diffuse according to Brownian
motion [1]. Such ideas have had a substantial mathematical impact, giving rise to super
Brownian motion and other super processes in the limit. From that point of view, our case
is degenerate in the sense that no Laplacian is present in the process generator. Therefore, the
linear operators that enter the description (they are not generators) are of first order only.

While we could have borrowed certain results from the abovementioned papers, we find it
more transparent to give a self-contained treatment, especially since our model is given in a
simpler setup and has an immediate biological background.
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2. Age- and population-dependent processes

In this section we give definitions and basic properties to be used in the subsequent analysis.
They consist essentially of the generator of our measure-valued Markov process and an integral
representation known as Dynkin’s formula. The subscript A in PA and EA indicates that the
population started from z = (1, A) individuals, of ages A = (a1, . . . , az), at time t = 0. No
subscript means that the population started from some implicit age configuration. The generator
of a Markov measure-valued population-age-dependent branching process was given in [12].
As mentioned, we specialise to population-size-dependent parameters bz, hz, mz, and v2

z , the
latter two being defined as follows. Let Y (a) denote the number of offspring an individual
dying at age a splits into. Its expectation is mz(a) if the death and simultaneous splitting occur
in a population of size z. The second entity denotes the corresponding variance.

Theorem 1. ([12].) For a bounded differentiable function F on R
+ and a continuously

differentiable function f on R
+, the following limit exists:

lim
t→0

1

t
EA{F((f, At )) − F((f, A))} = GF((f, A)).

Here

GF((f, A)) = F ′((f, A))(f ′, A) +
z∑

j=1

bz(a
j ){F(f (0) + (f, A)) − F((f, A))}

+
z∑

j=1

hz(a
j )[EA{F(Y (aj )f (0) + (f, A) − f (aj ))} − F((f, A))].

Consequently, Dynkin’s formula holds: for a bounded C1 function F on R and a C1 function
f on R

+,

F ((f, At )) = F((f, A0)) +
∫ t

0
GF((f, As))ds + M

F,f
t , (1)

where M
F,f
t is a local martingale with predictable quadratic variation

〈MF,f , MF,f 〉t =
∫ t

0
GF 2((f, As))ds − 2

∫ t

0
F((f, As))GF((f, As))ds.

As a corollary, the following representation was also obtained; see [12].

Theorem 2. For a C1 function f on R
+,

(f, At ) = (f, A0) +
∫ t

0
(LZs f, As)ds + M

f
t ,

where Zs = (1, As) = |A| is the population size at time s, the linear operators Lz are defined
by

Lzf = f ′ − hzf + f (0)(bz + hzmz), (2)

and M
f
t is a local square integrable martingale with the sharp bracket given by

〈Mf , Mf 〉t =
∫ t

0
(f 2(0)bZs + f 2(0)v2

Zs
hZs + hZs f

2 − 2f (0)mZs hZs f, As)ds.
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Corollary 1. The special choice f = 1 yields

Zt = Z0 +
∫ t

0
(bZs + hZs (mZs − 1), As)ds + M1

t .

Furthermore, from Theorem 2.3 of [12], it follows that, if f ≥ 0 satisfies the (linear growth)
condition, i.e.

(H1) |(Lzf, A)| ≤ C(1 + (f, A)) for some C > 0 and any A,

and if (f, A0) is integrable, then so is (f, At ). Its expectation is bounded by

E(f, At ) ≤ (E(f, A0) + Ct)

(
1 + eCt

C

)
. (3)

We use expectation without an index to indicate that the starting age configuration A0 may well
be random. Here and in the sequel, C denotes a constant, not necessarily the same in different
contexts.

We call a family of functions fz uniformly bounded if supz,a |fz(a)| < ∞. The following
corollary is easy to check.

Corollary 2. Suppose that the functions bz, mz, and hz are uniformly bounded. If f and f ′
are bounded, then the growth condition (H1) is satisfied and conclusion (3) holds.

In particular, the function f (x) = 1 satisfies condition (H1) and so

EZt ≤ (EZ0 + Ct)

(
1 + eCt

C

)
.

Furthermore, if the functions vz are uniformly bounded as well then M
f
t is a square integrable

martingale with the quadratic variation

〈Mf , Mf 〉t ≤ C

∫ t

0
Zsds. (4)

3. The time of ascent

Now consider a general population-size-dependent branching process, as described, starting
at time t = 0 from z individuals. To ease notation, we take all individuals to be newborns.
Such a population must die out eventually [11]. What are the chances that the population will
reach a size in the vicinity of the carrying capacity, before ultimately dying out? We write T

for the time to extinction and Td for the time it takes the population to first attain a size greater
than or equal to dK, 0 < d < 1; the number of ancestors z < dK . Clearly,

T < Td �⇒ Zt < dK for all t.

Now assume that reproduction decreases with increasing population. A tilded variable will
pertain to a population-size-independent branching process with the fixed parameters bdK, hdK,

and mdK . Then
P(T < Td) ≤ P(T̃ < ∞) = q̃z,

where q̃ is the extinction probability of the population-size-independent branching process. If
m̃d > 1 and σ̃ 2

d denote the mean and variance of the total reproduction of an individual in
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this latter process, we find, by Haldane’s inequality (see [9, p. 125]) that the probability of the
original population never reaching dK is

P(T < Td) ≤
(

1 − 2(m̃d − 1)

σ̃ 2
d + m̃d(m̃d − 1)

)z

.

With a positive chance, the population will thus reach a size of order K . Since it grows quicker
than the process Z̃t while under the level dK , and the latter process grows exponentially, we
can conclude that dK will be attained after a time of order log K .

Theorem 3. If reproduction decreases with population size and the population is annealed
critical at K , then any population size dK, 0 < d < 1, is attained with positive probability
within a time Td = O(log K) as K → ∞.

4. The time of pseudo-stability

We proceed to show that once the population size has reached the interval [K −εK, K +εK]
it remains there an exponentially long time. In other words, in terms of the process scaled by
K , it takes exponentially long to exit from [1 − ε, 1 + ε]. The property ensuring this lingering
around the carrying capacity is that the population reproduces subcritically above level K ,
supercritically below level k, and critically at K . First we shall see that this property forces the
scaled population size to converge to 1.

Criticality is understood in the strict sense. Define the criticality function in terms of the
operator L defined in (2):

χA = bA + hA(mA − 1) = LA1.

Then criticality means that χA(a) = 0 for all a, as soon as |A| = K . Indeed, we assume that
dependence on the population is through the scaled population size x = z/K . Then any A with
total mass K , or scaled mass 1, is a criticality point and we write, abusing notation,

χA = χK = χ1 = 0.

The dependence of parameters and variables on the carrying capacity is usually not spelled out,
sometimes indicated by a superscript K .

Finally, assume that χ satisfies a Lipschitz condition in the neighbourhood of 1.

Assumption 1. There is a constant C such that

|χx | = |χx − χ1| ≤ C|x − 1| (5)

for x close to 1.

Theorem 4. Suppose that XK
0 → 1 in probability as K → ∞, and that Assumption 1 holds.

Then XK
t = ZK

t /K , i.e. the total population size scaled by the carrying capacity, converges in
probability to 1, uniformly on any time interval [0, T ], T > 0. In other words, for any η > 0,

lim
K→∞ P

(
sup
t≤T

|XK
t − 1| > η

)
= 0.
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Proof. By Corollary 1,

XK
t = XK

0 +
∫ t

0

(
χXK

s
,

1

K
AK

s

)
ds + 1

K
M

1,K
t . (6)

In terms of the reproduction variance σ 2
x = vx − m2

x , the martingale quadratic variation reduces
to 〈

1

K
M1,K,

1

K
M1,K

〉
t

= 1

K

∫ t

0

(
(bXK

s
+ σ 2

XK
s

+ (mXK
s

− 1)2)hXK
s
,

1

K
AK

s

)
ds.

First we show that

sup
t≤T

XK
t ≤

(
XK

0 + sup
t≤T

1

K
|M1,K

t |
)

eCT . (7)

Indeed, since the criticality function is bounded by some C > 0, and (1, AK
s /K) = XK

s ≤
supu≤s XK

u ,

sup
t≤T

XK
t ≤ XK

0 + 1

K

∫ T

0
|(χXK

s
1, AK

s )|ds + sup
t≤T

1

K
|M1,K

t |

≤ XK
0 + 1

K

∫ T

0
C(1, AK

s )ds + sup
t≤T

1

K
|M1,K

t |

≤ XK
0 + sup

t≤T

1

K
|M1,K

t | + C

∫ T

0
sup
u≤s

XK
u ds.

Gronwall’s inequality in the form given in [13, p. 21] yields (7).
Next, by Doob’s inequality,

P
(

sup
t≤T

1

K
|M1,K

t | > a
)

≤ 1

a2 E

〈
1

K
M1,K,

1

K
M1,K

〉
T

≤ C

a2K

∫ T

0
EXK

t dt

≤ C1EXK
0

a2K

→ 0,

where the bound from (4) was used. Hence,

sup
t≤T

1

K
M

1,K
t

P−→ 0 as K → ∞. (8)

We have, from Corollary 1,

sup
t≤T

|XK
t − 1| ≤ |XK

0 − 1| +
∫ T

0

∣∣∣∣
(

χXK
s
,

1

K
AK

s

)∣∣∣∣ds + sup
t≤T

1

K
|M1,K

t |

≤ |XK
0 − 1| + sup

t≤T

1

K
|M1,K

t | + C sup
t≤T

XK
t

∫ T

0
sup
u≤s

|XK
s − 1|ds,
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thanks to the Lipschitz condition (5). Using Gronwall’s inequality, we again conclude that

sup
t≤T

|XK
t − 1| ≤

(
|XK

0 − 1| + sup
t≤T

1

K
|M1,K

t |
)

exp
[
C sup

t≤T

XK
t

]

≤
(

|XK
0 − 1| + sup

t≤T

1

K
|M1,K

t |
)

exp

[
C

(
XK

0 + sup
t≤T

1

K
|M1,K

t |
)

eCT

]
,

where we have used (7) to obtain the second inequality. Since XK
0 − 1 converges in probability

to 0 by assumption and supt≤T |M1,K
t |/K converges in probability to 0 by (8), the exponential

term converges to 1, and the statement follows.

An exponential bound on the exit time from the vicinity of K requires exponential moments
of the process. Hence, we assume bounded exponential moments of offspring distributions.
Then the process ZK

t = (1, AK
t ) has exponential moments as well. At this junction, let

φA(t)(a) = EA{etY (a)} denote the conditional moment generating function given A of the
number Y (a) of offspring at the death of an a-aged individual splitting in a population with age
composition A. Similarly, in this proof PA denotes offspring probabilities in a population of
size |A| and composition A.

The following condition (see [18, Assumption 3]) may seem strange at first sight, but it
serves to give the subcriticality above the carrying capacity a strict form. We let φA(t) denote
the function φA(t)(·).
Assumption 2. For any K, there exists a population size VK > K such that

(e1/K − 1)bA +
(

φA

(
1

K

)
e−1/K − 1

)
hA ≤ 0 whenever (1, A) > VK,

and VK/K is bounded for large K .

Since the reproduction is subcritical for population sizes larger than K , such a number exists.
Indeed, for large K and any a ≥ 0,

(e1/K − 1)bA(a) +
(

φA

(
1

K

)
(a)e−1/K − 1

)
hA(a) ∼ 1

K
(bA(a) + (mA(a) − 1)hA(a)),

which is negative for large (1, A). The assumption needed is that the expression turns negative
not too far away from K , when K is also large. An example is provided by the binary splitting
with b = 0 and Y = Y (a) independently of the splitting age, mentioned in the introduction and
further explored in [14]: PA(Y = 2) = K/(K + z), z = (1, A). Then VK is determined from

z

K + z
e−1/K + K

K + z
e1/K = Eze(Y−1)/K = 1.

Solving in z gives VK = e1/KK .

Theorem 5. Let XK
t be the population size scaled by the carrying capacity K . Suppose that

all exponential moments of the offspring number at splitting exist and that Assumptions 1 and 2
are in force. Then, there is a constant C, independent of K , such that, for any t,

EeXK
t ≤ EeXK

0 eCt . (9)

Furthermore,

E exp

[∫ 1

0
XK

s ds

]
≤ CEeXK

0 . (10)
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Proof. We consider a process for fixed K , and in order to ease notation, we suppress K in
the proof of this result. The statement follows by taking F in (1) as the exponential function, or
rather, to be precise, letting it equal smooth bounded functions that agree with the exponential
on bounded intervals and making use of a localising sequence Tn = inf{t : Zt > n}.

With x = z/K we have

G(F (1, A)) = F ′((f, A))(f ′, A) +
z∑

j=1

bA(aj )[F(f (0) + (f, A)) − F((f, A))]

+
z∑

j=1

hA(aj )[E{F(YAf (0) + (f, A) − f (aj ))} − F((f, A))]

= (ex+1/K − ex)

z∑
j=1

bA(aj ) +
z∑

j=1

hA(aj )(E{ex+(YA−1)/K} − ex)

= ex((e1/K − 1)(bA, A) + (E{e(YA−1)/K} − 1)(hA, A)).

Hence, we obtain, by (1),

eXt = eX0 +
∫ t

0
eXs ((e1/K − 1)bAs + (E{e(YAs −1)/K} − 1)hAs , As)ds + M

exp
t ,

where M
exp
t is a local martingale. Localising and taking the expectation,

E eXt∧Tn = E eX0 + E
∫ t∧Tn

0
eXs ((e1/K − 1)bAs + (E{e(YAs −1)/K} − 1)hAs , As)ds.

Now we use the facts that the reproduction is subcritical above K , that the parameters bA

and hA are bounded, and that the function under the integral is negative for values of Zs > VK

or Xs > VK/K . For Zs < VK , the inequalities e1/K − 1 ≤ C/K and |φK
A (1/K)e−1/K − 1| ≤

C/K show that the integrand does not exceed CVK/K . We have

EeXt∧Tn ≤ EeX0 + C
VK

K
E

∫ t

0
eXs∧Tn 1(Zs ≤ VK)ds

≤ EeX0 + CE
∫ t

0
eXs∧Tn ds,

where C is a constant independent of K , since VK/K is assumed to be bounded. Gronwall’s
inequality yields

EeXt∧Tn ≤ EeX0 eCt , (11)

where C does not depend on K . Letting n → ∞, we obtain (9).
To prove (10), we use Jensen’s inequality for the uniform distribution on [0, 1] combined with

the exponential function: for any integrable function g on [0, 1], ∫ 1
0 eg(s)ds ≥ exp[∫ 1

0 g(s)ds].
Applying this inequality with g(s) = XK

s , and using (11), we obtain E exp[∫ 1
0 XK

s ds] ≤
E
∫ 1

0 eXK
s ds ≤ CEeXK

0 .

Theorem 6. Assume that XK
0 → 1 in probability. For any ε > 0, let

τK = inf{t : |XK
t − 1| > ε}.
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Suppose that the previous assumptions hold and also that the number of offspring through
splitting at death is bounded by some constant. Then E{τK} is exponentially large in K , i.e.
for some positive constants C and c,

E{τK} > CecK.

Proof. First we establish an exponential bound for the probability of exit up to time 1, when
the normed population started at x ∈ (1 − η, 1 + η) for η < ε/6:

Px(τ
K ≤ 1) = Px

(
sup
t≤1

|XK
t − 1| > ε

)
≤ e−CK. (12)

Write the dynamics of XK
t as in (6), i.e.

XK
t = XK

0 +
∫ t

0
(χXK

s
, AK

s )ds + 1

K
M

1,K
t = x + IK

t + 1

K
M

1,K
t ,

where IK
t = ∫ t

0 (χXK
s
, AK

s )ds. Since |XK
t − 1| ≤ |XK

t − x| + |x − 1| ≤ η + |XK
t − x|, we

have

Px

(
sup
t≤1

|XK
t − 1| > ε

)
≤ Px

(
sup
t≤1

|IK
t + η| >

ε

2

)
+ Px

(
sup
t≤1

∣∣∣∣ 1

K
M

1,K
t

∣∣∣∣ >
ε

2

)

≤ Px

(
sup
t≤1

|IK
t | >

2ε

3

)
+ Px

(
sup
t≤1

∣∣∣∣ 1

K
M

1,K
t

∣∣∣∣ >
ε

2

)
.

As XK
0 → 1, XK

t → 1 by Theorem 4, and, consequently, χXK
t

→ χ1 = 0, with all conver-
gences taking place in probability. Hence, (χXK

s
, AK

s ) = o(K) in the same sense, and we have,
by the exponential form of Chebyshev’s inequality,

Px

(
sup
t≤1

|IK
t | >

2ε

3

)
≤ Px

(∫ 1

0
|(χXK

s
, AK

s )|ds >
2εK

3

)

≤ e−2εK/3Ex exp

[∫ 1

0
|(χXK

s
, AK

s )|ds

]

= e−2εK/3+o(K)

≤ e−CK for some C.

The second probability Px(supt≤1 |M1,K
t | > Kε/2) is controlled by an exponential martin-

gale inequality (see, e.g. [4, Lemma 4.2]), i.e.

Px

(
sup
t≤T

|M1,K
t | > ε, 〈M1,K, M1,K 〉T ≤ q

)
≤ 2e−ε2/(Bε+q),

where B is the maximal number of children at splitting, which is a bound on the jumps of M1,K .
Hence, replacing ε by Kε/2,

Px

(
sup
t≤1

1

K
|M1,K

t | >
ε

2

)
≤ 2e−(ε2K2/2)/(BKε+2q) + Px

(〈
1

K
M1,K,

1

K
M1,K

〉
1

> q

)
. (13)

Since the parameter functions are uniformly bounded, the quadratic variation is bounded by〈
1

K
M1,K,

1

K
M1,K

〉
t

≤ C

K

∫ t

0
XK

s ds,
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by Corollary 2. From Chebyshev’s inequality and bound (10),

Px

(〈
1

K
M1,K,

1

K
M1,K

〉
1

> q

)
≤ Px

(
C

K

∫ 1

0
XK

s ds > q

)

≤ e−CKEx exp

[∫ 1

0
XK

s ds

]

≤ Ce−CK.

Hence, we obtain, from (13), Px(supt≤1 |M1,K
t |/K > ε/2) ≤ Ce−c(ε)K, and gathering terms

gives (12). The final step is a recursive argument, formulated in terms of the filtration {Fn :=
σ({AK

t , t ≤ n})}:

P
(
τK > n

)
= P

(
sup
t≤n

|XK
t − 1| < ε

)

= P
(

sup
t≤n−1

|XK
t − 1| < ε, sup

n−1≤t≤n

|XK
t − 1| < ε

)

≥ P
(

sup
t≤n−1

|XK
t − 1| < ε, sup

n−1≤t≤n

|XK
t − 1| < ε, |XK

n−1 − 1| < η
)

= E
{

P
((

|XK
n−1 − 1| < η, sup

n−1≤t≤n

|XK
t − 1| < ε

∣∣∣ Fn−1

)
;

sup
t≤n−1

|XK
t − 1| < ε

)}

≥ inf
x∈(1−η,1+η)

Px

(
sup
t≤1

|XK
t − 1| < ε

)
P(τ > n − 1)

≥
(

inf
x∈(1−η,1+η)

Px

(
sup
t≤1

|XK
t − 1| < ε

))n

.

So

EτK >
∑
n

P(τK > n)

>
∑
n

(
inf

x∈(1−η,1+η)
Px

(
sup
t≤1

|XK
t − 1| < ε

))n

= 1

1 − infx∈(1−η,1+η) Px(supt≤1 |XK
t − 1| < ε)

= 1

supx∈(1−η,1+η) Px(supt≤1 |XK
t − 1| > ε)

> CecK.

Acknowledgements

This research was supported by the Swedish Research Council and the Australian Research
Council under grant DP0881011. The authors are grateful to Serik Sagitov for penetrating
discussions, to the anonymous referee for a number of improvements, and to Géza Meszéna
for suggesting that we should pursue this generalisation of our approach in [14].

https://doi.org/10.1239/jap/1318940469 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940469


260 P. JAGERS AND F. C. KLEBANER

References

[1] Asmussen, S. and Hering, H. (1983). Branching Processes. Birkhäuser. Boston, MA.
[2] Borde-Boussion, A.-M. (1990). Stochastic demographic models: age of a population. Stoch. Process. Appl.

35, 279–291.
[3] Champagnat, N., Ferrière, R. and Méléard, S. (2008). From individual stochastic processes to macroscopic

models in adaptive evolution. Stoch. Models 24, 2–44.
[4] Chigansky, P. and Liptser, R. (2010). Moderate deviations for a diffusion-type process in a random

environment. Theory Prob. Appl. 54, 29–50.
[5] Dawson, D. A. (1993). Measure-valued Markov processes. In École d’Eté de Probabilités de Saint-Flour XXI

(Lecture Notes Math. 1541), Springer, Berlin, pp. 1–260.
[6] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.
[7] Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems. Springer, New

York.
[8] Geritz, S. A. H., Kisdi, É., Meszéna, G. and Metz, J. A. J. (1998). Evolutionarily singular strategies and the

adaptive growth and branching of the evolutionary tree. Evol. Ecology 12, 35–57.
[9] Haccou, P., Jagers, P. and Vatutin, V. A. (2005). Branching Processes: Variation, Growth, and Extinction of

Populations. Cambridge University Press.
[10] Jagers, P. (1975). Branching Processes with Biological Applications. Wiley-Interscience, London.
[11] Jagers, P. (1992). Stabilities and instabilities in population dynamics. J. Appl. Prob. 29, 770–780.
[12] Jagers, P. and Klebaner, F. C. (2000). Population-size-dependent and age-dependent branching processes.

Stoch. Process. Appl. 87, 235–254.
[13] Klebaner, F. C. (2005). Introduction to Stochastic Calculus with Applications, 2nd. edn. Imperial College

Press, London.
[14] Klebaner, F. C. et al. (2011). Stochasticity in the adaptive dynamics of evolution: the bare bones. J. Biol.

Dynamics 5, 174–162.
[15] Méléard, S. and Tran, V. C. (2009). Trait substitution sequence process and canonical equation for age-

structured populations. J. Math. Biol. 58, 881–921.
[16] Métivier, M. (1987). Weak convergence of measure valued processes using Sobolev imbedding techniques. In

Stochastic Partial Differential Equations and Applications (Trento, 1985; Lecture Notes Math. 1236), Springer,
Berlin, pp. 172–183.

[17] Oelschläger, K. (1990). Limit theorems for age-structured populations. Ann. Prob. 18, 290–318.
[18] Tran, V. C. (2008). Large population limit and time behaviour of a stochastic particle model describing an

age-structured population. ESAIM Prob. Statist. 12, 345–386.
[19] Waxman, D. and Gavrilets, S. (2005). 20 Questions on adaptive dynamics. J. Evol. Biol. 18, 1139–1154.

PETER JAGERS, Chalmers University of Technology and University of Gothenburg

Mathematical Sciences, Chalmers University of Technology, Chalmers, SE-412 96 Gothenburg, Sweden.
Email address: jagers@chalmers.se

FIMA C. KLEBANER, Monash University

School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia.

https://doi.org/10.1239/jap/1318940469 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940469

	1 Introduction
	2 Age- and population-dependent processes
	3 The time of ascent
	4 The time of pseudo-stability
	Acknowledgements
	References

