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1. Introduction. Many ^-identities have been proved combinatorially. For example,

ft^T1, (U)

qa)-\ (1.3)

z\ (1.4)
n = 0 n=-oo

Combinatorial proofs of (1.1), (1.2), and (1.3) are either given or indicated in Hardy and
Wright [4; Ch. XIX]. (1.4) has been proved combinatorially by Sylvester [8; pp. 34-36],
Cheema [2; p. 415], and Wright [10]; Professor Wright also informs me that C. Sudler has a
combinatorial proof of (1.4).

The main object of this paper is to give partition-theoretic proofs of other famous q-
identities. In particular, in § 2 we shall prove that

(1.5)

and in §3 we shall prove that

. « (1^)(1«V) ^(ly^q)(lTq)}

~M (i^j)dv) •AMi(i«y+ixi«9or#u J

(1.5) dates back to Euler [3; p. 223], and in fact (1.2) and (1.3) are special cases of (1.5).
(1.6) is the fundamental transformation of basic hypergeometric series given by Heine
[5; p. 106].

In § 4, we briefly indicate enumerative proofs of several other lesser known identities.

2. Proof of (1.5). In this section we shall be concerned with the following type of parti-
tions, namely,

j=l k=l

In the remainder of this section, we shall abbreviate our notation for such partitions to
a,...crs| V - A -

c
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34 GEORGE E. ANDREWS

Let itifam-jN) denote the number of partitions of N given in (2.1) subject to the further
restrictions that as — n,as>b1, and t is either m o r m - 1 .

Let n2(n,m;N) denote the number of partitions of N given in (2.1) subject only to the
further restrictions that t = m, s+t = n.

Now

and
j

Thus, defining 7^(0,0;0) = 7t2(0,0;0) = 1, we must show that

«! (n,m;N) = n2(n,m;N)

in order to establish (1.5).
Suppose a t . . . a , | £>!...&, is a partition of N enumerated by ni(n,m;N). Then by

rearranging terms we may form an ordinary partition of N of the form/jCi + . . . +frcr, where
Cj < .. . < c, = n (fj denotes the number of times ct occurs in the partition). We now note
that there may be several partitions enumerated by 7t1(«,/w;.7V) that yield upon rearrange-
ment the same ordinary partition fxc± + .. -+f,cr. In fact all we need do is pick either m or
m — \ distinct parts from among the c's (excluding cr) to form the b's with the remainder form-
ing the a's. Thus there are

m ) \m — lj \m

partitions enumerated by Tiy(n, m; N) that correspond to the ordinary partition ftcv + • • • +frcr

{cy < ... < cr = n).
Now, by considering conjugate partitions, we see that there is a one-to-one correspon-

dence between ordinary partitions of the form/jCi + . . . +frcr (cj < .. . <cr = ri) and ordinary
partitions of the form f[c[ + ... +f'rc'r (fi + ... +f'r = «).

Suppose that a\...a's\b[...b't is a partition of Nenumerated by n2(n,m; N). Then by
rearranging terms we may form an ordinary partition of iV of the form f\c[ + ...+f'rc't
(// + .. . +f'r = ri). As above, several partitions enumerated by n2(n,m;N) may yield the
same ordinary partition. Now to form a partition enumerated by n2(n,m;N) from the given
ordinary partition, we need only choose m distinct parts from among the c's to form the b's;
the remaining summands make up the a's. Thus, in this case as well, there are

partitions enumerated by n2(n, m;N) that correspond to the ordinary partition f[c[ + ... +f'rc'r
(withe,' <...<c'r,fi + . . . + / ; = «).

Consequently we have n^riymiN) = n2(n,m;N).
To illustrate, we enumerate all cases for n = 4, m = 2, iV = 9. Column I gives the parti-
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tions enumerated by 7i1(4,2;9). Column II gives the related ordinary partitions. Column
III gives the ordinary partitions conjugate to those of Column II. Column IV gives the
corresponding partitions enumerated by 7t2(4,2;9).

II III
441 3222

4311 4221

1124| 1]
111412\ 42111 5211
114|21J

11114|1 411111 6111 11 161

4221 4311

432 3321

3. Proof of (1.6). We shall now consider partitions of N of the form

N = t fli+ t <*+ t bj+ £ ck, (3.1)
( 1 7 l 1 * 1

where ax < ... < ap, ti ^ .. . ^ tr, bx ^ . . . ^ bs, ct > ... > cw. In the remainder of this
section, we shall abbreviate our notation for such partitions to

a1...ap\t1...tr\bi...bs\c1...cw.

Denote by n(MuM2,Mz,MA;N) the number of partitions given by (3.1) subject to the
further restrictions that ap ^ M2 — \, p is either Mx or Mt — 1, tr=-M2, s = M3 — M4,
bt ^ M2 +1, w = Af4> cw ̂  M2 +1.

Now, if

oo n— 1

n=0j=0
OO 00

= V V I E £ n(Mt,M2,M3,MA;N)aM'-cM>pM>yM<qN,
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we see that (1.6) may be rewritten as

F(a,x,p,y) = F(y,p,T,a).

Thus, defining 7i(0,0,0,0;0) = 1, we must show that

n(Mlt M2, M3, M4; N) = n(MA, M3, M2, Mt; N).

Suppose that we are given a partition of Nenumerated by n{Mu M2, M3, M^;N); as in
§ 2, we may by rearrangement of terms form an ordinary partition of N of the form

(*?! < . . . <ed = M2, ed < #! <.. .<<7u,/d + 1 + . . .+ / d + u = M3). We now search for the
number of ways that our ordinary partition may be rearranged into a partition enumerated by
n(Mu M2, M3, Af4; N). We see that to get the a's we must choose either Mx or MY — 1
distinct terms from among the e's (excluding ed); the remaining summands among the e's
form the t's. There are thus

ways of getting the a's and t's. Now we get the e's by choosing M4 distinct parts from among
the g's; the remaining terms from among the a's form the b's. There are thus

ways of getting the b's and e's. Hence there are

J\MJ
ways of getting a partition enumerated by n(My,M2,M3,M^N) from our given ordinary
partition.

By considering conjugate partitions, we see that there is a one-to-one correspondence
between ordinary partitions of N of the form

f1e1 + ...+fded+fd+igl + ...

(et < . . . <ed = M2,ed <gY < . . . <gu,fd+1 + ...+fd+u = M3) and those of the form

(ej <...<e'u = M3, e'u<g{<... < ^ , / ; + 1 + ...+/„'+„ = M2).
Thus, by the above reasoning, there are

U
partitions enumerated by niM^M^M^M^N) that correspond to the conjugate of the
ordinary partition considered earlier. Hence

«(W i, M2,M3, M4;N) = n(M4, M3, M2, M,; N).
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To illustrate, we enumerate all cases for Mt = 3, M2 = 4, M3 = 3, M4 = 2, N= 25.
Column I gives the partitions enumerated by 7t(3,4,3,2; 25). Column II gives the related
ordinary partitions. Column III gives the ordinary partitions conjugate to those of Column
II. Column IV gives the corresponding partitions enumerated by n(2,3,4,3; 25).

I
23 | 4 | 5 1
12 | 24 | 5
12) H4 |
12| 4| 7|
12|4|5|
12| 4| 6|
12 | 4 | 5 |
13 | 14 ]5
13|4|6|
13| 415|
12 |14 | 6
12 |14 | 5

Thus 71(2,3,4,3; 25)

65
|65
5 | 65
651
761
75j
85
|65
65
75
|65
|75

=«(3,

II
655432
6554221
65542111

765421

855421
6554311
665431
755431
6654211
7554211

4,3,2;25) = 12

III
665431
764431
854431

6544321

65443111
755431
655432
6554311
754432
7544311

i

11
11
11

I1'Uin
n
2|
ii
2|
ii

IV
3 1 6|654
3 1 4|764
314 | 854
| 3 | 4 | 654
2314 | 654
13 | 4 | 654
113 I 4 | 654
3 | 5 | 754
31 5 | 654
13 | 5 1 654
3 | 41754
13 | 4 | 754

4. Further identities. We shall deduce several identities from two combinatorial lemmas.

LEMMA 1. Let Pa,b(n) (a = 0,l;b = 0,1) denote the number of partitions ofn into distinct
positive parts such that the number of parts is congruent to a (mod 2) and the largest part is
congruent to b (mod 2). Let Qa<h{n) (a = 0,1; b = 0,1) denote the number of partitions of n
into distinct non-negative parts such that the number of parts is congruent to a (mod 2) and the
largest part is congruent to b (mod 2). Then

Po,b(n)+Pub(n) = 6 o » = 6 i » -
Proof Since POb(ri)+Pl b(n) enumerates the number of partitions of n into distinct parts

with largest part congruent to b (mod 2), add a zero to each partition enumerated by Plib(ri)
and then the partitions enumerated are simply the partitions of n into an even number of
non-negative parts with largest part congruent to b (mod 2); add a zero to each partition
enumerated by Po b(ri) and then the partitions enumerated are simply the partitions of n into an
odd number of non-negative parts with largest part congruent to b (mod 2).

Since

60,0(1)+ 60,10) = 6i,o(») + Qi.i(") = n,o(")+^o,i(n)+^i.o(n)+^i,i(»X
we deduce that

00 ~n(2n—1) 00 -n(2n— 1) oo

i (T_J Q ain) = z f l J (l -2.-X, = n (i+QJ)- (4.i)

Since

Qo,o(n)-Go,i(") = ei,oO)-ei,i(n) = i'o>o
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we deduce that

H2- y

nt'o
Since

we deduce that

n(2n-l)

GEORGE E. ANDREWS

_n(2n-l)
v 'H

co _n(2n—1)
n-l\,,2n

n = 0

Since

we deduce that

Since

we deduce that

= 0,

(4-4)

We remark that (4.1) was originally proved by L. J. Slater [7; equations (84) and (85)];
(4.2) and (4.4) appear in [1], and (4.5) is a special case of (1.2).

LEMMA 2. Let a(n) denote the number of partitions of n with unique smallest part and
largest part at most twice the smallest part. Let b(n) denote the number of partitions of n in
which the largest part is odd and the smallest part is larger than half the largest part. Then
a(n) = b(n).

Proof. In Figure 1, we give a graphical representation of a typical partition of n
enumerated by b{n).

2mt l

m t l m

FIG. 1

https://doi.org/10.1017/S0017089500000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000057


ENUMERATIVE PROOFS OF CERTAIN ^-IDENTITIES 39

We translate the set of nodes on the right of the vertical bar to a position directly
below those nodes appearing on the left of the vertical bar. Our new graph is now pictured in
Figure 2.

FIG. 2

Reading the graph in Figure 2 vertically, we see that now we have a partition of n which
is of the type enumerated by a(n). Clearly the process is reversible, and hence for every n,
a(n) = b(.n).

Now

n=0 m = O V i ~ y J"*\L-

co oo « 2 m H

and I
n=0

Consequently,

oo _m oo _ 2 m + l

? 1 + ?
This identity was stated by Ramanujan in his last letter to Hardy [6; p. 354] and was later

proved by Watson [9; p. 278].
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