ENUMERATIVE PROOFS OF CERTAIN q-IDENTITIES

by GEORGE E. ANDREWS

(Received 20 October, 1965)

1. Introduction. Many q-identities have been proved combinatorially. For example,

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(1-q)^{2} \ldots\left(1-q^{n}\right)^{2}} & =\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-1}, \tag{1.1}\\
\sum_{n=0}^{\infty} \frac{q^{\frac{1}{n n(n-1)} z^{n}}}{(1-q) \ldots\left(1-q^{n}\right)} & =\prod_{n=0}^{\infty}\left(1+z q^{n}\right), \tag{1.2}\\
\sum_{n=0}^{\infty} \frac{z^{n}}{(1-q) \ldots\left(1-q^{n}\right)} & =\prod_{n=0}^{\infty}\left(1-z q^{n}\right)^{-1}, \tag{1.3}\\
\prod_{n=0}^{\infty}\left\{\left(1-q^{2 n+2}\right)\left(1+q^{2 n+1} z\right)\left(1+q^{2 n+1} z^{-1}\right)\right\} & =\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \tag{1.4}
\end{align*}
$$

Combinatorial proofs of (1.1), (1.2), and (1.3) are either given or indicated in Hardy and Wright [4; Ch. XIX]. (1.4) has been proved combinatorially by Sylvester [8; pp. 34-36], Cheema [2; p. 415], and Wright [10]; Professor Wright also informs me that C. Sudler has a combinatorial proof of (1.4).

The main object of this paper is to give partition-theoretic proofs of other famous q identities. In particular, in §2 we shall prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(1+a) \ldots\left(1+a q^{n-1}\right) z^{n} q^{n}}{(1-q) \ldots\left(1-q^{n}\right)}=\prod_{j=1}^{\infty} \frac{\left(1+a z q^{j}\right)}{\left(1-z q^{j}\right)}, \tag{1.5}
\end{equation*}
$$

and in §3 we shall prove that
$\sum_{n=0}^{\infty} \prod_{j=0}^{n-1}\left\{\frac{\left(1-\alpha q^{j}\right)\left(1-\beta q^{j}\right)}{\left(1-q^{j+1}\right)\left(1-\gamma q^{j}\right)}\right\} \tau^{n}=\prod_{j=0}^{\infty} \frac{\left(1-\beta q^{j}\right)\left(1-\alpha \tau q^{j}\right)}{\left(1-\gamma q^{j}\right)\left(1-\tau q^{j}\right)} \cdot \sum_{n=0}^{\infty} \prod_{j=0}^{n-1}\left\{\frac{\left(1-\gamma \beta^{-1} q^{j}\right)\left(1-\tau q^{j}\right)}{\left(1-q^{j+1}\right)\left(1-\alpha \tau q^{j}\right)}\right\} \beta^{n}$.
(1.5) dates back to Euler [3; p. 223], and in fact (1.2) and (1.3) are special cases of (1.5). (1.6) is the fundamental transformation of basic hypergeometric series given by Heine [5; p. 106].

In §4, we briefly indicate enumerative proofs of several other lesser known identities.
2. Proof of (1.5). In this section we shall be concerned with the following type of partitions, namely,

$$
\begin{equation*}
N=\sum_{j=1}^{s} a_{j}+\sum_{k=1}^{t} b_{k} \quad\left(a_{1} \leqq \ldots \leqq a_{s}, b_{1}>\ldots>b_{t}\right) . \tag{2.1}
\end{equation*}
$$

In the remainder of this section, we shall abbreviate our notation for such partitions to $a_{1} \ldots a_{s} \mid b_{1} \ldots b_{t}$.
c

Let $\pi_{1}(n, m ; N)$ denote the number of partitions of N given in (2.1) subject to the further restrictions that $a_{s}=n, a_{s}>b_{1}$, and t is either m or $m-1$.

Let $\pi_{2}(n, m ; N)$ denote the number of partitions of N given in (2.1) subject only to the further restrictions that $t=m, s+t=n$.

Now

$$
\begin{array}{r}
\sum_{n=0}^{\infty} \frac{(1+a) \ldots\left(1+a q^{n-1}\right) z^{n} q^{n}}{(1-q) \ldots\left(1-q^{n}\right)}=\sum_{N=0}^{\infty} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \pi_{1}(n, m ; N) a^{m} z^{n} q^{N}, \\
\prod_{j=1}^{\infty} \frac{\left(1+a z q^{j}\right)}{\left(1-z q^{j}\right)}
\end{array}=\sum_{N=0}^{\infty} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \pi_{2}(n, m ; N) a^{m} z^{n} q^{N} .
$$

Thus, defining $\pi_{1}(0,0 ; 0)=\pi_{2}(0,0 ; 0)=1$, we must show that

$$
\pi_{1}(n, m ; N)=\pi_{2}(n, m ; N)
$$

in order to establish (1.5).
Suppose $a_{1} \ldots a_{s} \mid b_{1} \ldots b_{t}$ is a partition of N enumerated by $\pi_{1}(n, m ; N)$. Then by rearranging terms we may form an ordinary partition of N of the form $f_{1} c_{1}+\ldots+f_{r} c_{r}$, where $c_{1}<\ldots<c_{r}=n\left(f_{j}\right.$ denotes the number of times c_{j} occurs in the partition). We now note that there may be several partitions enumerated by $\pi_{1}(n, m ; N)$ that yield upon rearrangement the same ordinary partition $f_{1} c_{1}+\ldots+f_{r} c_{r}$. In fact all we need do is pick either m or $m-1$ distinct parts from among the c 's (excluding c_{r}) to form the b 's with the remainder forming the a 's. Thus there are

$$
\binom{r-1}{m}+\binom{r-1}{m-1}=\binom{r}{m}
$$

partitions enumerated by $\pi_{1}(n, m ; N)$ that correspond to the ordinary partition $f_{1} c_{1}+\ldots+f_{r} c_{r}$ ($c_{1}<\ldots<c_{r}=n$).

Now, by considering conjugate partitions, we see that there is a one-to-one correspondence between ordinary partitions of the form $f_{1} c_{1}+\ldots+f_{r} c_{r}\left(c_{1}<\ldots<c_{r}=n\right)$ and ordinary partitions of the form $f_{1}^{\prime} c_{1}^{\prime}+\ldots+f_{r}^{\prime} c_{r}^{\prime}\left(f_{1}^{\prime}+\ldots+f_{r}^{\prime}=n\right)$.

Suppose that $a_{1}^{\prime} \ldots a_{s}^{\prime} \mid b_{1}^{\prime} \ldots b_{t}^{\prime}$ is a partition of N enumerated by $\pi_{2}(n, m ; N)$. Then by rearranging terms we may form an ordinary partition of N of the form $f_{1}^{\prime} c_{1}^{\prime}+\ldots+f_{r}^{\prime} c_{r}^{\prime}$ $\left(f_{1}^{\prime}+\ldots+f_{r}^{\prime}=n\right)$. As above, several partitions enumerated by $\pi_{2}(n, m ; N)$ may yield the same ordinary partition. Now to form a partition enumerated by $\pi_{2}(n, m ; N)$ from the given ordinary partition, we need only choose m distinct parts from among the c 's to form the b 's; the remaining summands make up the a 's. Thus, in this case as well, there are

$$
\binom{r}{m}
$$

partitions enumerated by $\pi_{2}(n, m ; N)$ that correspond to the ordinary partition $f_{1}^{\prime} c_{1}^{\prime}+\ldots+f_{r}^{\prime} c_{r}^{\prime}$ (with $c_{1}^{\prime}<\ldots<c_{r}^{\prime}, f_{1}^{\prime}+\ldots+f_{r}^{\prime}=n$).

Consequently we have $\pi_{1}(n, m ; N)=\pi_{2}(n, m ; N)$.
To illustrate, we enumerate all cases for $n=4, m=2, N=9$. Column I gives the parti-
tions enumerated by $\pi_{1}(4,2 ; 9)$. Column II gives the related ordinary partitions. Column III gives the ordinary partitions conjugate to those of Column II. Column IV gives the corresponding partitions enumerated by $\pi_{2}(4,2 ; 9)$.

I	II	III	IV
$44 \mid 1$	441	3222	$22 \mid 32$

$\left.\begin{array}{l}134 \mid 1 \\ 114 \mid 3 \\ 14 \mid 31\end{array}\right\} \quad 4311 \quad 4221 \quad\left\{\begin{array}{l}22 \mid 41 \\ 24 \mid 21 \\ 12 \mid 42\end{array}\right.$
$\left.\begin{array}{l}1124 \mid 1 \\ 1114 \mid 2 \\ 114 \mid 21\end{array}\right\} \quad 42111 \quad 5211 \quad\left\{\begin{array}{l}11 \mid 52 \\ 12 \mid 51 \\ 15 \mid 21\end{array}\right.$
$11114|1 \quad 411111 \quad 6111 \quad 11| 61$
$\left.\begin{array}{l}224 \mid 1 \\ 124 \mid 2 \\ 24 \mid 21\end{array}\right\} \quad 4221 \quad 4311 \quad\left\{\begin{array}{l}14 \mid 31 \\ 13 \mid 41 \\ 11 \mid 43\end{array}\right.$
$\left.\begin{array}{l}34 \mid 2 \\ 4 \mid 32 \\ 24 \mid 3\end{array}\right\} \quad 432 \quad 3321 \quad\left\{\begin{array}{l}33 \mid 21 \\ 23 \mid 31 \\ 13 \mid 32\end{array}\right.$

Thus $\pi_{1}(4,2 ; 9)=\pi_{2}(4,2 ; 9)=14$.
3. Proof of (1.6). We shall now consider partitions of N of the form

$$
\begin{equation*}
N=\sum_{i=1}^{p} a_{i}+\sum_{h=1}^{r} t_{h}+\sum_{j=1}^{s} b_{j}+\sum_{k=1}^{w} c_{k}, \tag{3.1}
\end{equation*}
$$

where $a_{1}<\ldots<a_{p}, t_{1} \leqq \ldots \leqq t_{r}, b_{1} \leqq \ldots \leqq b_{s}, c_{1}>\ldots>c_{w}$. In the remainder of this section, we shall abbreviate our notation for such partitions to

$$
a_{1} \ldots a_{p}\left|t_{1} \ldots t_{r}\right| b_{1} \ldots b_{s} \mid c_{1} \ldots c_{w}
$$

Denote by $\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)$ the number of partitions given by (3.1) subject to the further restrictions that $a_{p} \leqq M_{2}-1, p$ is either M_{1} or $M_{1}-1, t_{r}=M_{2}, s=M_{3}-M_{4}$, $b_{1} \geqq M_{2}+1, w=M_{4}, c_{w} \geqq M_{2}+1$.

Now, if

$$
\begin{aligned}
F(\alpha, \tau, \beta, \gamma) & =\sum_{n=0}^{\infty} \prod_{j=0}^{n-1}\left\{\frac{\left(1+\alpha q^{j}\right)}{\left(1-q^{j+1}\right)}\right\} \prod_{k=1}^{\infty}\left\{\frac{\left(1+\gamma \beta q^{n+k}\right)}{\left(1-\beta q^{n+k}\right)}\right\} \tau^{n} q^{n} \\
& =\sum_{N=0}^{\infty} \sum_{M_{1}=0}^{\infty} \sum_{M_{2}=0}^{\infty} \sum_{M_{3}=0}^{\infty} \sum_{M_{4}=0}^{\infty} \pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right) \alpha^{M_{1}} \tau^{M_{2}} \beta^{M_{3}} \gamma^{M_{4}} q^{N},
\end{aligned}
$$

we see that (1.6) may be rewritten as

$$
F(\alpha, \tau, \beta, \gamma)=F(\gamma, \beta, \tau, \alpha)
$$

Thus, defining $\pi(0,0,0,0 ; 0)=1$, we must show that

$$
\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)=\pi\left(M_{4}, M_{3}, M_{2}, M_{1} ; N\right)
$$

Suppose that we are given a partition of N enumerated by $\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)$; as in §2, we may by rearrangement of terms form an ordinary partition of N of the form

$$
f_{1} e_{1}+\ldots+f_{d} e_{d}+f_{d+1} g_{1}+\ldots+f_{d+u} g_{u}
$$

$\left(e_{1}<\ldots<e_{d}=M_{2}, e_{d}<g_{1}<\ldots<g_{u}, f_{d+1}+\ldots+f_{d+u}=M_{3}\right)$. We now search for the number of ways that our ordinary partition may be rearranged into a partition enumerated by $\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)$. We see that to get the a 's we must choose either M_{1} or $M_{1}-1$ distinct terms from among the e 's (excluding e_{d}); the remaining summands among the e 's form the t 's. There are thus

$$
\binom{d-1}{M_{1}}+\binom{d-1}{M_{1}-1}=\binom{d}{M_{1}}
$$

ways of getting the a 's and t 's. Now we get the c 's by choosing M_{4} distinct parts from among the g 's; the remaining terms from among the g 's form the b 's. There are thus

$$
\binom{u}{M_{4}}
$$

ways of getting the b 's and c 's. Hence there are

$$
\binom{d}{M_{1}}\binom{u}{M_{4}}
$$

ways of getting a partition enumerated by $\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)$ from our given ordinary partition.

By considering conjugate partitions, we see that there is a one-to-one correspondence between ordinary partitions of N of the form

$$
f_{1} e_{1}+\ldots+f_{d} e_{d}+f_{d+1} g_{1}+\ldots+f_{d+u} g_{u}
$$

$\left(e_{1}<\ldots<e_{d}=M_{2}, e_{d}<g_{1}<\ldots<g_{u}, f_{d+1}+\ldots+f_{d+u}=M_{3}\right)$ and those of the form

$$
f_{1}^{\prime} e_{1}^{\prime}+\ldots+f_{u}^{\prime} e_{u}^{\prime}+f_{u+1}^{\prime} g_{1}^{\prime}+\ldots f_{u+d}^{\prime} g_{d}^{\prime}
$$

$\left(e_{1}^{\prime}<\ldots<e_{u}^{\prime}=M_{3}, e_{u}^{\prime}<g_{1}^{\prime}<\ldots<g_{d}^{\prime}, f_{u+1}^{\prime}+\ldots+f_{u+d}^{\prime}=M_{2}\right)$.
Thus, by the above reasoning, there are

$$
\binom{u}{M_{4}}\binom{d}{M_{1}}
$$

partitions enumerated by $\pi\left(M_{4}, M_{3}, M_{2}, M_{1} ; N\right)$ that correspond to the conjugate of the ordinary partition considered earlier. Hence

$$
\pi\left(M_{1}, M_{2}, M_{3}, M_{4} ; N\right)=\pi\left(M_{4}, M_{3}, M_{2}, M_{1} ; N\right)
$$

To illustrate, we enumerate all cases for $M_{1}=3, M_{2}=4, M_{3}=3, M_{4}=2, N=25$. Column I gives the partitions enumerated by $\pi(3,4,3,2 ; 25)$. Column II gives the related ordinary partitions. Column III gives the ordinary partitions conjugate to those of Column II. Column IV gives the corresponding partitions enumerated by $\pi(2,3,4,3 ; 25)$.

I	II	III	IV
$23\|4\| 5 \mid 65$	655432	665431	$1\|3\| 6 \mid 654$
$12\|24\| 5 \mid 65$	6554221	764431	$1\|3\| 4 \mid 764$
$12\|114\| 5 \mid 65$	65542111	854431	$1\|3\| 4 \mid 854$
$12\|4\| 7 \mid 65$			
$12\|4\| 5 \mid 76\}$	765421	6544321	$\{12\|3\| 4 \mid 654$
$12\|4\| 6 \mid 75$			

Thus $\pi(2,3,4,3 ; 25)=\pi(3,4,3,2 ; 25)=12$.
4. Further identities. We shall deduce several identities from two combinatorial lemmas.

Lemma 1. Let $P_{a, b}(n)(a=0,1 ; b=0,1)$ denote the number of partitions of n into distinct positive parts such that the number of parts is congruent to $a(\bmod 2)$ and the largest part is congruent to $b(\bmod 2)$. Let $Q_{a, b}(n)(a=0,1 ; b=0,1)$ denote the number of partitions of n into distinct non-negative parts such that the number of parts is congruent to $a(\bmod 2)$ and the largest part is congruent to $b(\bmod 2)$. Then

$$
P_{0, b}(n)+P_{1, b}(n)=Q_{0, b}(n)=Q_{1, b}(n) .
$$

Proof. Since $P_{0, b}(n)+P_{1, b}(n)$ enumerates the number of partitions of n into distinct parts with largest part congruent to $b(\bmod 2)$, add a zero to each partition enumerated by $P_{1, b}(n)$ and then the partitions enumerated are simply the partitions of n into an even number of non-negative parts with largest part congruent to $b(\bmod 2)$; add a zero to each partition enumerated by $P_{0, b}(n)$ and then the partitions enumerated are simply the partitions of n into an odd number of non-negative parts with largest part congruent to b (mod 2).

Since

$$
Q_{0,0}(n)+Q_{0,1}(n)=Q_{1,0}(n)+Q_{1,1}(n)=P_{0,0}(n)+P_{0,1}(n)+P_{1,0}(n)+P_{1,1}(n)
$$

we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(1-q) \ldots\left(1-q^{2 n}\right)}=\sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(1-q) \ldots\left(1-q^{2 n-1}\right)}=\prod_{j=1}^{\infty}\left(1+q^{j}\right) \tag{4.1}
\end{equation*}
$$

Since

$$
Q_{0,0}(n)-Q_{0,1}(n)=Q_{1,0}(n)-Q_{1,1}(n)=P_{0,0}(n)+P_{1,0}(n)-P_{0,1}(n)-P_{1,1}(n)
$$

we deduce that

$$
\begin{equation*}
2-\sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(1+q) \ldots\left(1+q^{2 n}\right)}=\sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(1+q) \ldots\left(1+q^{2 n-1}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{2 n(n+1)}}{(1+q) \ldots\left(1+q^{n}\right)} \tag{4.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
Q_{0,1}(n)-Q_{0,0}(n)+2\left(P_{0,0}(n)+P_{1,0}(n)\right) & =Q_{1,0}(n)-Q_{1,1}(n)+2\left(P_{0,1}(n)+P_{1,1}(n)\right) \\
& =P_{0,0}(n)+P_{0,1}(n)+P_{1,0}(n)+P_{1,1}(n),
\end{aligned}
$$

we deduce that

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{q^{n(2 n-1)}}{(1+q) \ldots\left(1+q^{2 n}\right)}+2 \sum_{n=1}^{\infty}(1+q) \ldots\left(1+q^{2 n-1}\right) q^{2 n} \\
= & \sum_{n=0}^{\infty} \frac{q^{n(2 n+1)}}{(1+q) \ldots\left(1+q^{2 n-1}\right)}+2 \sum_{n=0}^{\infty}(1+q) \ldots\left(1+q^{2 n}\right) q^{2 n+1}=\prod_{j=1}^{\infty}\left(1+q^{j}\right) . \tag{4.3}
\end{align*}
$$

Since

$$
Q_{0,1}(n)+Q_{1,0}(n)-Q_{0,0}(n)-Q_{1,1}(n)=0
$$

we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{\frac{1}{n n(n-1)}}}{(1+q) \ldots\left(1+q^{n}\right)}=2 \tag{4.4}
\end{equation*}
$$

Since

$$
Q_{0,0}(n)+Q_{0,1}(n)-Q_{1,0}(n)-Q_{1,1}(n)=0
$$

we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\frac{12 n(n-1)}{}}}{(1-q) \ldots\left(1-q^{n}\right)}=0 \tag{4.5}
\end{equation*}
$$

We remark that (4.1) was originally proved by L. J. Slater [7; equations (84) and (85)]; (4.2) and (4.4) appear in [1], and (4.5) is a special case of (1.2).

Lemma 2. Let $a(n)$ denote the number of partitions of n with unique smallest part and largest part at most twice the smallest part. Let $b(n)$ denote the number of partitions of n in which the largest part is odd and the smallest part is larger than half the largest part. Then $a(n)=b(n)$.

Proof. In Figure 1, we give a graphical representation of a typical partition of n enumerated by $b(n)$.

Fig. 1

We translate the set of nodes on the right of the vertical bar to a position directly below those nodes appearing on the left of the vertical bar. Our new graph is now pictured in Figure 2.

Fig. 2
Reading the graph in Figure 2 vertically, we see that now we have a partition of n which is of the type enumerated by $a(n)$. Clearly the process is reversible, and hence for every n, $a(n)=b(n)$.

Now
and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a(n) q^{n}=\sum_{m=0}^{\infty} \frac{q^{m}}{\left(1-q^{m+1}\right) \ldots\left(1-q^{2 m}\right)}, \\
& \sum_{n=0}^{\infty} b(n) q^{n}=1+\sum_{m=0}^{\infty} \frac{q^{2 m+1}}{\left(1-q^{m+1}\right) \ldots\left(1-q^{2 m+1}\right)}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{q^{m}}{\left(1-q^{m+1}\right) \ldots\left(1-q^{2 m}\right)}=1+\sum_{m=0}^{\infty} \frac{q^{2 m+1}}{\left(1-q^{m+1}\right) \ldots\left(1-q^{2 m+1}\right)} \tag{4.6}
\end{equation*}
$$

This identity was stated by Ramanujan in his last letter to Hardy [6; p. 354] and was later proved by Watson [9; p. 278].

REFERENCES

1. G. E. Andrews, On basic hypergeometric series, mock theta functions, and partitions (II); to appear.
2. M. S. Cheema, Vector partitions and combinatorial identities, Math. Comp. 18 (1964), 414-420.
3. G. H. Hardy, Ramanujan (Cambridge University Press, Cambridge, 1940).
4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Oxford University Press, London, 4th ed., 1960).
5. E. Heine, Handbuch der Kugelfunctionen, Band I (Berlin, 1878).
6. S. Ramanujan, Collected works (Cambridge University Press, Cambridge, 1927).
7. L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147-167.
8. J. J. Sylvester, A constructive theory of partitions, etc., Collected math. papers IV (Cambridge, 1912), 34-36.
9. G. N. Watson, The mock theta functions (II), Proc. London Math. Soc. (2) 42 (1937), 274-304.
10. E. M. Wright, An enumerative proof of an identity of Jacobi, J. London Math. Soc. 40 (1965), 55-57.

The Pennsylvania State University
University Park, Pennsylvania

