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REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ
INEQUALITY FOR n-TUPLES OF COMPLEX NUMBERS

S.S. DRAGOMIR

Some new reverses of the Cauchy-Bunyakovsky-Schwarz inequality for n-tuples of
real and complex numbers related to Cassels and Shisha-Mond results are given.

1. INTRODUCTION

Let a = (o i , . . . , an) and b = (bi,..., bn) be two positive n-tuples with the property
that there exists the positive numbers m*, Mi (i — 1,2) such that

(1.1) 0 < mi < Cj ^ Mi < oo and 0 < m2 ^ &,• < M2 < oo,

for each i € { 1 , . . . , n} .

The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality are well

known in the literature:

1. POLYA-SZEGO'S INEQUALITY [8]

fl 2) z ^ * = 1 k

\2-,k=\

2. SHISHA-MOND'S INEQUALITY [9]

1
" 4 m1m2

3. OZEKI'S INEQUALITY [7]

(1.4)

k=\ k=l

4. DIAZ-METCALF'S INEQUALITY [1]

k=\ k=\

2 . (M2 m 2 \
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466 S.S. Dragomir [2]

If the weight w = (wi,.. . ,u;n) is a positive n-tuple, then we have the following
inequalities, which are also well known.

5. CASSELS' INEQUALITY [10]

If the positive n-tuples a = (a\,...,an) and b = (bi,... ,bn) satisfy the condition

(1.6) 0<m^^- ^ M <oo for each Jfc e { 1 , . . . , n},
Ok

where m, M are given, then

,, 7̂  EU^alHU^ (M + mf
( ' (E *)2 " 4
6. G R E U B - R E I N B O L D T ' S INEQUALITY [4]

If a and b satisfy the condition (1.1), then

1 ' 4m1m2M1M2

7. GENERALISED D I A Z - M E T C A L F INEQUALITY [1] (see also [6, p. 123])

If u, v G [0,1] and v^u, u + v = l and (1.6) holds, then one has the inequality

(1.9) u^2wkH + vmM^^Wkal ^ {vm + uM)
k=\ *=1 k=l

8. KLAMKIN-MCLENAGHAN'S INEQUALITY [5]

If a and b satisfy (1.6), then we have the inequality

n n y n \ 2 n n

(1.10) / wkak / 'wkbk — I } wkakbk I ^ ( v M — \frn) y wka.kbk / wk&k.
k=\ t=l ^k=\ ' *=1 k=\

For other reverse results of the Cauchy-Bunyakovsky-Schwarz inequality, see the
recent survey online [3].

The main aim of this paper is to point out some new reverse inequalities of the
classical Cauchy-Bunyakovsky-Schwarz result for both real and complex n-tuples.

2. SOME REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.

THEOREM 1 . Let a = (o i , . . . , an), b = (bu ..., bn) £ Kn, where K = R, C and
n

P = (P i . - - - .Pn) € R" with ^2pi — 1. Ifb{ ^ 0, i e { l , . . . , n } and there exists the
t=i

constant a € K and r > 0 such that for any k 6 { 1 . . . . . n}
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tien we have the inequality

(2.2) W|afc|
2+(|a|2- \bk

The constant c = 2 is best possible in the sense that it cannot be replaced by a smaller
constant.

PROOF: From (2.1) we have \ak - oibk\ ^ r \bk\
2 for each k € { 1 , . . . , n}, which is

clearly equivalent to

(2.3) |a t |
2 + (|a|2 - r2) \bk\

2 ^ 2Re[a(akbk)]

for each k € { 1 , . . . , n}.

Multiplying (2.3) with pk ^ 0 and summing over k from 1 to n, we deduce the first
inequality in (1.2). The second inequality is obvious.

To prove the sharpness of the constant 2, assume that under the hypothesis of the
theorem there exists a constant c > 0 such that

(2.4) ^Jp,|afc|
2+(|a|2-r2)

* = 1 k=l L k=l

provided ak/bk 6 D(a, r), k € { 1 , . . . , n}.

Assume that n = 2, pi — p2 = 1/2, &i = 62 = li <* = r > 0 and a2 = 2r, Oi = 0.
Then |a2/62 - a\ — r, |ai/6i - a\ = r showing that the condition (2.1) holds. For these
choices, the inequality (2.4) becomes 2r2 ^ cr2, giving c ̂  2. D

The case where the disk D(a, r) does not contain the origin, that is, |Q| > r, provides
the following interesting reverse of the Cauchy-Bunyakovsky-Schwarz inequality.

THEOREM 2 . Let a, b, p as in Theorem 1 and assume that \a\ > r > 0. Then
we have the inequality

" ,JL . i r r , J L ^•,>2

(2.5) J2 P"
k=l *=1

- x n

_ — ^ Re[a(^
i \ K. k = l

n

E
The constant c = 1 in t ie first and second inequality is best possible in the sense that it
cannot be replaced by a smaller constant.

PROOF: Since |a| > r, we may divide (2.2) by \ / | a | 2 - r2 > 0 to obtain
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468 S.S. Dragomir [4]

On the other hand, by the use of the following elementary inequality

(2.7) -p + 0q^ 2y/pq for fi > 0 and p, q > 0,

we may state that

/JL .\V2 /_2_ \i/2
(2.8) 2

Utilising (2.6) and (2.8), we deduce

which is clearly equivalent to the first inequality in (2.6).

The second inequality is obvious.

To prove the sharpness of the constant, assume that (2.5) holds with a constant
c > 0, that is,

(2.9)
k=l

provided a^/bk € D(a, r) and |o:| > r.

For n = 2, 62 = 6i = 1, Pi = P2 = I / 2 , <i2, ax € R, a, r > 0 and a > r, we get from
(2.9) that

If we choose a2 = a + r, ai = a — r, then |a; — a| $ r, i = 1,2 and by (2.10) we deduce

, , ca*

which is clearly equivalent to

(c - l)c*4 + r4 ^ 0 for a > r > 0.

If in this inequality we choose a = 1. r = £ € (0,1) and let t —>• 0+, then we deduce

The following corollary is a natural consequence of the above theorem.
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COROLLARY 1 . Under the assumptions of Theorem 2, we have the following
additive reverse of the Cauchy-Bunyakovsky-Schwarz inequality

(2.11)
Jt=i *=1

The constant c = 1 is best possible in the sense mentioned above.

REMARK 1. If in Theorem 1, we assume that \a\ = r, then we obtain the inequality:

(2.12)
k=l

j
k=l

k=l

The constant 2 is sharp in both inequalities.

We also remark that, if r > \a\, then (2.2) may be written as

(2.i3) 5>ia*i2<(r2-w2)£;
t=i jt=i

(r2 - |a|

J f c = l

2 \a
k=i

k=\

The following reverse of the Cauchy-Bunyakovsky-Schwarz inequality also holds.

THEOREM 3 . Let a, b, p be as in Theorem 1 and assume that a € K, a ^ 0 and
r > 0. Then we have the inequalities

/ n \ 1/2 / n \ 1/2

(
n v 1/2 / n \ 1/2 r — n 1

V~* I 12 \ / V^1 11. i2l r-. M 1 / V ^ L \

Z^P*I°*:| I " I >,Pfc|O*| I ~ R e lT~A / .PkO-kOk) I

The constant 1/2 is best possible in the sense mentioned above.

PROOF: From Theorem 1, we have

(2.15)

k=i

https://doi.org/10.1017/S000497270003625X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003625X


470 S.S. Dragomir [6]

Since a ^ 0, we can divide (2.15) by |a|, getting

(2-16) o
fc=i

k=l

Utilising the inequality (2.7), we may state that

1/2 / _n_ N 1/2

(2.17)
= l

x 1/2 - n

<i^EP*
' ' ' *=1

Making use of (2.16) and (2.17), we deduce the second inequality in (2.14).

The first inequality in (2.14) is obvious.

To prove the sharpness of the constant 1/2, assume that there exists a c > 0 such

that

1/2 / n/ n s 1/2 , n

E P * I ^ I 2 • ( 5
1/2

* = 1

2 n

provided |a*/6fc - a?| ^ r, a ^ 0, r > 0.

If we choose n = 2, a > 0, bi = fa = 1, a,i = a + r, a2 = a - r, then from (2.18) we

deduce

(2.19) 4- a2 - a ^ c—.
a

If we multiply (2.19) with \Jr2 + a2 + a > 0 and then divide it by r > 0, we deduce

Vr2 + a2 + a
(2.20) 1

for any r > 0, a > 0.

If in (2.20) we let r —• 0+, then we get c ^ 1/2, and the sharpness of the constant
is proved. D

3. A CASSELS T Y P E INEQUALITY FOR COMPLEX NUMBERS

The following result holds.

THEOREM 4 . Let a = (au...,an), b = (bu...,bn) € Kn, wiere K = K,C and

p = (pi, .-- ,pn) € R" with YlPi = 1- ^^ i / 0 , i € { l , . . . , n} and there exist the
t=i

constants 7, T € K witi Re(r7) > 0 and T ^ j , so that either

(3.1) - | r - 7 | for each k € {! , . . . ,n},

https://doi.org/10.1017/S000497270003625X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003625X


[7] Reverses of the Cauchy-Bunyakovsky—Schwarz inequality 471

or, equivalently,

(3.2)

holds, then we have the inequalities

(3.3)

{ o r e a c b

k=\ k=\

4Re(Py)

The constants 1/2 and 1/4 are best possible in (3.3).

PROOF: The fact that the relations (3.1) and (3.2) are equivalent follows by the
simple fact that for z,u,U € C, the following inequalities are equivalent

z —
u + U

and
Re[(u-z)(z-u)]

Define a = (7 + T)/2 and r = | r - j\/2. Then

Consequently, we may apply Theorem 2, and the inequalities (3.3) are proved.

The sharpness of the constants may be proven in a similar way to that in the proof
of Theorem 2, and we omit the details. D

The following additive version also holds.

COROLLARY 2 . With the assumptions in Theorem 4, we have

(3.4) < |r-7l
4Re(Py)

k=\ k=\

The constant 1/4 is also best possible.

REMARK 2. With the above assumptions and if Re(Py) = 0, then by the use of
Remark 1, we may deduce the inequality

(3.5)

If Re(Py) < 0, then, by Remark 1, we also have

(3.6)
fc=l

- Re(Py)
k=l
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R E M A R K 3. If ak, bk > 0 and there exist the constants m, M > 0 (M > m) with

(3.7) m^^-^M for each * e { l , . . . , n } ,

then, obviously (3.1) holds with 7 = TO, F = M, also F ^ = Mm > 0 and by (3.3) we
deduce

that is, Cassels' inequality.

4. A SHISHA-MOND T Y P E INEQUALITY FOR COMPLEX NUMBERS

The following result holds.

THEOREM 5 . Let a = (au ..., an), b = (ftj,..., bn) € Kn, wiere K = R, C and

p = (Pi,---,Pn) S R .̂ with f^pi = 1. Ifbi # 0, i e { l , . . . , n } and tiere exist the
t=i

constants 7, F € K such that F 7̂  7, —7 and either

(4.1) r - 2 ^ " < J l r - 7 l for each A € {l,...,n},

or, equivaientiy.

(4.2) Re [(F - g ) ( g - 7)] ^ 0 for each k € {1,..., n},

holds, then we have the inequalities

(4.3) O
\ 1/2 / " x 1/2 n

1 I ^ ^ \h |2 I \~"*

( n v 1/2 / n

E ) (S

The constant 1/4 is best possible in the sense that it cannot be replaced by a smaller
constant.

PROOF: Follows by Theorem 3 on choosing a = (7 + F)/2 / 0 and r = |T—y|/2 > 0.

The proof for the best constant follows in a similar way to that in the proof of

Theorem 3 and we omit the details. D
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REMARK 4. If ak, bk > 0 and there exists the constants m, M > 0 (M > m) with

(4.4) m^^-^M for each A: € { l , . . . , n } ,

then we have the inequality

n x 1/2 /• n >. 1/2 n

;r>) E E
/• n >. 1/2 n

• EP*6* - E
^*=1 ' *=1

^ 4 (M + m) ^

The constant 1/4 is best possible. For pk — l/n, k £ { 1 , . . . , n } , we recapture the result
from [3, Theorem 5.21] that has been obtained from a reverse inequality due to Shisha
and Mond [8].

5. FURTHER R E V E R S E S OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.

THEOREM 6 . Let a = ( a i , . . . , a j , b = (6 1 ; . . . ,b n ) € Kn and r > 0 such that for
n

Pi ^ 0 with 53 pi = 1
t=i

t= l t= l

Then we have the inequality

(5.2) 0 s?
t=i

The constant c= 1 in front ofr2 is best possible in the sense that it cannot be replaced

by a smaller constant.

P R O O F : From the first condition in (5.1), we have

r\

giving

(5.3)
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Since, by the second condition in (5.1) we have

][>H2-r2>0,

we may divide (5.3) by \/YA=I P> lQt|2 - T<1 > 0, getting

(5.4)
\

Utilising the elementary inequality

(5.5)

we may write that

—I- qa ^ IJpq for p, q ^ 0 and a > 0,
a

(5.6)
"\

£;
t = i

Combining (5.5) with (5.6) we deduce

(5.7)

Taking the square in (5.7), we obtain

giving the third inequality in (5.2).

The other inequalities are obvious.

To prove the sharpness of the constant, assume, under the hypothesis of the theorem,
that there exists a constant c > 0 such that

(5.8)

provided

t = l t = l

t = i

Let T = V >̂ e € (0,1), a^e* E C , i E { l , . . . , n } with
n

i^e, = 0. Put bi — a~i + y/eej. Then, obviously

= 1 and
i=\

1=1
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[11] Reverses of the Cauchy-Bunyakovsky—Schwarz inequality 475

and

|o,|2

t = l t = l

t = l

and thus

t = l t = i

Using (5.8), we may write

£ s$ CE(1 + e) for e € (0,1),

giving 1 ^ c(l + e) for e € (0,1). Making e -J- 0+, we deduce c ^ 1.

The following result also holds.

T H E O R E M 7 . Letx=(x1,...,xn),y = {yu...,yn)eX»,p
n

witii ^ pi = 1 and 7, T e K such t ia t Re(7r) > 0 and either

(5.9)

or, equivalently,

(5.10)

>̂ Pi Re ( 1 1 A -
*" L
1 = 1

n 7 + r
Xi -2/i

2 1,

Tien we have the inequalities

1=1

The constant 1/4 is best possible in both inequalities.

P R O O F : Define 6{ = x{ and ai = (F + 7 ) / 2 • yt and r = | r - 7 | / 2 ( Y.Pi\Vi\2 ) 1 / 2 -

Then, by (5.10)

t = l
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showing that the first condition in (5.1) is satisfied.

We also have

i=l i=l i=l

since Re(7F) > 0, and thus the condition in (5.1) is also satisfied.

Using the second inequality in (5.2), one may write

giving

W^-Re^r + T)

which is clearly equivalent to the first inequality in (5.11).

The second inequality in (5.11) is obvious.

To prove the sharpness of the constant 1/4, assume that the first inequality in (5.11)
holds with a constant C > 0, that is,

t=l i = l

provided Re(7F) > 0 and either (5.9) or (5.10) holds.

Assume that F, 7 > 0 and let x, = 7^ . Then (5.9) holds true and by (5.12) we
deduce

' 1 = 1

giving

(5.13) F7 ^ C(F + 7)2 for any F,7 > 0.

Let e € (0.1) and choose in (5.13) F = 1 4- e, 7 = 1 - e > 0 to get 1 - e2 ^ 4C for any
t £ (0,1). Letting e -» 0+, we deduce C ~2 1/4 and the sharpness of the constant is
proved.

Finally, we note that the conditions (5.9) and (5.10) are equivalent since in an inner
product space (if. (-, •)) for any vectors x,z,Z 6 H one has Re(Z - x, x - 2) ^ 0 if and
only if ||x - (2 + Z)/2\\ ^ \\Z - z\\/2 [1], We omit the details. D
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6. M O R E REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.

THEOREM 8 . Let a = ( a i , . . . , ^ ) , b = (bu...,bn) e Kn and p = (pi, . . . ,pB)
n

£ E" with ^2 Pi — 1. If r > 0 and the following condition is satisfied

(6.1)
t = i

then we have the inequalities

(6.2)
t = l

1/2

1/2 n

E
x n

E
^i=l

*¥•

1/2 n

E

The constant 1/2 is best possible in (6.2) in the sense that it cannot be replaced by a

smaller constant.

PROOF: The condition (6.1) is clearly equivalent to

n n n

(6.3) E P' l6i I2 + E Pi lfli I2 ̂  2 E Pi Re(6«a>) + r2-

Using the elementary inequality

(6.4)

and (6.3), we deduce

(6.5)

t = i

t = l

1/2 n

E
t = i

1/2 n

t = i

t = i

giving the last inequality in (6.2). The other inequalities are obvious.

To prove the sharpness of the constant 1/2, assume that

n n \ 1/2 n

Ep'iM2Ep-ia'i j - E p '
i= l t= l ' i = l
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for any a, b e Kn and r > 0 satisfying (6.1).

Assume that a, e € H, e = (e i , . . . ,e n ) with £>i |o,- | = I > ; | e ; | 2 = 1 and
n i = l «=1

Pid-id = 0. If r = v^e, e > 0, and if we define b = a + y^e where a = (5^ , . . . ,a^)
i n

K", then YL Pi l̂ « ~ G*I = £ = "̂2, showing that the condition (6.1) is satisfied.
:=1

On the other hand,

1/2 n

- H P i Re [(
1/2 ' n

Utilising (6.6), we conclude that

(6.7) y/l + e - 1 ^ ce for any e > 0.

Multiplying (6.7) by y/l + e + 1 > 0 and thus dividing by e > 0, we get

(6.8) (%/1 + e - l)c ^ 1 for any e > 0.

Letting e -t 0+ in (6.8), we deduce c ^ 1/2, and the theorem is proved. D

Finally, the following result also holds.

THEOREM 9 . Let x = ( i i , . . . , i B ) , y = (yi , . . . ,yn) 6 K", P = (pi , . . . ,pn ) € R".
n

with 53 Pi = 1, and 7, F e K with F ^ 7, - 7 , so that either

yl - xi) {xl - Tfc)] ^ 0,(6.9)

or. equivaientiy,

(6.10)

i = l

t = l

Xi - •y>
2 l .

holds. Then we have the inequalities

(6.11) 0 ^ ( n n v 1/2 n

t=l t= l ' i = l

1=1

i = l
1/2 n

1=1

F + 7
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[15] Reverses of the Cauchy-Bunyakovsky—Schwarz inequality 479

1/2 n

The constant 1/4 in t i e iast inequality is best possible.

P R O O F : Consider b{ = xu a, = (T + T")/2 • yu i € { 1 , . . . , n} and

1/2

Then, by (6.10), we have

1 / n s

M=l '

7 + r 2 i ,

showing that (6.1) is valid.

By the use of the last inequality in (6.2), we have

x=i t = i

Dividing by |F + j\/2 > 0, we deduce

which is the last inequality in (6.11).

The other inequalities are obvious.

To prove the sharpness of the constant 1/4, assume that there exists a constant
c > 0, such that

n s 1/2 n

(6.12) ( 5 > a 2 > a ) E

provided either (6.9) or (6.10) holds.

Let n = 2, y = (1,1), x = (xux2) € K2, p = (1/2,1/2) and T, 7 > 0 with T > 7.
Then by (6.12) we deduce

(6.13) - ( i , + x2)
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If xi = F, x2 = 7, then ( F - x i ) ( i i - 7 ) + ( F - x 2 ) ( x 2 - 7 ) = 0, showing that the condition
(6.9) is valid for n = 2 and p , x, y as above. Replacing x\ and x2 in (6.13), we deduce

(6.14) %/2"v/r2 + 72 ~ (r + 7) ^ 2c(T
r~

 7 ) .

If in (6.14) we choose F = l + £ , 7 = 1 — e with e £ (0,1), we deduce

(6.15) Vl + e1 - 1 ^ 2c£2.

Finally, multiplying (6.15) with \/l + t1 + 1 > 0 and then dividing by e2, we deduce

(6.16) 1 ^ 2c(%/l + e2 + 1) for any e > 0.

Letting e -» 0+ in (6.16), we get c ^ 1/4, and the sharpness of the constant is proved. D

REMARK 5. The integral version may be stated in a canonical way. The corresponding
inequalities for integrals will be considered in another work devoted to positive linear
functionals with complex values that is in preparation.
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