REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY FOR n-TUPLES OF COMPLEX NUMBERS

S.S. Dragomir

Some new reverses of the Cauchy-Bunyakovsky-Schwarz inequality for n-tuples of real and complex numbers related to Cassels and Shisha-Mond results are given.

1. Introduction

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be two positive n-tuples with the property that there exists the positive numbers $m_{i}, M_{i}(i=1,2)$ such that

$$
\begin{equation*}
0<m_{1} \leqslant a_{i} \leqslant M_{1}<\infty \text { and } 0<m_{2} \leqslant b_{i} \leqslant M_{2}<\infty, \tag{1.1}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality are well known in the literature:

1. Pólya-Szegö's inequality [8]

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}}{\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}} \leqslant \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2} ; \tag{1.2}
\end{equation*}
$$

2. Shisha-MOND's inequality [9]

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} a_{k}^{2}}{\sum_{k=1}^{n} a_{k} b_{k}}-\frac{\sum_{k=1}^{n} a_{k} b_{k}}{\sum_{k=1}^{n} b_{k}^{2}} \leqslant\left(\sqrt{\frac{M_{1}}{m_{2}}}-\sqrt{\frac{m_{1}}{M_{2}}}\right)^{2} \tag{1.3}
\end{equation*}
$$

3. Ozeki's inequality [7]

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} b_{k}^{2}-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leqslant \frac{1}{4} n^{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{1.4}
\end{equation*}
$$

4. Diaz-Metcalf's inequality [1].

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k}^{2}+\frac{m_{2} M_{2}}{m_{1} M_{1}} \sum_{k=1}^{n} a_{k}^{2} \leqslant\left(\frac{M_{2}}{m_{1}}+\frac{m_{2}}{M_{1}}\right) \sum_{k=1}^{n} a_{k} b_{k} \tag{1.5}
\end{equation*}
$$

Received 1st December, 2003
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 $\$$ A2.00 +0.00 .

If the weight $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ is a positive n-tuple, then we have the following inequalities, which are also well known.
5. Cassels' inequality [10]

If the positive n-tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ satisfy the condition

$$
\begin{equation*}
0<m \leqslant \frac{a_{k}}{b_{k}} \leqslant M<\infty \text { for each } k \in\{1, \ldots, n\} \tag{1.6}
\end{equation*}
$$

where m, M are given, then

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}}{\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}} \leqslant \frac{(M+m)^{2}}{4 m M} . \tag{1.7}
\end{equation*}
$$

6. Greub-Reinboldt's inequality [4]

If \mathbf{a} and \mathbf{b} satisfy the condition (1.1), then

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}}{\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2}} \leqslant \frac{\left(M_{1} M_{2}+m_{1} m_{2}\right)^{2}}{4 m_{1} m_{2} M_{1} M_{2}} . \tag{1.8}
\end{equation*}
$$

7. Generalised Diaz-Metcalf inequality [1] (see also [6, p. 123])

If $u, v \in[0,1]$ and $v \leqslant u, u+v=1$ and (1.6) holds, then one has the inequality

$$
\begin{equation*}
u \sum_{k=1}^{n} w_{k} b_{k}^{2}+v m M \sum_{k=1}^{n} w_{k} a_{k}^{2} \leqslant(v m+u M) \sum_{k=1}^{n} w_{k} a_{k} b_{k} . \tag{1.9}
\end{equation*}
$$

8. Klamkin-McLenaghan's inequality [5]

If a and b satisfy (1.6), then we have the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} w_{k} a_{k}^{2} \sum_{k=1}^{n} w_{k} b_{k}^{2}-\left(\sum_{k=1}^{n} w_{k} a_{k} b_{k}\right)^{2} \leqslant(\sqrt{M}-\sqrt{m})^{2} \sum_{k=1}^{n} w_{k} a_{k} b_{k} \sum_{k=1}^{n} w_{k} a_{k}^{2} \tag{1.10}
\end{equation*}
$$

For other reverse results of the Cauchy-Bunyakovsky-Schwarz inequality, see the recent survey online [3].

The main aim of this paper is to point out some new reverse inequalities of the classical Cauchy-Bunyakovsky-Schwarz result for both real and complex n-tuples.

2. Some Reverses of the Cauchy-Bunyakovsky-Schwarz Inequality

The following result holds.
TheOrem 1. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathrm{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{K}^{n}$, where $\mathbb{K}=\mathbb{R}, \mathbb{C}$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$. If $b_{i} \neq 0, i \in\{1, \ldots, n\}$ and there exists the constant $\alpha \in \mathbb{K}$ and $r>0$ such that for any $k \in\{1, \ldots, n\}$

$$
\begin{equation*}
\frac{a_{k}}{\overline{b_{k}}} \in \bar{D}(\alpha, r):=\{z \in \mathbb{K}| | z-\alpha \mid \leqslant r\}, \tag{2.1}
\end{equation*}
$$

then we have the inequality

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+\left(|\alpha|^{2}-r^{2}\right) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} & \leqslant 2 \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \tag{2.2}\\
& \leqslant 2|\alpha| \cdot\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|
\end{align*}
$$

The constant $c=2$ is best possible in the sense that it cannot be replaced by a smaller constant.

Proof: From (2.1) we have $\left|a_{k}-\alpha \bar{b}_{k}\right|^{2} \leqslant r\left|b_{k}\right|^{2}$ for each $k \in\{1, \ldots, n\}$, which is clearly equivalent to

$$
\begin{equation*}
\left|a_{k}\right|^{2}+\left(|\alpha|^{2}-r^{2}\right)\left|b_{k}\right|^{2} \leqslant 2 \operatorname{Re}\left[\bar{\alpha}\left(a_{k} b_{k}\right)\right] \tag{2.3}
\end{equation*}
$$

for each $k \in\{1, \ldots, n\}$.
Multiplying (2.3) with $p_{k} \geqslant 0$ and summing over k from 1 to n, we deduce the first inequality in (1.2). The second inequality is obvious.

To prove the sharpness of the constant 2, assume that under the hypothesis of the theorem there exists a constant $c>0$ such that

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+\left(|\alpha|^{2}-r^{2}\right) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \leqslant c \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \tag{2.4}
\end{equation*}
$$

provided $a_{k} / \overline{b_{k}} \in \bar{D}(\alpha, r), k \in\{1, \ldots, n\}$.
Assume that $n=2, p_{1}=p_{2}=1 / 2, b_{1}=b_{2}=1, \alpha=r>0$ and $a_{2}=2 r, a_{1}=0$. Then $\left|a_{2} / b_{2}-\alpha\right|=r,\left|a_{1} / b_{1}-\alpha\right|=r$ showing that the condition (2.1) holds. For these choices, the inequality (2.4) becomes $2 r^{2} \leqslant c r^{2}$, giving $c \geqslant 2$.

The case where the disk $\bar{D}(\alpha, r)$ does not contain the origin, that is, $|\alpha|>r$, provides the following interesting reverse of the Cauchy-Bunyakovsky-Schwarz inequality.

Theorem 2. Let $\mathbf{a}, \mathbf{b}, \mathbf{p}$ as in Theorem 1 and assume that $|\alpha|>r>0$. Then we have the inequality

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} & \leqslant \frac{1}{|\alpha|^{2}-r^{2}}\left\{\operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right]\right\}^{2} \tag{2.5}\\
& \leqslant \frac{|\alpha|^{2}}{|\alpha|^{2}-r^{2}}\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|^{2}
\end{align*}
$$

The constant $c=1$ in the first and second inequality is best possible in the sense that it cannot be replaced by a smaller constant.

Proof: Since $|\alpha|>r$, we may divide (2.2) by $\sqrt{|\alpha|^{2}-r^{2}}>0$ to obtain

$$
\begin{equation*}
\frac{1}{\sqrt{|\alpha|^{2}-r^{2}}} \sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+\sqrt{|\alpha|^{2}-r^{2}} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \leqslant \frac{2}{\sqrt{|\alpha|^{2}-r^{2}}} \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] . \tag{2.6}
\end{equation*}
$$

On the other hand, by the use of the following elementary inequality

$$
\begin{equation*}
\frac{1}{\beta} p+\beta q \geqslant 2 \sqrt{p q} \text { for } \beta>0 \text { and } p, q \geqslant 0 \tag{2.7}
\end{equation*}
$$

we may state that

$$
\begin{align*}
2\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} & \left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2} \tag{2.8}\\
& \leqslant \frac{1}{\sqrt{|\alpha|^{2}-r^{2}}} \sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+\sqrt{|\alpha|^{2}-r^{2}} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}
\end{align*}
$$

Utilising (2.6) and (2.8), we deduce

$$
\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2} \leqslant \frac{1}{\sqrt{|\alpha|^{2}-r^{2}}} \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right]
$$

which is clearly equivalent to the first inequality in (2.6).
The second inequality is obvious.
To prove the sharpness of the constant, assume that (2.5) holds with a constant $c>0$, that is,

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \leqslant \frac{c}{|\alpha|^{2}-r^{2}}\left\{\operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right]\right\}^{2} \tag{2.9}
\end{equation*}
$$

provided $a_{k} / \overline{b_{k}} \in \bar{D}(\alpha, r)$ and $|\alpha|>r$.
For $n=2, b_{2}=b_{1}=1, p_{1}=p_{2}=1 / 2, a_{2}, a_{1} \in \mathbb{R}, \alpha, r>0$ and $\alpha>r$, we get from (2.9) that

$$
\begin{equation*}
\frac{a_{1}^{2}+a_{2}^{2}}{2} \leqslant \frac{c \alpha^{2}}{\alpha^{2}-r^{2}}\left(\frac{a_{1}+a_{2}}{2}\right)^{2} \tag{2.10}
\end{equation*}
$$

If we choose $a_{2}=\alpha+r, a_{1}=\alpha-r$, then $\left|a_{i}-\alpha\right| \leqslant r, i=1,2$ and by (2.10) we deduce

$$
\alpha^{2}+r^{2} \leqslant \frac{c \alpha^{4}}{\alpha^{2}-r^{2}},
$$

which is clearly equivalent to

$$
(c-1) \alpha^{4}+r^{4} \geqslant 0 \text { for } \alpha>r>0 .
$$

If in this inequality we choose $\alpha=1, r=\varepsilon \in(0,1)$ and let $\varepsilon \rightarrow 0+$, then we deduce $c \geqslant 1$.

The following corollary is a natural consequence of the above theorem.

Corollary 1. Under the assumptions of Theorem 2, we have the following additive reverse of the Cauchy-Bunyakovsky-Schwarz inequality

$$
\begin{align*}
0 & \leqslant \sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}-\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|^{2} \tag{2.11}\\
& \leqslant \frac{r^{2}}{|\alpha|^{2}-r^{2}}\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|^{2}
\end{align*}
$$

The constant $c=1$ is best possible in the sense mentioned above.
Remark 1. If in Theorem 1, we assume that $|\alpha|=r$, then we obtain the inequality:

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} & \leqslant 2 \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \tag{2.12}\\
& \leqslant 2|\alpha|\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|
\end{align*}
$$

The constant 2 is sharp in both inequalities.
We also remark that, if $r>|\alpha|$, then (2.2) may be written as

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} & \leqslant\left(r^{2}-|\alpha|^{2}\right) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}+2 \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \tag{2.13}\\
& \leqslant\left(r^{2}-|\alpha|^{2}\right) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}+2|\alpha|\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|
\end{align*}
$$

The following reverse of the Cauchy-Bunyakovsky-Schwarz inequality also holds.
Theorem 3. Let $\mathbf{a}, \mathbf{b}, \mathbf{p}$ be as in Theorem 1 and assume that $\alpha \in \mathbb{K}, \alpha \neq 0$ and $r>0$. Then we have the inequalities

$$
\begin{align*}
0 & \leqslant\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2}-\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right| \tag{2.14}\\
& \leqslant\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2}-\operatorname{Re}\left[\frac{\bar{\alpha}}{|\alpha|}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \\
& \leqslant \frac{1}{2} \cdot \frac{r^{2}}{|\alpha|} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} .
\end{align*}
$$

The constant $1 / 2$ is best possible in the sense mentioned above.
Proof: From Theorem 1, we have

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+|\alpha|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \leqslant 2 \operatorname{Re}\left[\bar{\alpha}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right]+r^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \tag{2.15}
\end{equation*}
$$

Since $\alpha \neq 0$, we can divide (2.15) by $|\alpha|$, getting

$$
\begin{equation*}
\frac{1}{|\alpha|} \sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+|\alpha| \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \leqslant 2 \operatorname{Re}\left[\frac{\bar{\alpha}}{|\alpha|}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right]+\frac{r^{2}}{|\alpha|} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \tag{2.16}
\end{equation*}
$$

Utilising the inequality (2.7), we may state that

$$
\begin{equation*}
2\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2} \leqslant \frac{1}{|\alpha|} \sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}+|\alpha| \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \tag{2.17}
\end{equation*}
$$

Making use of (2.16) and (2.17), we deduce the second inequality in (2.14).
The first inequality in (2.14) is obvious.
To prove the sharpness of the constant $1 / 2$, assume that there exists a $c>0$ such that

$$
\begin{equation*}
\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2}-\operatorname{Re}\left[\frac{\bar{\alpha}}{|\alpha|}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)\right] \leqslant c \cdot \frac{r^{2}}{|\alpha|} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} \tag{2.18}
\end{equation*}
$$

provided $\left|a_{k} / \overline{b_{k}}-\alpha\right| \leqslant r, \alpha \neq 0, r>0$.
If we choose $n=2, \alpha>0, b_{1}=b_{2}=1, a_{1}=\alpha+r, a_{2}=\alpha-r$, then from (2.18) we deduce

$$
\begin{equation*}
\sqrt{r^{2}+\alpha^{2}}-\alpha \leqslant c \frac{r^{2}}{\alpha} \tag{2.19}
\end{equation*}
$$

If we multiply (2.19) with $\sqrt{r^{2}+\alpha^{2}}+\alpha>0$ and then divide it by $r>0$, we deduce

$$
\begin{equation*}
1 \leqslant \frac{\sqrt{r^{2}+\alpha^{2}}+\alpha}{\alpha} \cdot c \tag{2.20}
\end{equation*}
$$

for any $r>0, \alpha>0$.
If in (2.20) we let $r \rightarrow 0+$, then we get $c \geqslant 1 / 2$, and the sharpness of the constant is proved.

3. A Cassels Type Inequality for Complex Numbers

The following result holds.
THEOREM 4. Let $\mathrm{a}=\left(a_{1}, \ldots, a_{n}\right), \mathrm{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{K}^{n}$, where $\mathbb{K}=\mathbb{R}, \mathbb{C}$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$. If $b_{i} \neq 0, i \in\{1, \ldots, n\}$ and there exist the constants $\gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$ and $\Gamma \neq \gamma$, so that either

$$
\begin{equation*}
\left|\frac{a_{k}}{\overline{b_{k}}}-\frac{\gamma+\Gamma}{2}\right| \leqslant \frac{1}{2}|\Gamma-\gamma| \text { for each } k \in\{1, \ldots, n\} \tag{3.1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{Re}\left[\left(\Gamma-\frac{a_{k}}{b_{k}}\right)\left(\frac{\overline{a_{k}}}{b_{k}}-\bar{\gamma}\right)\right] \geqslant 0 \text { for each } k \in\{1, \ldots, n\} \tag{3.2}
\end{equation*}
$$

holds, then we have the inequalities

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} & \leqslant \frac{1}{2 \operatorname{Re}(\Gamma \bar{\gamma})}\left\{\operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \sum_{k=1}^{n} p_{k} a_{k} b_{k}\right]\right\}^{2} \tag{3.3}\\
& \leqslant \frac{|\Gamma+\gamma|^{2}}{\wedge \operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|^{2}
\end{align*}
$$

The constants $1 / 2$ and $1 / 4$ are best possible in (3.3).
Proof: The fact that the relations (3.1) and (3.2) are equivalent follows by the simple fact that for $z, u, U \in \mathbb{C}$, the following inequalities are equivalent

$$
\left|z-\frac{u+U}{2}\right| \leqslant \frac{1}{2}|U-u|
$$

and

$$
\operatorname{Re}[(u-z)(\bar{z}-\bar{u})] \geqslant 0 .
$$

Define $\alpha=(\gamma+\Gamma) / 2$ and $r=|\Gamma-\gamma| / 2$. Then

$$
|\alpha|^{2}-r^{2}=\frac{|\Gamma+\gamma|^{2}}{4}-\frac{|\Gamma-\gamma|^{2}}{4}=\operatorname{Re}(\Gamma \bar{\gamma})>0
$$

Consequently, we may apply Theorem 2, and the inequalities (3.3) are proved.
The sharpness of the constants may be proven in a similar way to that in the proof of Theorem 2, and we omit the details.

The following additive version also holds.
Corollary 2. With the assumptions in Theorem 4, we have

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}-\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|^{2} \leqslant\left.\left.\frac{|\Gamma-\gamma|^{2}}{4 \operatorname{Re}(\Gamma \bar{\gamma})}\right|_{k=1} ^{n} p_{k} a_{k} b_{k}\right|^{2} \tag{3.4}
\end{equation*}
$$

The constant $1 / 4$ is also best possible.
Remark 2. With the above assumptions and if $\operatorname{Re}(\Gamma \bar{\gamma})=0$, then by the use of Remark 1, we may deduce the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} \leqslant \operatorname{Re}\left[(\bar{\gamma}+\bar{\Gamma}) \sum_{k=1}^{n} p_{k} a_{k} b_{k}\right] \leqslant|\Gamma+\gamma|\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right| . \tag{3.5}
\end{equation*}
$$

If $\operatorname{Re}(\Gamma \bar{\gamma})<0$, then, by Remark 1, we also have

$$
\begin{align*}
\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2} & \leqslant-\operatorname{Re}(\Gamma \bar{\gamma}) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}+\operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{k=1}^{n} p_{k} a_{k} b_{k}\right] \tag{3.6}\\
& \leqslant-\operatorname{Re}(\Gamma \bar{\gamma}) \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}+|\Gamma+\gamma|\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right|
\end{align*}
$$

Remark 3. If $a_{k}, b_{k}>0$ and there exist the constants $m, M>0(M>m)$ with

$$
\begin{equation*}
m \leqslant \frac{a_{k}}{b_{k}} \leqslant M \text { for each } k \in\{1, \ldots, n\} \tag{3.7}
\end{equation*}
$$

then, obviously (3.1) holds with $\gamma=m, \Gamma=M$, also $\Gamma \bar{\gamma}=M m>0$ and by (3.3) we deduce

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} a_{k}^{2} \sum_{k=1}^{n} p_{k} b_{k}^{2} \leqslant \frac{(M+m)^{2}}{4 m M}\left(\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right)^{2} \tag{3.8}
\end{equation*}
$$

that is, Cassels' inequality.

4. A Shisha-Mond Type Inequality for Complex Numbers

The following result holds.
ThEOREM 5. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{K}^{n}$, where $\mathbb{K}=\mathbb{R}, \mathbb{C}$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$. If $b_{i} \neq 0, i \in\{1, \ldots, n\}$ and there exist the constants $\gamma, \Gamma \in \mathbb{K}$ such that $\Gamma \neq \gamma,-\gamma$ and either

$$
\begin{equation*}
\left|\frac{a_{k}}{\overline{b_{k}}}-\frac{\gamma+\Gamma}{2}\right| \leqslant \frac{1}{2}|\Gamma-\gamma| \text { for each } k \in\{1, \ldots, n\} \tag{4.1}
\end{equation*}
$$

or: equivalently,

$$
\begin{equation*}
\operatorname{Re}\left[\left(\Gamma-\frac{a_{k}}{b_{k}}\right)\left(\frac{\overline{a_{k}}}{b_{k}}-\bar{\gamma}\right)\right] \geqslant 0 \text { for each } k \in\{1, \ldots, n\} \tag{4.2}
\end{equation*}
$$

holds, then we have the inequalities

$$
\begin{align*}
0 & \leqslant\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2}-\left|\sum_{k=1}^{n} p_{k} a_{k} b_{k}\right| \tag{4.3}\\
& \leqslant\left(\sum_{k=1}^{n} p_{k}\left|a_{k}\right|^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2}\right)^{1 / 2}-\operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{|\Gamma+\gamma|} \sum_{k=1}^{n} p_{k} a_{k} b_{k}\right] \\
& \leqslant \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \sum_{k=1}^{n} p_{k}\left|b_{k}\right|^{2} .
\end{align*}
$$

The constant $1 / 4$ is best possible in the sense that it cannot be replaced by a smaller constant.

Proof: Follows by Theorem 3 on choosing $\alpha=(\gamma+\Gamma) / 2 \neq 0$ and $r=|\Gamma-\gamma| / 2>0$.
The proof for the best constant follows in a similar way to that in the proof of Theorem 3 and we omit the details.

REMARK 4. If $a_{k}, b_{k}>0$ and there exists the constants $m, M>0(M>m)$ with

$$
\begin{equation*}
m \leqslant \frac{a_{k}}{b_{k}} \leqslant M \text { for each } k \in\{1, \ldots, n\} \tag{4.4}
\end{equation*}
$$

then we have the inequality

$$
\begin{align*}
0 & \leqslant\left(\sum_{k=1}^{n} p_{k} a_{k}^{2}\right)^{1 / 2} \cdot\left(\sum_{k=1}^{n} p_{k} b_{k}^{2}\right)^{1 / 2}-\sum_{k=1}^{n} p_{k} a_{k} b_{k} \tag{4.5}\\
& \leqslant \frac{1}{4} \cdot \frac{(M-m)^{2}}{(M+m)} \sum_{k=1}^{n} p_{k} b_{k}^{2}
\end{align*}
$$

The constant $1 / 4$ is best possible. For $p_{k}=1 / n, k \in\{1, \ldots, n\}$, we recapture the result from [3. Theorem 5.21] that has been obtained from a reverse inequality due to Shisha and Mond [8].

5. Further Reverses of the Cauchy-Bunyakovsky-Schwarz Inequality

The following result holds.
THEOREM 6. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{K}^{n}$ and $r>0$ such that for $p_{i} \geqslant 0$ with $\sum_{i=1}^{n} p_{i}=1$

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2} \leqslant r^{2}<\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} . \tag{5.1}
\end{equation*}
$$

Then we have the inequality

$$
\begin{align*}
0 & \leqslant \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}-\left|\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right|^{2} \tag{5.2}\\
& \leqslant \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}-\left[\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)\right]^{2} \\
& \leqslant r^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}
\end{align*}
$$

The constant $c=1$ in front of r^{2} is best possible in the sense that it cannot be replaced by a smaller constant.

Proof: From the first condition in (5.1), we have

$$
\sum_{i=1}^{n} p_{i}\left[\left|b_{i}\right|^{2}-2 \operatorname{Re}\left(b_{i} a_{i}\right)+\left|a_{i}\right|^{2}\right] \leqslant r^{2}
$$

giving

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}+\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2} \leqslant 2 \operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right) \tag{5.3}
\end{equation*}
$$

Since, by the second condition in (5.1) we have

$$
\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}>0
$$

we may divide (5.3) by $\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}}>0$, getting

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}}{\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}}}+\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}} \leqslant \frac{2 \operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)}{\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}}} . \tag{5.4}
\end{equation*}
$$

Utilising the elementary inequality

$$
\begin{equation*}
\frac{p}{\alpha}+q \alpha \geqslant 2 \sqrt{p q} \text { for } p, q \geqslant 0 \text { and } \alpha>0 \tag{5.5}
\end{equation*}
$$

we may write that

$$
\begin{equation*}
2 \sqrt{\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}} \leqslant \frac{\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}}{\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}}}+\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}} \tag{5.6}
\end{equation*}
$$

Combining (5.5) with (5.6) we deduce

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}} \leqslant \frac{\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)}{\sqrt{\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}}} \tag{5.7}
\end{equation*}
$$

Taking the square in (5.7), we obtain

$$
\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}\left(\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2}\right) \leqslant\left[\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)\right]^{2}
$$

giving the third inequality in (5.2).
The other inequalities are obvious.
To prove the sharpness of the constant, assume, under the hypothesis of the theorem, that there exists a constant $c>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}-\left[\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)\right]^{2} \leqslant c r^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \tag{5.8}
\end{equation*}
$$

provided

$$
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2} \leqslant r^{2}<\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}
$$

Let $r=\sqrt{\varepsilon}, \varepsilon \in(0,1), a_{i}, e_{i} \in \mathbb{C}, i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}=\sum_{i=1}^{n} p_{i}\left|e_{i}\right|^{2}=1$ and $\sum_{i=1}^{n} p_{i} a_{i} e_{i}=0$. Put $b_{i}=\overline{a_{i}}+\sqrt{\varepsilon} e_{i}$. Then, obviously

$$
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2}=r^{2}, \quad \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}=1>r
$$

and

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}=\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}+\varepsilon \sum_{i=1}^{n} p_{i}\left|e_{i}\right|^{2}=1+\varepsilon \\
\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)=\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}=1
\end{gathered}
$$

and thus

$$
\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}-\left[\operatorname{Re}\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)\right]^{2}=\varepsilon
$$

Using (5.8), we may write

$$
\varepsilon \leqslant c \varepsilon(1+\varepsilon) \text { for } \varepsilon \in(0,1)
$$

giving $1 \leqslant c(1+\varepsilon)$ for $\varepsilon \in(0,1)$. Making $\varepsilon \rightarrow 0+$, we deduce $c \geqslant 1$.
The following result also holds.
Theorem 7. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{K}^{n}, \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$ and $\gamma, \Gamma \in \mathbb{K}$ such that $\operatorname{Re}(\gamma \bar{\Gamma})>0$ and either

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\left(\Gamma \overline{y_{i}}-x_{i}\right)\left(\overline{x_{i}}-\bar{\gamma} y_{i}\right)\right] \geqslant 0 \tag{5.9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|x_{i}-\frac{\gamma+\Gamma}{2} \cdot \overline{y_{i}}\right|^{2} \leqslant \frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \tag{5.10}
\end{equation*}
$$

Then we have the inequalities

$$
\begin{align*}
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} & \leqslant \frac{1}{4} \cdot \frac{\left\{\operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{i=1}^{n} p_{i} x_{i} y_{i}\right]\right\}^{2}}{\operatorname{Re}(\bar{\Gamma} \bar{\gamma})} \tag{5.11}\\
& \leqslant \frac{1}{4} \cdot \frac{|\Gamma+\gamma|^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})}\left|\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right|^{2}
\end{align*}
$$

The constant $1 / 4$ is best possible in both inequalities.
Proof: Define $b_{i}=x_{i}$ and $a_{i}=(\bar{\Gamma}+\bar{\gamma}) / 2 \cdot y_{i}$ and $r=|\Gamma-\gamma| / 2\left(\sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}$.
Then, by (5.10)

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2} & =\sum_{i=1}^{n} p_{i}\left|x_{i}-\frac{\gamma+\Gamma}{2} \cdot \overline{y_{i}}\right|^{2} \\
& \leqslant \frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}=r^{2}
\end{aligned}
$$

showing that the first condition in (5.1) is satisfied.
We also have

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}-r^{2} & =\sum_{i=1}^{n} p_{i}\left|\frac{\Gamma+\gamma}{2}\right|^{2}\left|y_{i}\right|^{2}-\frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \\
& =\operatorname{Re}(\Gamma \bar{\gamma}) \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}>0
\end{aligned}
$$

since $\operatorname{Re}(\gamma \bar{\Gamma})>0$, and thus the condition in (5.1) is also satisfied.
Using the second inequality in (5.2), one may write

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i}\left|\frac{\Gamma+\gamma}{2}\right|^{2}\left|y_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}- & {\left[\operatorname{Re} \sum_{i=1}^{n} p_{i}\left(\frac{\bar{\Gamma}+\bar{\gamma}}{2}\right) y_{i} x_{i}\right]^{2} } \\
& \leqslant \frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2}
\end{aligned}
$$

giving

$$
\frac{|\Gamma+\gamma|^{2}-|\Gamma-\gamma|^{2}}{4} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \leqslant \frac{1}{4} \operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{i=1}^{n} p_{i} x_{i} y_{i}\right]^{2}
$$

which is clearly equivalent to the first inequality in (5.11).
The second inequality in (5.11) is obvious.
To prove the sharpness of the constant $1 / 4$, assume that the first inequality in (5.11) holds with a constant $C>0$, that is,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \leqslant C \cdot \frac{\left\{\operatorname{Re}\left[(\bar{\Gamma}+\bar{\gamma}) \sum_{i=1}^{n} p_{i} x_{i} y_{i}\right]\right\}^{2}}{\operatorname{Re}(\Gamma \bar{\gamma})} \tag{5.12}
\end{equation*}
$$

provided $\operatorname{Re}(\gamma \bar{\Gamma})>0$ and either (5.9) or (5.10) holds.
Assume that $\Gamma, \gamma>0$ and let $x_{i}=\gamma \bar{y}_{i}$. Then (5.9) holds true and by (5.12) we deduce

$$
\gamma^{2}\left(\sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{2} \leqslant C \frac{(\Gamma+\gamma)^{2} \gamma^{2}\left(\sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{2}}{\Gamma \gamma}
$$

giving

$$
\begin{equation*}
\Gamma \gamma \leqslant C(\Gamma+\gamma)^{2} \text { for any } \Gamma, \gamma>0 \tag{5.13}
\end{equation*}
$$

Let $\varepsilon \in(0,1)$ and choose in (5.13) $\Gamma=1+\varepsilon, \gamma=1-\varepsilon>0$ to get $1-\varepsilon^{2} \leqslant 4 C$ for any $\varepsilon \in(0,1)$. Letting $\varepsilon \rightarrow 0+$, we deduce $C \geqslant 1 / 4$ and the sharpness of the constant is proved.

Finally, we note that the conditions (5.9) and (5.10) are equivalent since in an inner product space $(H,\langle\cdot, \cdot))$ for any vectors $x, z, Z \in H$ one has $\operatorname{Re}\langle Z-x, x-z\rangle \geqslant 0$ if and only if $\|x-(z+Z) / 2\| \leqslant\|Z-z\| / 2$ [1]. We omit the details.

6. More Reverses of the Cauchy-Bunyakovsky-Schwarz Inequality

The following result holds.
Theorem 8. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{K}^{n}$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ $\in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$. If $r>0$ and the following condition is satisfied

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2} \leqslant r^{2} \tag{6.1}
\end{equation*}
$$

then we have the inequalities

$$
\begin{align*}
0 & \leqslant\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right| \tag{6.2}\\
& \leqslant\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} p_{i} \operatorname{Re}\left(a_{i} b_{i}\right)\right| \\
& \leqslant\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left(a_{i} b_{i}\right) \\
& \leqslant \frac{1}{2} r^{2}
\end{align*}
$$

The constant $1 / 2$ is best possible in (6.2) in the sense that it cannot be replaced by a smaller constant.

Proof: The condition (6.1) is clearly equivalent to

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}+\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \leqslant 2 \sum_{i=1}^{n} p_{i} \operatorname{Re}\left(b_{i} a_{i}\right)+r^{2} \tag{6.3}
\end{equation*}
$$

Using the elementary inequality

$$
\begin{equation*}
2\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} \leqslant \sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2}+\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \tag{6.4}
\end{equation*}
$$

and (6.3), we deduce

$$
\begin{equation*}
2\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} \leqslant 2 \sum_{i=1}^{n} p_{i} \operatorname{Re}\left(b_{i} a_{i}\right)+r^{2} \tag{6.5}
\end{equation*}
$$

giving the last inequality in (6.2). The other inequalities are obvious.
To prove the sharpness of the constant $1 / 2$, assume that

$$
\begin{equation*}
0 \leqslant\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left(b_{i} a_{i}\right) \leqslant c r^{2} \tag{6.6}
\end{equation*}
$$

for any $\mathbf{a}, \mathbf{b} \in \mathbb{K}^{n}$ and $r>0$ satisfying (6.1).
Assume that $\mathbf{a}, \mathrm{e} \in H, \mathrm{e}=\left(e_{1}, \ldots, e_{n}\right)$ with $\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}=\sum_{i=1}^{n} p_{i}\left|e_{i}\right|^{2}=1$ and $\sum_{i=1}^{n} p_{i} a_{i} e_{i}=0$. If $r=\sqrt{\varepsilon}, \varepsilon>0$, and if we define $\mathbf{b}=\bar{i}=\overline{\mathbf{a}}+\sqrt{\varepsilon}$ e where $\overline{\mathbf{a}}=\left(\overline{a_{1}}, \ldots, \overline{a_{n}}\right)$ $\stackrel{i=1}{\in} \mathbb{K}^{n}$, then $\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2}=\varepsilon=r^{2}$, showing that the condition (6.1) is satisfied.

On the other hand,

$$
\begin{aligned}
\left(\sum_{i=1}^{n} p_{i}\left|b_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}\right)^{1 / 2} & -\sum_{i=1}^{n} p_{i} \operatorname{Re}\left(b_{i} a_{i}\right) \\
& =\left(\sum_{i=1}^{n} p_{i}\left|\overline{a_{i}}+\sqrt{\varepsilon} e_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\left(\overline{a_{i}}+\sqrt{\varepsilon} e_{i}\right) a_{i}\right] \\
& =\left(\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2}+\varepsilon \sum_{i=1}^{n}\left|e_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i}\left|a_{i}\right|^{2} \\
& =\sqrt{1+\varepsilon}-1 .
\end{aligned}
$$

Utilising (6.6), we conclude that

$$
\begin{equation*}
\sqrt{1+\varepsilon}-1 \leqslant c \varepsilon \text { for any } \varepsilon>0 \tag{6.7}
\end{equation*}
$$

Multiplying (6.7) by $\sqrt{1+\varepsilon}+1>0$ and thus dividing by $\varepsilon>0$, we get

$$
\begin{equation*}
(\sqrt{1+\varepsilon}-1) c \geqslant 1 \text { for any } \varepsilon>0 \tag{6.8}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0+$ in (6.8), we deduce $c \geqslant 1 / 2$, and the theorem is proved.
Finally, the following result also holds.
THEOREM 9. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{K}^{n}, \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{n} p_{i}=1$, and $\gamma, \Gamma \in \mathbb{K}$ with $\Gamma \neq \gamma,-\gamma$, so that either

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\left(\Gamma \overline{y_{i}}-x_{i}\right)\left(\overline{x_{i}}-\bar{\gamma} y_{i}\right)\right] \geqslant 0 \tag{6.9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left|x_{i}-\frac{\gamma+\Gamma}{2} \cdot \overline{y_{i}}\right|^{2} \leqslant \frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \tag{6.10}
\end{equation*}
$$

holds. Then we have the inequalities

$$
\begin{align*}
0 & \leqslant\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} p_{i} x_{i} y_{i}\right| \tag{6.11}\\
& \leqslant\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\left|\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{|\Gamma+\gamma|} x_{i} y_{i}\right]\right|
\end{align*}
$$

$$
\begin{aligned}
& \leqslant\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{|\Gamma+\gamma|} x_{i} y_{i}\right] \\
& \leqslant \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} .
\end{aligned}
$$

The constant $1 / 4$ in the last inequality is best possible.
Proof: Consider $b_{i}=x_{i}, a_{i}=(\bar{\Gamma}+\bar{\gamma}) / 2 \cdot y_{i}, i \in\{1, \ldots, n\}$ and

$$
r:=\frac{1}{2}|\Gamma-\gamma|\left(\sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}
$$

Then, by (6.10), we have

$$
\sum_{i=1}^{n} p_{i}\left|b_{i}-\overline{a_{i}}\right|^{2}=\sum_{i=1}^{n} p_{i}\left|x_{i}-\frac{\gamma+\Gamma}{2} \cdot y_{i}\right|^{2} \leqslant \frac{1}{4}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}=r^{2}
$$

showing that (6.1) is valid.
By the use of the last inequality in (6.2), we have

$$
\begin{aligned}
0 & \leqslant\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|\frac{\Gamma+\gamma}{2}\right|^{2}\left|y_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{2} x_{i} y_{i}\right] \\
& \leqslant \frac{1}{8}|\Gamma-\gamma|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}
\end{aligned}
$$

Dividing by $|\Gamma+\gamma| / 2>0$, we deduce

$$
\begin{aligned}
0 & \leqslant\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{|\Gamma+\gamma|} x_{i} y_{i}\right] \\
& \leqslant \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2},
\end{aligned}
$$

which is the last inequality in (6.11).
The other inequalities are obvious.
To prove the sharpness of the constant $1 / 4$, assume that there exists a constant $c>0$, such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} p_{i}\left|x_{i}\right|^{2} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2}\right)^{1 / 2}-\sum_{i=1}^{n} p_{i} \operatorname{Re}\left[\frac{\bar{\Gamma}+\bar{\gamma}}{|\Gamma+\gamma|} x_{i} y_{i}\right] \leqslant c \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|} \sum_{i=1}^{n} p_{i}\left|y_{i}\right|^{2} \tag{6.12}
\end{equation*}
$$

provided either (6.9) or (6.10) holds.
Let $n=2, \mathbf{y}=(1,1), \mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \mathbf{p}=(1 / 2,1 / 2)$ and $\Gamma, \gamma>0$ with $\Gamma>\gamma$. Then by (6.12) we deduce

$$
\begin{equation*}
\sqrt{2} \sqrt{x_{1}^{2}+x_{2}^{2}}-\left(x_{1}+x_{2}\right) \leqslant 2 c \frac{(\Gamma-\gamma)^{2}}{\Gamma+\gamma} . \tag{6.13}
\end{equation*}
$$

If $x_{1}=\Gamma, x_{2}=\gamma$, then $\left(\Gamma-x_{1}\right)\left(x_{1}-\gamma\right)+\left(\Gamma-x_{2}\right)\left(x_{2}-\gamma\right)=0$, showing that the condition (6.9) is valid for $n=2$ and $\mathbf{p}, \mathbf{x}, \mathbf{y}$ as above. Replacing x_{1} and x_{2} in (6.13), we deduce

$$
\begin{equation*}
\sqrt{2} \sqrt{\Gamma^{2}+\gamma^{2}}-(\Gamma+\gamma) \leqslant 2 c \frac{(\Gamma-\gamma)^{2}}{\Gamma+\gamma} . \tag{6.14}
\end{equation*}
$$

If in (6.14) we choose $\Gamma=1+\varepsilon, \gamma=1-\varepsilon$ with $\varepsilon \in(0,1)$, we deduce

$$
\begin{equation*}
\sqrt{1+\varepsilon^{2}}-1 \leqslant 2 c \varepsilon^{2} . \tag{6.15}
\end{equation*}
$$

Finally, multiplying (6.15) with $\sqrt{1+\varepsilon^{2}}+1>0$ and then dividing by ε^{2}, we deduce

$$
\begin{equation*}
1 \leqslant 2 c\left(\sqrt{1+\varepsilon^{2}}+1\right) \text { for any } \varepsilon>0 . \tag{6.16}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0+$ in (6.16), we get $c \geqslant 1 / 4$, and the sharpness of the constant is proved. $]$ Remark 5. The integral version may be stated in a canonical way. The corresponding inequalities for integrals will be considered in another work devoted to positive linear functionals with complex values that is in preparation.

References

[1] J.B. Diaz and F.T Metcalf, 'Stronger forms of a class of inequalities of G. Pólya-G. Szegö and L.V. Kantorovich', Bull. Amer. Math. Soc. 69 (1963), 415-418.
[2] S.S. Dragomir, 'Some Grüss type inequalities in inner product spaces', JIPAM J. Inequal. Pure Appl. Math. 4 (2003), Article 42. [http://jipam.vu.edu.au/v4n2/032_03.html].
[3] S.S. Dragomir, 'A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities', JIPAM J. Inequal. Pure Appl. Math. 4 (2003), Article 63. [http://jipam.vu.edu.au/v4n3/010_03.htmi].
[4] W. Greub and W. Rheinboldt, 'On a generalisation of an inequality of L.V. Kantorovich', Proc. Amer. Math. Soc. 10 (1959), 407-415.
[5] M.S. Klamkin and R.G. McLenaghan, 'An ellipse inequality', Math. Mag. 50 (1977), 261-263.
[6] D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and new inequalities in analysis (Kluwer Academic Publishers, Dordrecht, Boston and London, 1993).
[7] N. Ozeki, 'On the estimation of the inequality by the maximum', J. College Arts Chiba Univ. 5 (1968), 199-203.
[8] G. Pólya and G. Szegö, 'Aufgaben und Lehrsätze aus der analysis', Berlin 1 (1925), 57 and 213-214.
[9] O. Shisha and B. Mond, 'Bounds on differences of means', in Inequalities (Academic Press, New York, 1967), pp. 293-308.
[10] G.S. Watson, 'Serial correlation in regression analysis I,', Biometrika 42 (1955), 327-342.
School of Computer Science and Mathematics
Victoria University of Technology
PO Box 14428, MCMC 8001
Victoria. Australia
e-mail: sever.dragomir@vu.edu.au
URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

