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Abstract We construct a Bousfield–Kan (unstable Adams) spectral sequence based on an arbitrary
(and not necessarily connective) ring spectrum E with unit and which is related to the homotopy groups
of a certain unstable E completion X∧

E of a space X. For E an S-algebra this completion agrees with
that of the first author and Thompson. We also establish in detail the Hopf algebra structure of the
unstable cooperations (the coalgebraic module) E∗(E∗) for an arbitrary Landweber exact spectrum E,
extending work of the second author with Hopkins and with Turner and giving basis-free descriptions of
the modules of primitives and indecomposables. Taken together, these results enable us to give a simple
description of the E2-page of the E-theory Bousfield–Kan spectral sequence when E is any Landweber
exact ring spectrum with unit. This extends work of the first author and others and gives a tractable
unstable Adams spectral sequence based on a vn-periodic theory for all n.
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1. Introduction

An unstable Adams spectral sequence computes homotopy-theoretic information for a
space X from homological information. More specifically, such a spectral sequence based
on a homology theory E∗(−) seeks, under certain hypotheses, to compute the homotopy
of an appropriate E-completion of X from an Ext group (in a suitable category) involv-
ing E∗(X). This paper identifies, for E a general ring spectrum with unit, an unstable
E-completion X∧

E of X and an associated E-theory Bousfield–Kan spectral sequence
with E2-term the homology of a certain unstable cobar complex. When E is an arbitrary
Landweber exact spectrum [23] we obtain a more tractable description of the E2-term,
and, when E additionally has the structure of an S-algebra in the sense of [14], our
completion X∧

E and spectral sequence agree with those of [5]. In order to obtain the
description of the E2-term we prove a number of results on the generalized homology of
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the spaces in the Ω spectrum for a Landweber exact theory E, that is, on the coalgebraic
ring F∗(E∗). These results are of independent interest (see, for example, [15]).

The first example of an unstable Adams spectral sequence based on a theory E other
than ordinary homology was that of the first author with Curtis and Miller [6] which
considered the case of a connective theory E and concentrated in particular on the case of
BP -theory. This provided a sequence that converged to the p-localization of the unstable
homotopy of an odd-dimensional sphere and identified the E2-term as an Ext group in
a non-abelian category of unstable BP∗(BP )-coalgebras. Using results of Wilson [26],
the E2-term was given a simpler, and more computationally practical, interpretation as
the homology of an unstable cobar complex, which could be further considered [4] as the
homology of a certain sub-complex of the stable cobar complex. This spectral sequence
and subsequent variations were generalizations of that of Bousfield and Kan [9] and we
refer throughout to all these models as Bousfield–Kan spectral sequences.

A more mysterious gadget, however, is a Bousfield–Kan spectral sequence based on a
periodic theory E. Theories E that one would naturally wish to consider include complex
K-theory, the Johnson–Wilson theories E(n) and the Morava E- and K-theories; for
technical reasons one is probably going to make easiest headway with those theories E

which are also Landweber exact, as in the connective example BP successfully dealt
with by [6] and subsequent papers. With Thompson, the first author has developed a
framework [5] to define and study sequences based on periodic theories. The requirements
on E to set such a sequence up, to identify the E2-term in a practical and computable
manner, and to prove convergence to an identifiable object are, however, significant. In
brief, convergence is proved, in appropriate cases, to a certain ‘unstable E-completion’ of
the underlying space X, where this completion is defined as Tot of a certain cosimplicial
space, and is defined only when E is represented by an S-algebra in the sense of [14].
Of the example theories E listed above, to our knowledge this rules out all but complex
K-theory and the Morava E-theories.

The understanding of the E2-page of any of these Bousfield–Kan spectral sequences
involves, in large part, having both good and well-understood structure in the unstable E-
theory cooperation algebras, that is, in the coalgebraic ring [20] or Hopf ring [25] E∗(E∗),
where the Er are the spaces in the Ω-spectrum for E-theory. In [5] the E2-term was
identified in a practical manner under the hypotheses that each E∗(Er) was free as an E∗-
module and that the sub-module of primitives PE∗(Er) inject under infinite stabilization
in the stable cooperation ring E∗(E). Work by the second author and Hopkins [16] showed
that these hypotheses were satisfied for a Landweber exact theory E whose coefficients
were ‘not too large’: this included the cases of K-theory and the Johnson–Wilson theories
E(n), but not the S-algebra examples of the Morava E-theories. Between these two sets
of requirements on E—for convergence and for the computation of the E2-term—fully
satisfactory results in [5] were obtainable only when E was taken as complex K-theory.

The main results of this paper fall into three sections. In § 2 we study in depth the
homology and generalized homology of the spaces Er in the Ω-spectrum for an arbitrary
Landweber exact theory E, assuming only that the coefficients E∗ are concentrated in
even dimensions (an assumption which fails only in rather artificial examples). These
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results extend those of [16], removing the size restrictions on the coefficients, proving,
for example (Theorem 2.4), that the algebras F∗(Er) for a wide class of homology the-
ories F∗(−) are polynomial or exterior for r even or odd, respectively. However, they go
further than the type of results in [16], also giving basis-free descriptions (Theorem 2.11)
of the modules of primitives and indecomposables associated with the F∗(Er). Unusu-
ally for results on the coalgebraic ring F∗(E∗) for theories F and E, these results give
explicit descriptions of the individual Hopf algebras F∗(Er), rather than just implicit
descriptions in terms of the global object F∗(E∗). We also relate (Corollary 2.12) the
modules PF∗(Er) and QF∗(Er) to the primitives and indecomposables of the univer-
sal example MU∗(MU∗). These results are of independent interest in the study of the
homology of Ω-spectra, having applications, for example, to group cohomology (see [15]
and [19]). In the case of certain completed spectra, such as the Morava E-theories and
the Baker–Würgler completions Ê(n) [3], these results have parallels with those of [17],
where the homological effects of completion on Ω-spectra are examined using rather
different methods.

In § 3 we suppose E merely to be a ring spectrum with a unit. For a space X we define
a notion (Definition 3.2) of E-completion of X, denoted X∧

E . If E is an S-algebra, then
the space X∧

E turns out to be homotopy equivalent to the E-completion of X as defined
in [5]. The E-theory Bousfield–Kan spectral sequence related to the homotopy groups of
this space X∧

E is introduced and we identify (Theorem 3.8) the E2-page as the homology
of an unstable cobar complex.

The results of § 3 are very general but as they stand offer small hope for specific com-
putation. In § 4 we build on them in the special case of a Landweber exact ring spectrum
(with unit), using the work of § 2 on the coalgebraic ring for such a spectrum. The main
result here is a ‘change of rings’ theorem that identifies (Theorem 4.1) the E2-page of
the E-theory Bousfield–Kan spectral sequence of § 3 as an Ext group in a convenient,
moreover abelian, category. This applies to spaces X such as torsion free H-spaces and
odd-dimensional spheres. We note also (Remark 4.11) that a similar result holds for
spaces such as ΩS2n+1, though care is needed for such examples as, by the work of § 2,
the relevant Hopf algebras E∗(E2r) in the computation are not primitively generated.
Taken together, the results of this article allow for the construction and description of
an unstable Adams spectral sequence based on a vn-periodic theory for any positive
integer n, extending the framework of [5] which established the v1-periodic case.

Notation

The convention we use for denoting spaces, spectra, etc., related to a theory E is as
follows. For a theory E we write E∗(−) and E∗(−) for the generalized E-homology and
cohomology, E for the associated spectrum when we wish to consider it as an explicit
object in the stable category, and Er and E∗ for the spaces in the Ω-spectrum and for
the Ω-spectrum itself. Thus the space Er represents the cohomological functor Er(−)
in the sense that Er(X) = [X, Er] for any space X. The Er are related by equivalences
ΩEr+1 � Er.
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For the theories E considered in this article, the spaces Er are frequently not path
connected. It is convenient to have a notation for a single connected component, and we
shall follow the usual convention of writing E′

r for this space. We then have the relation
Er = E′

r × Er, where Er is the rth E-cohomology group of a point. This in turn leads
to the homological relation F∗(Er) = F∗(E′

r) ⊗F∗ F∗[Er] for a homology theory F∗(−).

2. The coalgebraic module F∗(E∗)

Throughout this section we shall assume that E∗ is an Ω-spectrum representing a
Landweber exact cohomology theory [23]. Such theories include the examples of complex
cobordism MU and the Brown–Peterson theories BP [1], the Johnson–Wilson theories
E(n) [22] and their In-adic completions Ê(n) [3] as well as Morava E-theory, complex
K-theory, various forms of elliptic cohomology [24] and their completions. For simplicity
in the statement of our results, we assume the coefficients E∗ are concentrated in even
degrees; this is satisfied by all standard examples including those just mentioned. As E

is necessarily a module spectrum over MU , the mod p homology H∗(E∗; Fp) will be a
coalgebraic module over both H∗(MU∗; Fp) and Fp[MU∗] in the sense of [20]; if, as will
in fact generally be the case, E is a ring spectrum, H∗(E∗; Fp) will be a coalgebraic
ring (Hopf ring) and a coalgebraic algebra over these objects as well. If E is a p-local
spectrum, then similar statements hold on replacement of MU by BP . We shall adopt
the notation and results on H∗(MU∗; Fp) and H∗(MU∗; Z(p)) that are found in [25] and
the notions of coalgebraic algebra, including a discussion of the algebraic structures of
‘ring–rings’ such as F∗[E∗], in [20,25].

We shall use in particular the facts that the algebras H∗(MU ′
r; Fp) and H∗(MU ′

r; Z(p))
are polynomial or exterior as r is even, respectively odd, and that the p-local groups
H∗(MUr; Z(p)) are torsion free. These results were essentially first proved (for the analo-
gous case of BP ) by Wilson in [26], and re-established using Hopf ring technology by
Ravenel and Wilson in [25]; both these approaches were heavily basis dependent. A more
direct, basis-independent proof of these facts was subsequently published by Chan [11]
(see also [27]). The arguments of [11] are sufficient for the results of this paper.

The work of [20] establishes, in particular, a tensor product ⊗̄ in the category of
Fp[MU∗] coalgebraic modules; note that this is quite distinct from the tensor product of
the underlying Fp coalgebras. The main theorem of [21] tells us the following.

Theorem 2.1. H∗(E∗; Fp) ∼= H∗(MU∗; Fp) ⊗̄
Fp[MU∗]

Fp[E∗].

Corollary 2.2. H∗(E2r+1; Fp) is an exterior algebra.

Proof. Consider the indecomposable quotient QH∗(E2r+1; Fp). Unwinding the def-
inition of ⊗̄, elements in this quotient are represented by sums of ◦ products of ele-
ments of the form q ⊗̄x, where q represents an indecomposable in an odd MU space
and x ∈ Fp[E∗] = H0(E∗; Fp) (this follows from the fact that E∗ is concentrated in even
dimensions). As QH∗(MUs; Fp) lies in odd homological dimensions if s is odd [25], we
conclude that QH∗(E2r+1; Fp) lies in odd homological dimension.
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Thus any finite-dimensional sub-algebra of H∗(E2r+1; Fp) lies in a finite-dimensional
sub-Hopf algebra generated by odd-dimensional elements, and so is an exterior algebra.
As H∗(E2r+1; Fp) is the colimit of its finite-dimensional sub-algebras, the result follows.

�

Corollary 2.3. H∗(E′
2r; Fp) is a polynomial algebra and homology suspension induces

an isomorphism QH∗(E2r; Fp) ∼= QH∗(E2r+1; Fp).

Proof. This is an immediate consequence of Corollary 2.2 and the homology
Eilenberg–Moore spectral sequence [13]

CotorH∗(E2r+1;Fp)(Fp, Fp) =⇒ H∗(E2r; Fp).

As H∗(E2r+1; Fp) is exterior, the E2-page is already polynomial in positive dimensions
and is concentrated in even degrees. The sequence thus collapses and the result follows.

�

We require knowledge of F∗(E∗) for more general theories F than just mod p homology;
for example, we need results with F = E for the unstable homotopy spectral sequences
later, but other examples are of importance too. For the remainder of this article we shall
assume that F is a p-local ring spectrum, with coefficients torsion free and concentrated
in even dimensions. We will also have occasion to consider a version of a theory F with
coefficients reduced mod p; such homology of a space X will be denoted F∗(X; Fp).

Theorem 2.4. Suppose E∗ and F are as above. Then F∗(E′
s) is a free F∗ module,

with algebra structure polynomial for s even and exterior for s odd.

Proof. Begin with the case F = HZ(p). As H∗(E′
2r; Fp) is polynomial, and in

even dimensions, its generators lift to polynomial generators of the torsion-free alge-
bra H∗(E′

2r; Z(p)). From this we can deduce that the homology of the odd spaces
H∗(E2r+1; Z(p)) are torsion-free, exterior algebras, generated by the suspensions of gener-
ators of H∗(E2r; Z(p)). The result for general F follows by a collapsing Atiyah–Hirzebruch
spectral sequence argument. �

Corollary 2.5. For E∗ and F as above, F∗(E∗) is an F∗(MU∗) coalgebraic module;
if E is a ring spectrum, F∗(E∗) is also a coalgebraic ring.

Proof. This result is a standard and formal argument (see, for example, [25]) and
follows as soon as a Künneth theorem

F∗(Er × Es) ∼= F∗(Er) ⊗
F∗

F∗(Es)

is established. This holds by the freeness result of (2.4). �

For E a ring spectrum, recall the algebraic model coalgebraic rings FR
∗ (E∗) and

FQ
∗ (E∗) constructed in [25] and [18], respectively. The former, FR

∗ (E∗), is the free
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F∗[E∗] coalgebraic algebra generated by certain classes arising from the complex ori-
entation on E, modulo specific relations arising from the interaction of the E and F

formal group laws; the latter, FQ
∗ (E∗), can be constructed as a certain sub-coalgebraic

ring of the rational object FQ∗(EQ∗). There are natural maps

F∗(E∗)
τ←− FR

∗ (E∗) → FQ
∗ (E∗).

Corollary 2.6. For E and F as above, there are isomorphisms of coalgebraic rings

F∗(E∗) ∼= FR
∗ (E∗) ∼= FQ

∗ (E∗).

Proof. That τ is an isomorphism follows from [21] and the corresponding result for
MU [25]. This, together with the fact that F∗(E∗) is torsion free by Theorem 2.4, gives
the second isomorphism using [18, Corollary 6.3]. �

We seek now to describe the modules of primitives PF∗(Es) and indecomposables
QF∗(Es) for the Hopf algebras F∗(Es). One of the main ideas of [18] is that when F∗(E∗)
is torsion free (as here), simple descriptions of its algebra structure can be obtained by
identifying its image in the rational coalgebraic ring FQ∗(EQ∗). The following result
allows analogous descriptions of PF∗(Es) and QF∗(Es) by embedding these modules in
the stable object F∗(E).

Proposition 2.7. For E and F as above, homology suspension induces monomor-
phisms

PF∗(Es) −→ F∗−s(E),

QF∗(Es) −→ F∗−s(E).

Proof. The proof is essentially given by the following commutative diagram:

PF∗(Es)
ι−−−−→ QF∗(Es)

σs−−−−→ F∗−s(E)⏐⏐�Pρ∗

⏐⏐�Qρ∗

⏐⏐�ρ∗

PFQ∗(Es)
ιQ

−−−−→ QFQ∗(Es)
σQ

s−−−−→ FQ∗−s(E)

The map ι is the natural map from primitives to indecomposables; as F∗(E∗) is torsion
free, by (2.4), this is an inclusion. Infinite homology suspension from the sth space is
denoted by σs and ρ indicates the rationalization map F → FQ. Then Theorem 2.4 tells
us that the middle vertical map Qρ∗ is a monomorphism, and the analysis of rational
coalgebraic rings in [18] shows that the suspension σQ

s : QFQ∗(Es) → FQ∗−s(E) is also
monic. �

This result allows us to give a basis-free description of PF∗(Es) and QF∗(Es) as a
sub-module of the stable module F∗(E). This generalizes the construction of [4, Def-
inition 2.13]. First though we need to recall some standard notation for elements in
coalgebraic rings (see [25] for further details).
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Notation 2.8. The published literature delivers us two incompatible meanings for
the notation bi. At the unstable level, there are classes bi ∈ F2i(MU2) defined as the
images in F -homology of certain generating classes βi ∈ F2i(CP∞) under the complex
orientation CP∞ → MU2 for complex cobordism. When localized at a prime p (as here) it
is customary to denote the class bpi by b(i) ∈ F2pi(MU2). We shall use this latter notation
throughout, reserving the names bi (without brackets) for the infinite suspensions (see
below) of the b(i), i.e. for elements of the stable module F∗(E). Thus, in our notation,
bi ∈ F2pi−2(E). There is also the suspension element e ∈ F1(MU1) with the relation
e ◦ e = −b(0). For v a homogeneous element of MU∗, say v ∈ MU|v| = π0(MU−|v|), we
have the element [v] ∈ F0(MU−|v|), its Hurewicz image; note that v ∈ MU|v| = MU−|v|

and |v| � 0. By [25], H∗(MU∗; Z(p)) is generated as a coalgebraic ring by the classes
[v], e and b(s). The algebraic models FR

∗ (E∗) are by definition generated over F∗ by
the analogous elements [v], e and b(s) with the v homogeneous elements of E∗, and by
Corollary 2.6 we know that the corresponding classes also generate F∗(E∗).

The suspension homomorphisms, σs : F∗(Es) → F∗−s(E) send b(i) to bi ∈ F2pi−2(E),
kill ∗ products and take ◦ products to multiplication in F∗(E); note, in particular, that
σ2 : b(0) 
→ 1. For v a homogeneous element of E∗, we denote also by v the image of [v]
under suspension in F|v|(E); this is additionally the image of v in F∗(E) under the right
unit F∗ → F∗(E).

We shall denote the free E∗ module generated by a class ιn in dimension n by Mn,
or, when we need to indicate the Ω spectrum being considered, by ME

n . This is useful
for keeping track of the domain of the stabilization map, σs : F∗(Es) → F∗−s(E) and is
accomplished by defining the range of σs to be

F∗−s(E) ⊗
E∗

Ms.

In this notation b(i) ∈ F2pi(E2) maps to bi⊗ι2 while a class such as b(i)◦[v] ∈ F2pi(E2−|v|)
maps to bi⊗vι2−|v|. Notice that the suspension homomorphisms now preserve dimension.

For each finite sequence of non-negative integers I = (i1, i2, . . . , in) we write bI for the
stable element

bI = bi1
1 bi2

2 · · · bin
n ∈ F∗(E).

The length of I is the integer l(I) = i1 + · · · + in. Write b◦I for the unstable element

b◦i1
(1) ◦ · · · ◦ b◦in

(n) ∈ F∗(E2l(I)).

Of course σ2l(I) : b◦I 
→ bI . More generally, any element of the form (b◦r
(0) ◦ b◦I + decom-

posables) suspends to bI .

Definition 2.9. Let M be a free, graded E∗-module. Write UF (M) for the sub-F∗-
module of

F∗(E) ⊗
E∗

M

spanned by all elements of the form bI ⊗ m where 2l(I) < |m|.
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Definition 2.10. Let M be a free, graded E∗-module. Write VF (M) for the sub-F∗-
module of

F∗(E) ⊗
E∗

M

spanned by all elements of the form bI ⊗ m where 2l(I) � |m|.

The special case of the next result for E = F = BP was proved in [4,6].

Theorem 2.11. The image of the suspension homomorphism,

σs : QF∗(Es) → F∗−s(E) ⊗
E∗

Ms
∼= F∗(E)

lies in V (Ms) and

σs : QF∗(Es) → V (Ms)

is an isomorphism.
Furthermore, the image of σs|PF∗(Es) lies in U(Ms) and

σs : PF∗(Es) → U(Ms)

is an isomorphism.

Proof. We start with the identification of the image of the indecomposables QF∗(Es)
with VF (Ms). As σs on QF∗(Es) is monomorphic this will prove the first statement. We
begin with the case where s is even.

By Corollary 2.6 we know that any element of QF∗(Es) can be written as an F∗-linear
sum of elements of the form b◦r

(0) ◦ b◦I ◦ [v] with r � 0. Such an element suspends to
bI ⊗ vιs. The condition that an element b◦r

(0) ◦ b◦I ◦ [v] lies in the F -homology of the sth
space Es is that 2r + 2l(I) − |v| = s, thus 2l(I) � |v| + s = |vιs| and so the image of σs

lies in VF (Ms).
Conversely, if bI ⊗ vιs lies in VF (Ms), then 2l(I) − |v| � s and so bI ⊗ vιs = σs(b◦r

(0) ◦
b◦I ◦ [v]), where 2r = s + |v| − 2l(I) � 0. Hence σs is onto VF (Ms) and the isomorphism
for even spaces is proved.

The result for odd spaces is very similar; note that circle multiplication by e induces
a one-to-one correspondence between QF∗(E2t) and QF∗(E2t+1).

The result for primitives is again similar and follows immediately after making
the observation that PF∗(Es) for even s is the F∗-linear span of elements of the
form b◦r

(0) ◦ b◦I ◦ [v] with r > 0. Also, for odd s there is an isomorphism PF∗(Es) ∼=
QF∗(Es). �

The F∗-module QF∗(Es) is not, as it stands, an E∗ module, but may be modified
to be so. Looking at all the spaces together, the bigraded object QF∗(E∗) is an E∗
module under the action x ⊗ v 
→ x ◦ [v] for x ∈ QF∗(E∗) and v ∈ E∗. (Verification that
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x ◦ [v + w] = x ◦ [v] + x ◦ [w] in QF∗(E∗) is left as an exercise in coalgebraic modules: see
the axioms listed in [25].)

We may modify the construction of VF (Ms) so as also to carry the action of E∗ by
considering the corresponding bigraded object VF (M∗) equipped with the action (y ⊗
vιs) ⊗ w 
→ y ⊗ vwιs−|w|. Define a global suspension map σ : QF∗(E∗) → VF (M∗) as
σs on the component QF∗(Es). With these definitions and the previous result it may
easily be checked that σ is an F∗–E∗ bimodule isomorphism. Similar constructions may
be made and results established for the objects of primitives PF∗(E∗) and UF (M∗).

Our second description of the modules of primitives and indecomposables for F∗(Es)
can now be given in terms of a simple relation to those of the universal theories. As in the
underlying philosophy of [25], etc., this requires us to consider all spaces Es together.

Corollary 2.12. Let E and F be as above. Then there are isomorphisms

QF∗(E∗) = F∗ ⊗
MU∗

QMU∗(MU∗) ⊗
MU∗

E∗ = QF∗(MU∗) ⊗
MU∗

E∗,

PF∗(E∗) = F∗ ⊗
MU∗

PMU∗(MU∗) ⊗
MU∗

E∗ = PF∗(MU∗) ⊗
MU∗

E∗,

where ⊗ denotes the tensor product of modules in the standard sense. Assuming that E

is p-local, analogous results hold on replacing MU by BP .

Proof. We prove the first line, concerning the indecomposable functor: the proof of
the version involving the primitives is essentially identical. Note also that the equality

F∗ ⊗
MU∗

QMU∗(MU∗) ⊗
MU∗

E∗ = QF∗(MU∗) ⊗
MU∗

E∗

follows immediately since each MU∗(MUs) is a free (left) MU∗ algebra and hence

F∗ ⊗
MU∗

QMU∗(MU∗) = QF∗(MU∗).

We show that
QF∗(E∗) = QF∗(MU∗) ⊗

MU∗
E∗.

By Theorem 2.11 it suffices to show that

VF (ME
∗ ) = VF (MMU

∗ ) ⊗
MU∗

E∗.

Of these, the left-hand side is the (bigraded) sub-F∗-module of

F∗(E) ⊗
E∗

ME
∗

spanned in grading s by elements bI ⊗ mιs satisfying 2l(I) � |mιs|. As E is Landweber
exact, and, by definition, ME

∗ and MMU
∗ are free over E∗ and MU∗, respectively, in each

grading,

F∗(E) ⊗
E∗

ME
∗ = F∗(MU) ⊗

MU∗
E∗ ⊗

E∗
ME

∗ = F∗(MU) ⊗
MU∗

MMU
∗ ⊗

MU∗
E∗.
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Under this equivalence, the element

bI ⊗ mιs ∈ VF (ME
∗ ) ⊂ F∗(E) ⊗

E∗
ME

∗

is then identified with

bI ⊗ ιs ⊗ m ∈ VF (MMU
∗ ) ⊗

MU∗
E∗ ⊂ F∗(MU) ⊗

MU∗
MMU

∗ ⊗
MU∗

E∗.

This is also onto
VF (MMU

∗ ) ⊗
MU∗

E∗,

as the map MU → E induces a left inverse. �

The constructions UF and VF may be extended to other E∗ modules M . For an arbi-
trary non-negatively graded left E∗-module M let

F1
f−→ F0 → M → 0

be exact with F0 and F1 free over E∗. Then UF may be extended to M by defining

UF (M) = coker(UF (f) : UF (F1) → UF (F0)).

VF is similarly extended to such E∗-modules.

Proposition 2.13.

VF (Ms ⊗ Z/p) ∼= QF∗(Es; Fp),

UF (Ms ⊗ Z/p) ∼= Im(PF∗(Es; Fp) → QF∗(Es; Fp)).

Proof. Since F∗(Es) is a free algebra, there is a diagram with rows short exact:

0 −−−−→ QF∗(Es)
×p−−−−→ QF∗(Es) −−−−→ QF∗(Es; Z/p) −−−−→ 0∥∥∥ ∥∥∥

0 −−−−→ VF (Ms)
×p−−−−→ VF (Ms) −−−−→ VF (Ms ⊗ Z/p) −−−−→ 0

Hence there is an induced isomorphism QF∗(Es; Fp) → VF (Ms ⊗ Z/p). A similar proof
gives the second isomorphism. �

Remark 2.14. Since in practice our cohomology theories tend to be Z(p) local it
can be advantageous to use BP generators. The generators hi = c(ti), where the ti are
the standard generators for BP∗(BP ) and c denotes the canonical anti-isomorphism,
have proven to be useful for unstable calculations. Following [6, 8.5] we may replace the
generator bi with hi in Theorem 2.11.
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We conclude this section with an example to help clarify these definitions.

Example 2.15. Let F = E = BP . We claim that ph1 ⊗ ι1 defines a non-zero element
in VBP (M1 ⊗ Z/p) = QBP∗(BP 1; Fp), but which suspends to zero in QBP∗(BP 2; Fp).
To see that ph1 ⊗ ι1 is indeed in VBP (M1 ⊗ Z/p), note that the right action formula tells
us that ph1 = v1 · 1 − 1 · v1. Thus

ph1 ⊗ ι1 = v1 ⊗ ι1 − 1 ⊗ v1 · ι1,

an element of VBP (M1). This element is not divisible by p in VBP (M1), and so is not zero
in VBP (M1 ⊗ Z/p). On the other hand, h1 ⊗ ι2 is an element of VBP (M1) and so ph1 ⊗ ι2
is p-divisible in VBP (M1) and thus is zero in VBP (M1 ⊗ Z/p). In general, VF (Ms ⊗ Z/p)
is not a sub-module of F∗(E): when working mod p the unstable classes do not necessarily
inject into the stable module.

In a similar fashion the right action formula for ph1 can be used to show that
phn

1 is a non-zero element in VBP (M2n−1 ⊗ Z/p) but one which suspends to zero in
VBP (M2n ⊗ Z/p).

Example 2.16. Consider the Araki generators wi ∈ BP2pi−2, as in [2],

pmn =
∑

0�j�n

mi(w
pi

n−i), w0 = p.

We prefer the Araki generators to the Hazewinkel generators because of the integral form
of Ravenel’s formulae

F ∗∑
hpi

j · wi =
F ∗∑

wpi

j · hi.

Here
∑F

c(γi) is the formal group sum, c is the canonical anti-isomorphism and∑F ∗
γi = c(

∑F
c(γi)) (i.e.

∑F ∗
looks like the usual formal group law, but the formal

group coefficients act on the right). It is easy to check that the Ravenel formulae imply
that

∑F ∗
hpi

j · wi =
∑F ∗

wpi

j · hi also holds in VF (ME
s ) and VF (ME

s ⊗ Z/p) with s � 2.
There are similar formulae involving the Hazewinkel generators, but they are only true
stably mod p. We do not know if the Hazewinkel generators satisfy similar, mod p formu-
lae, unstably.

If E = E(1), Adams’s summand of p-local K-theory, or equivalently the first Johnson–
Wilson theory and we take F to be H, integral homology, these formulae reduce to

( F ∗∑
hp

j · w1

)
⊗ ιs = 0 in VH∗(Ms ⊗ Z/p) if s � 2.

Using the grading, this implies that hp
j · w1 ⊗ ιs = 0 here. (Notice that hp

j · w1 ⊗ ι2 =
hp

j ⊗ w1 · ι2 and w1 · ι2 has degree 2p, so this class is defined.)

3. The Bousfield–Kan spectral sequence (BKSS) for E-theory

Let S be the category of pointed CW complexes and suppose E is a ring spectrum with
unit. Associated with E is a functor TE : S → S given by sending X to Ω∞(E ∧

∑∞
X).
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There are natural transformations φ : 1S → TE and µ : T 2
E = TE ◦ TE → TE induced

by the unit and the multiplication in E, respectively, and these make (TE , φ, µ) a triple
up to homotopy. See, for example, [7, § 2], [5, § 4] and [8] for details of the notions of
triple, cotriple and their associated categories and derived functors, as used in this and
the next section.

If E is an S-algebra in the sense of [14] (for example, K-theory), it is shown in [5] that
(TE , φ, µ) is in fact a triple on the category S. Following [10] there is then a cosimplicial
space, TEX, with coface maps and codegeneracies denoted di and sj , respectively. The
completion of X with respect to E is taken as

X∧
E = Tot(TEX).

The E2-page of the Bousfield–Kan spectral sequence associated with X∧
E is identified [5]

with the homology of the unstable cobar complex,

Es
2(X) = πsπ∗TEX = Hs(π∗TEX, ∂),

where π∗TEX is considered as a cochain complex with coboundary map ∂ =
∑

(−1)iπ∗d
i.

We wish, however, to be able to consider an ‘E-completion’ of a space X and a cor-
responding E-theory Bousfield–Kan spectral sequence whenever E is an arbitrary ring
spectrum with a unit. In this section we use the results of [12] to construct (3.2) a space
X∧

E for any such E, and prove it to be homotopic to the construction in [5] if E is an S-
algebra. In Theorem 3.8 we identify the E2-term of the E-theory Bousfield–Kan spectral
sequence as an unstable cobar complex.

We recall the notion [12] of a restricted cosimplicial space, i.e. a ‘cosimplicial space’
without the codegeneracies.

Definition 3.1. Suppose that (T, φ) is an augmented functor on S, i.e. a functor
T : S → S equipped with a natural transformation φ : 1S → T . Let X be a space in S.
Define the restricted cosimplicial space T̂X to be the restricted cosimplicial resolution
with respect to T given by

(T̂X)k = T k+1X

in codimension k, and coface maps given by

((T̂X)k−1 di

−→ (T̂X)k) =
(
T kX

T iφT k−i

−−−−−−→ T k+1X
)
.

We may describe a restricted cosimplicial space as a diagram in S as follows. Let ∆rest

denote the restricted simplicial category, that is the category whose objects are finite
ordered sets [n] = {0, 1, . . . , n} (n � 0) and whose morphisms are strictly monotone
maps. A restricted, unaugmented, cosimplicial space Crest is equivalent to a functor

Crest : ∆rest → S.

In particular, T̂EX ∈ S∆rest .
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The full simplicial category, ∆, is the category whose objects are the sets [n] and whose
morphisms are all weakly monotone maps. Then a cosimplicial space is a functor

C : ∆ → S.

So C ∈ S∆.
Let J : ∆rest → ∆ be the inclusion functor. Then there is a natural transformation

J∗ : S∆ → S∆rest ,

essentially the forgetful functor from cosimplicial spaces to restricted cosimplicial spaces.

Definition 3.2. For a general ring spectrum with unit E, define X∧
E , the E-completion

of X, to be holim←−−− T̂EX.

Strictly speaking, this definition only requires E to have a unit. However, we shall
need E to have a ring structure directly after the next definition, which introduces an
object lying between a cosimplicial space and a restricted cosimplicial space.

Definition 3.3. A modified cosimplicial space is a restricted cosimplicial space with
codegeneracies that satisfy cosimplicial-like identities:

djdi = didj−1, i < j,

sjdi � disj−1, i < j,

� id, i = j, j + 1,

� di−1sj , i > j + 1,

sjsi � si−1sj , i > j,

where the first identity is the usual cosimplicial identity, but the rest are required to hold
only up to homotopy.

Remark 3.4. If E is a ring spectrum with unit, then, for X ∈ S, the triple (TE , φ, µ)
induces a modified cosimplicial space which we also denote by TEX. Clearly, any cosim-
plicial space C is also a modified cosimplicial space and so if X is an S-algebra the two
objects denoted TEX agree.

Remark 3.5. Corollary 3.9 of [12] proves that

Tot(C) = holim←−−− (Crest) when C = J∗Crest.

In particular, if E is an S-algebra, the completion X∧
E defined in [5] agrees with that of

Definition 3.2.

Remark 3.6. It is not possible to apply Tot to modified cosimplicial spaces. However,
after applying π∗ we obtain a cosimplicial group π∗TEX, which we view as a diagram
π∗TEX ∈ A∆, where A is the category of abelian groups. Applying π∗ to T̂EX gives an
object in A∆rest which is J∗(π∗TEX).
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For a wide class of diagrams X ∈ SI , Bousfield and Kan [10, XI 7.1] define a spectral
sequence related to the groups π∗holim←−−−X.

Definition 3.7. For X ∈ S and E a ring spectrum with unit, define E∗,∗
r (X), the

E-theory Bousfield–Kan spectral sequence of X, as the Bousfield–Kan spectral sequence
for T̂EX ∈ S∆rest .

Theorem 3.8. Es,∗
2 (X) is isomorphic to the homology of the unstable cobar complex.

That is to say Es,∗
2 (X) = πsπ∗TEX.

Remark 3.9. Recall that the cohomotopy πsA of a cosimplicial abelian group A is
defined [10, X 7.1] as the cohomology Hs(ch(A), ∂), where (ch(A), ∂) is the cochain
complex given by ch(A)n = An and ∂ =

∑
(−1)idi.

Proof of Theorem 3.8. Let I be either ∆ or ∆rest. For X ∈ SI the E2-page is given
by [10, p. 309]

Es,t
2 = lim←−

sπtX.

Since π∗TEX is a cosimplicial group, lim←−
sπ∗TEX = πsπ∗TEX [10, XI 7.3 (i)] and it

suffices to show that
lim←−

sπ∗T̂EX = lim←−
sπ∗TEX.

For any fixed n, denote by KI(n) ∈ SI the diagrams of Eilenberg–Mac Lane spaces
K(A, n), which correspond to π∗TEX ∈ A∆ and π∗T̂EX ∈ A∆rest for the respective I

(see [10, XI 7.2]). Then, for s � n (again from [10, XI 7.2]),

lim←−
sπ∗TEX = πn−sholim←−−−K∆(n),

lim←−
sπ∗T̂EX = πn−sholim←−−−K∆rest(n).

However, J : ∆rest → ∆ is left cofinal [12, p. 193]. Thus

J∗ : holim←−−−K∆(n) → holim←−−−K∆rest(n)

is a homotopy equivalence. Since n was arbitrary, it follows that

lim←−
sπ∗TEX = lim←−

sπ∗T̂EX for all s.

�

4. The unstable cobar complex for E-theory

Section 3 identifies the E2-page of the Bousfield–Kan spectral sequence for a ring spec-
trum with unit E as the homology of the cochain complex ch(π∗TEX). However, for
practical purposes, as in [6], [5], etc., it is important to be able to reinterpret this in
terms of a more manageable object: in practice as the homology of a sub-complex of the
stable cobar complex, i.e. as an Ext group over a more convenient (in particular, abelian)
category.
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We suppose for this section that E is a Landweber exact ring spectrum with unit
and (largely for convenience) that E is p-local with coefficients E∗ concentrated in even
dimensions. Let M be the category of free, graded E∗-modules. Drawing on the results
of [5–7] and those of §§ 2 and 3, we introduce a certain associated abelian category U .
Our main theorem is the following.

Theorem 4.1. Suppose E is a Landweber exact ring spectrum with unit. Suppose
M ∈ M has E∗-module generators only in odd degrees and suppose that X is a space
with E∗(X) ∼= Λ(M) as coalgebras, where Λ(M) is the E∗-Hopf algebra defined by letting
M be the sub-module of primitives, i.e. Λ(M) is the exterior algebra on M . Then the
E2-term of the E-theory Bousfield–Kan spectral sequence of X can be identified as

Es,t
2 (X) ∼= Exts

U (E∗(St), M).

Example 4.2. Spaces X satisfying the hypotheses of the theorem include torsion free
H-spaces and odd-dimensional spheres.

We begin by defining functors G and U : M → M. Here and below we draw on
a number of the results of § 2 with F = E, i.e. in this section we deal only with the
coalgebraic ring E∗(E∗).

Definition 4.3. For a free E∗-module M define

(a) G(M) to be E∗(EM0), where EM denotes the spectrum realizing the homology
theory E∗(−) ⊗

E∗
M ; and

(b) U(M) to be PG(M), the primitive elements in G(M).

Both G and U are functorial; they take values in M, the category of free E∗ modules,
by the results of § 3.

Remark 4.4.

(a) As M is a free E∗-module, it is helpful to observe that EM0 = Ω∞EM is a product
of spaces in the Ω spectrum associated with E indexed by a set of generators of M .
In particular, if {gi} is a set of E∗ generators of M with gi in dimension |gi|,

EM0 = Ω∞
( ∨

i

−|gi|∑
E

)
= colim

∏
fin

E−|gi|,

where the colimit is over finite products of the E−|gi|. Moreover, with this notation,

M ∼= π∗

( ∨
i

−|gi|∑
E

)
= π∗

(
colim

∏
fin

E−|gi|

)
.

(b) Note that G is closely related to the functor TE : S → S of § 3. For a space X ∈ S
with E∗(X) ∈ M, there is an isomorphism

G(E∗(X)) ∼= E∗(TE(X)).
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(c) Note also that U(M) is identical to the construction UE(M) of § 2. There is, of
course, a similar functor V : M → M based on the indecomposable quotient of
G(M) and given by the construction VE(M) of § 2, but it will play no part in the
proof of Theorem 4.1.

Proposition 4.5. The unit and product in E, respectively, induce natural transfor-
mations

δG : G → G2, εG : G → I,

making (G, δG, εG) a cotriple on the category M. There are similar natural transforma-
tions δU : U → U2, εU : U → I making (U, δU , εU ) also a cotriple on M and a sub-cotriple
of (G, δG, εG).

Proof. The proof is essentially as in §§ 6 and 7 of [6]; moreover, with the first obser-
vations of Remark 4.4, the maps δG and εG, for example, may be written explicitly.
Alternatively, for Landweber exact E, given the definition (2.9) and Theorem 2.11, the
result on (U, δU , εU ) also follows from the coaction formulae for the bi. �

Remark 4.6. As usual the cotriples define categories G and U of G, respectively U ,
coalgebras: writing C for either G or U , recall that a C coalgebra in M is an object
M ∈ M with a map ψ : M → CM such that

εCψ = IdM : M → M and δCψ = (Cψ)ψ : M → C2M

(see [6, § 5] for details).
In particular, recall that if M ∈ M, then CM is naturally a C coalgebra with map ψ

on CM → C2M given by δC . There are adjoint functors

M
C−−→

←−−
J

C,

where J denotes the forgetful functor. The adjunction gives natural isomorphisms

HomC(D, CM) ∼= HomM(D, M)

for any D ∈ C (where we identify D with its image under the forgetful functor).
Strictly speaking, we shall abuse notation and write C not only for the functor M → C

above, but also for the functor JC : M → M of the cotriple (C, δC , εC) on M and for
the other composite, CJ : C → C, the functor of the adjoint triple (C, µC , ηC) on C, as
in [6, § 5].

For C = G or U and objects W ∈ C we recall the notions of cosimplicial resolution over
C, as in [8, 2.5] and [7, 2.2] and the resulting derived functors ExtC(E∗, W ).

Definition 4.7. A cosimplicial resolution, N , over C, of W ∈ C consists of objects
Nn ∈ C for n � −1 and, for every pair of integers (i, n) with 0 � i � n, coface and
codegeneracy maps (in C)

di : Nn−1 → Nn, si : Nn+1 → Nn
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satisfying the usual cosimplicial identities (cf. Definition 3.3) and such that

(a) N−1 = W ;

(b) for n � 0 there is an Mn ∈ M with Nn = CMn;

(c) Hn(JN) = 0 for n � −1.

Here J : C → M is the forgetful functor and the homology of JN is the homology of the
cochain complex with groups JNn and boundary maps

∑
(−1)iJdi.

The Ext groups ExtC(E∗, W ) are then defined as the homology of the chain complex
associated with HomC(E∗, J̃N), where J̃N denotes the unaugmented complex

0 → JN0 → JN1 → JN2 → · · · .

These are the derived functors of HomC(E∗,−) by [8].

Example 4.8. The C cobar complex provides a standard example of a cosimplicial
resolution. We illustrate it for C = U ; the case of G is similar.

For W ∈ U , consider the resolution with qth module Uq+1(W ). The maps in the U
resolution are displayed in the diagram of E∗-modules,

W
d0

−−→ U(W )

d0

−−−→
d1

−−−→
s0

←−−
· · · ,

and are defined in terms of the triple (U, µU , ηU ) by

di = U iηUUn−i : Un(W ) → Un+1(W ), 0 � i � n,

si = U iµUUn−i : Un+2(W ) → Un+1(W ), 0 � i � n.

The U cobar complex is then the complex

W
∂−→ U(W ) ∂−→ U2(W ) ∂−→ · · · ,

where

∂ =
n∑

i=0

(−1)ndi : Un(W ) → Un+1(W ).

The embedding of the primitives in the stable cooperations, (2.7) and (2.11), shows that
the acyclicity condition is satisfied since there is an extra codegeneracy s−1 : Uq+1(W ) →
Uq(W ) induced by the counit in E∗(E):

Uq+1(C) → E∗(E) ⊗ Uq(C) ε⊗1−−→ Uq(C).

In particular, again by (2.11), ExtU (E∗, W ) is the homology of a sub-complex of the
stable cobar complex.
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These constructions and the link between the functors G and TE of Remark 4.4 (b)
allow us to rewrite Theorem 3.8 as follows.

Theorem 4.9. For E a ring spectrum with unit and X ∈ S such that E∗(X) ∈ M,
there is a natural isomorphism

Es,t
2 (X) = Exts

G(E∗(St), E∗(X)).

Theorem 4.1 will now follow upon proving the following theorem.

Theorem 4.10. Suppose E is a Landweber exact ring spectrum with unit. For M ∈
M with generators in odd degree and Λ(M) denoting the exterior algebra on M with
M ⊂ Λ(M) the sub-module of primitives, there is a natural isomorphism

Exts
G(E∗(St), Λ(M)) ∼= Exts

U (E∗(St), M).

Proof. Let us write UM for the U cobar complex as in Example 4.8, i.e. with qth
space Uq+1(M). Applying the functor Λ(−) gives a complex

ΛUM : Λ(M) → Λ(U(M)) → Λ(U2(M)) → · · · .

Now let
Y q = G(Uq(M))

for q � 0. Since M is concentrated in odd degrees the same is true for Uq(M). By
Theorems 2.4 and 2.11 we have natural isomorphisms

G(Uq(M)) ∼= Λ(Uq+1(M))

and we can identify the complex ΛUM as a complex

Y : Λ(M) → G(M) → G(U(M)) → G(U2(M)) → · · · .

The maps in Y are coalgebra maps and E∗(E)-comodule maps. By [6, 7.3] the maps are
in G (note that [6, 7.3] does not require the assumption [6, 7.7] that the homology of
the spaces in the Ω-spectrum be cofree coalgebras—this is not satisfied in general). The
extra codegeneracy in the U cobar complex passes via Λ to an extra codegeneracy in Y ,
showing Y to be acyclic. Thus Y is a G-resolution of Λ(M).

The Ext groups Exts
G(E∗(St), Λ(M)) can be obtained using the complex Y by com-

puting the homology of the complex

HomG(E∗(St), Y s) = HomG(E∗(St), G(Us(M))).

However, by the adjunction isomorphism mentioned in Remark 4.6 (applied twice), we
have

HomG(E∗(St), G(Us(M))) = HomM(E∗(St), Us(M))

= HomU (E∗(St), Us+1(M)).

Thus ExtG(E∗(St), Λ(M)) is isomorphic to the homology of the U-cobar complex, which
by definition is precisely ExtU (E∗(St), M). �
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Remark 4.11. The results of § 2 on the algebra structure of E∗(E∗) allow further
results to follow. For example, suppose for M ∈ M we write σ−1M for the isomorphic
E∗-module with degrees shifted downward by one, i.e. we let σ−1Mt = Mt+1. Then
Theorem 2.4 and its proof show that

σ−1U(M) = QG(σ−1M).

If we take M = E∗(S2n+1), then E∗(ΩS2n+1) = σ−1M and an argument similar to that
for BP -theory in [7, § 6] shows that the complex Y used in the proof of Theorem 4.10 may
also be used to compute the E2-page of the E-theory Bousfield–Kan spectral sequence
for ΩS2n+1: for any odd-dimensional sphere S2n+1 there is an isomorphism

Es,t−1
2 (ΩS2n+1) ∼= Es,t

2 (S2n+1).
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