HERMITIAN CONFIGURATIONS IN ODD-DIMENSIONAL PROJECTIVE GEOMETRIES

BARBU C. KESTENBAND

A *t*-cap in a geometry is a set of t points no three of which are collinear. A (t, k)-cap is a set of t points, no k + 1 of which are collinear.

It has been shown in [3] that any Desarguesian $PG(2n, q^2)$ is a disjoint union of $(q^{2n+1}-1)/(q-1)$ $(q^{2n+1}+1)/(q+1)$ -caps. These caps were obtained as intersections of 2n Hermitian Varieties of a certain kind; the intersection of 2n + 1 such varieties was empty. Furthermore, the caps in question constituted the "large points" of a PG(2n, q), with the incidence relation defined in a natural way.

It seemed at the time that nothing similar could be said about odddimensional projective geometries, if only because $|PG(2n - 1, q)| \nmid |PG(2n - 1, q^2)|$.

Closer investigation shows, however, that in $PG(2n - 1, q^2)$, the intersection of 2n Hermitian Varieties of a suitable kind has cardinality $2|PG(n - 1, q^2)|$; besides, |PG(2n - 1, q)| does divide $|PG(2n - 1, q^2)| - 2|PG(n - 1, q^2)|$.

Thus it turns out that by removing two disjoint subspaces $PG(n-1, q^2)$ from a $PG(2n-1, q^2)$, what is left behaves more or less as a $PG(2n, q^2)$ does, in the sense that it can be partitioned into caps (see the statement of the Theorem below) and it can be also viewed as a PG(2n-1, q) the "large points" of which, however, are not the caps that appear in the theorem (except in the case q = 2), but $((q^{2n} - 1)/(q + 1), q - 1)$ -caps obtained as unions of q - 1 $(q^{2n} - 1)/(q^2 - 1)$ -caps.

The main purpose of the present paper is therefore to prove the following:

THEOREM. Given any two disjoint subspaces $PG(n-1, q^2)$ of a $PG(2n-1, q^2)$, the point-set of the latter is a disjoint union of the former and of $q^{2n} - 1$ $(q^{2n} - 1)/(q^2 - 1)$ -caps.

Many terms and symbols in the present paper are the same as in [3]. We have avoided repetitions whenever we could, with a view, however, to making the present paper as self-contained as possible.

A square matrix $H = (h_{ij})$ over the finite field $GF(q^2)$, q a prime power, is said to be Hermitian if $h_{ij}^q = h_{ji}$ for all i, j [2, p. 1161]. In

Received January 15, 1980.

particular, $h_{ii} \in GF(q)$. If H is Hermitian, so is p(H), where p(x) is any polynomial with coefficients in GF(q).

Given a projective geometry $PG(2n - 1, q^2)$, $n \ge 2$, we denote its points by column vectors:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ x_{2n} \end{pmatrix}$$

We shall use "point" and "vector" interchangeably.

All matrices in this paper will be 2n by 2n, $n \ge 2$.

Further, $A = (a_{ij})$ being a matrix, we denote $A^{(q)} = (a_{ij}^{q})$.

In $PG(2n - 1, q^2)$, the set of points **x** satisfying $\mathbf{x}^T H \mathbf{x}^{(q)} = 0$, where H is a Hermitian matrix, will be called a *Hermitian Variety* (abbreviated HV) and denoted by $\{H\}$. The HV $\{cH\}$ is the same as $\{H\}$, as long as $c \neq 0$. If H is nondegenerate, $\{H\}$ is a nondegenerate HV [**2**, p. 1168].

The points **u** and **v** are said to be *conjugate* with respect to the HV $\{H\}$ if $\mathbf{u}^T H \mathbf{v}^{(q)} = 0$, or, equivalently, $\mathbf{v}^T H \mathbf{u}^{(q)} = 0$ [2, p. 1169]. We will say that **u** is conjugate with a set of points with respect to $\{H\}$, if **u** is conjugate with all points in that set, with respect to $\{H\}$.

It is convenient to denote the number of points of $PG(2n - 1, q^2)$ and of a nondegenerate HV by m_0 and m_1 , respectively:

$$m_0 = (q^{2n} - 1)(q^{2n} + 1)/(q^2 - 1).$$

By [2, p. 1175],

 $m_1 = (q^{2n} - 1)(q^{2n-1} + 1)/(q^2 - 1).$

For convenience's sake again, we will say that the intersection of zero HV's is the whole geometry and the intersection of one HV is, of course, the HV itself.

A collection of HV's will be called dependent or independent according as the corresponding collection of Hermitian matrices is one or the other. By a linear combination of HV's we shall mean the obvious thing.

Let now H' be a Hermitian matrix with characteristic polynomial $p_{2n'}(x)$, irreducible over GF(q). Since H' satisfies $p_{2n'}(H') = \mathbf{0}$, the polynomials p(H') over GF(q) form a shield $GF(q^{2n})$. Let H be a primitive root of this field. H satisfies an irreducible equation $p_{2n}(H) = \mathbf{0}$ and thus $p_{2n}(x)$ is a fortiori its characteristic and minimal polynomial.

Let μ be a characteristic root of H. Then μ^r is a characteristic root of H^r . The smallest power of μ belonging to GF(q) is the $(q^{2n} - 1)/(q - 1)$ -th. Hence the characteristic polynomials of the Hermitian matrices H^i , $i = 1, 2, \ldots, (q^{2n} - q)/(q - 1)$, have no roots in GF(q).

Thus, if we consider the family $\chi = \{H^i : i = 1, 2, ..., (q^{2n} - 1)/(q - 1)\}$, the polynomial $|H^i - \lambda H^j|$ has no roots in GF(q) for any $H^i, H^j \in \chi, i \neq j$.

We denote by $\{\chi\}$ the collection of HV's $\{H^i\}, H^i \in \chi$.

LEMMA 1. Any polynomial of degree divisible by m, with coefficients in GF(q), is reducible over $GF(q^m)$.

Proof. Let f(x), of degree mn, with coefficients in GF(q), be irreducible over GF(q). Then f(x) generates a $GF(q^{mn})$ in which it has mn distinct roots a^{q^i} , $i = 0, 1, \ldots, mn - 1$. All the m polynomials of degree n,

$$p_j(x) = (x - a^{qj})(x - a^{qj+m}) \dots (x - a^{qj+(n-1)m}),$$

$$j = 0, 1, \dots, m-1,$$

have coefficients in the subfield $GF(q^m)$. On the other hand, given two fields $GF(q^m)$, there is always an isomorphism between them which fixes each element of GF(q) and this completes the proof.

If $p(x) = \sum_{i=0}^{n} a_i x^i$, we denote $p^{(q)}(x) = \sum_{i=0}^{n} a_i^q x^i$.

COROLLARY 1. Let f(x) be a polynomial of degree 2n with coefficients in, and irreducible over, GF(q). Then $f(x) = r_n(x)r_n^{(q)}(x)$, where r_n , $r_n^{(q)}$ have degree n, coefficients in $GF(q^2)$, and are irreducible over $GF(q^2)$.

Proof. f(x) is reducible over $GF(q^2)$ by Lemma 1. If $r_n(x)$ is reducible over $GF(q^2)$, then $r_n(x) = s(x)t(x)$ and it follows that

$$r_n^{(q)}(x) = s^{(q)}(x)t^{(q)}(x).$$

But $s(x)s^{(q)}(x)$ will have coefficients in GF(q) and thus f(x) will be reducible over GF(q), a contradiction.

The following lemma is actually Lemma 1 in [3].

LEMMA 2. Given the independent HV's $\{H_1\}, \ldots, \{H_m\}$, consider the collection Γ of all their linear combinations with coefficients in GF(q). Then for any $n \ge m$, the common intersection of any n HV's from Γ , m of which are independent, is the same set of points.

The proof of the next lemma is quite similar to that of Lemma 2 in [3], so we omit it.

LEMMA 3. Any j independent HV's from $\{\chi\}$, $j \leq 2n$, intersect on $m_j = (q^{2n} - 1)(q^{2n-j} + 1)/(q^2 - 1)$ points.

LEMMA 4. For any number $N \ge 2n$, the intersection of N HV's from $\{\chi\}$, exactly 2n of which are independent, consists of two disjoint projective subgeometries $PG(n - 1, q^2)$.

Proof. Since χ , as a vector space, has dimension 2n, what this lemma

actually says is that the common intersection of all HV's in $\{\chi\}$ is a disjoint union of two $PG(n-1, q^2)$. Proceeding to the proof, we first remark that the intersection in question contains

$$m_{2n} = 2(q^{2n} - 1)/(q^2 - 1)$$

points, which is the required number of points.

Let \mathbf{u} be a point in the intersection. Then

$$\mathbf{u}^{T}\mathbf{u}^{(q)} = \mathbf{u}^{T}H\mathbf{u}^{(q)} = \ldots = \mathbf{u}^{T}H^{2n-1}\mathbf{u}^{(q)} = 0.$$

This shows that the vectors $\mathbf{u}^{(q)}$, $H\mathbf{u}^{(q)}$, ..., $H^{2n-1}\mathbf{u}^{(q)}$, cannot form a basis for the 2*n*-dimensional vector space, for if they did, we would have $\mathbf{u}^T\mathbf{w}^{(q)} = 0$ for any point \mathbf{w} of the geometry and thus \mathbf{u} would be the zero vector.

Therefore there exist elements $c_0, c_1, \ldots, c_{2n-1} \in GF(q^2)$ such that

$$(c_0I + c_1H + \ldots + c_{2n-1}H^{2n-1})\mathbf{u}^{(q)} = \mathbf{0},$$

i.e., the matrix

$$p_{2n-1}(H) = c_0 I + c_1 H + \ldots + c_{2n-1} H^{2n-1}$$

is singular and so is

$$p_{2n-1}^{(q)}(H) = c_0^{q}I + c_1^{q}H + \ldots + c_{2n-1}^{q}H^{2n-1}.$$

It follows that the singular matrix $p(H) = p_{2n-1}(H)p_{2n-1}^{(q)}(H)$, of even degree (at most 4n - 2), must be the zero matrix: if it is not, it must be (up to a multiplicative constant) a member of χ , because p(x) has coefficients in GF(q). But no matrix in χ is singular.

Hence $p(H) = p_{2n}(H)s(H)$, where p_{2n} is the minimal and characteristic polynomial of H. By Corollary 1, $p_{2n}(H) = r_n(H)r_n^{(q)}(H)$, r_n , $r_n^{(q)}$ irreducible over $GF(q^2)$; then s(H) has even degree (at most 2n - 2) and coefficients in GF(q). By Lemma 1,

$$s(H) = s_{n-1}(H)s_{n-1}(H)$$
.

Therefore:

(1)
$$p(H) = [r_n(H)r_n^{(q)}(H)][s_{n-1}(H)s_{n-1}^{(q)}(H)].$$

This implies that $p_{2n-1}(H)$ is a product of two factors, one from each square bracket of (1). On the other hand, $s_{n-1}(H)$ (and $s_{n-1}^{(q)}(H)$ as well) are not singular: s(x) being of degree less than 2n, s(H) cannot be the zero matrix, thus $s(H) \in \chi$ (up to a multiplicative constant) and it is not singular.

This enables us to conclude that $p_{2n-1}(H)\mathbf{u}^{(q)} = \mathbf{0}$ implies

$$r_n(H)\mathbf{u}^{(q)} = \mathbf{0}$$
 or $r_n^{(q)}(H)\mathbf{u}^{(q)} = \mathbf{0}$.

We have thus far shown that the intersection of 2n independent HV's from $\{\chi\}$ must belong to the union of the null spaces of $r_n(H)$ and $r_n^{(q)}(H)$.

To complete the proof, we will now show that the null space of each of $r_n(H)$ and $r_n^{(q)}(H)$ is a $PG(n-1, q^2)$. To this end it suffices to prove that $r_n(H)$ and $r_n^{(q)}(H)$ have nullity n.

We will denote the rank and nullity of a matrix A by $\rho(A)$ and $\nu(A)$. We have $\rho(r_n(H)) = \rho(r_n^{(q)}(H))$ and $\nu(r_n(H)) = \nu(r_n^{(q)}(H))$.

In the sequel, θ will always stand for the number $(q^{2n} - 1)/(q^2 - 1)$. Consider the subfield $GF(q^2)$ of our $GF(q^{2n})$, consisting of the zero matrix and $H^{i\theta}$, $i = 1, 2, \ldots, q^2 - 1$ (we remind the reader that H is a primitive root of $GF(q^{2n})$). H^{θ} is a primitive root of this $GF(q^2)$. As such, H^{θ} satisfies $g(H^{\theta}) = \mathbf{0}$, where g, of degree two in H^{θ} , is the irreducible (over GF(q)) minimal polynomial of H^{θ} .

Let $g(H^{\theta}) = (H^{\theta} - aI)(H^{\theta} - a^{q}I)$, $a, a^{q} \in GF(q^{2}) - GF(q)$. H^{θ} is a linear combination of I, H, \ldots, H^{2n-1} . Thus

 $g(H^{\theta}) = t_{2n-1}(H)t_{2n-1}^{(q)}(H) = \mathbf{0},$

where $t_{2n-1}(H) = H^{\theta} - aI$, $t_{2n-1}^{(q)}(H) = H^{\theta} - a^{q}I$. Therefore

nereiore

$$r_n(H)r_n^{(q)}(H)|t_{2n-1}(H)t_{2n-1}^{(q)}(H).$$

But $r_n(H)$ and $r_n^{(q)}(H)$ are irreducible over $GF(q^2)$, hence $r_n(H)|t_{2n-1}(H)$, say, and $r_n^{(q)}(H)|t_{2n-1}^{(q)}(H)$.

Thus $r_n(H)\mathbf{u}^{(q)} = \mathbf{0}$ implies $t_{2n-1}(H)\mathbf{u}^{(q)} = \mathbf{0}$, i.e., $H^{\theta}\mathbf{u}^{(q)} = a\mathbf{u}^{(q)}$. Likewise, $r_n^{(q)}(H)\mathbf{v}^{(q)} = \mathbf{0}$ implies $H^{\theta}\mathbf{v}^{(q)} = a^q\mathbf{v}^{(q)}$ and this shows that $\mathbf{u} \neq c\mathbf{v}$. Thus the null spaces of $r_n(H)$ and $r_n^{(q)}(H)$ share no common vectors, which implies

$$\nu(r_n(H)) = \nu(r_n^{(q)}(H)) \leq n.$$

On the other hand, by Sylvester's law of nullity [1, p. 221], we have

$$\nu(r_n(H)) + \nu(r_n^{(q)}(H)) \ge 2n$$

and we conclude that

$$\nu(r_n(H)) = \nu(r_n^{(q)}(H)) = \rho(r_n(H)) = \rho(r_n^{(q)}(H)) = n$$

and the proof is finished.

We shall henceforth denote by Π_1 and Π_2 the two disjoint $PG(n-1, q^2)$ that appear in the above lemma.

 $\mathbf{u} \in \Pi_1 \Leftrightarrow r_n(H)\mathbf{u}^{(q)} = \mathbf{0} \text{ and } \mathbf{v} \in \Pi_2 \Leftrightarrow r_n^{(q)}(H)\mathbf{v}^{(q)} = \mathbf{0}.$

Let $\mathbf{u} \in \Pi_1$. Then

$$r_n(H)(H^T\mathbf{u})^{(q)} = r_n(H)H\mathbf{u}^{(q)} = Hr_n(H)\mathbf{u}^{(q)} = \mathbf{0},$$

i.e., $H^T \mathbf{u} \in \Pi_1$ and therefore $H^{T^i} \mathbf{u} \in \Pi_1$ for any integer *i*. But we have seen before that:

(2) $H^{\theta}\mathbf{u}^{(q)} = a\mathbf{u}^{(q)}, \text{ i.e., } H^{T^{\theta}}\mathbf{u} = a^{q}\mathbf{u}$

and this shows that Π_1 consists of the θ distinct points $H^{Ti}\mathbf{u}$, $i = 0, 1, \ldots, \theta - 1$.

Likewise, if $\mathbf{v} \in \Pi_2$, we have:

(3)
$$H^{\theta}\mathbf{v}^{(q)} = a^{q}\mathbf{v}^{(q)}$$
 and $H^{T^{\theta}}\mathbf{v} = a\mathbf{v}$

hence Π_2 consists of the θ distinct points $H^{Ti}\mathbf{v}$, $i = 0, 1, \ldots, \theta - 1$.

At this point we need the following fact which becomes crucial in the sequel: the line joining two points on a HV $\{H\}$ is completely contained in $\{H\}$ if and only if the two points are conjugate with respect to $\{H\}$ [2, p. 1176].

LEMMA 5. Given a Hermitian matrix $H^{j} \in \chi$, there is a one to one correspondence between the points of Π_{1} (or Π_{2}) and the (n-2)-dimensional subspaces of Π_{2} (or Π_{1}), in which each such subspace is conjugate with the corresponding point, with respect to all HV's $\{H^{j+k\theta}\}, k = 1, 2, \ldots, q^{2} - 1$.

Proof. First, if $\mathbf{u} \in \Pi_1$ and $\mathbf{v} \in \Pi_2$ are conjugate with respect to $\{H^j\}$, they are also conjugate with respect to $\{H^{j+k\theta}\}$ for any k, because of (2) and (3).

Second, all points in Π_2 that are conjugate with $\mathbf{u} \in \Pi_1$ with respect to $\{H^i\}$ form a subspace, call it Σ , of Π_2 . Furthermore, $\Sigma \neq \Pi_2$: if $\mathbf{u}^T H^j \mathbf{v}^{(q)} = \mathbf{0}$ for any $\mathbf{v} \in \Pi_2$, then the $PG(n, q^2)$ containing \mathbf{u} and Π_2 is completely included in $\{H^i\}$. But $[\mathbf{2}, p. 1176]$ a nondegenerate HV in a $PG(2n - 1, q^2)$ cannot contain subspaces of higher dimension than n - 1.

On the other hand, any line in Π_2 contains at least one point that is conjugate with \mathbf{u} : if $\mathbf{v}, \mathbf{w} \in \Pi_2$ with $\mathbf{u}^T H^j \mathbf{v}^{(q)} = r \neq 0, \mathbf{u}^T H^j \mathbf{w}^{(q)} = s \neq 0$, then $\mathbf{u}^T H^j \mathbf{x}^{(q)} = 0$, where $\mathbf{x} = \mathbf{v} - (r/s)^q \mathbf{w}$.

Now, since the only proper subspaces of Π_2 that intersect all its lines are the subgeometries $PG(n-2, q^2)$, we conclude that Σ is such a subgeometry. The point **u** cannot be conjugate with any other subgeometry of Π_2 , or it would be conjugate with the whole of Π_2 , a contradiction.

Assume now that $\mathbf{y} \in \Pi_1$ is also conjugate with Σ , with respect to $\{H^j\}$; \mathbf{y} and Σ determine a $PG(n-1, q^2)$, denote it Σ' . The *n*-dimensional geometry determined by \mathbf{u} and Σ' is contained in $\{H^j\}$, a contradiction, and this completes the proof.

Given $\mathbf{u} \in \Pi_1$ and $H^j \in \chi$, the conjugate subspace of \mathbf{u} consists precisely of those points $\mathbf{v} \in \Pi_2$ that satisfy $\mathbf{v}^T H^j \mathbf{u}^{(q)} = 0$. Thus, if \mathbf{u} is conjugate with \mathbf{v} with respect to $\{H^j\}$, then $H^{T^i}\mathbf{u}$ is conjugate with $H^{T^{\theta-i}}\mathbf{v}$, with respect to the same $\{H^j\}$. Therefore, given any (n-2)-dimensional subspace of Π_2 , say Σ , the subspaces $H^{T^i}\Sigma$, $i = 0, 1, \ldots, \theta - 1$, are all the (n-2)-dimensional subspaces of Π_2 . Here $H^{T^i}\Sigma$ means multiplication of each point of Σ by H^{T^i} . We next note that given any point $\mathbf{u} \in \Pi_1$ and any (n-2)-dimensional subspace Σ of Π_2 , there is a unique number j modulo θ such that \mathbf{u} is conjugate with Σ , with respect to all HV's $\{H^{j+k\theta}\}$, $k = 1, 2, \ldots, q^2 - 1$: \mathbf{u} is conjugate with respect to $\{I\}$, with an (n-2)-dimensional subspace $\hat{\Sigma}$. But $\Sigma = H^{Ti}\hat{\Sigma}$ for some fixed $i \in \{0, 1, \ldots, \theta - 1\}$, hence the sought j is simply $-i \pmod{\theta}$.

At this point, in order to establish Lemma 6, we need James Singer's Theorem [4]. Let x be a primitive root of a $GF(q^n)$. Then $x^i = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$, $a_i \in GF(q)$. There are $q^n - 1$ different powers x^i , or, if we do not distinguish between x^i and cx^i , $c \in GF(q)$, there are $(q^n - 1)/(q - 1)$ different powers x^i .

Consider the $GF(q^n)$ as an *n*-dimensional vector space *V*, the vectors being $\mathbf{v} = (a_0, a_1, \ldots, a_{n-1})$; again, we do not distinguish between \mathbf{v} and $c\mathbf{v}, c \in GF(q)$. We now set up a one to one correspondence between the set of numbers $\{1, 2, \ldots, (q^n - 1)/(q - 1)\}$ and the vectors \mathbf{v} , as follows: $i \leftrightarrow \mathbf{v}$ if the coefficients of 1, x, \ldots, x^{n-1} in the expression of x^i are the components of \mathbf{v} .

What Singer's Theorem essentially says is the following: consider any (n-1)-dimensional subspace of V, consisting, of course, of $(q^{n-1}-1)/(q-1)$ vectors. The $(q^{n-1}-1)/(q-1)$ numbers i that correspond to these vectors form a (v, k, λ) -difference set, where

$$v = (q^n - 1)/(q - 1), \quad k = (q^{n-1} - 1)/(q - 1),$$

 $\lambda = (q^{n-2} - 1)/(q - 1).$

Now we are prepared for the next lemma, which together with Lemma 2 shows that the intersection of any 2n - 1 independent HV's from $\{\chi\}$ is the same as the intersection of a special family of 2n - 1 independent HV's, and this simplifies the problem, as will be seen later (Lemma 8 and Corollary 2).

LEMMA 6. Given any 2n - 1 independent Hermitian matrices in χ , the vector space they span has a basis

$$\{H^{i_0}, H^{i_1}, H^{i_1+\theta}, \ldots, H^{i_{n-1}}, H^{i_{n-1}+\theta}\}, i_r \neq i_s \mod \theta \text{ for } r \neq s.$$

Proof. By Singer's Theorem, the exponents of H in the $(q^{2n-1} - 1)/(q-1)$ linear combinations over GF(q), of any 2n - 1 independent Hermitian matrices in χ , form a (v, k, λ) -difference set D, where

$$v = (q^{2n} - 1)/(q - 1), \quad k = (q^{2n-1} - 1)/(q - 1),$$

 $\lambda = (q^{2n-2} - 1)/(q - 1).$

In the difference set D, the difference θ appears λ times, just like any other. Let $i, i + \theta \in D$. This implies that $i + j\theta \in D$ for all $j = 0, 1, \ldots, q$, because given $H^i, H^{i+\theta} \in \chi$, the exponents of all their linear

combinations must be in D, but all their linear combinations are of form $cH^{i+j\theta}$, $c \in GF(q)$, this last fact being so because H^{θ} is a primitive root of the subfield $GF(q^2)$. These q + 1 numbers $i + j\theta$ account for q + 1 differences θ . Therefore there must be in D, $\lambda/(q + 1) = (q^{2n-2} - 1)/(q^2 - 1)$ such cycles of length q + 1.

The number $(q^{2n-2}-1)/(q^2-1)$ will be denoted τ in the sequel.

We have thus shown that all the λ differences θ appear within the following subsets of *D*:

$$D_r = \{i_r, i_r + \theta, \ldots, i_r + q\theta\}, \quad r = 1, 2, \ldots, \tau.$$

Let $H_1 = H^{i_s+j_\theta}$, $H_2 = H^{i_t+k_\theta}$. The exponents of H in $aH_1 + bH_2$ and in $aH^{\theta}H_1 + bH^{\theta}H_2$ differ by θ and this shows that the subset $\chi' \subset \chi$ defined as

$$\chi' = \left\{ H^j : j \in igcup_{r=1}^{ au} D_r
ight\}$$

is a subspace of χ ; since its cardinality is $(q^{2n-2}-1)/(q-1)$, χ' must have dimension 2n-2.

We now want to prove that after a possible renumbering of the D_r 's, the matrices H^{i_1} , $H^{i_1+\theta}$, ..., $H^{i_{n-1}}$, $H^{i_{n-1+\theta}}$ constitute a basis for χ' . To this end, if we regard the $GF(q^{2n})$ as a $GF((q^2)^n)$, we can express any $H^j \in \chi'$ as a linear combination of I, H, ..., H^{n-1} , with coefficients in $GF(q^2)$, these coefficients being matrices of form $aI + bH^{\theta}$, $a, b \in GF(q)$. In this setting no distinction is being made between H^{i_r} and $H^{i_r+j\theta}$. Thus χ' reduces to the vector space (over $GF(q^2)$) $\chi'' = \{H^{i_1}, H^{i_2}, \ldots, H^{i_r}\}$. Because $\tau = (q^{2n-2} - 1)/(q^2 - 1)$, χ'' has dimension n - 1 (over $GF(q^2)$). Let, without loss of generality, a basis of χ'' be $\{H^{i_1}, \ldots, H^{i_{n-1}}\}$. Now $\{H^{i_1}, H^{i_1+\theta}, \ldots, H^{i_{n-1}}, H^{i_{n-1}+\theta}\}$ is a basis of χ' , for if not, one could find n - 1 matrices of the form

$$C_s = a_s I + b_s H^{\theta}, \ \ s = 1, 2, \dots, n-1, a_s, b_s \in GF(q), C_s \in GF(q^2),$$

such that

$$\sum_{s=1}^{n-1} C_s H^{i_s} = \mathbf{0}$$

and this is not possible.

Extend now this basis of χ' to a basis of χ to complete the proof.

LEMMA 7. Given two disjoint subgeometries $PG(n-1, q^2)$ of a $PG(2n-1, q^2)$, the lines that intersect both subgeometries contain among themselves all the points of the geometry and no two such lines meet outside the two subgeometries.

Proof. Let the two subgeometries be $x_1 = \ldots = x_n = 0$ and $x_{n+1} =$

 $\dots = x_{2n} = 0$. Any point of $PG(2n - 1, q^2)$ is evidently contained in a line that intersects both subgeometries.

There are $(q^{2n} - 1)^2/(q^2 - 1)^2$ such lines, hence containing $(q^{2n} - 1)^2/(q^2 - 1)$ points outside the two subgeometries. But this is the total number of points outside said subgeometries and as such no two lines intersect outside them.

We shall denote by Λ the collection of lines that intersect Π_1 and Π_2 :

 $\Lambda = \{L: |L \cap \Pi_1| = |L \cap \Pi_2| = 1\}.$

LEMMA 8. Let $P_k = \{H^{i_1}\} \cap \{H^{i_1+\theta}\} \cap \ldots \cap \{H^{i_k}\} \cap \{H^{i_k+\theta}\}$, the 2k HV's being independent, $1 \leq k \leq n-1$. Then P_k is a union of θ (n-k)-dimensional subspaces that are mutually disjoint outside $\Pi_1 \cup \Pi_2$.

Proof. By Lemma 3, P_k contains $|P_k| = m_{2k} = (q^{2n} - 1)(q^{2n-2k} + 1)/(q^2 - 1)$ points.

Let $\mathbf{u} \in \Pi_1$. By Lemma 5, one finds k (n-2)-dimensional subspaces of Π_2 , namely $\Sigma_1, \ldots, \Sigma_k$, such that \mathbf{u} is conjugate with Σ_r , with respect to $\{H^{i_r}\}$ and $\{H^{i_r+\theta}\}$, $r = 1, \ldots, k$.

 Σ_r consists precisely of those points $\mathbf{v} \in \Pi_2$ that satisfy

 $\mathbf{v}^T H^{i_r} \mathbf{u}^{(q)} = \mathbf{0}.$

Then $\bigcap_{\tau=1}^{k} \Sigma_{\tau}$ has dimension at least n - k - 1, because a homogeneous system of n + k equations with 2n unknowns has at least n - k nontrivial solutions.

Let $\tilde{\Sigma} \subseteq \bigcap_{r=1}^{k} \Sigma_r$ have dimension n - k - 1. For any $\mathbf{v} \in \tilde{\Sigma}$, the line $[\mathbf{u}, \mathbf{v}]$ is contained in all HV's $\{H^{i_r}\}, \{H^{i_r+\theta}\}, r = 1, \ldots, k$, and hence so are all lines $[H^{T^i}\mathbf{u}, H^{T^{\theta-i}}\mathbf{v}], i = 0, 1, \ldots, \theta - 1$. Thus P_k contains θ (n - k)-dimensional subspaces, which are also mutually disjoint outside $\Pi_1 \cup \Pi_2$, by Lemma 7. A straightforward counting argument shows that these θ subspaces contain m_{2k} points among themselves, i.e., P_k consists precisely of these subspaces and $\tilde{\Sigma} = \bigcap_{r=1}^{k} \Sigma_r$.

COROLLARY 2. Let $\{H^{i_1}\}$, $\{H^{i_1+\theta}\}$, ..., $\{H^{i_n-1}\}$, $\{H^{i_n-1+\theta}\}$ be independent HV's from $\{\chi\}$. Their intersection consists of θ mutually disjoint lines

$$[H^{Ti}\mathbf{u}, H^{T^{\theta}-i}\mathbf{v}] \in \Lambda, H^{Ti}\mathbf{u} \in \Pi_1, H^{T^{\theta}-i}\mathbf{v} \in \Pi_2, i = 0, 1, \dots, \theta-1.$$

LEMMA 9. The intersection of any 2n - 1 independent HV's from $\{\chi\}$ consists of θ mutually disjoint sets of q + 1 collinear points.

Proof. By Lemmas 2 and 6 and Corollary 2, the intersection in question is actually the intersection of $\{H^{i_0}\}$ and θ mutually disjoint lines $[H^{T^i}\mathbf{u}, H^{T^{\theta-i}}\mathbf{v}], i = 0, 1, \ldots, \theta - 1.$

We will show that each of these lines intersects $\{H^{i_0}\}$ at q-1 points outside $\Pi_1 \cup \Pi_2$: the equation

(4)
$$(\mathbf{u} + cH^{T^{\theta}}\mathbf{v})^{T}H^{i_{0}}(\mathbf{u} + cH^{T^{\theta}}\mathbf{v})^{(q)} = 0$$

reduces, by (2) and (3), to

$$c(a\mathbf{v}^T H^{i_0}\mathbf{u}^{(q)}) + c^q(a\mathbf{v}^T H^{i_0}\mathbf{u}^{(q)})^q = 0,$$

which yields q - 1 distinct nonzero values for *c*. Furthermore, (4) is equivalent to

$$(H^{T^{i}}\mathbf{u} + cH^{T^{\theta-i}}\mathbf{v})^{T}H^{i_{0}}(H^{T^{i}}\mathbf{u} + cH^{T^{\theta-i}}\mathbf{v})^{(q)} = 0, \text{ for any } i.$$

Thus the intersection of any 2n - 1 independent HV's from $\{\chi\}$ is made up of θ sets of q + 1 collinear points:

$$\{H^{Ti}\mathbf{u}, H^{T^{\theta}-i}\mathbf{v}, H^{Ti}\mathbf{u} + c_1H^{T^{\theta}-i}\mathbf{v}, \dots, H^{Ti}\mathbf{u} + c_{q-1}H^{T^{\theta}-i}\mathbf{v}\},\$$

$$i = 0, 1, \dots, \theta - 1.$$

Our next goal is to demonstrate that the intersection of 2n - 1 independent HV's from $\{\chi\}$ does not possess, outside $\Pi_1 \cup \Pi_2$, any three collinear points, except those that appear in Lemma 9. To this end we need several more lemmas.

LEMMA 10. A line L such that $|L \cap (\Pi_1 \cup \Pi_2)| = 1$ cannot have more than two points in common with the set

$$P_{n-1} = \{H^{i_1}\} \cap \{H^{i_1+\theta}\} \cap \ldots \cap \{H^{i_{n-1}}\} \cap \{H^{i_{n-1}+\theta}\},\$$

where the 2n - 2 HV's are independent.

Proof. Let $L \cap (\Pi_1 \cup \Pi_2) = \{\mathbf{u}\}, \mathbf{u} \in \Pi_1$, and let $\mathbf{w} \in L \cap P_{n-1}$, $\mathbf{w} \neq \mathbf{u}$. By Corollary 2 one can find two points $\mathbf{x} \in \Pi_1$, $\mathbf{y} \in \Pi_2$, $\mathbf{x} \neq \mathbf{u}$, such that $\mathbf{w}, \mathbf{x}, \mathbf{y}$, are collinear. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{q^2-1}$ be the remaining points on the line $[\mathbf{u}, \mathbf{x}]$. Then

 $L \cap [\mathbf{y}, \mathbf{x}_j] = \{\mathbf{t}_j\}, \ \mathbf{t}_j \neq \mathbf{t}_k \text{ for } j \neq k.$

The points $\mathbf{t}_j \notin P_{n-1}$ for any *j*, by Corollary 2 and Lemma 7.

LEMMA 11. If a line $L \notin \Lambda$, $L \not\subset \Pi_1$, Π_2 , is completely contained in 2n - 2 independent HV's from $\{\chi\}$, then L intersects Π_1 or Π_2 .

Proof. Let $\{H^{k_1}\}, \ldots, \{H^{k_{2n}}\} \in \{\chi\}$ be independent (over GF(q)). Let $A = \bigcap_{i=1}^{2n-2} \{H^{k_i}\}$ contain a full line $L, L \cap \Pi_1 = L \cap \Pi_2 = \emptyset$. We will show that this assumption leads to a contradiction.

A is the union of the following q + 1 sets:

$$A_{-1} = A \cap \{H^{k_{2n-1}}\}, A_{\lambda} = A \cap \{H^{k_{2n}} - \lambda H^{k_{2n-1}}\},$$

 λ ranging through GF(q). We have $A_i \cap A_j = \prod_1 \bigcup \prod_2$ for any $i \neq j$.

By [2, p. 1171], a line intersects a HV in q + 1 points, in one point, or lies entirely in it. Thus L cannot be contained in any one A_i . Hence L must intersect q - 1 of the A_i 's at q + 1 points each and the remaining two, say A_{-1} and A_0 , at one point each. Let those two points be **y** and **z**, respectively; they are, of course, conjugate with respect to $\{H^{k_i}\}, i = 1, 2, \ldots, 2n - 2$.

We shall now prove by contradiction that \mathbf{y} and \mathbf{z} are also conjugate with respect to $\{H^{k_{2n}-1}\}$ and $\{H^{k_{2n}}\}$: if they are not, we can find elements $a \in GF(q^2)$ such that the points $a\mathbf{z} + \mathbf{y} \in \{H^{k_{2n}}\}$. To achieve this, we have to solve

$$(a\mathbf{z} + \mathbf{y})^T H^{k_{2n}}(a\mathbf{z} + \mathbf{y})^{(q)} = 0.$$

Because $\mathbf{z} \in \{H^{k_{2n}}\}$, this equation reduces to

 $x + x^q = -\mathbf{y}^T H^{k_{2n}} \mathbf{y}^{(q)} \neq 0,$

where *x* stands for $a\mathbf{z}^T H^{k_{2n}}\mathbf{y}^{(q)}$. The latter equation has *q* distinct solutions, all nonzero, so that unless

$$\mathbf{z}^T H^{k_{2n}} \mathbf{y}^{(q)} = \mathbf{0},$$

L will intersect $\{H^{k_{2n}}\}$ at q + 1 points, the sought contradiction.

Likewise we obtain

$$\mathbf{z}^T H^{k_{2n-1}} \mathbf{y}^{(q)} = \mathbf{0}$$

and therefore **y** and **z** are conjugate with respect to all $\{H^{k_i}\}$, i = 1, 2, ..., 2n.

It follows that the 2n vectors $H^{k_i}\mathbf{y}^{(q)}$ cannot form a basis of the 2ndimensional vector space, for if they did, we would have $\mathbf{z}^T\mathbf{w}^{(q)} = 0$ for any point **w** of the geometry, so that **z** would be the zero vector.

Hence there exist 2n elements $c_i \in GF(q^2)$, not all zero, such that

$$\sum_{i=1}^{2n} c_i H^{k_i} \mathbf{y}^{(q)} = \mathbf{0},$$

i.e., the matrix

$$M(H) = \sum_{i=1}^{2n} c_i H^{k_i}$$

is singular and so is $M^{(q)}(H)$. Also, $M \neq \mathbf{0}$. As a polynomial in H, M(H) has degree at most 2n - 1. The matrix $M(H)M^{(q)}(H)$ is singular and has coefficients in GF(q), thus

 $M(H)M^{(q)}(H) = \mathbf{0}$

and this enables us to write

$$M(H)M^{(q)}(H) = r_n(H)r_n^{(q)}(H),$$

which implies, say:

(5) $M(H) = r_n(H)\alpha(H).$

 $\alpha(H)$ has degree at most n - 1, therefore $\alpha(H)\alpha^{(q)}(H)$, with coefficients in GF(q), has degree at most 2n - 2 and thus $\alpha(H)$ is not singular. Now (5) shows that $M(H)\mathbf{y}^{(q)} = \mathbf{0}$ implies $r_n(H)\mathbf{y}^{(q)} = \mathbf{0}$, i.e., $\mathbf{y} \in \Pi_1$ and this final contradiction concludes the proof.

LEMMA 12. A line $L \notin \Lambda$, $L \not\subset \Pi_1$, Π_2 , cannot have more than two points in common with the intersection P of 2n - 1 independent HV's from $\{\chi\}$.

Proof. By Lemmas 6 and 10, we need consider only those lines that do not intersect $\Pi_1 \cup \Pi_2$. Let L be such a line and let $|L \cap P| = y \ge 2$.

By Lemma 11, no intersection of 2n - 2 independent HV's from $\{\chi\}$ can contain *L*. As a consequence, there must be at least two HV's among the 2n - 1 given ones, say $\{H^{i_1}\}$ and $\{H^{i_2}\}$, none of whose linear combinations contains *L*.

L must have $z \ge y$ points in common with $\{H^{i_1}\} \cap \{H^{i_2}\}$ and exactly q + 1 common points with each of $\{H^{i_1}\}$, $\{H^{i_2} - \lambda H^{i_1}\}$, $\lambda \in GF(q)$. These q + 1 HV's span the geometry on the other hand. Thus we obtain

$$(q+1)(q+1-z) + z = q^2 + 1,$$

yielding z = 2, hence y = 2.

Proof of the theorem. By Lemma 9, the intersection P of any 2n - 1 independent HV's from $\{\chi\}$ can be written as a disjoint union:

$$P = \prod_1 \bigcup \prod_2 \bigcup_{k=1}^{q-1} \Omega_k,$$

where

$$\Omega_k = \{ H^{T^i} \mathbf{u} + c_k H^{T^{\theta-i}} \mathbf{v} \colon i = 0, 1, \ldots, \theta - 1 \}.$$

The Ω_k 's are θ -caps, by Lemma 12, completing the proof.

On the other hand, $\bigcup_{k=1}^{q-1} \Omega_k$, for $q \neq 2$, is a $((q^{2n} - 1)/(q + 1), q - 1)$ -cap, so that we also have

COROLLARY 3. Given any two disjoint subspaces $PG(n-1, q^2)$ of a $PG(2n-1, q^2)$, $q \neq 2$, the point-set of the latter is a disjoint union of the former and of $(q^{2n}-1)/(q-1)$ $((q^{2n}-1)/(q+1), q-1)$ -caps.

As in [3], we introduce the following terminology: the HV's $\{H^i\} \in \{\chi\}$ will be called *large hyperplanes* and in general, the intersection of 2n - m - 1 independent HV's from $\{\chi\}$, $0 \le m \le 2n - 1$, will be an *m*-dimensional *large subspace*. The large points and the large lines form a PG(2n - 1, q), exactly as in [3].

The collineation \mathscr{C} of $PG(2n-1, q^2)$ that maps each point **x** onto $H^{Ti}\mathbf{x}$ will map each HV $\{H^j\}$ onto the HV $\{H^{j-2i}\}$, as can be readily checked. \mathscr{C} maps Π_1 and Π_2 onto themselves, of course.

Again as in [3], one shows that \mathscr{C} maps all large subspaces of PG(2n-1,q) onto large subspaces and thus we conclude that \mathscr{C} is a collineation of the PG(2n-1,q) as well.

Furthermore, it is a straightforward verification that \mathscr{C} maps the caps Ω_k that appear in the proof of the theorem, onto caps of the same type.

References

- 1. G. Birkhoff and S. MacLane, A survey of modern algebra (MacMillan, Third Ed., 1966).
- **2.** R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N, q^2)$, Can. J. Math. 18 (1966), 1161–1182.
- **3.** B. C. Kestenband, *Projective geometries that are disjoint unions of caps*, Can. J. Math. (to appear).
- 4. James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.

New York Institute of Technology, Old Westbury, New York