H. MikiNagoya Math. J.Vol. 70 (1978), 183-202

ON THE MAXIMAL ABELIAN \(\elline{\ellin}\)-EXTENSION OF A FINITE ALGEBRAIC NUMBER FIELD WITH GIVEN RAMIFICATION

HIROO MIKI*)

Let k be a finite algebraic number field and let ℓ be a fixed odd prime number. In this paper, we shall prove the equivalence of certain rather strong conditions on the following four things $(1) \sim (4)$, respectively:

- (1) the class number of the cyclotomic Z_i -extension of k,
- (2) the Galois group of the maximal abelian ℓ -extension of k with given ramification,
- (3) the number of independent cyclic extensions of k of degree ℓ , which can be extended to finite cyclic extensions of k of any ℓ -power degree, and
- (4) a certain subgroup $B_k(m, S)$ (cf. § 2) of $k^{\times}/(k^{\times})^{\ell^m}$ for any natural number m (see the main theorem in § 3).

Bertrandias-Payan [2] made some examples of k satisfying our condition on (3), which implies the non-vanishing of the ℓ -adic regulator of k (Leopoldt's conjecture for (ℓ,k)), and satisfying the condition $|S_k| = 2$, for $\ell = 3$ and 5, where $|S_k|$ is the number of places of k lying above ℓ . In § 4, we shall prove the existence of k satisfying our condition on (1) and the condition $|S_k| \ge n$, for each natural number n and each regular odd prime number ℓ .

In §1, we shall transform Kubota's theorem [16] into our useful form to prove the equivalence of our conditions on (2), (3) and (4) in §3.

In §2, we shall discuss a certain relation between $B_k(m, S)$ and the class number of a cyclotomic Z_{ℓ} -extension. It is already noted in Satz 8.1 of Neukirch [20] that our condition on (1) implies our condition

Received June 24, 1977.

^{*} Partly supported by Fūjukai Foundation.

on (4). The converse can be proved by using Iwasawa-Yokoyama's method [10], [24] (cf. Theorem 2 in § 2).

In §3, by using the results of §1 and 2, we shall give a complete proof of the main theorem.

In § 4, we shall also prove the following statement: Let ζ_i be a primitive ℓ^i -th root of unity, and put $k_i = k_0$ (ζ_i), where k_0/Q is a totally real finite Galois extension such that ℓ is completely decomposed in k_0 . Suppose that the class number of k_1 is not divisible by ℓ . Then the class number of k_i is not divided by ℓ for any $i \geq 1$. Note that this statement is a generalization of Iwasawa [10].

In § 5, we shall give another proof of a part of the main theorem, based on Kummer theory (cf. [17], Proposition 3)⁽¹⁾ and a cohomology theoretic method of Iwasawa [9].

I wish to express my sincere thanks to Professors Y. Kawada, T. Kubota and S.-N. Kuroda for their helpful advice and encouragement.

Notation and terminology

- (1) Z: the ring of rational integers. $N = \{n \in Z \mid n \geq 1\}$. $N' = N \cup \{0\} \cup \{\infty\}$. Z_{ℓ} : the ring of ℓ -adic integers. Q_{ℓ} : the field of ℓ -adic numbers. F_{ℓ} : the finite field with ℓ elements. |X|: the cardinal number of a set X. (ℓ^m) : the cyclic group of order ℓ^m for each non-negative integer m. (ℓ^{∞}) : the additive group of Z_{ℓ} . C(m,s): the direct product of s copies of (ℓ^m) for each $m, s \in N'$. G(K/k): the Galois group of a Galois extension K of a field k. K^{\times} : the multiplicative group of a field K.
- (2) ℓ : a fixed odd prime number. ζ_i : a primitive ℓ^i -th root of unity for $i \geq 0$. k: a finite algebraic number field. n_0 : the non-negative integer such that $\zeta_{n_0} \in k$ and $\zeta_{n_0+1} \in k$. r_1 : the number of real places of k. r_2 : the number of complex places of k. $k_i = k(\zeta_i)$. k_v : the completion of k with respect to a prime divisor v of k. U_v : the group of units of k_v if v is non-archimedean, and k_v^{\times} otherwise. S_k : the set of all the prime divisors of k lying above ℓ . S: a finite set of non-archimedean prime divisors of k, containing S_k . $S_i = \{v \in S \mid \zeta_i \in k_v, \zeta_{i+1} \in k_v\}$ for each $i \geq 0$. $s_i = |S_i|$. S^i : the set of all prime divisors of k_i lying

⁽¹⁾ Note that Corollary to Proposition 3 of [17] is the same as Theorem 1 of Bertrandias-Payan [2] when the basic field contains a primitive ℓ -th root of unity. The author did not know their result when he wrote [17].

above S for each $i \ge 0$. T: a finite set of prime divisors of k. An algebraic extension K of k is called T-ramified (or unramified outside T) if K/k is unramified for any prime divisor $v \in T$.

k(T): the maximal T-ramified abelian ℓ -extension of k. $G_k(T) = G(k(T)/k)$. $U_k(m,T) = \{x \in k^\times | (x) = \alpha^{\ell^m}, x \in k_v^{\times \ell^m} \text{ for } v \in T\}$, where (x) is a principal ideal of k generated by x, α denotes a fractional ideal of k. $B_k(m,T) = U_k(m,T)/k^{\times \ell^m}$. I_k : the group of ideals of k. P_k : the group of principal ideals of k. Cl_k : the ideal class group of k, i.e., $Cl_k = I_k/P_k$. $Cl_k(S) = Cl_k/\langle S \rangle$, where $\langle S \rangle$ is the subgroup of Cl_k generated by all ideal classes containing prime ideals in S. S: the idele group of S: the idele class group of S: the group of S-power roots of unity in S: the group of S-power roots of unity in S: the non-negative integer such that S is a prime divisor S of S: the non-negative integer such that S is a generator of S of S of S of S is a generator of S of unity in S of S of S of S is a generator of S of unity in S of S of S of S is a generator of S of unity in S of S o

§ 1. Kubota's theorem and its corollaries

To introduce some of Kubota's results [16], we need some notations. Let ℓ , k, S_k , T and $B_k(\nu,T)$ be as in Notation. For each $\nu \in N$, let $k(\nu,T)$ be the maximal T-ramified abelian ℓ -extension of k such that $\sigma^{\ell\nu} = 1$ for all $\sigma \in G(k(\nu,T)/k)$, and let $k(\nu)/k$ be the composite field of all cyclic extensions K of k of degree ℓ^m with $m \leq \nu$ such that for any $n \in N$, K/k can be extended to a cyclic extension \tilde{K} of k of degree ℓ^{m+n} . Let $G_k(\nu,T) = G(k(\nu,T)/k)$ and $H_k(\nu) = G(k(\nu)/k)$. Let N = [k:Q]. For each $v \in T$, let $N_v = [k_v : Q_\ell]$ or 0 according as $v \mid \ell$ or $v \nmid \ell$, and let $w_{\nu,v}$ be the number of roots of unity in k_v^\times whose orders divide ℓ^ν . Let h_ν be the ℓ^ν -class number of k, i.e., the number of the ideal classes of k whose orders divide ℓ^ν . Put

$$U_k^*(\nu,T) = \{x \in k^\times | (x) = \mathfrak{a}^{\ell^\nu}, x \in W_v(k_v^\times)^{\ell^\nu} \text{ for all } v \in T\}$$

and $B_k^*(\nu, T) = U_k^*(\nu, T)/(k^{\times})^{\ell^{\nu}}$, where W_v is as in Notation.

THEOREM 1 (Kubota [16]). Under the above notation and assumptions, the following two statements hold:

$$\text{(i)} \quad |G_{{\it k}}({\it v},T)| = h_{\it v} \cdot \prod_{\it v \in T} (\ell^{\it v N_{\it v}} w_{\it v,\it v}) \cdot (B_{\it k}({\it v},\phi) : B_{\it k}({\it v},T))^{-1}\,;$$

(ii)
$$|H_k(\nu)| = h_\nu \cdot \ell^{N\nu} (B_k(\nu, \phi) : B_k^*(\nu, S_k))^{-1}$$
.

Remark 1. Kubota [16] stated the statement (i) in Theorem 1 when $T = S_k$, but in the same way as his, the general case follows.

Now we transform Kubota's result quoted above into a useful form for our purpose. For this we need the following elementary

LEMMA 1. Under the above notation and assumptions,

$$|B_k(\nu,\phi)| = h_{\nu} \ell^{(r_1+r_2-1)\nu} w_{\nu}$$
,

where w, is the number of roots of unity in k^{\times} whose orders divide ℓ° .

Proof. We have an exact sequence

$$1 \longrightarrow E_k/E_k^{\rho} \xrightarrow{\phi_1} B_k(\nu, \phi) \xrightarrow{\phi_2} H_{\nu} \longrightarrow 1,$$

where H_{ν} is the group of the ideal classes of k whose orders divide ℓ^{ν} , $\phi_{1}(\tilde{\varepsilon})=\varepsilon \mod (k^{\times})^{\ell^{\nu}}$ with $\tilde{\varepsilon}=\varepsilon \mod E_{k}^{\ell^{\nu}}$, $\varepsilon \in E_{k}$, and $\phi_{2}(\tilde{x})=\alpha \mod P_{k}$ with $\tilde{x}=x \mod (k^{\times})^{\ell^{\nu}}$, $x \in U_{k}(\nu,\phi)$, $(x)=\alpha^{\ell^{\nu}}$ and $\alpha \in I_{k}$. From this exact sequence, we obtain $|B_{k}(\nu,\phi)|=|H_{\nu}|\cdot|E_{k}/E_{k}^{\ell^{\nu}}|$. From this equality and Dirichlet's unit theorem, the assertion follows.

Remark 2. When $\nu = 1$, the above Lemma 1 is contained in the proof of Theorem 1 of Šafarevič [22], and the above proof is the same as his.

By Theorem 1 and Lemma 1, we obtain immediately the following

COROLLARY 1. Under the above notation and assumptions, the following two statements hold:

(i)
$$|G_k(\nu,T)| = \prod_{v \in T} (\ell^{\nu N_v} \cdot w_{\nu,v}) \cdot |B_k(\nu,T)| \cdot (\ell^{(r_1 + r_2 - 1)\nu} \cdot w_{\nu})^{-1};$$

In particular,

$$|G_{\mathbf{k}}(\mathbf{p},T)| = \ell^{(r_2+1)\mathbf{p}} \Big(\prod_{\mathbf{v}\in T} w_{\mathbf{p},\mathbf{v}}\Big) w_{\mathbf{p}}^{-1} |B_{\mathbf{k}}(\mathbf{p},T)| \qquad if \;\; T\supset S_{\mathbf{k}};$$

(ii)
$$|H_k(\nu)| = |B_k^*(\nu, S_k)| \cdot \ell^{(r_2+1)\nu} w_{\nu}^{-1}$$
.

Proof. If $T \supset S_k$, then $\sum_{v \in T} N_v = N$ and $N = r_1 + 2r_2$. From this equality, Theorem 1 and Lemma 1, the assertion follows.

Remark 3. The statement (i) in the above Corollary is the same as Theorem 1 of Šafarevič [22], when $\nu = 1$.

COROLLARY 2. Let the notation be as in Notation. Then the following three statements are equivalent:

- (i) The essential rank of $G_k(S)$ is $r_2 + 1$, i.e., the number of independent Z_{ℓ} -extensions of k is equal to $r_2 + 1$.
- (ii) There exists an integer c depending only on k and S such that $|B_k(m,S)| < c$ for all $m \ge 1$.
- (iii) There exist integers c and m_0 depending only on k and S such that $|B_k(m, S)| = c$ for all $m \ge m_0$.

Proof. It is obvious that the statement (i) is equivalent to that $|G_k(m+1,S)|/|G_k(m,S)| = \ell^{r_2+1}$ for sufficiently large m. By the statement (i) of Corollary 1 to Theorem 1,

$$|G_k(m+1,S)|/|G_k(m,S)| = \ell^{r_2+1} \cdot |B_k(m+1,S)| \cdot |B_k(m,S)|^{-1}$$

for sufficiently large m. Hence the statement (i) is equivalent to that there exists an integer m_0 such that $|B_k(m+1,S)| = |B_k(m,S)|$ for all $m \ge m_0$, i.e., that the statement (iii) holds. It is clear that (iii) implies (ii). Now suppose that the statement (ii) holds. By Lemma 2, $|B_k(m+1,S)| \ge |B_k(m,S)|$ for sufficiently large m. Hence the condition (ii) implies the condition (iii).

- Remark 4. (1) According to Iwasawa, the condition (i) in the above Corollary 2 is equivalent to the non-vanishing of the ℓ -adic regulator of k (Leopoldt's conjecture for (ℓ, k)) (see [12], p. 254).
 - (2) By Corollary 1 to Theorem 1 and Lemma 2,

$$|G_k(m+1,S)|/|G_k(m,S)| = \ell^{r_2+1}|B_k(m+1,S)||B_k(m,S)|^{-1}$$

and $|B_k(m+1,S)| \ge |B_k(m,S)|$ for sufficiently large m. This gives that the essential rank of $G_k(S) \ge r_2 + 1$ (a part of Theorem 2 of Iwasawa [12]).

LEMMA 2. Let the notation and assumptions be as in Notation. Then the ℓ -th power homomorphism f from $U_k(m,S)$ to $U_k(m+1,S)$ induces the injection from $B_k(m,S)$ to $B_k(m+1,S)$ for sufficiently large m. In particular, $|B_k(m,S)| \leq |B_k(m+1,S)|$ for sufficiently large m.

Proof. By definition, $U_k(m,S)^\ell \subset U_k(m+1,S)$ for $m \ge 1$. Let $x \in U_k(m,S)$ be such that $x^\ell \in (k^\times)^{\ell^{m+1}}$. Then $x^\ell = y^{\ell^{m+1}}$ with a $y \in k^\times$, hence $x = \zeta_1^r y^{\ell^m}$ with an $r \in \mathbb{Z}$. Let $v_0 \in S_k$. Then we see easily that

 $\zeta_1 \in (k_{v_0}^{\times})^{\ell^m}$ for sufficiently large m. Since $S \supset S_k$, $x \in U_k(m, S)$ implies that $\zeta_1^r \in (k_{v_0}^{\times})^{\ell^m}$, hence $r \equiv 0 \pmod{\ell}$, i.e., $x = y^{\ell^m} \in (k^{\times})^{\ell^m}$. Therefore we have the assertion.

To apply Theorem 1 to the proof of the part "(iii) \Leftrightarrow (v)" of the main theorem, we need moreover the following Lemma 4, and for the proof of Lemma 4 we need the following

LEMMA 3. Let the notation and assumptions be as above. Moreover suppose that $\zeta_{n_0} \in k$ and $\zeta_{n_{0+1}} \in k$ with $n_0 \geq 1$. Then $B_k(1, S) = 0$ implies that $B_k(\nu, S) = 0$ for $1 \leq \nu \leq n_0$.

Proof. It suffices to prove that $B_k(\nu+1,S)=0$ with a $\nu \leq n_0-1$ under the assumption that $B_k(m,S)=0$ for $1\leq$ all $m\leq \nu$. Let $x\in U_k(\nu+1,S)$. Then $B_k(\nu,S)=0$ implies that $x=y^{\ell\nu}$ with a $y\in k^\times$. Then $x\in U_k(\nu+1,S)$ implies that $y=\zeta_\nu^{r_v}z_v^{\ell}$ with $r_v\in Z$, $z_v\in k_v^\times$ for each $v\in S$. Since $\nu\leq n_0-1$, $y\in k_v^{\ell}$ for each $v\in S$, hence $y\in U_k(1,S)$. Hence $B_k(1,S)=0$ implies that $y=z^{\ell}$ with a $z\in k^\times$, hence $x=y^{\ell\nu}=z^{\ell\nu+1}$. This implies that $B_k(\nu+1,S)=0$.

LEMMA 4. Let the notation and assumptions be as above. If $\zeta_1 \in k$, then suppose moreover that there exists $v_0 \in S_k$ such that $\zeta_{n_0+1} \notin k_{v_0}$. Then the following three statements are equivalent:

- (i) $B_k(\nu, S_k) = 0$ for all $\nu \ge 1$.
- (ii) $|B_k^*(1, S_k)| = \ell$ or 1 according as $\zeta_1 \in k$ or not.
- (iii) $U_k^*(1, S_k) = \langle \zeta_{n_0} \rangle (k^{\times})^{\ell}$.

Proof. The equivalence of (ii) and (iii) is obvious. First suppose that (i). Let $x \in U_k^*(1, S_k)$. Then there exists a positive integer n such that $x^{i^n} \in U_k(n+1, S_k)$. By (i), $x^{i^n} = y^{i^{n+1}}$ with a $y \in k^{\times}$. Hence $x = \zeta_{n_0}^r y^i$ with an $r \in \mathbb{Z}$. This implies that $U_k^*(1, S_k) = \langle \zeta_{n_0} \rangle (k^{\times})^i$, i.e., the statement (iii) follows. Conversely suppose that (iii). We prove the assertion (i) by induction on ν . Since $U_k(1, S_k) \subset U_k^*(1, S_k)$, (iii) implies that $U_k(1, S_k) = (k^{\times})^i$, i.e., $B_k(1, S_k) = 0$, when $\zeta_1 \in k$. When $\zeta_1 \in k$, by the assumption that $\zeta_{n_0} \in k_{v_0}^i$ with a $v_0 \in S_k$, we have $\zeta_{n_0} \in U_k(1, S_k)$. Hence (iii) gives $U_k(1, S_k) = (k^{\times})^i$, i.e., $B_k(1, S_k) = 0$. Then by Lemma 3, $B_k(n_0, S_k) = 0$ if $n_0 \geq 1$. Now suppose that $B_k(\nu, S_k) = 0$ for a $\nu \geq \max(n_0, 1)$. Let $x \in U_k(\nu + 1, S_k)$. Then it follows from $B_k(\nu, S_k) = 0$ that $x = z^{i\nu}$ for a $z \in k^{\times}$. By definition, $z \in U_k^*(1, S_k)$. From (iii), we obtain $z = \zeta_{n_0}^s w^i$ with $s \in \mathbb{Z}$, $w \in k^{\times}$. Hence $x = z^{i\nu} = w^{i\nu+1}$, since

 $\nu \ge \max(n_0, 1)$. This implies that $B_k(\nu + 1, S_k) = 0$. Therefore by induction on ν , we obtain (i).

Remark 5. (1) In the above proof, we use the assumption that $\zeta_{n_0+1} \in k_{v_0}$ with a $v_0 \in S_k$ if $n_0 \ge 1$, only to prove that (ii) implies (i).

(2) If $B_k(1,S) = 0$ and if $\zeta_1 \in k$, then there exists $v_0 \in S$ such that $\zeta_{n_0} \in k_{v_0}^{\ell}$. In fact, if $\zeta_{n_0} \in k_v^{\ell}$ for all $v \in S$, then $\zeta_{n_0} \in U_k(1,S)$ and $\zeta_{n_0} \in k^{\ell}$; this implies that $B_k(1,S) \neq 0$; this is a contradiction.

§ 2. A relation between $B_k(m,S)$ and the class number of a cyclotomic Z_ℓ -extension

LEMMA 5. Let ℓ , k, ζ_i , n_0 , S and $B_k(m, S)$ be as in Notation and let m be a positive integer. Suppose that there exists a $v_0 \in S$ such that $\zeta_{n_0+1} \in k_{v_0}$. Then $B_k(m, S) = 0$ implies that $B_k(i, S) = 0$ for $1 \leq all \ i \leq m$.

Proof. Let $x \in U_k(i,S)$, and put $z = x^{\ell^{m-i}}$, then $z \in U_k(m,S)$. Since $B_k(m,S) = 0$, there exists a $y \in k^{\times}$ such that $z = y^{\ell^m}$, hence $x = \zeta_{n_0}^r y^{\ell^i}$ with some $r \in Z$. Since $x \in U_k(i,S)$, $\zeta_{n_0}^r \in k_{v_0}^{\ell^i}$. This implies $\zeta_{n_0}^r = \zeta_{n_0}^{\ell^{\ell^i}}$ with some $s \in Z$, since $\zeta_{n_0} \in k_{v_0}$ and $\zeta_{n_{0+1}} \oplus k_{v_0}$; hence $x \in k^{\ell^i}$. Therefore $B_k(i,S) = 0$.

LEMMA 6. Let ℓ , k, S and ζ_i be as in Notation, and let $m_0 \in N$ be such that $\zeta_{m_0} \in k_v$ for all $v \in S$. Then $B_k(m_0, S) = 0$ implies that $B_k(m, S) = 0$ for all $m \geq m_0$.

Proof. We shall prove the lemma by induction on m. If $m=m_0$, then the assertion is valid by assumption. Suppose $m>m_0$, and let $x\in U_k(m,S)$. Since $B_k(m-1,S)=0$ by the induction hypothesis, there exists a $y\in k^\times$ such that $x=y^{\ell^{m-1}}$. Since $x\in k_v^{\ell^m}$ for all $v\in S$, there exists $r_v\in Z$ and $a_v\in k_v^\times$ such that $y=\zeta_{nv}^{r_0}\cdot a_v^\ell$. We have $n_v< m_0$ for all $v\in S$, since $\zeta_{m_0}\in k_v$. Hence $y^{\ell^{m_0-1}}=a_v^{\ell^{m_0}}$ all $v\in S$, so $y^{\ell^{m_0-1}}\in U_k(m_0,S)$. Since $B_k(m_0,S)=0$, there exists a $z\in k^\times$ such that $y^{\ell^{m_0-1}}=z^{\ell^{m_0}}$, hence $x=z^{\ell^m}\in k^{\ell^m}$. This implies $B_k(m,S)=0$. By induction on m, we have the assertion.

LEMMA 7 (Iwasawa, Yokoyama). Let ℓ and k be as in Notation and let K/k be a finite Galois extension of ℓ -power degree. Let v_0 be a non-archimedean prime divisor of k and let V_0 be an extension of v_0 to V_0 . Let V_0 be a finite Galois extension of ℓ -power degree containing V_0 such that V_0 is unramified in V_0 (resp. V_0 is completely

decomposed in M'). Assume that $M \neq K$ (resp. $M' \neq K$). Then there exists a cyclic extension L of k of degree ℓ in M (resp. M') where v_0 is unramified (resp. v_0 is completely decomposed).

The above Lemma 7 follows directly from the proofs of Iwasawa [8] and [Yokoyama [24], Theorem 4] (see also [Iwasawa [11], § 6–3, Lemma, (ii)]).

THEOREM 2. Let ℓ be a prime number. Let k, n_0 , S, S^i , k_i and $Cl_k(S)$ be as in Notation and assume that k contains a primitive 4-th root of unity if $\ell=2$. Let m be a positive integer. Then the following statements hold:

- (1) (Remark in Neukirch [20], Satz (8.1)). If $|Cl_{k_m}(S^m)| \equiv 0 \pmod{\ell}$, then $B_k(m, S) = 0$.
- (2) Assume moreover that $\zeta_1 \in k$ and that there exists a $v_0 \in S$ such that $\zeta_{n_0+1} \in k_{v_0}$. Then $B_k(m, S) = 0$ implies $|Cl_{k_m}(S^m)| \not\equiv 0 \pmod{\ell}$.

Proof. (2) It is sufficient to prove that $B_k(m, S) \neq 0$ under the assumption $|Cl_{k_m}(S^m)| \equiv 0 \pmod{\ell}$. Let M/k_m be the maximum unramified abelian ℓ -extension of k_m where any prime divisor in S^m is completely decomposed. Clearly M/k is a Galois extension. By class field theory, $|Cl_{k_m}(S^m)| \equiv 0 \pmod{\ell}$ implies that $M \neq k_m$. Hence by Lemma 7, there exists a cyclic extension K of k of degree ℓ in M where v_0 is completely decomposed. Since $\zeta_{n_0+1} \in k_{v_0}$, v_0 is not completely decomposed in k_{n_0+1}/k . Therefore $k_m \cap K = k$, so $[Kk_m : k_m] = \ell$. Let $x \in k^{\times}$ be such that $K = k(\sqrt[\ell]{x})$. Since k_m/k is S-ramified, K/k is S-ramified. Put $z = x^{\ell^{m-1}}$. Let $v \in S$, and let V be an extension of v to k_m . Since V is completely decomposed in M/k_m and $Kk_m \subset M$, we have $x \in (k_m)_v^{\ell}$. Hence by Kummer theory, $x=a^{\ell}\zeta_{i}^{j}$ with $a\in k_{v}^{\times},\,j\in Z,\,i\in N,\,i\leq m.$ Hence $z=x^{\ell^{m-1}}=a^{\ell^{m}}\in k_{v}^{\ell^{m}}.$ Now let $v \in S$ be any non-archimedean prime divisor of k. Since K/kis S-ramified, $\operatorname{ord}_v(x) \equiv 0 \pmod{\ell}$, so $\operatorname{ord}_v(z) \equiv 0 \pmod{\ell^m}$, where ord_v is the normalized additive valuation of k with respect to v. $z \in U_k(m, S)$. On the other hand, $z \in k^{\ell^m}$. In fact, if $z \in k^{\ell^m}$, then $z = x^{\ell^{m-1}}$ $= w^{\ell^m}$ with a $w \in k^{\times}$, hence $x = \zeta_{m-1}^r w^{\ell}$ with some $r \in \mathbb{Z}$; this implies $K \subset k_m$, but this contradicts that $[Kk_m : k_m] = \ell$; so $z \in k^{\ell^m}$. Therefore $B_k(m,S) \neq 0.$

LEMMA 8. Let ℓ , k, n_0 , ζ_i , k_i , S_k , S, S^m and $Cl_k(S)$ be as in Notation and let $m \ge n_0$ be a rational integer. Assume that $\zeta_1 \in k$. Assume more-

over that any prime divisor in $S^m - S_{k_m}$ is not decomposed in k_{m+1}/k_m and that there exists a $v_0 \in S_{k_m}$ not decomposed in k_{m+1}/k_m . Then $|Cl_{k_m+1}(S^{m+1})| \not\equiv 0 \pmod{\ell}$ implies that $|Cl_{k_m}(S_{k_m})| \not\equiv 0 \pmod{\ell}$.

Proof. It is sufficient to prove that $|Cl_{k_{m+1}}(S^{m+1})| \equiv 0$ under the assumption that $|Cl_{k_m}(S_{k_m})| \equiv 0 \pmod{\ell}$. By class field theory, this condition implies that there exists an unramified cyclic extension K/k_m of degree ℓ where any prime divisor in S_{k_m} is completely decomposed. From the existence of v_0 , it follows that Kk_{m+1}/k_{m+1} is an unramified cyclic extension of degree ℓ where any prime divisor in $S_{k_{m+1}}$ is completely decomposed. Now suppose that there exists a $V_1 \in S^{m+1} - S_{k_{m+1}}$ not decomposed in Kk_{m+1}/k_{m+1} . Let v_1 be the restriction of V_1 to k_m . Since any prime divisor in $S^m - S_{k_m}$ is not decomposed in k_{m+1}/k_m , v_1 is unramified and not decomposed in Kk_{m+1}/k_m , hence Kk_{m+1}/k_m is cyclic of degree ℓ^2 . But this is a contradiction. Therefore any prime divisor in S^{m+1} is completely decomposed in Kk_{m+1}/k_{m+1} , so by class field theory, $|Cl_{k_{m+1}}(S^{m+1})| \equiv 0 \pmod{\ell}$.

By Lemmas 5, 6, 8 and Theorem 2, we obtain the following

THEOREM 3. Let ℓ , k, S, ζ , n_0 , k_i , S^i , $Cl_k(S)$ and $B_k(m, S)$ be as in Notation. Assume that $\zeta_1 \in k$ and that there exists a $v_0 \in S_k$ such that $\zeta_{n_0+1} \in k_{v_0}$. Then the following statements (1) \sim (8) are equivalent:

- (1) $B_k(m, S) = 0$ for all $m \in \mathbb{N}$.
- (2) $B_k(m, S_k) = 0$ for all $m \in \mathbb{N}$.
- (3) $|Cl_{k_m}(S^m)| \equiv 0 \pmod{\ell}$ for all $m \in \mathbb{N}$.
- $(4) |Cl_{k_m}(S_{k_m})| \equiv 0 \pmod{\ell} \text{ for all } m \in \mathbb{N}.$
- (5) $B_k(m_0, S) = 0$ for some $m_0 \ge 1$ such that $\zeta_{m_0} \in k_v$ for all $v \in S$.
- (6) $B_k(m_0, S_k) = 0$ for some $m_0 \ge 1$ such that $\zeta_{m_0} \in k_v$ for all $v \in S_k$.
- (7) $|Cl_{k_{m_0}}(S^{m_0})| \equiv 0 \pmod{\ell}$ for some $m_0 \geq 1$ such that $\zeta_{m_0} \in k_v$ for all $v \in S$.
- (8) $|Cl_{k_{m_0}}(S_{k_{m_0}})| \not\equiv 0 \pmod{\ell}$ for some $m_0 \geq 1$ such that $\zeta_{m_0} \in k_v$ for all $v \in S_k$.

§ 3. Main Theorem

MAIN THEOREM. Let the notation be as in Notation and suppose that k contains a primitive ℓ -th root of unity and that there exists $v_0 \in S_k$ such that $W_{v_0} = W$. Then the following statements (i) \sim (vi) are equivalent:

- (i) $|Cl_{k_i}(S_k)| \not\equiv 0 \pmod{\ell}$ for all $i \geq 1$;
- (ii) $|Cl_{k_i}(S)| \equiv 0 \pmod{\ell}$ for all $i \geq 1$;
- (iii) $B_k(m, S_k) = 0$ for all $m \ge 1$;
- (iv) $B_k(m, S) = 0$ for all $m \ge 1$;
- (v) The number of independent cyclic extensions of k of degree ℓ , which can be extended to cyclic extensions of k of degree ℓ^n for any $n \in \mathbb{N}$, is equal to $r_2 + 1$;
 - (vi) $G_k(S) \cong (\prod_{v \in S \{v_0\}} W_v) \times Z_\ell \times \cdots \times Z_\ell \ (r_2 + 1 \ copies).$

Proof. It is contained in Theorem 3 that the statements (i), (ii), (iii) and (iv) are equivalent each other. It is easily verified that the statement (vi) in the main theorem is equivalent to that

$$|G_k(\nu,S)| = \ell^{\nu(\tau_2+1)} \Big(\prod_{v \in S} w_{\nu,v}\Big) w_{\nu}^{-1} \qquad \text{for all } \nu \geqq 1 \;.$$

By (i) of Corollary 1 to Theorem 1, this is equivalent to that $|B_k(\nu,S)| = 1$ for all $\nu \ge 1$, i.e., the statement (iv) in the main theorem. Under the assumption that $\zeta_{n_0} \in k_{v_0}^{\ell}$ with a $v_0 \in S_k$, it is obvious that the statement (v) is equivalent to that $|H_k(1)| = \ell^{r_2+1}$. By (ii) of Corollary 1 to Theorem 1, this is equivalent to $|B_k^*(1,S_k)| = \ell$, since $\zeta_1 \in k$. Hence by Lemma 4, this is equivalent to (iii).

Remark 6. (1) If $|Cl_k(S_k)| \not\equiv 0 \pmod{\ell}$ and if $\zeta_1 \in k$, then there exists a $v_0 \in S_k$ such that $W_{v_0} = W$. In fact, if $W_v \not\equiv W$ for all $v \in S_k$, then $k_{n_0+1} = k({}^\ell \sqrt{\zeta_{n_0}})$ is an unramified cyclic extension of k of degree ℓ where any place $v \in S_k$ is fully decomposed. By class field theory, this implies that $|Cl_k(S_k)| \equiv 0 \pmod{\ell}$, and this is a contradiction. Hence there exists a $v_0 \in S_k$ such that $W_{v_0} = W$.

(2) The above proof of the statements of "(iii) \Leftrightarrow (v)" and "(iv) \Leftrightarrow (vi)" of the main theorem are also valid in the case where $\zeta_1 \in k$.

§ 4. Existence of finite algebraic number fields k satisfying the condition (i) in the main theorem and the condition $|S_k| \ge n$ for each $n \ge 1$ and each regular prime number ℓ

By Iwasawa [10], we see easily that for each regular prime number ℓ there exist infinitely many finite algebraic number fields k satisfying the condition (i) in the main theorem and the condition $|S_k| = 1$. But when $S = S_k$ and $|S_k| = 1$, the part "(i) \Rightarrow (vi)" of the main theorem

follows also from [Šafarevič [22], § 4] and [Brumer [4], Corollary 3.3], hence it is natural to consider whether there exists a finite algebraic number field k satisfying the condition (i) in the main theorem and the condition $|S_k| > 1$. Note that Bertrandias-Payan [2] gave some examples satisfying the condition (v) in the main theorem and the condition $|S_k| = 2$ for $\ell = 3, 5$.

The purpose of this section is to prove the following two theorems.

THEOREM 4. Let ℓ and ζ_i be as in Notation. Let k/Q be a finite Galois extension where ℓ is completely decomposed. Put $k_i = k(\zeta_i)$ with $i \geq 1$. Suppose that $|Cl_{k_1}| \equiv 0 \pmod{\ell}$. Then the following two statements are equivalent:

- (i) $|Cl_{k_i}| \not\equiv 0 \pmod{\ell}$ for all $i \geq 2$.
- (ii) k is totally real.

THEOREM 5. For each regular prime number $\ell \neq 2$ and each $n \in \mathbb{N}$, there exist infinitely many finite algebraic number fields k satisfying the following conditions (1) \sim (4):

- (1) $\zeta_1 \in k$;
- (2) $k/\mathbf{Q}(\zeta_1)$ is not a Galois extension, and $[k:\mathbf{Q}(\zeta_1)] = \ell^s$ with some $s \geq 2$.
 - (3) $|Cl_{k_i}| \not\equiv 0 \pmod{\ell}$ for all $i \geq 1$;
 - $(4) |S_k| \ge n,$

where ζ_i , k_i , Cl_{k_i} and S_k are as in Notation.

EXAMPLES. (1) Put $\ell = 3$ and $k = Q(\sqrt{7})$. Then ℓ is decomposed in k and $|Cl_{k_i}| \equiv 0 \pmod{\ell}$. Therefore by Theorem 4, $|Cl_{k_i}| \equiv 0 \pmod{\ell}$ for all $i \geq 2$.

- (2) Put $\ell=3$ and $k=\mathbf{Q}(\sqrt{-2})$. Then ℓ is decomposed in k and $|Cl_{k_1}| \equiv 0 \pmod{\ell}$. But by Theorem 4, $|Cl_{k_2}| \equiv 0 \pmod{\ell}$, hence $|Cl_{k_\ell}| \equiv 0 \pmod{\ell}$ for all $i \geq 2$.
- (3) Put $\ell=3$ and $k=Q(\zeta_1,\sqrt[3]{(2+3\sqrt{-3})(4+3\sqrt{-3})})$. Then exactly two primes $(2+3\sqrt{-3})$ and $(4+3\sqrt{-3})$ in $Q(\zeta_1)$ are ramified in $k/Q(\zeta_1)$, and $|S_k|=3$. Since any prime in S_k is not decomposed in k_2 and since $|Cl_{Q(\zeta_1)}| \equiv 0 \pmod{\ell}$ for all $i \geq 1$, we see by Lemma 10 that $|Cl_{k_i}| \equiv 0 \pmod{\ell}$ for all $i \geq 1$. Therefore by the main theorem, $G_k(S_k) \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times (3) \times (3)$. We can make many such examples in the way of the proof of Theorem 5.

5.1. Generalizations of Iwasawa-Yokoyama's theorem on class numbers.

In this section, we state two lemmas on the ℓ-rank of the ideal class group and class numbers (see Lemmas 9 and 10), which are considered as generalizations of Iwasawa [10] and [Yokoyama [24], Theorem 4]. In §§ 5.2–5.3, we shall use these lemmas for the proofs of Theorems 4 and 5.

- LEMMA 9 ([18], Theorem). Let ℓ be a prime number and let k be a finite algebraic number field. Let Cl_k denote the ideal class group of k. Let k_n/k be a ramified cyclic extension of degree ℓ^n with $n \in \mathbb{N}$ and let k_i/k be the sub-extension of degree ℓ^i for $0 \le i \le n$. Suppose that the following two conditions are satisfied:
 - (i) Any archimedean prime divisor of k is unramified in k_n ;
- (ii) Any prime divisor of k ramified in k_n is fully ramified in k_n . Then the equality ℓ -rank $Cl_k = \ell$ -rank Cl_{k_1} implies that ℓ -rank $Cl_k = \ell$ -rank Cl_{k_i} for $1 \le i \le n$. In particular, the conditions $|Cl_k| \not\equiv 0 \pmod{\ell}$ and $|Cl_{k_1}| \not\equiv 0 \pmod{\ell}$ imply that $|Cl_{k_i}| \not\equiv 0 \pmod{\ell}$ for $1 \le any$ $i \le n$.

Note that the condition (i) in Lemma 9 is always satisfied if $\ell \neq 2$ and that there exists a finite cyclic extension k_n/k of degree ℓ^n such that $|Cl_k| \equiv 0 \pmod{\ell}$ and $|Cl_{k_1}| \equiv 0 \pmod{\ell}$ (cf. (2) of Examples of Theorem 4).

- LEMMA 10. Let ℓ , k, ζ_i , n_0 and Cl_k be as in Notation and let v_1 and v_2 be two distinct non-archimedean prime divisors of k such that $\zeta_{n_0+1} \in k_{v_2}$ and such that v_2 does not lie above ℓ . Let K be a finite Galois extension of k of ℓ -power degree, unramified outside v_1 and v_2 , and let G = G(K/k). Then the following two statements hold:
 - (1) If $|Cl_k| \not\equiv 0 \pmod{\ell}$, then $|Cl_K| \not\equiv 0 \pmod{\ell}$.
- (2) Suppose moreover that K/k is cyclic and that v_2 is fully ramified in K/k. Then $|Cl_K^G| = |Cl_k|$, where Cl_K^G is the subgroup of Cl_K of all elements invariant by G.

For the proof of Lemma 10, we use Iwasawa-Yokoyama's Lemma 7 and the following

LEMMA 11. Let ℓ , k, ζ_{i} and n_{0} be as in Lemma 10 and let v_{0} be a non-archimedean prime divisor of k not lying above ℓ . Suppose that $\zeta_{n_{0}+1} \in k_{v_{0}}$. Let K/k be a cyclic extension of degree ℓ , unramified outside

 v_0 . Then K/k is unramified.

Proof. Let J and U_T be as in Notation. Let N be the subgroup of J associated with K, by class field theory. Since K/k is unramified outside $v_0, U_S J^{\ell} k^{\times} \subset N$, where $S = \{v_0\}$. Let $a = (a_v) \in J$ be such that $a_{v_0} = 1$ and $a_v = \zeta_{n_0}$ for $v \neq v_0$, and let $b = (b_v) \in J$ such that $b_{v_0} = \zeta_{n_0}$ and $b_v = 1$ for $v \neq v_0$. Then $\zeta_{n_0} = ab$ in J. $a \in U_S$ implies that $b \in U_S k^{\times}$, so $b \in N$. Since v_0 does not lie above ℓ , $U_{v_0}^{(1)} \subset J^{\ell} \subset N$, where $U_{v_0}^{(1)}$ is the subgroup of U_{v_0} of principal units of k_{v_0} . Since $\zeta_{n_0} \notin k_{v_0}^{\ell}$, the conditions $b \in N$ and $U_{v_0}^{(1)} \subset N$ imply that $U_{v_0} \subset N$. Therefore v_0 is unramified in K.

Remark 7. Lemma 11 can be also proved by using [Šafarevič [22], Theorem 1].

Proof of Lemma 10. (1) It is enough to prove that $|Cl_k| \equiv 0 \pmod{\ell}$ under the assumption that $|Cl_k| \equiv 0 \pmod{\ell}$. Let M be the maximum unramified abelian extension of K of ℓ -power degree. Obviously M/k is a Galois extension. Then by class field theory, $|Cl_K| \equiv 0 \pmod{\ell}$ implies that $M \not= K$, so by Lemma 7, there exists a cyclic extension L of k in M where v_1 is unramified. Since $L \subset M$, L/k is unramified outside v_2 , so by Lemma 11, L/k is unramified; hence by class field theory, $|Cl_k| \equiv 0 \pmod{\ell}$.

(2) Put $N_{K/k}(K^{\times}) \cap E_k = A$ and $[K:k] = \ell^n$, where E_k is the group of units of k. Since v_2 is fully ramified in K, it follows from Lemma 11 that v_1 is fully ramified in K. Hence by the well-known formula of $|Cl_K^G|$ (see Yokoi [23]), we have $|Cl_K^G| = [E_k:A]^{-1}\ell^n |Cl_k|$. Now we shall show that E_k/A is generated by $\zeta_{n_0} \mod A$ and that $[E_k:A] = \ell^n$. Since $\zeta_{n_0} \in k_{v_2}^\ell$ and since v_2 does not lie above ℓ , we see easily that for any $\epsilon \in E_k$ there exists an $r \in Z$ such that $\epsilon \zeta_{n_0}^{-r} \in k_{v_2}^{\ell n}$. So, since K/k is unramified outside v_1 and v_2 , $\epsilon \zeta_{n_0}^{-r} \in N_{Kv/k_v}(K_v^{\times})$ for all $v \neq v_1$, where V is an extension of v to K. Therefore by Hasse's norm theorem, $\epsilon \zeta_{n_0}^{-r} \in N_{K/k}(K^{\times})$. This implies that E_k/A is generated by $\zeta_{n_0} \mod A$. Suppose that $\zeta_{n_0}^s \in A$ with an $s \in Z$. Then $\zeta_{n_0}^s \in N_{Kv_2/k_{v_2}}(K_{v_2}^{\times})$, where V_2 is an extension of v_2 to K. Since K_{v_2}/k_{v_2} is fully ramified and cyclic of degree ℓ^n and since v_2 does not lie above ℓ , $\zeta_{n_0}^s \in N_{Kv_2/k_{v_2}}(K_{v_2}^{\times})$ implies $\zeta_{n_0}^s \in (k_{v_2}^{\times})^{\ell n}$, so $s \equiv 0 \pmod{\ell^n}$, since $\zeta_{n_0} \in k_{v_2}^{\ell}$; hence $[E_k:A] = \ell^n$. Therefore by the above formula, $|Cl_K^G| = |Cl_k|$.

5.2. Proof of Theorem 4.

We prove Theorem 4, using Lemma 9, a formula of the number of ambig ideals (see Yokoi [23]), Hasse's norm theorem and the well-known translation theorem in local class field theory (see e.g., Weil [26], Chap. XII, § 3, Corollary 3 to Theorem 4).

Proof of Theorem 4. Put $g = [k \colon Q]$. Let v_1, \dots, v_g denote all the primes of k lying above ℓ . Then v_j is fully ramified in k_1 for $1 \le j \le g$. Let V_j denote a unique extension of v_j to k_1 for $1 \le j \le g$. Let E and E_i denote the group of units of k and k_i with $i \ge 1$, respectively. Since ℓ is completely decomposed in k and since ℓ is fully ramified in $Q(\zeta_1)$, $k \cap Q(\zeta_1) = Q$. Put $A = E_1 \cap N_{k_2/k_1}(k_2^{\times})$. First we shall show that $A = E_1 \cap N_{k_1/k}^{-1}(E^{\ell})$. Since $N_{Q_{\ell}(\zeta_2)/Q_{\ell}}(Q_{\ell}(\zeta_2)^{\times}) = \ell^{\mathbb{Z}} \times \{x \in Q_{\ell}^{\times} \mid x \equiv 1 \pmod{\ell^2}\}$, we see by Hasse's norm theorem and the translation theorem in local class field theory that

(*)
$$A = \{x \in E_1 | N_{(k_1)y_1/Q_2}(x) \equiv 1 \pmod{\ell^2} \text{ for } 1 \leq j \leq g\}$$
.

Let $x \in E_1 \cap N_{k_1/k}^{-1}(E^\ell)$. Then $N_{k_1/k}(x) \in E^\ell$. Since $(k_1)_{v_j} = Q_\ell(\zeta_1)$ and $k_{v_j} = Q_\ell(\zeta_1)$ and $k_{v_j} = Q_\ell(\zeta_1)$ and $k_{v_j} = Q_\ell(\zeta_1)$ and $k_{v_j/k_{v_j}/k_{v_j}}(x) \equiv 1 \pmod{\ell}$. Hence $N_{k_1/k}(x) \in E^\ell$ implies that $N_{(k_1)v_j/k_{v_j}}(x) \equiv 1 \pmod{\ell}$, i.e., that $x \in A$. Conversely let $x \in A$, and put $y = N_{k_1/k}(x)$. Then (*) implies that $y \in k_{v_\ell}^\ell$ for $1 \leq i \leq g$. Hence $k_1(\ell \sqrt{y})/k_1$ is unramified. Since $|Cl_{k_1}| \equiv 0 \pmod{\ell}$, $k_1(\ell \sqrt{y}) = k_1$, hence $y \in k_1^\ell$, so $y \in E_1^\ell$. Making $N_{k_1/k}$ operate on $y \in E_1^\ell$, $y^{\ell-1} \in E^\ell$, so $y \in E^\ell$, i.e., $x \in E_1 \cap N_{k_1/k}^{-1}(E^\ell)$. Therefore

$$(**) A = E_1 \cap N_{k_1/k}^{-1}(E^{\ell}) .$$

The norm map $N_{k_1/k}$ induces a linear map f from a vector space E_1/E_1^ℓ to a vector space E/E^ℓ over F_ℓ in the natural way. Since $E^{\ell-1} \subset N_{k_1/k}(E_1)$ and since $E^{\ell-1}E^\ell=E$, f is surjective. Since $A \supset E_1^\ell$, (**) implies that $\operatorname{Ker} f = A/E_1^\ell$. Hence $[E_1:A] = [E:E^\ell] = \ell^{r_1+r_2-1}$, where r_1 and r_2 denote the numbers of real places and complex places of k, respectively. By the formula of the number of ambig ideal classes (see Yokoi [23]),

$$|Cl_{k_2}^{g}|=|Cl_{k_1}|rac{\ell^{g-1}}{[E_1\colon A]}=|Cl_{k_1}|\,\ell^{r_2}$$
 ,

where $G = G(k_2/k_1)$. By the theory of ℓ -groups, $|Cl_{k_2}^G| \equiv 0 \pmod{\ell}$ if and only if $|Cl_{k_2}| \equiv 0 \pmod{\ell}$, hence this implies that $|Cl_{k_2}| \equiv 0 \pmod{\ell}$ if and only if $r_2 = 0$. By Lemma 9, $|Cl_{k_2}| \equiv 0 \pmod{\ell}$ is equivalent to

that $|Cl_{k_i}| \equiv 0 \pmod{\ell}$ for all $i \geq 2$.

5.3. Proof of Theorem 5.

We use the following two lemmas and Theorem 6.

LEMMA 12. Let ℓ , k, ζ_{ℓ} and Cl_k be as in Notation. Put $|Cl_k| = h$ and assume that $h \not\equiv 0 \pmod{\ell}$. Let T be a finite set of non-archimedean prime divisors of k not lying above ℓ , and let K be a cyclic extension of k of degree ℓ , unramified outside T. Let $\mathfrak p$ be a prime ideal of k lying above ℓ and let $y \in k^{\times}$ be such that $(y) = \mathfrak p^h$. Suppose that $y \in k^{\ell}$ for all $v \in T$. Then $\mathfrak p$ is completely decomposed in K.

Proof. Let N be the subgroup of J associated with K, by class field theory. Since K/k is unramified outside T, $N \supset U_T J^i k^\times$. Let $a = (a_v) \in J$ be such that $a_v = y$ if $v = \mathfrak{p}$ and $a_v = 1$ otherwise, let $b = (b_v) \in J$ be such that $b_v = 1$ if $v \in T \cup \{\mathfrak{p}\}$ and $b_v = y$ otherwise, and let $c = (c_v) \in J$ be such that $c_v = y$ if $v \in T$ and $c_v = 1$ otherwise. Since $b \in U_T$ by definition and since $c \in J^i$ by assumption, the equation y = abc in J implies that $a \in U_T J^i k^\times$. Since $(y) = \mathfrak{p}^h$, we can write $y = u \pi_\mathfrak{p}^h$ in $k_\mathfrak{p}$ with a $u \in U_\mathfrak{p}$ and a prime element $\pi_\mathfrak{p}$ of $k_\mathfrak{p}$. Since $U_\mathfrak{p} \subset U_T J^i k^\times$, $a \in U_T J^i k^\times$ implies that $\pi_\mathfrak{p}^h \in U_T J^i k^\times$. Since $h \not\equiv 0 \pmod{\ell}$, there exists an $h' \in Z$ such that $h'h \equiv 1 \pmod{\ell}$. By taking the h'-th power of $\pi_\mathfrak{p}^h \in U_T J^i k^\times$, we have $\pi_\mathfrak{p} \in U_T J^i k^\times$. Hence $k_\mathfrak{p}^\times \subset U_T J^i k^\times \subset N$. By class field theory, this implies that \mathfrak{p} is completely decomposed in K.

LEMMA 13. Let ℓ , k, r_1 , r_2 , ζ_i , n_0 and Cl_k be as in Notation. Assume that $\zeta_1 \in k$ and that $h \not\equiv 0 \pmod{\ell}$, where $h = |Cl_k|$. Let $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_s$ be all the prime ideals of k lying above ℓ , and let $y_i \in k^\times$ be such that $(y_i) = \mathfrak{p}_i^k$ for $i = 1, 2, \dots, s$. Let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{r-1}$ be a system of the fundamental units of k, where $r = r_1 + r_2$. Then there exist infinitely many prime divisors v of k satisfying the following conditions $(1) \sim (4)$:

- (1) v does not lie above ℓ .
- (2) $\varepsilon_i \in k_v^{\ell}$ for $i = 1, 2, \dots, r 1$, and $y_j \in k_v^{\ell}$ for $j = 1, 2, \dots, s$.
- (3) $\zeta_{n_0} \in k_v^{\ell}$.
- (4) The degree of v is 1.

Proof. Put $M=k({}^{\ell}\sqrt{\varepsilon_1},\cdots,{}^{\ell}\sqrt{\varepsilon_{r-1}},{}^{\ell}\sqrt{y_1},\cdots,{}^{\ell}\sqrt{y_s})$. Clearly M and $k(\zeta_{n_0+1})$ are linearly disjoint over k. Put $M_1=M(\zeta_{n_0+1})$ and let σ be a generator of $G(M_1/M)$. By Čebotarev's density theorem, there exist

infinitely many prime divisors V of M_1 such that the Frobenius automorphism of V with respect to k is σ . If v is the restriction of V to k, then v satisfies the above conditions (2) and (3). We can take such v satisfying (1) and (4).

THEOREM 6. Let the notation and assumptions be as in Lemma 13. Let v_1 and v_2 be two distinct prime divisors of k satisfying the conditions (1) \sim (3) in Lemma 13. Then there exists one and only one cyclic extension K of k of degree ℓ , unramified outside v_1 and v_2 . The extension K/k satisfies the following four conditions (a) \sim (d):

- (a) v_1 and v_2 are fully ramified in K.
- (b) Any prime divisor in S_k is completely decomposed in K.
- (c) v_1 and v_2 are not decomposed in k_{∞} , where $k_i = k(\zeta_i)$ and $k_{\infty} = \bigcup_{i=1}^{\infty} k_i$.
- (d) $|Cl_K| \not\equiv 0 \pmod{\ell}$. If $|Cl_{k_i}| \not\equiv 0 \pmod{\ell}$ for an $i \in N$, then $|Cl_{K_i}| \not\equiv 0 \pmod{\ell}$, where $K_i = K(\zeta_i)$.

Proof. Put $T=\{v_1,v_2\}$ and $T_i=\{v_i\}$ for i=1,2. By [Šafarevič [19], Theorem 1], rank $G_k(T)=2-r_2+\dim_{F_\ell}B_k(1,T)$. Since $|Cl_k| \not\equiv 0 \pmod{\ell}$, we see easily that $B_k(1,T)\cong \{\varepsilon\in E_k\,|\,\varepsilon\in k_v^\ell \text{ for all }v\in T\}/E_k^\ell$. Hence by the definition of T, $\dim_{F_\ell}B_k(1,T)=r_2-1$. Therefore rank $G_k(T)=1$. This implies that there exists one and only one cyclic extension K of k of degree ℓ , unramified outside v_1 and v_2 . Similarly, rank $G_k(T_i)=0$ for i=1,2. This implies the condition (a). Note that the condition (a) follows also from Lemma 11. The condition (b) follows from Lemma 12 and the condition (2) in Lemma 13. The condition (c) follows from the condition (3) in Lemma 13 and that k_∞/k is a Z_ℓ -extension. The condition (d) follows from the condition (c) and Lemma 10.

Proof of Theorem 5. We shall prove the theorem by induction on n. If $k = Q(\zeta_1)$, then by Iwasawa [8], we see that k satisfies the conditions (1) and (3). Now let k satisfy the conditions (1) \sim (4). By Lemma 13 and Theorem 6, there exists a cyclic extension K of k of degree ℓ such that $|Cl_{K_\ell}| \not\equiv 0 \pmod{\ell}$ for all $i \geq 1$ and such that $|S_K| \geq \ell n$, where $K_i = K(\zeta_i)$. Let v_1 and v_2 be two prime divisors of K which are not conjugate each other over k, satisfying the conditions (1) \sim (4) of Lemma 13 (replacing k by K). Then by Theorem 6, there exists a unique cyclic extension L of K of degree ℓ , unramified outside v_1 and v_2 , satisfying the conditions (a) \sim (d) in Theorem 6 (replacing K and k by L and

K, respectively). Then $|S_L| = \ell |S_K| \ge \ell^2 n$. Since the degree of v_i is 1 for i=1,2, $\{v_1,v_2\} \ne \{v_1^\sigma,v_2^\sigma\}$ for $\sigma \in G(K/k)$, with $\sigma \ne 1$. From this, it follows that $L \ne L^{\tilde{\sigma}}$ for any extension $\tilde{\sigma}$ of σ to the Galois closure of L/k. This implies that L/k is not a Galois extension, so $L/Q(\zeta_1)$ is not a Galois extension. Hence by induction on n, we have the assertion.

§ 5. Remark

In this section, we note that the part "(ii) \Rightarrow (vi)" of the main theorem can be proved by using Galois theory, Kummer theory and the same cohomology theoretic method as in Iwasawa [9]. The key lemma is Proposition 3 of [17], which connects such a cohomology theoretic method with our problem. We shall omit the details and sketch the proof.

LEMMA 14 ([17], Proposition 3). Let ℓ be a prime number and let ζ_i be a primitive ℓ^i -th root of unity for each $i \in \mathbb{N}$. Let k be a field of characteristic different from ℓ . Assume that $\zeta_1 \in k$ and that $\zeta_2 \in k$ if $\ell = 2$. Fix $n \in \mathbb{N}$ and put $K = k(\zeta_n)$. Let σ be a generator of G(K/k) and let $s \in \mathbb{Z}$ be such that $\zeta_n^s = \zeta_n^s$. Put $\Sigma = \sigma^{N-1} + \sigma^{N-2}s + \cdots + \sigma s^{N-2} + s^{N-1}$, where N = [K:k]. Let L/K be a cyclic extension of K of degree ℓ^n and let $y \in K^\times$ be such that $L = K(\ell^n \sqrt{y})$. Then the following three statements are equivalent:

- (1) L/k is an abelian extension whose Galois group is the direct product of G(L/K) and a cyclic subgroup of G(L/k) of order N.
 - (2) There exists a $w \in K^{\times}$ such that $L = K(\ell^n \sqrt{w^{\Sigma}})$.
 - (3) $y^{\sigma-s} = w^{\ell^n}$ with $a \ w \in K^{\times}$, and $L = K(\ell^n \sqrt{w^{\Sigma}})$.

The equivalence of (2) and (3) follows from the proof of [[17], Proposition 3].

Remark 8. We can prove that Grunwald-Hasse-Wang's theorem ([7], [8], [25]; see also [1], Chap. 10) holds also in the case where the base field is an arbitrary field with discrete valuations, by generalizing and refining the above Lemma 14 (see [19]).

As an application of Lemma 14, we have the following

LEMMA 15. Let ℓ , k, ζ_i , k_i , S, S^i , $Cl_k(S)$ and $E_k(S)$ be as in Notation. Let m be a positive rational integer. Assume that $|Cl_k(S)| \not\equiv 0 \pmod{\ell}$ and that $|Cl_{k_m}(S^m)| \not\equiv 0 \pmod{\ell}$. Assume moreover that $\zeta_i \in k$ and that

- $\zeta_2 \in k$ if $\ell = 2$. Let K/k be an S-ramified cyclic extension of k of degree ℓ , and let $\varepsilon \in E_k(S)$ be such that $K = k({}^{\ell}\sqrt{\varepsilon})$. Then the following two statements are equivalent:
- (1) There exists an S-ramified cyclic extension L/k of degree ℓ^m containing K;
 - (2) $\varepsilon \in E_k(S)^{\ell} N_{k_m/k}(E_{k_m}(S^m)).$
- Remark 9. (1) If $|Cl_k(S)| \equiv 0 \pmod{\ell}$, then for any S-ramified cyclic extension K of k of degree ℓ , there exists $\varepsilon \in E_k(S)$ such that $K = k(\sqrt[\ell]{\varepsilon})$.
- (2) The above Lemma 15 can be also proved by using the proof of [Bertrandias-Payan [2], Theorem 1].

Proof of Lemma 15. Obviously we may suppose that $K \neq k_{n_0+1}$. Suppose that the statement (2) holds. Put $K_m = k_m (\ell^m \sqrt{\epsilon_1^2})$, where Σ is as in Lemma 14 for the extension k_m/k and where $\varepsilon_1 \in E_{k_m}(S^m)$ is such that $\varepsilon/N_{k_m/k}(\varepsilon_1) \in E_k(S)^{\ell}$. Since $s \equiv 1 \pmod{\ell}$, $\Sigma \equiv \sigma^{N-1} + \sigma^{N-2} + \cdots + \sigma + 1$ $\pmod{\ell}.\quad \text{Hence } N_{k_m/k}(\varepsilon_1)/\varepsilon_1^{\Sigma}\in k_m^{\ell}, \text{ so } \varepsilon/\varepsilon_1^{\Sigma}\in k_m^{\ell}.\quad \text{This implies that } K_m\supset K.$ By Lemma 14, K_m/k is abelian and $G(K_m/k) \cong G(K_m/k_m) \times (N)$, so by Galois theory, there exists a cyclic extension L/k of degree ℓ^m such that $K \subset L \subset K_m$. Since $\varepsilon_1 \in E_{k_m}(S^m)$ and since k_m/k is S_k -ramified, K_m/k is S-ramified, so L/k is also S-ramified. Conversely suppose that the statement (1) holds. Put $L_m = Lk_m$. Since L_m/k_m is S^m -ramified and since $|Cl_{k_m}(S^m)| \equiv 0 \pmod{\ell}$, there exists $\varepsilon_1 \in E_{k_m}(S^m)$ such that L_m $=k_m(^{\ell^m}\sqrt{\varepsilon_1}).$ By (3) of Lemma 14, there exists $\varepsilon_2\in k_m^{\times}$ such that $\varepsilon_1^{\sigma-s}=\varepsilon_2^{\ell^m}$ and $L_m = k_m (\ell^m \sqrt{\varepsilon_2^{\Sigma}})$. Since $\varepsilon_1 \in E_{k_m}(S^m)$, $\varepsilon_2 \in E_{k_m}(S^m)$. Since $\varepsilon_2^{\Sigma} / N_{k_m/k}(\varepsilon_2)$ $e \in k_m^{\ell}$ and since $k_m({\ell}\sqrt{{\varepsilon_2}}) = k_m({\ell}\sqrt{{\varepsilon}})$, we have $N_{k_m/k}({\varepsilon_2})/{\varepsilon} \in k_m^{\ell}$ with an $r \in {\mathbf Z}$ such that $r \equiv 0 \pmod{\ell}$, hence by using Kummer theory we see easily that $\zeta_{n_0}^i N_{k_m/k}(\varepsilon_2^r)/\varepsilon \in k^{\ell}$ with an $i \in \mathbb{Z}$. Put $\varepsilon' = \zeta_m^i \varepsilon_2^r$, then $\varepsilon' \in E_{k_m}(S^m)$ and $N_{k_m/k}(\varepsilon')/\varepsilon \in k^{\ell}$, hence $N_{k_m/k}(\varepsilon')/\varepsilon \in E_k(S)^{\ell}$. This implies that the statement (2) holds.

The following lemma can be proved by using the same cohomology theoretic method as in Iwasawa [9], hence we omit the proof.

LEMMA 16. Let the notation and assumptions be as in Lemma 15 and let t_m be the number of prime divisors in S completely decomposed in k_m . Then rank $\hat{H}^0(G(k_m/k), E_{k_m}(S^m)) = |S| - t_m - 1$, i.e., rank $E_k(S)/N_{k_m/k}(E_{k_m}(S^m))E_k(S)^{\ell} = |S| - t_m - 1$ for all $m \ge n_0 + 1$, where \hat{H}^0 means

Tate-cohomology group of dimension 0.

Outline of another proof of the part "(ii) \Rightarrow (vi)" of the main theorem. Obviously there exists an $m_0 \in N$ such that $t_m = 0$ for all $m \geq m_0$. Put $N_i = N_{ki/k}(E_{ki}(S^i))E_k(S)^i/E_k(S)^i$ for all $i \geq 0$. Regard N_i as a vector space over F_i in the natural way. Then $\dim_{F_i} N_{n_0} = r_2 + |S|$, and by Lemma 16, $\dim_{F_i} N_i = r_2 + 1 + t_i$ for all $i \geq n_0 + 1$. Let $A = \{a_i\}_{i \in A}$ be a basis of N_{n_0} over F_i such that $A \cap N_i$ is a basis of N_i over F_i for any $i \geq n_0$. For each $\lambda \in \Lambda$, let $\varepsilon_\lambda \in E_k(S)$ be such that $\varepsilon_\lambda \mod E_k(S)^i = a_i$, and put $k_\lambda = k(i \sqrt[i]{\varepsilon_\lambda})$. Let K_λ/k be a maximal S-ramified cyclic extension of k of ℓ -power degree containing k_i . Then by Lemma 15, $[K_\lambda:k] = \ell^{m_\lambda}$, where $m_\lambda \geq 0$ is such that $a_\lambda \in N_{m_\lambda}$ and $a_\lambda \in N_{m_{\lambda+1}}$ if $N_{m_\lambda} \supseteq N_{m_0}$ and where $m_\lambda = \infty$ if $a_\lambda \in N_{m_0}$. Put $M = \prod_{\lambda \in A} K_\lambda$, then by Galois theory, $G(M/k) \cong C(\infty, r_2 + 1) \times C(n_0, s_{n_0} - 1) \times \prod_{i=n_0+1}^{\infty} C(i, s_i)$, since $i \geq n_0 + 1$ and $i \geq n_0 + 1$. By using Galois theory, Kummer theory and Lemma 15, we can prove that $i \geq n_0$. Hence the assertion follows.

REFERENCES

- [1] Artin, E. and Tate, J., Class Field Theory, Benjamin, New York, 1967.
- [2] Bertrandias, F. and Payan, J.-J., Γ-extensions et invariants cyclotomiques, Ann. scient. Éc. Norm, Sup., 4° série, 5 (1972), 517-543.
- [3] Brumer, A., On the units of algebraic number fields, Mathematika 14 (1967),
- [4] —, Galois groups of extensions of number fields with given ramification, Mich. Math. J. 13 (1966), 33-40.
- [5] Cassels, J. W. S. and Frohlich, A. (Editors), Algebraic number theory, Academic Press, London, 1967.
- [6] Gras, M. G., Remarques sur la conjecture de Leopoldt, C. R. Acad. Sc. Paris, t. 274, Série A (1972), 377-380.
- [7] Grunwald, W., Ein allgemeines Existenztheorem für algebraische Zahlkörper, J. reine angew. Math. 169 (1933), 103-107.
- [8] Hasse, H., Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. reine angew. Math. 188 (1950), 40-64.
- [9] Iwasawa, K., A note on the group of units of an algebraic number field, J. Math. pures appl. 35 (1956), 189-192.
- [10] —, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 189-192.
- [11] —, Introduction to Z_{ℓ} -extensions, Lecture notes at Princeton Univ., 1971.
- [12] —, On Z_{ℓ} -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [13] Kawada, Y., Class formations, Number theory institute, Amer. Math. Soc. Proc. of Symp. in pure Math. Vol. XX, 1969, 1971, 96-114.
- [14] Koch, H., \(\ell\)-Erweiterungen mit vorgegebenen Verzweigungsstellen, J. reine angew. Math. 219 (1965), 30-61.

- [15] —, Galois Theorie der p-Erweiterungen, Springer, Berlin, 1970.
- [16] Kubota, T., Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J. 12 (1957), 177-189.
- [17] Miki, H., On Z_p -extensions of complete p-adic power series fields and function fields, J. Fac. Univ. Tokyo Sec. IA, Vol. 21 (1974), 377-393.
- [18] —, A note on the p-rank of ideal class groups of finite algebraic number fields.
- [19] ----, On Grunwald-Hasse-Wang's theorem, J. Math. Soc. Japan 30 (1978), No. 2.
- [20] Neukirh, J., Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math. 21 (1973), 59-116.
- [21] Roquette, P., On class field towers, [5], Chap. IX, 231-249.
- [22] Ša farevič, I. R., Extensions with given points of ramification, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 71-95 = A.M.S. Transl. Ser. 2, 59 (1966), 128-149.
- [23] Yokoi, H., On the class number of a relatively cyclic number field, Nagoya Math. J. 29 (1967), 31-44.
- [24] Yokoyama, A., On class numbers of finite algebraic number fields, Tôhoku Math. J. 17 (1965), 349-357.
- [25] Wang, S., On Grunwald's Theorem, Ann. of Math. 51 (1950), 471-484.
- [26] Weil, A., Basic Number Theory, Spring, Berlin, 1967.

Department of Mathematics Faculty of Engineering Yokohama National University