R-PROJECTIVE MODULES OVER A SEMIPERFECT RING

BY

R. D. KETKAR AND N. VANAJA

ABSTRACT. The aim of this paper is to prove the following theorem:

Let R be a semiperfect ring. Let Q be a left R-module satisfying (a) Q is R-projective and (b) J(Q) is small in Q. Then Q is projective.

1. Throughout R denotes an associative ring with unity. By an R-module we mean a unitary left R-module. For further terminology we refer to [1]. Specifically speaking we require the definitions and elementary properties of R-projective modules, projective covers and semiperfect rings.

2. This section is devoted to the proof of the theorem stated in the abstract. We prove a key fact in

LEMMA. Let Q be an R-projective module. Suppose Q = M + N where N is cyclic and Q/M has a projective cover $f: P_1 \rightarrow Q/M$. Then $Q = P \oplus Q_1$ where $P \subseteq N$ and $P \cong P_1$.

Proof. Let $g: Q \to Q/M$ be the natural map. It is clear that $g_1 = g \mid N: N \to Q/M$ is onto. This shows that Q/M and hence P_1 must be cyclic. Since Q is R-projective and P_1 is cyclic there exists a homomorphism $h: Q \to P_1$ such that $f \circ h = g$. Let $h_1 = h \mid N$. Then $f \circ h_1 = g_1$. Since g_1 is onto and Ker(f) is small in P_1 , h_1 splits i.e. there is $j: P_1 \to N$ such that $h_1 \circ j = 1_{P_1}$. Take $P = j(P_1)$, $Q_1 = \text{Ker}(h)$.

Now we state the main result

THEOREM 1. Let R be a semiperfect ring. Let Q be a left R-module satisfying (a) Q is R-projective and (b) J(Q) is small in Q. Then Q is projective.

It is known that a semiperfect ring R satisfies a.c.c. on left ideals which are direct summands of R ([3] Theorem 4.3). Hence Theorem 1 will follow immediately from

THEOREM 2. Let R be a ring satisfying a.c.c. on left ideals which are direct summands of R. Let Q be a left R-module satisfying (1) every finitely generated

Received by the editors March 1, 1978 and in revised form May 14, 1979 and March 7, 1980.

[September

factor module of Q has a projective cover, (2) Q is R-projective and (3) J(Q) is small in Q. Then Q is a direct sum of cyclic indecomposable projective modules.

Let $x \in Q$, $x \notin J(Q)$. Then there is a maximal submodule M of Q such that $x \notin M$. Then Q = Rx + M. By condition (1), Q/M has a projective cover. Since Q/M is simple, this projective cover is cyclic indecomposable. By the above lemma we can write $Q = P \oplus Q_1$ where $P \subseteq Rx$ and P is a cyclic indecomposable projective module. Then $Rx = Ry_1 \oplus Rx_1$ where $x = y_1 + x_1$, $P = Ry_1$, $Rx_1 =$ $Rx \cap Q_1$. It can be easily checked that Q_1 also satisfies the conditions (1), (2), and (3). Now if $x_1 \notin J(Q_1)$ we can repeat the above process to write $Q_1 =$ $Ry_2 \oplus Q_2$, Ry_2 cyclic indecomposable projective direct summand of Q contained in Rx_1 , $x_1 = y_2 + x$, such that $Rx_1 = Ry_2 \oplus Rx_2$ where $Rx_2 = Rx_1 \cap Q_2$. We claim that this process can be repeated only for finitely many times. For otherwise, we obtain an infinite direct sum $Ry_1 \oplus Ry_2 \oplus \cdots \oplus Ry_n \oplus \cdots$ inside Rx such that for each n, $Ry_1 + Ry_2 + \cdots + Ry_n$ is cyclic projective generated by $y_1 + y_2 + \cdots + y_n$. Let $g_n : R \to R(y_1 + \cdots + y_n)$ be the maps defined by $g_n(1) =$ $y_1 + \cdots + y_n$. These maps split and $\text{Ker}(g_n) = \text{Ann}_{\mathbb{R}}(y_1 + \cdots + y_n)$. Therefore, $\operatorname{Ker}(g_1) \supseteq \operatorname{Ker}(g_2) \supseteq \cdots \supseteq \operatorname{Ker}(g_n) \supseteq \cdots$ form a decreasing sequence of summands of R. Hence we can get an increasing sequence $L_1 \subseteq L_2 \subseteq \cdots \subseteq L_n \subseteq \cdots$ of summands of R such that $L_n \cong R(y_1 + \cdots + y_n)$. By a.c.c. on these summands, $L_n = L_{n+1}$ for some *n*. Hence $Ry_1 \oplus \cdots \oplus Ry_n \cong Ry_1 \oplus \cdots \oplus Ry_{n+1}$. But this cannot happen since each Ry_i is a non-zero indecomposable module. This proves our claim. Now let

 $A = \{y \mid y \in Q, y \neq 0, Ry \text{ is cyclic indecomposable}$ projective direct summand of $Q\}.$

Then the preceding arguments together with the fact that J(Q) is small in Qshow that $Q = \sum_{y \in A} Ry$. Let \mathscr{A} be the family of subsets B of A satisfying the conditions: (a) $\sum_{y \in B} Ry$ is a direct sum and (b) for $y_1, \ldots, y_n \in B$, $Ry_1 + \cdots + Ry_n$ is a direct summand of Q. Clearly \mathscr{A} is non-empty and Zorn's lemma is applicable (where the partial order in \mathscr{A} is given by the usual inclusion relation). Let B_0 be a maximal element in \mathscr{A} . Then $P = \sum_{y \in B_0} Ry =$ $\bigoplus \sum_{y \in B_0} Ry$ is projective. We claim that P = Q. For this it is sufficient to prove that $A \subseteq P + J(Q)$ since $Q = \sum_{y \in A} Ry$ and J(Q) is small in Q. Let $y \in A$. We consider two cases:

CASE 1. $P \cap Ry = 0$.

Then $B_0 \subsetneq B_0 \cup \{y\} \subseteq A$. By maximality of B_0 we can find y_1, \ldots, y_n in B_0 such that $Ry_1 \oplus \cdots \oplus Ry_n \oplus Ry$ is not a direct summand of Q. By condition (b) on B_0 , we can write $Q = (Ry_1 \oplus \cdots \oplus Ry_n) \oplus Q_1$. Then $Ry_1 \oplus \cdots \oplus Ry_n \oplus Ry =$ $(Ry_1 \oplus \cdots \oplus Ry_n) \oplus ((Ry_1 \oplus \cdots \oplus Ry_n \oplus Ry) \cap Q_1)$. This implies $(Ry_1 \oplus \cdots \oplus Ry_n \oplus Ry) \cap Q_1 = Rz$. Then Rz is cyclic indecomposable submodule of Q_1 and Rz cannot be a direct summand of Q_1 . Hence it is clear from the previous arguments that $z \in J(Q_1) \subseteq J(Q)$. It follows that $y \in P + J(Q)$.

CASE 2. $P \cap Ry \neq 0$.

If $y \in P$ we are through. Assume that $y \notin P$. Let $0 \neq sy = x \in P \cap Ry$. Since Ry is non-zero projective, Ann(y) is a direct summand of R. Let Ann(y) = Rt. Choose a finite subset $B \subseteq B_0$ such that $x \in \sum_{z \in B} Rz$. Then $\sum_{z \in B} Rz$ is a direct summand of Q. Let $h: Q \rightarrow \sum_{z \in B} Rz$ be the natural projection. Let y' = h(y). Then t(y-y')=0. We have also that s(y-y')=0 since sy' = sh(y) = h(sy) = h(x) = x = sy. Thus $Ann(y) \subsetneq Ann(y-y')$. We claim that R(y-y') does not contain any non-zero projective summand. If possible, let N be such a summand of R(y-y'). Since $Ann(y) \subseteq Ann(y-y')$, $y \rightarrow (y-y')$ defines an epimorphism $f: Ry \rightarrow R(y-y')$. Let $g: R(y-y') \rightarrow N$ be the natural projection map. Then $g \circ f: Ry \rightarrow N$ is an epimorphism. This would imply $Ann(y-y') \subseteq Ann(y)$, a contradiction. This proves our claim. It follows that $y - y' \in J(Q)$. Hence $y \in P + J(Q)$. This completes the proof of Theorem 2.

Note. A ring is called left perfect if every left R-module has a projective cover. It is well known that the radical of every left module over a left perfect ring is small. Hence from Theorem 1 and the Proof of Theorem 2 we get

COROLLARY 1. (Sandomierski [4]). Any R-projective left R-module over a left perfect ring R is projective.

COROLLARY 2. (H. Bass [2]). Let P be a projective left R-module over a left perfect ring R. Then P is a direct sum of cyclic indecomposable modules.

The authors are thankful to the referee for his helpful criticisms which improved the proof of Theorem 2.

REFERENCES

1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. Springer-Verlag (1974).

2. H. Bass, Finitistic Dimension and a Homological Generalization of Semiprimary Rings. Trans. Ann. Math. Soc. **95** (1960) 466–488.

3. W. K. Nicholson, I-Rings, Trans. Amer. Math. Soc. 207 (1975), 361-373.

4. P. L. Sandomierski, Ph.D. Thesis, Penn State University (1974).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BOMBAY, BOMBAY 400 098.

1981]