R-PROJECTIVE MODULES OVER A SEMIPERFECT RING

BY
R. D. KETKAR AND N. VANAJA

Abstract

The aim of this paper is to prove the following theorem:

Let R be a semiperfect ring. Let Q be a left R-module satisfying (a) Q is R-projective and (b) $J(Q)$ is small in Q. Then Q is projective.

1. Throughout R denotes an associative ring with unity. By an R-module we mean a unitary left R-module. For further terminology we refer to [1]. Specifically speaking we require the definitions and elementary properties of R-projective modules, projective covers and semiperfect rings.
2. This section is devoted to the proof of the theorem stated in the abstract.

We prove a key fact in
Lemma. Let Q be an R-projective module. Suppose $Q=M+N$ where N is cyclic and Q / M has a projective cover $f: P_{1} \rightarrow Q / M$. Then $Q=P \oplus Q_{1}$ where $P \subseteq N$ and $P \cong P_{1}$.

Proof. Let $\mathrm{g}: \mathrm{Q} \rightarrow \mathrm{Q} / \mathrm{M}$ be the natural map. It is clear that $\mathrm{g}_{1}=\mathrm{g} \mid N: N \rightarrow$ Q / M is onto. This shows that Q / M and hence P_{1} must be cyclic. Since Q is R-projective and P_{1} is cyclic there exists a homomorphism $h: Q \rightarrow P_{1}$ such that $f \circ h=g$. Let $h_{1}=h \mid N$. Then $f \circ h_{1}=g_{1}$. Since g_{1} is onto and $\operatorname{Ker}(f)$ is small in P_{1}, h_{1} splits i.e. there is $j: P_{1} \rightarrow N$ such that $h_{1} \circ j=1_{P_{1}}$. Take $P=j\left(P_{1}\right)$, $Q_{1}=\operatorname{Ker}(h)$.

Now we state the main result
Theorem 1. Let R be a semiperfect ring. Let Q be a left R-module satisfying (a) Q is R-projective and (b) $J(Q)$ is small in Q. Then Q is projective.

It is known that a semiperfect ring R satisfies a.c.c. on left ideals which are direct summands of R ([3] Theorem 4.3). Hence Theorem 1 will follow immediately from

Theorem 2. Let R be a ring satisfying a.c.c. on left ideals which are direct summands of \boldsymbol{R}. Let Q be a left \boldsymbol{R}-module satisfying (1) every finitely generated
factor module of Q has a projective cover, (2) Q is R-projective and (3) $J(Q)$ is small in Q. Then Q is a direct sum of cyclic indecomposable projective modules.

Let $x \in Q, x \notin J(Q)$. Then there is a maximal submodule M of Q such that $x \notin M$. Then $Q=R x+M$. By condition (1), Q / M has a projective cover. Since Q / M is simple, this projective cover is cyclic indecomposable. By the above lemma we can write $Q=P \oplus Q_{1}$ where $P \subseteq R x$ and P is a cyclic indecomposable projective module. Then $R x=R y_{1} \oplus R x_{1}$ where $x=y_{1}+x_{1}, P=R y_{1}, R x_{1}=$ $R x \cap Q_{1}$. It can be easily checked that Q_{1} also satisfies the conditions (1), (2), and (3). Now if $x_{1} \notin J\left(Q_{1}\right)$ we can repeat the above process to write $Q_{1}=$ $R y_{2} \oplus Q_{2}, R y_{2}$ cyclic indecomposable projective direct summand of Q contained in $R x_{1}, x_{1}=y_{2}+x$, such that $R x_{1}=R y_{2} \oplus R x_{2}$ where $R x_{2}=R x_{1} \cap Q_{2}$. We claim that this process can be repeated only for finitely many times. For otherwise, we obtain an infinite direct sum $R y_{1} \oplus R y_{2} \oplus \cdots \oplus R y_{n} \oplus \cdots$ inside $R x$ such that for each $n, R y_{1}+R y_{2}+\cdots+R y_{n}$ is cyclic projective generated by $y_{1}+y_{2}+\cdots+y_{n}$. Let $g_{n}: R \rightarrow R\left(y_{1}+\cdots+y_{n}\right)$ be the maps defined by $g_{n}(1)=$ $y_{1}+\cdots+y_{n}$. These maps split and $\operatorname{Ker}\left(g_{n}\right)=\operatorname{Ann}_{R}\left(y_{1}+\cdots+y_{n}\right)$. Therefore, $\operatorname{Ker}\left(g_{1}\right) \supseteq \operatorname{Ker}\left(g_{2}\right) \supseteq \cdots \supseteq \operatorname{Ker}\left(g_{n}\right) \supseteq \cdots$ form a decreasing sequence of summands of R. Hence we can get an increasing sequence $L_{1} \subseteq L_{2} \subseteq \cdots \subseteq L_{n} \subseteq \cdots$ of summands of R such that $L_{n} \cong R\left(y_{1}+\cdots+y_{n}\right)$. By a.c.c. on these summands, $L_{n}=L_{n+1}$ for some n. Hence $R y_{1} \oplus \cdots \oplus R y_{n} \cong R y_{1} \oplus \cdots \oplus R y_{n+1}$. But this cannot happen since each $R y_{j}$ is a non-zero indecomposable module. This proves our claim. Now let

$$
\begin{aligned}
A=\{y \mid y \in Q, y \neq 0, & R y \text { is cyclic indecomposable } \\
& \text { projective direct summand of } Q\} .
\end{aligned}
$$

Then the preceding arguments together with the fact that $J(Q)$ is small in Q show that $Q=\sum_{y \in A} R y$. Let \mathscr{A} be the family of subsets B of A satisfying the conditions: (a) $\sum_{y \in B} R y$ is a direct sum and (b) for $y_{1}, \ldots, y_{n} \in B$, $R y_{1}+\cdots+R y_{n}$ is a direct summand of Q. Clearly \mathscr{A} is non-empty and Zorn's lemma is applicable (where the partial order in \mathscr{A} is given by the usual inclusion relation). Let B_{0} be a maximal element in \mathscr{A}. Then $P=\sum_{y \in B_{0}} R y=$ $\oplus \sum_{y \in B_{0}} R y$ is projective. We claim that $P=Q$. For this it is sufficient to prove that $A \subseteq P+J(Q)$ since $Q=\sum_{y \in A} R y$ and $J(Q)$ is small in Q. Let $y \in A$. We consider two cases:

Case 1. $P \cap R y=0$.
Then $B_{0} \varsubsetneqq B_{0} \cup\{y\} \subseteq A$. By maximality of B_{0} we can find y_{1}, \ldots, y_{n} in B_{0} such that $R y_{1} \oplus \cdots \oplus R y_{n} \oplus R y$ is not a direct summand of Q. By condition (b) on B_{0}, we can write $Q=\left(R y_{1} \oplus \cdots \oplus R y_{n}\right) \oplus Q_{1}$. Then $R y_{1} \oplus \cdots \oplus R y_{n} \oplus R y=$ $\left(R y_{1} \oplus \cdots \oplus R y_{n}\right) \oplus\left(\left(R y_{1} \oplus \cdots \oplus R y_{n} \oplus R y\right) \cap Q_{1}\right)$. This implies $\left(R y_{1} \oplus \cdots \oplus\right.$ $\left.R y_{n} \oplus R y\right) \cap Q_{1} \cong R y$. Let $\left(R y_{1} \oplus \cdots \oplus R y_{n} \oplus R y\right) \cap Q_{1}=R z$. Then $R z$ is cyclic
indecomposable submodule of Q_{1} and $R z$ cannot be a direct summand of Q_{1}. Hence it is clear from the previous arguments that $z \in J\left(Q_{1}\right) \subseteq J(Q)$. It follows that $y \in P+J(Q)$.

Case 2. $P \cap R y \neq 0$.
If $y \in P$ we are through. Assume that $y \notin P$. Let $0 \neq s y=x \in P \cap R y$. Since $R y$ is non-zero projective, $\operatorname{Ann}(y)$ is a direct summand of R. Let $\operatorname{Ann}(y)=R t$. Choose a finite subset $B \subseteq B_{0}$ such that $x \in \sum_{z \in B} R z$. Then $\sum_{z \in B} R z$ is a direct summand of Q. Let $h: Q \rightarrow \sum_{z \in B} R z$ be the natural projection. Let $y^{\prime}=h(y)$. Then $t\left(y-y^{\prime}\right)=0$. We have also that $s\left(y-y^{\prime}\right)=0$ since $s y^{\prime}=\operatorname{sh}(y)=h(s y)=$ $h(x)=x=s y$. Thus $\operatorname{Ann}(y) \varsubsetneqq \operatorname{Ann}\left(y-y^{\prime}\right)$. We claim that $R\left(y-y^{\prime}\right)$ does not contain any non-zero projective summand. If possible, let N be such a summand of $R\left(y-y^{\prime}\right)$. Since $\operatorname{Ann}(y) \subseteq \operatorname{Ann}\left(y-y^{\prime}\right), y \rightarrow\left(y-y^{\prime}\right)$ defines an epimorphism $f: R y \rightarrow R\left(y-y^{\prime}\right)$. Let $g: R\left(y-y^{\prime}\right) \rightarrow N$ be the natural projection map. Then $g \circ f: R y \rightarrow N$ is an epimorphism which splits. Since $R y$ is indecomposable this means that $g \circ f$ is an isomorphism. This would imply $\operatorname{Ann}\left(y-y^{\prime}\right) \subseteq$ Ann (y), a contradiction. This proves our claim. It follows that $y-y^{\prime} \in J(Q)$. Hence $y \in P+J(Q)$. This completes the proof of Theorem 2.

Note. A ring is called left perfect if every left R-module has a projective cover. It is well known that the radical of every left module over a left perfect ring is small. Hence from Theorem 1 and the Proof of Theorem 2 we get

Corollary 1. (Sandomierski [4]). Any R-projective left R-module over a left perfect ring R is projective.

Corollary 2. (H. Bass [2]). Let P be a projective left R-module over a left perfect ring R. Then P is a direct sum of cyclic indecomposable modules.

The authors are thankful to the referee for his helpful criticisms which improved the proof of Theorem 2.

References

1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. Springer-Verlag (1974).
2. H. Bass, Finitistic Dimension and a Homological Generalization of Semiprimary Rings. Trans. Ann. Math. Soc. 95 (1960) 466-488.
3. W. K. Nicholson, I-Rings, Trans. Amer. Math. Soc. 207 (1975), 361-373.
4. P. L. Sandomierski, Ph.D. Thesis, Penn State University (1974).

Department of Mathematics,
University of Bombay, Bombay 400098.

