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This study investigates the coherence of turbulent fluctuations in a turbulent vertical
natural convection boundary layer immersed in a stably stratified medium (turbulent
buoyancy layer). A turbulent buoyancy layer of a fluid having a Prandtl number of 0.71 at a
Reynolds number of 800 is numerically simulated using direct numerical simulation. The
two-point correlations reveal that the streamwise velocity fluctuations are coherent over
large streamwise distances, with the length scale of the streamwise coherence being greater
than the boundary layer thickness. This is due to large-scale motions (LSMs), similar to
the LSMs observed in canonical wall-bounded turbulence despite the stark differences
in flow dynamics. Both high-speed (positive) and low-speed (negative) streamwise
velocity fluctuations form LSMs, with their streamwise length scales increasing with
increasing wall-normal distance. High-speed LSMs are composed of upwash flow
with high temperatures, while low-speed LSMs are composed of downwash flow with
low temperatures. Both high-speed and low-speed LSMs meander appreciably in the
streamwise direction, with the degree of meandering being correlated with the sign
of the spanwise velocity fluctuations. The LSMs exhibit coherence across significant
wall-normal distances and contribute significantly to the turbulence production in the
outer layer. Examining the one-dimensional energy spectra of the turbulent buoyancy layer
shows that the LSMs are the dominant energy-containing motions, implying that the length
scale of the energy-containing range is of the order of boundary layer thickness. Notably,
wall-normal velocity, spanwise velocity and buoyancy fluctuations do not form LSMs with
streamwise length scales comparable to streamwise velocity fluctuations.
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1. Introduction

Coherent structures in wall-bounded turbulence play a crucial role in turbulence research
due to their significant turbulent momentum and heat transport. Consequently, they have
been a focus of numerous experimental, theoretical and numerical studies spanning several
decades (the reader is referred to Robinson (1991), Adrian (2007), Smits, McKeon &
Marusic (2011), Marusic & Adrian (2012) and Jiménez (2018) for reviews on the subject
of coherent structures in wall-bounded turbulence).

Steadily, through the years, with the help of experiments and direct numerical
simulations (DNSs), there has been ever-growing evidence of superstructures, large-scale
motions and very-large-scale motions in turbulent channel, pipe and boundary layer flows
(e.g. Kim & Adrian 1999; Marusic 2001; Ganapathisubramani et al. 2005; Hutchins &
Marusic 2007; Dennis & Nickels 2011; Baltzer, Adrian & Wu 2013; Hwang et al. 2016;
Lee 2017). The term superstructures is often associated with turbulent boundary layers, and
these correspond to motions whose dimensions are significantly greater than the boundary
layer thickness δTBL. In turbulent boundary layers, these motions were found to have
streamwise wavelengths of the order of 6δTBL (Hutchins & Marusic 2007; Lee & Sung
2011). Large-scale motions and very-large-scale motions, on the other hand, are usually
associated with turbulent channel and pipe flows. In this context, large-scale motions
have streamwise lengths greater than the outer length scale h (half-channel width or pipe
radius) but less than 3h. Very-large-scale motions refer to motions whose streamwise
length scales are greater than 3h (Lee et al. 2014; Lee, Ahn & Sung 2015; Hwang et al.
2016). Turbulent boundary layers, channel flows and pipe flows are termed canonical
wall-bounded turbulence and superstructures, large-scale and very-large-scale motions
are collectively termed large-scale motions (LSMs) from hereon. Despite significant
quantitative differences, the LSMs are qualitatively similar across turbulent channel, pipe
and boundary layer flows (Monty et al. 2007; Lee & Sung 2013; Lee et al. 2015). The
LSMs have been shown to carry significant portions of the turbulent kinetic energy (TKE)
and Reynolds shear stress, with their energy content increasing with increasing Reynolds
numbers. It should be noted that the LSMs do not directly correspond to the general
integral-scale motions that are present in turbulent flows.

Compared with canonical wall-bounded turbulence, the turbulent structure of natural
convection boundary layers (NCBLs) is poorly understood. The present study concerns
a turbulent NCBL immersed in a stably stratified environment. However, as NCBLs
immersed in stably stratified media share many qualitative similarities with their
unstratified counterparts, the literature concerning the turbulent structure of unstratified
NCBLs is briefly reviewed here.

Most early experiments and numerical simulations concerning turbulent NCBLs dealt
with the mean streamwise velocity field, mean temperature field and one-point statistics
(Gebhart 1973). Using experiments, the mean streamwise velocity profiles, temperature
profiles and heat transfer correlations at several Grashof numbers were reported by Eckert
& Jackson (1950), Cheesewright (1968) and Vliet & Liu (1969). Vliet & Liu (1969) also
argued that the mean profiles of velocity and temperature fields in the outer layer could be
approximated using universal power-law relationships.

There have been several attempts to understand the spatio-temporal structure of
unstratified vertical NCBLs. Several numerical simulations and experiments were
undertaken to uncover the flow structures in transitional unstratified NCBLs. It was
shown that the NCBLs undergoing K-type and H-type transitions exhibit two-dimensional
streamwise waves at the start of the transition. The Λ-structures dominate the flow field
during the later stages of transition, and these flow structures are qualitatively similar to
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Large-scale motions in a turbulent buoyancy layer

the Λ-structures of transitional zero pressure gradient turbulent boundary layers despite
differences in the flow dynamics (Zhao, Lei & Patterson 2017, 2019). For a Prandtl
number Pr of 7.0, during the transition process, buoyancy contributes significantly towards
TKE production when compared with the Reynolds shear stress (Zhao et al. 2017).
Experiments and numerical simulations also revealed that secondary mean flows in the
form of longitudinal rolls also populate the NCBL during the transition process (Jaluria &
Gebhart 1974; Zhao, Lei & Patterson 2016; Zhao et al. 2017). A three-layer longitudinal
system was observed during the K-type transition, while a two-layer longitudinal system
was observed during the H-type transition (Zhao et al. 2017).

Regarding turbulent NCBLs, Fujii (1959), based on flow visualisation, argued the
presence of a ‘vortex-street-like instability’ in the outer layer. Tsuji & Nagano (1988a),
apart from making detailed investigations into the mean profiles and one-point statistics,
investigated the boundary layer structure close to the wall. The authors found that a viscous
sublayer analogous to the linearly varying viscous sublayer in canonical wall-bounded
turbulence is absent close to the wall. This was also confirmed in the high Grashof
number DNS study of Ke et al. (2020), where this behaviour was attributed to buoyancy
effects. Tsuji & Nagano (1988b) made accurate measurements of Reynolds shear stress and
turbulent heat flux and confirmed the observations of Tsuji & Nagano (1988a) regarding
the unique turbulent structure of NCBLs. Nakao, Hattori & Suto (2017) investigated the
turbulent structure of a spatially developing vertical NCBL using large-eddy simulation
(LES) and showed that the outer layer was more turbulent than the inner layer at
the Grashof numbers investigated. Using quadrant analysis (Wallace 2016) and flow
visualisation, Hattori et al. (2006) and Nakao et al. (2017) showed that the turbulent
structure was significantly different from what was observed in turbulent boundary layers.
In this context, the inner layer is defined as the region between the wall and the maximum
velocity location. The outer layer is the region between the maximum velocity location
and the edge of the boundary layer (Tsuji & Nagano 1988b; Hattori et al. 2006; Nakao
et al. 2017).

Experiments concerning turbulent vertical NCBLs by Lock & Trotter (1968),
Cheesewright & Doan (1978), Kitamura et al. (1985) and Hattori et al. (2006) revealed
that the turbulent length scales are significant and that the large-scale eddies in NCBLs are
essential for turbulent momentum and heat transport. The results from the DNS studies of
Abramov, Smirnov & Goryachev (2014) and Ke et al. (2021) hinted at large-scale velocity
structures in the outer layer of a temporally evolving unstratified NCBL. Large-scale
structures were also observed in turbulent differentially heated channels (Versteegh &
Nieuwstadt 1998; Ng et al. 2017; Kim, Ahn & Choi 2021). Although large-scale eddies
have been hinted at in several studies, there has yet to be a study that thoroughly
investigates the statistical properties of these large-scale eddies.

The experiments of Tsuji, Nagano & Tagawa (1992) revealed LSMs in the instantaneous
temperature fields; however, the space–time correlations did not suggest the presence of
streaks or bursts. This led the authors to conclude that the spanwise periodic streaky
structures observed in turbulent boundary layers were absent in the temperature field of
NCBLs. Abedin, Tsuji & Lee (2012) also argued against well-ordered fluid motions in the
velocity field of turbulent unstratified NCBLs.

Stable stratification is known to alter the mean flow and turbulent structure significantly.
Ambient stable stratification is ubiquitous in many natural and industrial flows (Fan
et al. 2021); yet, there is little research concerning NCBLs immersed in stably stratified
media. Such flows arise in serval classes of natural ventilation problems where the
ambient medium is often stably stratified (Bejan 2013). For example, such boundary
layer flow could be observed along the interior surfaces of heated or cooled walls in
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buildings where the room is stably stratified. NCBLs immersed in stably stratified media
are also often discussed in connection to differentially heated cavities (Gill 1966; Gill
& Davey 1969). The differentially heated cavity and its corresponding boundary layer
flow form a simplified representation of the fluid flow and heat transfer in fuel tanks,
cooling of electrical equipment and solar collectors. Often such NCBLs are modelled
using the one-dimensional formulation proposed by Prandtl (1952), referred to as the
‘buoyancy layer’ from hereon. In line with previous studies (Gill & Davey 1969; McBain,
Armfield & Desrayaud 2007; Fedorovich & Shapiro 2009b; Maryada et al. 2022), the
current study uses the buoyancy layer to model an NCBL immersed in a stably stratified
medium.

Like unstratified NCBLs, most studies on turbulent buoyancy layers focussed on the
mean flow and one-point statistics (Fedorovich & Shapiro 2009a,b; Giometto et al. 2017).
Large-scale coherence of the streamwise velocity field was hinted by Schumann (1990).
Schumann (1990) showed that large-scale coherence could exist in the outer layers of
inclined and upright turbulent buoyancy layers using LES. For the vertical case, large-scale
coherence of streamwise velocity was observed in the streamwise direction. For inclination
angles where the heated surface was close to the horizontal, large-scale coherence was
observed in the spanwise direction. However, limited conclusions can be drawn regarding
the properties of LSMs resulting from such large-scale coherence due to the computational
limitations of the study of Schumann (1990).

1.1. Contributions of the present study
It is evident from the above literature that, despite being investigated for the better part of
the last century, there is still no clear consensus on whether the LSMs are always present
in NCBLs (both with and without stably stratified ambient media) and, if present, how
they compare with LSMs in canonical wall-bounded turbulence. In an effort to clarify this
long-standing issue, the existence of LSMs in a turbulent buoyancy layer is examined
using DNS. An illustration of the problem at hand with the key findings is shown in
figure 1.

The buoyancy layer is defined in § 2 along with the computational details of the DNS.
The coherence, using two-point correlations, is investigated in § 3.2 where it is shown

that the LSMs of streamwise velocity fluctuations are dominant in the outer layer of the
buoyancy layer.

Unlike what is observed in unstratified NCBLs (Hattori et al. 2006), the two-point
correlations of streamwise velocity fluctuations exhibit signs of meandering, and this is
examined in § 3.2.2. Here, it is demonstrated that the meandering is correlated with the
sign of the spanwise velocity fluctuations.

The wall-normal coherence of LSMs is investigated in § 3.2.3. It is shown that the
streamwise velocity fluctuations are coherent across significant wall-normal distances in
the buoyancy layer, implying that large-scale eddies are dominant in vertical buoyancy
layers.

The role of LSMs in TKE production is discussed in § 3.2.4. It is demonstrated that
the LSMs, especially in the outer layer, are dynamically relevant and make considerable
contributions towards the production of TKE.

Section 3.3 discusses the one-dimensional energy spectra of streamwise velocity
fluctuations, where it is revealed that LSMs are the dominant energy-containing motions
in the turbulent buoyancy layer.
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g

x2

x3 x3x1x1

x2

(a) (b)

Figure 1. An illustration of the problem at hand. (a) The high-speed (red contours represent the streamwise
velocity perturbations u2 = 2uτ , with uτ being the friction velocity as defined in § 2) and low-speed (blue
contours represent the streamwise velocity perturbations u2 = −2uτ ) LSMs in a turbulent buoyancy layer.
The grey surface represents the heated wall with ϑ̃ = 1. (b) The non-dimensional temperature ϑ̃ contours
at ϑ̃ = 0.7 (red) and ϑ̃ = −0.05 (blue). Here, x1, x2 and x3 are the wall-normal, streamwise and spanwise
directions, respectively. The flow flows along the positive x2 axis while the acceleration due to gravity g acts
along the negative x2 axis.

2. Computational details

Let us consider a linearly heated vertical wall immersed in a stably stratified environment
(positive vertical temperature gradient) such that the temperature difference (�T) between
the heated wall (having temperature Tw) and the ambient medium (having temperature
T∞) is a constant value (�T = Tw − T∞ = B, where B is an arbitrary constant). As the
ambient medium has a positive vertical temperature gradient, the wall temperature must
also increase similarly in the vertical direction to ensure �T = B. This implies that Tw
and T∞ are functions of the vertical coordinate x2. Here, following (Janssen & Armfield
1996; McBain et al. 2007; Zhao et al. 2016, 2017; Maryada et al. 2022), we define x1, x2
and x3 as the wall-normal, streamwise and spanwise directions, respectively. If �T = B,
an equilibrium NCBL with a constant boundary layer thickness develops on the heated
surface, termed the buoyancy layer (Prandtl 1952). The current study uses this to model an
NCBL immersed in a stably stratified medium.

The flow is non-dimensionalised with the following velocity (U�T ) and length (δl) scales
(Gill & Davey 1969):

U�T = �T
(

gβκ

νγs

)1/2

, (2.1a)

δl =
(

4νκ

gβγs

)1/4

, (2.1b)
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where the thickness of the boundary layer is of the order of δl. Here, ν, κ, g, β, γs are the
kinematic viscosity, thermal diffusivity, acceleration due to gravity, coefficient of thermal
expansion and the positive vertical temperature gradient, respectively. The magnitude of
γs defines the level/strength of stable stratification in the flow. As the ambient is stably
stratified due to a positive vertical temperature gradient, let us assume T∞ = γsx2 and
Tw = B + γsx2 such that �T = B (Gill 1966). Also, let us define ϑ̃ = (T − T∞)/�T ,
which is the temperature excess over the positive vertical temperature gradient scaled with
�T (Gill & Davey 1969; McBain et al. 2007). The buoyancy frequency N is

√
gβγs. Based

on this non-dimensionalisation, the Reynolds number is defined as Re = U�Tδl/ν =
(gβ�Tδ3

l )/2ν2. It should be noted that the Reynolds number is half the Grashof number
(Gr = 2Re = gβ�Tδ3

l /ν2) in the current non-dimensionalisation (Gill & Davey 1969).
With the above non-dimensionalisation, the following non-dimensional Navier–Stokes

equation with the Oberbeck–Boussinesq approximation for buoyancy and the scalar
transport equation are used to solve for the buoyancy layer (Gill & Davey 1969; McBain
et al. 2007; Maryada et al. 2022)

∂ ũi

∂xi
= 0, (2.2a)

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
= − ∂ p̃

∂xi
+ 1

Re
∂2ũi

∂x2
j

+ 2
Re

ϑ̃δi2, (2.2b)

∂ϑ̃

∂t
+ ũj

∂ϑ̃

∂xj
= 1

Re Pr
∂2ϑ̃

∂x2
j

− 2
Re Pr

ũ2, (2.2c)

where ϑ̃ is the instantaneous non-dimensional temperature, also called the buoyancy field
(as defined in the previous paragraph), ũi is the instantaneous non-dimensional velocity
field, p̃ is the instantaneous pressure field, and Pr = ν/κ is the Prandtl number of the
fluid. For the current non-dimensionalisation, the buoyancy time period (TSB = πRe

√
Pr)

(Gill & Davey 1969; McBain et al. 2007) is 2117.22.
Figure 2 shows the coordinate system and a schematic of the NCBL in the relevant

non-dimensional variables. It is evident from the figure that the stably stratified ambient
medium causes the boundary layer to develop regions of flow reversal and ϑ̃ deficit, which
are notably absent in unstratified NCBLs. The wall-normal distance between the linearly
heated wall (ϑ̃ = 1) and the location where the mean streamwise velocity changes sign for
the first time (represented using a dashed vertical line in figure 2) is termed the boundary
layer thickness δbl. This definition is chosen as the mean flow does not asymptotically
reach zero in the current flow, like unstratified NCBLs. Instead, due to the presence of
a flow reversal, there is a well-defined location where the mean flow becomes zero and
changes sign, allowing for a precise calculation of δbl based on the mean flow (this is also
discussed in § 3.1).

Throughout this paper, the instantaneous velocity and buoyancy fields are represented
using ũi and ϑ̃ , respectively. Using Reynolds decomposition, the instantaneous fields are
decomposed into the mean flow and fluctuating fields/perturbations. The mean flow fields
are represented using ·̄ and consequently, the mean streamwise velocity and buoyancy
fields are indicated using �u2 and ϑ̄ , respectively. The fluctuating velocity and temperature
fields are represented using ui and ϑ (such that ũi = �ui + ui and ϑ̃ = ϑ̄ + ϑ). Averaged
quantities of one-point turbulence statistics and correlations are represented using 〈·〉. For
the mean flow profiles and one-point turbulence statistics, the flow is averaged in time and

967 A40-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.521


Large-scale motions in a turbulent buoyancy layer

Linearly

heated wall

δbl

ũ2 ϑ̃

ϑ̃ ∼ 0
ũ2

 ∼ 0

ϑ̃ = 1
ũ2

 = 0

BL

g

∞0

x1

x2

Figure 2. The schematic representation of the vertical buoyancy layer showing the coordinate system and
boundary conditions. Here, ũ2 is the streamwise velocity, and ϑ̃ is the buoyancy field, the non-dimensional
temperature field. The boundary layer thickness δbl is the wall-normal distance between the linearly heated
wall and the blue dashed vertical line marked as BL. The inset shows the zoomed view of the flow reversal
where ũ2 is negative.

the homogeneous streamwise (x2) and spanwise (x3) directions. The required quantities
are averaged in time and the corresponding directions for the correlations.

A turbulent vertical buoyancy layer having a Prandtl number of 0.71 and a Reynolds
number of 800 is investigated using DNS. It corresponds to a friction Reynolds number
Reτ = uτ δbl/ν = 279.3, where the boundary layer thickness is represented by δbl,
determined as the location where the mean streamwise velocity (�u2) changes sign for the
first time (shown in figure 2). The friction velocity is represented using uτ = √

ν∂ �u2/∂x1|w
(Ke et al. 2020). Here, the subscript w indicates that the derivative is calculated at the wall.

Along with Reτ , let us define δLm = δbl/Lm, which represents the ratio of the boundary
layer thickness to Lm = ν3/4F−1/4

s . The buoyancy flux at the heated wall is represented
using Fs = −α∂ϑ̄/∂x1|w and Lm is analogous to the Kolmogorov length scale (Fedorovich
& Shapiro 2009a,b; Giometto et al. 2017). This can be considered as the ratio of the length
scale of the eddies that scale with δbl to the length scale of the eddies that scale with
Lm, and provides an estimate on the range of scales present in the flow. In terms of δLm

(δLm ≈ 400 in the present case), the Reynolds number of 800 investigated in the current
study is comparable to the range of parameters investigated in (Fedorovich & Shapiro
2009b; Giometto et al. 2017). Developed turbulence was observed at these values of δLm

(Fedorovich & Shapiro 2009b).
In the context of zero pressure gradient turbulent boundary layers, this Reτ can be

considered low to moderate, and LSMs are seldom observed at such values of Reτ

(Hutchins & Marusic 2007; Smits et al. 2011; Marusic & Adrian 2012). However, that
is not the case for the turbulent buoyancy layer. It is demonstrated in § 3 that this friction
Reynolds number is sufficient to observe LSMs in the turbulent buoyancy layer. It should
be noted that the LSMs are defined as motions whose streamwise length scales exceed the
boundary layer thickness, in line with canonical wall-bounded turbulence literature (Lee
et al. 2014, 2015; Hwang et al. 2016).

DNS was performed using an in-house non-staggered finite volume code (Norris
2000; Armfield et al. 2003). The code has been used extensively to investigate
natural convection flows, and its verification and validation are well documented
(Armfield et al. 2003; Maryada et al. 2022). The spatial terms were discretised using
a second-order central difference scheme. Temporally, the advection and the diffusion
terms were discretised using a second-order Adams–Bashforth scheme (Lilly 1965) and a
second-order Crank–Nicolson scheme, respectively. A non-iterative fractional step method
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was used to solve for continuity (Armfield & Street 2002). Collocated meshes are known to
be susceptible to spurious oscillations in the pressure field, and Rhie–Chow interpolation
(Rhie & Chow 1983) was used to avoid them. Rhie–Chow interpolation or related schemes
retain the grid-scale ellipticity (Armfield 1994; Armfield et al. 2003), thereby avoiding
the grid-scale oscillations in the pressure field. The velocity and scalar equations were
solved using a generalised minimal residual (Saad & Schultz 1986) algorithm with a Jacobi
preconditioner. The pressure Poisson equation was solved using the bi-conjugate gradient
stabilised algorithm (van der Vorst 1992) with the strongly implicit procedure of Stone
(1968) as a preconditioner. An appropriate time step was chosen such that the Courant
number was always less than 0.2. Also, the divergence of the velocity field was checked
after every time step and was always below 5 × 10−10.

As the turbulent buoyancy layer is spatially homogeneous in the streamwise and
spanwise directions, periodic boundary conditions were imposed in the streamwise and
spanwise directions, in line with previous studies (Fedorovich & Shapiro 2009b; Giometto
et al. 2017; Maryada et al. 2022). A no-slip boundary condition for velocity (ũi = 0)
and a constant buoyancy (ϑ̃ = 1) boundary condition were used at the heated wall. An
open-type boundary condition where the flow can enter and exit the domain was used as
the far-field boundary condition. At the open-type boundary, a zero gradient boundary
condition normal to the boundary was applied for all the variables. In cases when flow
enters the domain, it was set to have a constant temperature of ϑ̃ = 0, which corresponds
to the flow as x1 → ∞ (see figure 2). This boundary condition was also used while
investigating transitional buoyancy layers (Maryada et al. 2022).

The computational domain is 2.18πδbl × 8πδbl × 3πδbl in the wall-normal (x1),
streamwise (x2) and spanwise directions (x3), respectively. In the wall-normal direction,
the domain is bigger than the recommended wall-normal domain size of 3δbl often
employed in DNS of boundary layer flows (Schlatter & Örlü 2010; Kozul, Chung & Monty
2016; Ke et al. 2021). Due to the large domain size, the boundary conditions at the far-field
wall-normal domain boundary are not expected to affect the boundary layer flow. The
domain size is similar to the domain size of Bae & Lee (2021) in the streamwise and
spanwise directions and bigger than the domains previously used to investigate turbulent
buoyancy layers (Schumann 1990; Giometto et al. 2017). It should be noted that the domain
size in the streamwise and spanwise directions is sufficient for the computed two-point
correlations to decay to zero (evident from the results presented in § 3). This ensures that
the numerical simulation results are not influenced by the periodic boundary conditions
(Moin & Kim 1982).

The domain has 350 × 1400 × 550 cells along the wall-normal (x1), streamwise (x2)
and spanwise (x3) directions, respectively. Uniform grids were used in the streamwise
and spanwise directions with �x+

2 = �x+
3 = 4.95, where � is the thickness of the cell.

A semi-logarithmic mesh with a stretching factor of 1.01 was used in the wall-normal
direction with �x+

1 = 0.42 at the wall and �x+
1 = 3.25 at x1 = δbl. The distances

represented with + are normalised by the viscous length scale (δν = ν/uτ = 0.042). The
mesh spacing employed is similar to the spacing commonly used in DNS of canonical
wall-bounded turbulence and NCBLs (Hwang et al. 2016; Ke et al. 2020; Bae & Lee
2021; Ke et al. 2021). The Kolmogorov length scale η = (ν3/ε)1/4 was calculated a
posteriori and it was found that �x1 < η, �x2 < 3η and �x3 < 3η everywhere inside the
boundary layer. Here, ε = ν〈(∂ui/∂xj)(∂ui/∂xj)〉 is the dissipation (Giometto et al. 2017).
It should be noted that η is a function of the wall-normal distance (as ε is a function of the
wall-normal distance), and the values of �xi/η reported earlier represent the ‘worst case’
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Figure 3. Profiles of (a) mean streamwise velocity �u2 and (b) mean buoyancy ϑ̄ fields of the vertical
buoyancy layer at Re = 800. The contours of �u2 and ϑ̄ are shown in (c) and (d), respectively.

grid sizes. At the heated wall, η = 0.074 (η/Lm ≈ 2.5), and �x1 < 0.25η, �x2 < 3η and
�x3 < 3η.

The DNS was run for nine buoyancy periods, and the statistics were calculated for the
last four buoyancy periods. No significant differences were observed in the mean flow
and turbulence statistics between the flow averaged for three and four buoyancy periods,
indicating statistical convergence. It should be noted that the time period used to calculate
statistics is in the range of values used by Giometto et al. (2017) for the turbulent buoyancy
layer.

3. Results and discussion

3.1. Mean flow and turbulence statistics
Visualising the averaged mean flow and one-point statistics is worthwhile before
investigating LSMs. The one-dimensional mean streamwise velocity and temperature
profiles and their respective contour plots are shown in figure 3. In the figure, the boundary
layer thickness, δbl, is defined as the wall-normal distance from the heated wall until the
location where the mean streamwise velocity changes sign for the first time. It is clear from
the figure that the mean streamwise velocity and buoyancy fields are qualitatively similar to
the schematic shown in figure 2. The mean buoyancy field exhibits a region of temperature
deficit while there is a distinct region of flow reversal in the mean streamwise velocity field
(Schumann 1990; Fedorovich & Shapiro 2009a,b; Giometto et al. 2017). The region of flow
reversal extends in the range 1.0 ≤ x1/δbl ≤ 2.0 in figure 3(a,c). The region of temperature
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Figure 4. One-point statistics of the turbulent vertical buoyancy layer at Re = 800. (a) Mean velocity and
buoyancy variances, and (b) mean Reynolds shear stress and wall-normal and streamwise turbulent heat fluxes.
The dot-dashed black vertical line in both figures refers to the location of the velocity maximum, demarcating
the inner layer from the outer layer. In (a), the vertical axis on the left corresponds to velocity variances, while
the axis on the right corresponds to buoyancy variance. In (b), the vertical axis on the left corresponds to
Reynolds shear stress, while the axis on the right corresponds to wall-normal and streamwise turbulent heat
flux.

deficit is observed in the range 0.3 < x1/δbl < 1.5 in figure 3(b,d). The inner layer is
classified as the wall-normal region between the heated wall and the wall-normal location
where the mean streamwise velocity is maximum (0 < x1/δbl ≤ 0.065). The outer layer
is defined as the wall-normal region between the wall-normal location where the mean
streamwise velocity is maximum and the flow reversal (0.065 < x1/δbl ≤ 1.0). These plots
demonstrate that the buoyancy layer is distinctly different from unstratified NCBLs where
flow reversal and temperature deficit regions are not observed (Tsuji & Nagano 1988a;
Abedin, Tsuji & Hattori 2009; Ke et al. 2020, 2021).

The variances of wall-normal, streamwise and spanwise velocity and buoyancy
fluctuations are shown in figure 4(a). In the figure, the velocity variances are normalised
using the square of the friction velocity (u2

τ ) and the buoyancy variance is normalised using
the square of the friction temperature (θ2

τ ). The definitions of uτ and θτ are consistent
with Ke et al. (2020, 2021). The mean streamwise velocity variance is greater than
the wall-normal and spanwise velocity variance, suggesting that the streamwise velocity
variance is the dominant contributor of TKE, as expected in turbulent boundary layer
flows. Flow anisotropy is also evident from figure 4(a), hinting at the multiscale nature
of the flow. The variance of all the velocity fluctuations exhibits a maximum in the outer
layer at the Reynolds number investigated, implying that most of the turbulence associated
with momentum transfer is present in the outer layer of the buoyancy layer. The peak in the
streamwise velocity variance in the outer layer corresponds to a peak in the energy spectra
of streamwise velocity fluctuations, which is discussed in § 3.3. In the inner layer, the
variance of wall-normal velocity fluctuations decays faster than the variance of streamwise
and spanwise velocity fluctuations and buoyancy fluctuations due to the presence of a wall.

In contrast, the peak of the buoyancy variance is located in the inner layer close
to the velocity maximum. This is the case as strong buoyancy gradients occur in this
region (Fedorovich & Shapiro 2009b; Giometto et al. 2017). In the wall-normal direction,
the buoyancy variance decays faster than the velocity variances, implying that most
buoyancy fluctuations are restricted to regions close to the heated wall, consistent with
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the observations of Giometto et al. (2017). This behaviour of velocity and buoyancy
variances also agrees with what is observed in transitional buoyancy layers (Maryada
et al. 2022). Also, it is qualitatively similar to what is observed in turbulent differentially
heated channels and unstratified NCBLs, where a peak in the streamwise velocity variance
is observed in the outer layer (Tsuji & Nagano 1988b; Abedin et al. 2009; Ng et al.
2017). These plots highlight the stark differences between the present flow configuration
and canonical wall-bounded turbulence. At comparable values of Reτ , in canonical
wall-bounded turbulence, there is a distinct peak in velocity variances close to the wall
due to the inner wall cycle. An inner peak is absent in the present case, and turbulence is
present mainly in the outer layer.

The wall-normal variation of Reynolds shear stress and the wall-normal and streamwise
turbulent heat fluxes are shown in figure 4(b). Here, the Reynolds shear stress is normalised
using u2

τ , and the turbulent heat fluxes are normalised using θτ uτ . The Reynolds shear
stress is negative close to the wall in the inner layer and becomes positive with increasing
wall-normal distance, in agreement with the observations of Fedorovich & Shapiro
(2009b) and Giometto et al. (2017). Similar behaviour is observed in unstratified NCBLs
and turbulent differentially heated channels (Ke et al. 2020; Kim et al. 2021). A region of
approximately constant Reynolds shear stress, commonly observed in turbulent boundary
layers, is absent. On the other hand, the streamwise and wall-normal turbulent heat fluxes
are always positive in the inner layer. These are also positive in the outer layer until
x1 ≈ 0.6δbl. Both the wall-normal and streamwise turbulent heat fluxes are negative from
approximately this wall-normal location and beyond, which agrees with the observations
of Giometto et al. (2017). Also, the Reynolds shear stress peaks in the outer layer at
x1 ≈ 0.3δbl while the turbulent heat fluxes peak at locations much closer to the maximum
velocity (still in the outer layer). The Reynolds shear stress and streamwise turbulent heat
flux feature in the production of TKE. The production of TKE in relation to LSMs is
discussed in § 3.2.4.

3.2. Two-point correlations
The existence of LSMs is investigated using two-point correlations (Ganapathisubramani
et al. 2005; Hutchins & Marusic 2007; Baltzer et al. 2013; Sillero, Jiménez & Moser
2014; Hwang et al. 2016). The two-point correlation coefficient at a wall-normal plane of
a fluctuating field φ, RT

φφ , is calculated using

RT
φφ = 〈φ(x2, x3)φ(x2 + �x2, x3 + �x3)〉

σ 2
φ

, (3.1)

where σφ is
√

〈φ2〉. Throughout this paper, �x2 > 0 corresponds to the correlation
downstream of the location of interest, and the correlation upstream of the location of
interest corresponds to �x2 < 0.

The two-point correlation coefficients of ϑ, u1, u2 and u3 in the streamwise direction
at four different wall-normal locations are shown in figure 5. In the figure, the two-point
correlation coefficient at x1 = 0.04δbl corresponds to a wall-normal location in the inner
layer. The two-point correlations at the remaining wall-normal locations correspond to the
outer layer. In the inner layer, the u1, u3 and ϑ fluctuations are positively correlated for
|�x2| < 1. The u2 fluctuations, on the other hand, exhibit a positive correlation coefficient
for |�x2| > 1, hinting at the presence of LSMs. Qualitatively, the same conclusions also
hold in the outer layer, with the width of the positive two-point correlation coefficient of
u2 being greater than the width of the positive two-point correlation coefficient of u1, u3
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Figure 5. The RT
u2u2

, RT
ϑϑ , RT

u1u1
, RT

u3u3
correlations in the streamwise direction at (a) x1/δbl = 0.04,

(b) x1/δbl = 0.1, (c) x1/δbl = 0.3 and (d) x1/δbl = 0.6. The thick solid black curve represents RT
u2u2

, thin red
dashed curve represents RT

ϑϑ , thick blue densely dash-dotted curve represents RT
u1u1

and thin green loosely
dash-dotted curve represents RT

u3u3
.

and ϑ . The widths of the correlation of u1 and u3 become comparable with increasing
wall-normal distance. The buoyancy fluctuations become increasingly correlated in the
streamwise direction as one moves away from the wall. Figure 5 also strongly indicates
that u1, u2, u3 and ϑ fluctuations exhibit different length scales. As the widths of the
two-point correlations of u1, u3, and ϑ are not comparable to the width of RT

u2u2
, it can

be presumed that the largest streamwise coherence is present for u2. The width of u2
fluctuations increases with increasing wall-normal distance, and these length scales of
the u2 fluctuations are discussed later using two-point streamwise–spanwise correlations.

The two-point correlation coefficients of ϑ , u1, u2 and u3 in the spanwise direction
at four different wall-normal locations are shown in figure 6. In figure 6(a), close to the
heated wall in the inner layer, the width of positive RT

u2u2
is greater than the width of

positive RT
ϑϑ , RT

u1u1
and RT

u3u3
. However, the width of RT

ϑϑ becomes larger with increasing
wall-normal distance, indicating that the spanwise coherence of buoyancy fluctuations
becomes greater than the spanwise coherence of streamwise, wall-normal and spanwise
velocity fluctuations. In the outer layer, the width of the positive correlation coefficient
of u3 and ϑ in the spanwise direction (figure 6) is comparable to the width of the
positive correlation coefficient in the streamwise direction (figure 5), qualitatively similar
to what is observed in unstratified NCBLs (Tsuji et al. 1992; Hattori et al. 2006).

967 A40-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.521


Large-scale motions in a turbulent buoyancy layer

–1
–0.2

0.2

0.4

0.6

0.8

1.0

0

–0.2

0.2

0.4

0.6

0.8

1.0

0

0 1

�x3/δbl

–1 0 1

�x3/δbl

–1
–0.2

0.2

0.4

0.6

0.8

1.0

RTφφ

RTφφ

0

–0.2

0.2

0.4

0.6

0.8

1.0

0

0 1 –1 0 1

(b)(a)

(c) (d)

RTu2u2

RTu1u1

RTϑϑ

RTu3u3

Figure 6. The RT
u2u2

, RT
ϑϑ , RT

u1u1
, RT

u3u3
correlations in the spanwise direction at (a) x1/δbl = 0.04, (b) x1/δbl =

0.1, (c) x1/δbl = 0.3 and (d) x1/δbl = 0.6. The thick solid black curve represents RT
u2u2

, thin red dashed curve
represents RT

ϑϑ , thick blue densely dash-dotted curve represents RT
u1u1

and thin green loosely dash-dotted curve
represents RT

u3u3
. Note that the horizontal scale differs from figure 5.

Despite the spanwise coherence of ϑ and u3 extending to greater distances than the
spanwise coherence of u2, it is still smaller than the streamwise coherence of u2. This
suggests that the u2 fluctuations statistically exhibit the most prominent coherence.
Therefore, the rest of the paper investigates the large-scale coherence of the streamwise
velocity fluctuations, u2.

It should be noted that the two-point correlations of u2 in figure 6 become negative
at |�x2| � 0.5δbl, which is absent in the two-point correlations of u2 in the streamwise
direction (see figure 5). Negative values of two-point correlations of u2 in figure 6
suggest that alternating fast-moving and slow-moving structures are present in the flow.
This is investigated in detail later in this section using streamwise–spanwise two-point
correlations.

It should be stressed that the profiles of the two-point correlations of buoyancy
fluctuations do not match the profiles of two-point correlations of the streamwise velocity
fluctuations. It implies that relying on two-point correlations of the temperature field to
investigate large-scale coherent motions in turbulent buoyancy layers would provide an
incomplete picture of the boundary layer structure.

The long tails of two-point correlation coefficients merely suggest the presence of
large-scale coherence. However, this does not provide insight into whether the large-scale
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Figure 7. Instantaneous streamwise velocity fluctuations at (a) x1/δbl = 0.04, (b) x1/δbl = 0.1, (c) x1/δbl =
0.3 and (d) x1/δbl = 0.6. Gravity acts in the negative x2 direction, and the fluid flows in the positive x2
direction. High-speed velocity fluctuations refer to positive streamwise velocity fluctuations, and low-speed
velocity fluctuations refer to negative streamwise velocity fluctuations.

coherence is due to LSMs or a chain of several small-scale structures (Sillero et al. 2014).
Hence, examining the instantaneous flow structures helps us to understand the distribution
of streamwise velocity perturbations. The instantaneous streamwise velocity perturbations
at four different wall-normal locations are shown in figure 7. Streamwise-elongated streaky
structures of high- and low-speed fluctuations dominate the figure. A high-speed velocity
fluctuation refers to a positive streamwise velocity fluctuation, and a low-speed velocity
fluctuation refers to a negative streamwise velocity fluctuation. The streamwise length
of the u2 often exceeds the boundary layer thickness, consistent with the two-point
correlations. This suggests that the large-scale coherence observed earlier in figure 5 is
due to LSMs.

Figure 7 also demonstrates that multiple scales of motion are present in high- and
low-speed streamwise velocity fluctuations, similar to the multiple scales observed in
canonical wall-bounded turbulence (Monty et al. 2007; Baltzer et al. 2013). In this context,
the multiple scales of motion refer to large-scale and fine-scale streamwise velocity
perturbations.

It can be visually inferred from figure 7 that the magnitude of the positive streamwise
velocity fluctuations is generally greater than that of the negative streamwise velocity
fluctuations with increasing wall-normal distance. This difference disappears as one
moves towards the wall. At x1/δbl = 0.6, the flow field is dominated by intense positive
streamwise velocity perturbations. Positive velocity perturbations are also present at
x1/δbl = 0.04, x1/δbl = 0.1 and x1/δbl = 0.3, but their magnitude is similar to the
magnitude of the negative velocity perturbations.

To quantify the distribution of streamwise velocity perturbations, the skewness sk =
u3

2/〈u2u2〉3/2 of the streamwise velocity fluctuations is calculated, and its wall-normal
variation is shown in figure 8. The skewness is a measure of asymmetry and indicates the
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Figure 8. Wall-normal variation of the skewness (sk) of streamwise velocity fluctuations. The dashed red line
represents the wall-normal location of the velocity maximum, which is used to demarcate the inner and the
outer layers.

deviation of a distribution from a symmetric distribution. Positive skewness indicates that
the magnitude of the intense positive fluctuations is greater than that of the intense negative
ones. The opposite is true for negative values of skewness. The streamwise velocity
fluctuations are positively skewed for almost the entire buoyancy layer. The skewness
is positive near the wall and approaches zero at the edge of the inner layer. Here, the
magnitude of the skewness is minimal, suggesting that the distribution of the streamwise
velocity fluctuations is close to Gaussian, with intense positive fluctuations only being
marginally more likely than intense negative fluctuations. In the outer layer, the skewness
increases with increasing wall-normal distance. Until x1 ≤ 0.5δbl, there is a moderate
increase in the skewness value; however, at x1 > 0.5δbl, the skewness rises rapidly,
reaching values greater than one at the edge of the buoyancy layer. This demonstrates
that positive streamwise velocity fluctuations are more intense in magnitude than negative
streamwise velocity fluctuations. As the cross-correlation between streamwise velocity
fluctuations and wall-normal velocity fluctuations is the Reynolds shear stress, and the
cross-correlation between streamwise velocity fluctuations and buoyancy fluctuations
is the streamwise turbulent heat flux, this asymmetry would mean an asymmetric
contribution to Reynolds shear stress and streamwise turbulent heat flux, which is
discussed in detail in § 3.2.4.

The skewness in the outer layer is qualitatively similar to that observed near the edge of
the unstratified NCBLs (Tsuji & Nagano 1988b; Abedin, Tsuji & Kim 2017). Comparing
this plot with the wall-normal variation of skewness of streamwise velocity fluctuations
in zero and adverse pressure gradient boundary layers highlights the stark differences
between the turbulent buoyancy and boundary layers. In turbulent boundary layers, the
skewness is negative and decreases with increasing wall-normal distance (Monty, Harun
& Marusic 2011), opposite to what is observed here.

At x1/δbl = 0.6, the skewness is greater than 0.5, implying that at this wall-normal
location, positive streamwise velocity fluctuations are significantly more intense
than negative streamwise velocity fluctuations, confirming our interpretation of the
visualisation in figure 7. This would mean that conditional sampling of the data obtained
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Figure 9. Streamwise–spanwise two-point correlation coefficient RT
u2u2

map at (a) x1/δbl = 0.04
(b) x1/δbl = 0.1, (c) x1/δbl = 0.3 and (d) x1/δbl = 0.6.

from DNS or experiments to identify three-dimensional structures using a relatively high
threshold would always bias the conditional structures to high-speed motions in the outer
layer. Equivalent observations regarding conditional sampling of LSMs were made by
Sillero et al. (2014) while investigating large-scale coherence in turbulent boundary layers
and channel flows.

Figure 9 shows the streamwise–spanwise two-point correlation coefficient map of
streamwise velocity perturbation of the entire turbulent flow field at x1 = 0.04δbl, x1 =
0.1δbl, x1 = 0.3δbl and x1 = 0.6δbl. The two-dimensional representation of RT

u2u2
provides

richer information on the averaged structure than the one-dimensional representation
shown in figures 6 and 5. As the large-scale structures are an agglomeration of multiscale
motions, Baltzer et al. (2013) and Lee (2017) contend that even small correlation
coefficient values are essential when investigating them, and hence, are shown in the
figure.

At x1 = 0.3δbl and x1 = 0.6δbl, it is apparent from figure 9 that regions of negative
correlation coefficient flank a region of the streamwise-elongated positive correlation
coefficient (also evident in figure 6). This indicates that fast-moving (slow-moving)
perturbations surround slow-moving (fast-moving) perturbations, aiding the view that
adjacent high-speed and low-speed motions extend in the streamwise direction in the
vertical buoyancy layer, similar to what is observed in canonical wall-bounded turbulence
(Ganapathisubramani et al. 2005; Hutchins & Marusic 2007; Baltzer et al. 2013). It should
be noted that the flanking of negatively correlated regions to the positively correlated
region does not imply that the motions are always symmetric. The symmetry observed
in two-point correlations is an artefact of the averaging process. In reality, the LSMs are
asymmetric, as evident from the instantaneous flow fields shown in figure 7. It should be
noted that similar arguments were made regarding the symmetry of LSMs in turbulent
boundary layers (Kevin, Monty & Hutchins 2019).

Also, at x1 = 0.3δbl and x1 = 0.6δbl, the two-point correlations exhibit the characteristic
‘X-shaped’ pattern observed in canonical wall-bounded turbulence (Hutchins & Marusic
2007; Baltzer et al. 2013; Lee 2017). Hutchins & Marusic (2007), while investigating
turbulent boundary layers, demonstrated that the meandering of the LSMs manifests itself
as an ‘X-shaped’ in the two-point correlations. This striking observation in the present

967 A40-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.521


Large-scale motions in a turbulent buoyancy layer

case suggests that the LSMs in the vertical buoyancy layer also meander appreciably in
the outer layer. The meandering nature of the LSMs is discussed in § 3.2.2.

At x1 = 0.1δbl, the regions of negative correlation coefficient again flank a region of
streamwise-elongated positive correlation coefficient. However, the negative correlation
is much weaker than at x1 = 0.3δbl and x1 = 0.6δbl. In the inner layer, at x1 =
0.04δbl, the two-point correlation differs from what is observed in the outer layer.
A streamwise-elongated rhombus replaces the streamwise-elongated ‘capsule-like’ shape
with its major diagonal oriented in the streamwise direction. It shows a higher degree of
spanwise coherence in the inner layer than in the outer layer. Also, the positive correlation
is not flanked by regions of strong negative correlation, implying the lack of prominent
adjacent fast-moving (slow-moving) and slow-moving (fast-moving) perturbations.

The large-scale streamwise coherence observed here also agrees with the observations
of Schumann (1990) regarding the vertical buoyancy layer. However, direct quantitative
comparisons cannot be made due to the computational limitations of the study of
Schumann (1990). The large-scale streamwise coherence also agrees qualitatively with
the large-scale streamwise coherence of turbulent unstratified NCBLs (Lochet, Lemonnier
& Doan-Kim-Son 1983; Hattori et al. 2006). However, Hattori et al. (2006) noted that the
regions of the negative correlations do not flank the regions of positive correlation in the
streamwise direction in the case of turbulent unstratified NCBLs, which led the authors
to suggest that a streaky structure, akin to the streaky structure of canonical wall-bounded
turbulence, was not evident. This is not the case for the buoyancy layer, and regions of
negative correlation coefficients flank a region of positive correlation coefficient in the
spanwise direction. It should be noted that the LSMs discussed in the present study differ
from the Λ-shaped structures observed in transitional NCBLs (Zhao et al. 2017, 2019).

In figure 9, the patterns at |�x2| 
 0 and |�x3| 
 0 depend on the dataset used due to
the lack of convergence, which is due to the finite-time average of the DNS data. However,
the behaviour near the centre/equilibrium region is consistent even without statistical
convergence (Baltzer et al. 2013; Lee 2017).

3.2.1. High-speed and low-speed large-scale streamwise motions
The instantaneous flow fields shown in figure 7 visually demonstrate the positive skewness
of the streamwise velocity fluctuations in the outer layer. The positive skewness of
streamwise velocity fluctuations (figure 8) strongly suggests that high-speed and low-speed
motions have different properties, especially in the outer layer.

The two-point correlations in figure 9 demonstrate large-scale coherence. However, they
do not shed any light on the nature of the large-scale coherence, i.e. whether low-speed or
high-speed motions are responsible for large-scale streamwise coherence. It is also unclear
from the instantaneous velocities in figure 7 whether the length scales of high-speed
motions are greater/less than the length scales of low-speed motions. It is investigated
here by calculating the two-point conditional correlations of the streamwise velocity
fluctuations. The two-point conditional correlations of the streamwise velocity fluctuations
are defined as

RCP
u2u2

= 〈u2(x2, x3) > 0 | u2(x2 + �x2, x3 + �x3)〉
σu2 | σu2 > 0

, (3.2)

and

RCN
u2u2

= 〈u2(x2, x3) < 0 | u2(x2 + �x2, x3 + �x3)〉
σu2 | σu2 < 0

, (3.3)
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Figure 10. Streamwise–spanwise two-point conditional correlation coefficient map at (a) x1/δbl = 0.04
(b) x1/δbl = 0.1, (c) x1/δbl = 0.3 and (d) x1/δbl = 0.6. Red contours represent RCP

u2u2
and black contours

represent RCN
u2u2

. The contour lines are −0.05, 0.05, 0.15 and 0.25. Negative values are represented using dashed
contours.

for positive and negative streamwise velocity fluctuations, respectively, similar to the
two-point conditional correlations of Lee & Sung (2011) and Sillero et al. (2014).

The two-point streamwise–spanwise conditional correlation coefficients of the
high-speed (positive) and low-speed (negative) streamwise velocity fluctuations at four
different wall-normal locations are shown in figure 10. The two-point conditional
correlation coefficients shown in the figure demonstrate that the high-speed and
low-speed streamwise velocity fluctuations exhibit large-scale streamwise coherence and
can form streamwise-elongated motions. The streamwise-elongated regions of positive
correlations are flanked by regions of negative correlations, exhibiting similarities to the
streamwise–spanwise correlation shown in figure 9. This again suggests the possibility of
alternative regions of high-speed and low-speed large-scale streamwise motions, similar
to the LSMs in the logarithmic layer of wall-bounded turbulence (Ganapathisubramani
et al. 2005; Hutchins & Marusic 2007; Baltzer et al. 2013; Kevin et al. 2019). Both
the conditional correlations contrast the observations of Hattori et al. (2006) regarding
unstratified NCBLs. In that study, regions of negative two-point correlation coefficient
(no conditional sampling applied) did not flank a region of positive two-point correlation
coefficient (no conditional sampling applied) in the spanwise direction. The ‘X-shaped’
correlation pattern is also visible in the outer layer, implying the meandering nature of
the LSMs. As the pattern is consistent for positive and negative streamwise velocity
fluctuations, it can be inferred that both the positive and negative LSMs meander
appreciably (see § 3.2.2 on the meandering of LSMs).

The two-point correlations of the positive streamwise fluctuations are biased towards
the upstream direction. In contrast, the two-point correlations of the negative streamwise
fluctuations are biased towards the downstream direction. This could be due to the
asymmetric presence of different quadrant events in the outer layer of the buoyancy layer,
similar to the asymmetry observed in turbulent boundary layers (Lee & Sung 2011). It
should be noted that the positive streamwise fluctuations are biased towards the upstream
direction, and the negative streamwise fluctuations are biased towards the downstream
direction in turbulent boundary layers, opposite to what is observed in the present case.

In figure 10, the spatial extent of the negative correlation coefficient in the outer
layer is larger than the regions of the negative correlation coefficient in the inner layer.
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Figure 11. Wall-normal variation of the length scales of the two-point correlations. (a) Streamwise length
scales, (b) spanwise length scales and (c) the ratio of the streamwise to the spanwise length scales; AV
corresponds to the two-point correlation of the streamwise velocity fluctuations, PV corresponds to the
conditional two-point correlation of positive streamwise velocity fluctuations and NV corresponds to the
conditional two-point correlation of negative streamwise velocity fluctuations.

Figure 11 shows the positive two-point conditional correlations’ streamwise (lx2) and
spanwise length scales (lx3). The length scales are identified as regions where the two-point
correlation coefficients are greater than 0.05, which aligns with the definition used in
(Hutchins, Hambleton & Marusic 2005; Monty et al. 2007; Lee & Sung 2011, 2013; Lee
2017). The streamwise length shown in figure 11(a) increases with increasing wall-normal
distance. This behaviour differs from what is observed in turbulent boundary layers, where
the large-scale streamwise coherence, in the form of two-point correlations, peaks in the
logarithmic layer and reduces in the wake region (Ganapathisubramani et al. 2005; Lee
& Sung 2011; Sillero et al. 2014). It is conjectured that the interaction of the boundary
layer flow with the flow reversal region generates large-scale coherence even at the edge
of the boundary layer; however, it is not explored further as this interaction is outside
the scope of the current study. The streamwise length of the positive streamwise velocity
fluctuations is smaller than the negative streamwise velocity fluctuations, suggesting that
the negative streamwise velocity fluctuations tend to form longer structures than the
positive streamwise velocity structures. Despite the variation in the streamwise length
scales between the positive and negative streamwise velocity fluctuations, it should be
noted that the streamwise length scales at all the wall-normal distances investigated are
always greater than the boundary layer thickness.

Figure 11(b) shows the spanwise length scales. The spanwise length of positive
two-point correlations is smaller than the streamwise length of positive two-point
correlations, consistent with the earlier discussion. Also, unlike the streamwise length
scales, the spanwise length scale does not monotonically increase with increasing
wall-normal distance.

The spanwise length is highest close to the wall, drops to a minimum at around
x1 = 0.2δbl, and increases once again with increasing wall-normal distance. The spanwise
length of the negative streamwise velocity fluctuations is greater than that of the positive
streamwise velocity fluctuations until x1 < 0.5δbl. However, the trend reverses at x1 >

0.5δbl with the spanwise length of the positive streamwise velocity fluctuations becoming
greater than the spanwise length of the negative streamwise velocity fluctuations. It is
conjectured that differences in the mean shear in the inner and the outer layers of the
buoyancy layer induce changes to the spanwise scales of LSMs.

The ratio of the streamwise length to the spanwise length of the two-point correlations
(lx2/lx3) is shown in figure 11(c). Close to the wall, lx2/lx3 exhibits a minimum and
increases rapidly until x1 ≤ 0.3δbl. Also, close to the wall, the plot is almost identical
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for positive and negative streamwise velocity fluctuations, suggesting a similarity. The
ratio of the streamwise length to the spanwise length approximately attains a constant
value in the outer layer for the two-point correlation of the unconditional streamwise
velocity fluctuations and the two-point conditional correlation of the negative streamwise
velocity perturbations. However, the ratio decreases with increasing wall-normal distance
for positive streamwise velocity fluctuations, implying that the aspect ratio of the LSMs
of the positive streamwise velocity fluctuations differs from the aspect ratio of the LSMs
of the negative streamwise velocity fluctuations. It should be noted that the ratio is always
greater than 1 for both positive and negative streamwise velocity fluctuations, signifying
that the streamwise length of the two-point correlations is always greater than the spanwise
length across the entire thickness of the boundary layer. This strongly implies that the
LSMs are anisotropic, agreeing with the observations of Hattori et al. (2006) regarding
unstratified vertical NCBLs.

Also, the viscous forces are not dominant in most of the outer layer at Re = 800 (regions
where velocity variances and Reynolds shear stress are dominant – see § 3.1). This is
demonstrated in Appendix A using a force balance approach, similar to the one employed
in canonical wall turbulence (Fife et al. 2005; Wei et al. 2005). This suggests that the
results presented regarding the LSMs in the outer layer only have marginal low-Reynolds
number effects.

3.2.2. Meandering of large-scale streamwise motions
From the streamwise-spanwise two-point correlations shown in figures 9 and 10, especially
in the outer layer, it is clear that the large-scale streamwise motions meander significantly
in the spanwise direction. The streamwise velocity fluctuations shown in figure 7 also
reveal that the LSMs are not perfectly aligned in the streamwise direction and are offset
diagonally, exhibiting signs of meandering motion.

In this section, motivated by the analysis of Sillero et al. (2014) and de Silva et al. (2018),
the meandering of LSMs is investigated in relation to the fluctuating spanwise velocity.
To this end, the two-point correlation coefficients of the streamwise velocity fluctuations
conditioned on the signs of streamwise and spanwise velocity fluctuations are calculated.
The two-point conditional correlations of high-speed and low-speed motions of the
streamwise velocity fluctuations are analogous to the two-point conditional correlations
shown in (3.2) and (3.3), except that they are also conditioned based on the sign of
spanwise velocity fluctuations. It should be noted that no thresholding is applied, and
the conditional correlation only depends on the sign of streamwise and spanwise velocity
fluctuations. It is identical to the conditional two-point correlation used by Sillero et al.
(2014) and de Silva et al. (2018). The conditional correlation is defined as

RCPW
u2u2

= 〈u2(x2, x3)u2(x2 + �x2, x3 + �x3)〉 | u3 > 0
σ 2

u2
| u3 > 0

, (3.4)

for positive spanwise velocity fluctuations and

RCNW
u2u2

= 〈u2(x2, x3)u2(x2 + �x2, x3 + �x3)〉 | u3 < 0
σ 2

u2
| u3 < 0

, (3.5)

for negative spanwise velocity fluctuations.
The streamwise–spanwise two-point correlations of streamwise velocity fluctuations

conditioned on the signs of streamwise and spanwise velocity fluctuations are shown in
figures 12 and 13. The high-speed and low-speed streamwise velocity correlations exhibit
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Figure 12. Streamwise–spanwise two-point conditional correlation coefficient RCPW
u2u2

of fast-moving structures
at (a,e) x1/δbl = 0.04 (b, f ) x1/δbl = 0.1, (c,g) x1/δbl = 0.3 and (d,h) x1/δbl = 0.6. Red contours in (a–d)
represent RCPW

u2u2
of positive u3 and black contours in (e–h) represent RCPW

u2u2
of negative u3. The contour lines are

−0.05, 0.05, 0.15 and 0.25. Negative values are represented using dashed contours.

spanwise drift in the inner and outer layers. This statistical signature is similar to what
is observed by de Silva et al. (2018) in the logarithmic region of the turbulent boundary
layer, implying that the meandering of the LSMs in the turbulent buoyancy layer is related
to spanwise velocity fluctuations.

In terms of the correlations presented here, spanwise velocity fluctuations affect both
high-speed and low-speed LSMs equally. The orientation of the two-point conditional
correlation coefficients is similar across the thickness of the boundary layer, implying that
the meandering due to spanwise velocity fluctuations is consistent. However, this does not
indicate that the interaction mechanisms are the same. For fast-moving streamwise velocity
fluctuations (shown in figure 12), positive spanwise velocity fluctuations induce a positive
spanwise drift (oriented to the right in the streamwise direction of the flow). In contrast,
negative spanwise velocity fluctuations cause a negative spanwise drift (oriented to the
left in the streamwise direction of the flow). The opposite is the case for the slow-moving
velocity fluctuations (shown in figure 13). Positive spanwise velocity fluctuations induce
a negative spanwise drift, and negative spanwise velocity fluctuations cause a positive
spanwise drift in low-speed LSMs. This suggests that positive and negative spanwise
velocity fluctuations interact differently with high-speed and low-speed motions.

For the given thresholding of spanwise velocities fluctuations, it is interesting to
note that the spanwise drift of the LSMs is more significant in the turbulent buoyancy
layer than the turbulent boundary layer. In turbulent boundary layers, solely in terms of

967 A40-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.521


K.R. Maryada, S.W. Armfield, P. Dhopade and S.E. Norris

�x3/δbl

�
x 2

/
δ b
l

–2
–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–1 0 1 2

�x3/δbl

–2 –1 0 1 2

�x3/δbl

–2 –1 0 1 2

�x3/δbl

–2 –1 0 1 2

�
x 2

/
δ b
l

–2
–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 13. Streamwise–spanwise two-point conditional correlation coefficient RCNW
u2u2

of slow-moving
structures at (a,e) x1/δbl = 0.04 (b, f ) x1/δbl = 0.1, (c,g) x1/δbl = 0.3 and (d,h) x1/δbl = 0.6. Red contours
(a–d) represent RCNW

u2u2
of positive u3 and black contours (e–h) represent RCNW

u2u2
of negative u3. The contour lines

are −0.05, 0.05, 0.15 and 0.25. Negative values are represented using dashed contours.

two-point correlations, for the given threshold, the spanwise drift is significant at the
edge of the boundary layer. It is only marginal in the logarithmic layer (de Silva et al.
2018). In the present case, a high degree of preferential orientation of the two-point
conditional streamwise correlations is observed at all the four wall-normal locations shown
in figures 12 and 13. This suggests that the spanwise velocity fluctuations in the turbulent
buoyancy layer can induce a more significant spanwise drift to the LSMs than the turbulent
boundary layer.

3.2.3. Wall-normal coherence
The two-point correlations above reveal LSMs’ streamwise and spanwise coherence in
the turbulent buoyancy layer. In this section, the two-point wall-normal correlation is
calculated to investigate the streamwise velocity fluctuations’ wall-normal coherence.
The two-point wall-normal correlation is calculated using

RW
u2u2

= 〈u2(x1ref , x2)u2(x1, x2 + �x2)〉
σu2(x1ref )σu2(x1)

, (3.6)

where σu2(x1ref ) is the standard deviation at a reference wall-normal location and σu2(x1) is
the standard deviation at a wall-normal location x1.
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Figure 14. Wall-normal–streamwise two-point correlation coefficient (RW
u2u2

) map of streamwise velocity
fluctuations. The black contour lines are equally spaced from 0.1 to 0.9. The red cross represents the reference
location, and the black dashed line separates the inner and outer layers. Gravity (g) acts in the negative x2
direction (downwards), and the fluid flows in the positive x2 direction (upwards).

Figure 14 shows the statistically averaged structure arising from the two-point
wall-normal correlation of the streamwise velocity fluctuations. The reference height is
chosen as x1 = 0.065δbl, which is the wall-normal location where the mean streamwise
velocity is maximum. This also corresponds to the location in the boundary layer where
the mean shear is zero.

It is evident from the figure that the streamwise velocity fluctuations exhibit coherence
over significant wall-normal distances. The positive two-point correlation coefficient
contours are present for almost the entire boundary layer thickness. Large-scale
coherence is also present in the downstream and upstream directions, along with
substantial wall-normal correlation. This implies that, statistically, large-scale structures
are responsible for turbulence in the turbulent buoyancy layer. It should be noted that
the presence of non-zero values for two-point correlations across significant wall-normal

967 A40-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.521


K.R. Maryada, S.W. Armfield, P. Dhopade and S.E. Norris

distances is also observed in unstratified turbulent NCBLs (Tsuji et al. 1992; Abedin et al.
2012; Nakao et al. 2017).

The differences in the shape of the statistical structure shown in figure 14 and the
wall-normal statistical structure of canonical wall-bounded turbulence are immediately
evident. In canonical wall-bounded turbulence, a ramp-like structure inclined in the
downstream direction of the flow is observed, which is believed to be the consequence of a
packet of hairpin-like vortex structures (Christensen & Adrian 2001; Ganapathisubramani
et al. 2005; Adrian 2007; Marusic & Adrian 2012; Baltzer et al. 2013; Hwang et al.
2016). In the turbulent buoyancy layer, a ramp-like structure inclined in the downstream
direction is observed in the inner layer. In contrast, the ramp-like structure is inclined in the
upstream direction in the outer layer. The differences between the wall-normal coherence
of the LSMs in the turbulent buoyancy layer and canonical wall-bounded turbulence can
be attributed to the presence of different vortex structures due to the change in the sign
of the mean shear in the outer layer (Nakao et al. 2017). At this stage, the role of hairpin
vortices or similar in NCBL transition and turbulence is not fully understood (Pallares
et al. 2010; Abramov et al. 2014; Nakao et al. 2017; Zhao et al. 2017, 2019) and no definitive
conclusions can be drawn that relate hairpin-like vortex structures observed in prior studies
to the two-point correlations discussed in this study.

To quantify the tilt of the two-point correlation shown in figure 14, the structure
inclination angle (Carper & Porté-Agel 2004; Marusic & Heuer 2007; Chauhan et al.
2013; Deshpande, Monty & Marusic 2019) is calculated using the velocity maximum as
the reference position. It is calculated as

θ = arctan(x∗
1/�s), (3.7)

where θ is the structural inclination angle, x∗
1 is the absolute wall-normal separation

distance between the velocity maximum and the location of interest, and �s is the
streamwise spatial separation corresponding to the peak of correlation RW

u2u2
. Note that

�s can take both positive and negative values, with positive values indicating a spatial
separation in the downstream direction and negative values indicating a spatial separation
in the upstream direction.

Figure 15 shows the structure inclination angle at different wall-normal locations in the
turbulent buoyancy layer. A single dominant inclination angle is absent, agreeing with
figure 14. In the inner layer, θ is positive and is around 24◦. In the outer layer, θ is approx.
55◦ at small separation distances and decays to approx. −25◦ with increasing wall-normal
distance. Here, positive values of θ indicate that �s is positive and that the structure is
inclined in the downstream direction. On the other hand, negative values of θ indicate that
�s is negative and that the structure is inclined in the upstream direction.

The structures responsible for the large-scale wall-normal coherence are also visible
in the instantaneous flow fields. Figure 16 shows the instantaneous streamwise velocity
field across the mid-span of the domain at three different times (the exact time
instant is irrelevant as the flow fields represent developed turbulence that is statistically
homogeneous in the streamwise (x2) and spanwise (x3) directions). It is clear from the
figure that the large-scale flow structures spanning almost the entire boundary layer
thickness populate the buoyancy layer. This is reminiscent of the large-scale eddies
observed in unstratified vertical NCBLs (Fujii 1959; Vliet & Liu 1969; Tsuji & Nagano
1988b; Hattori et al. 2006; Abedin et al. 2017), highlighting the qualitative similarities
between the two flows. Close to the wall (x1 � 0.2), the velocity flow structures are
inclined in the downstream direction, while away from the wall (x1 � 0.2), the flow
structures are tilted in the upstream direction, agreeing with the two-point correlation and
structure inclination angle plots in figures 14 and 15, respectively.
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Figure 15. Variation of structure inclination angle θ with respect to the wall-normal location. The red dashed
line indicates the reference position, which is also the location of the velocity maximum.
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Figure 16. Three different snapshots of the instantaneous streamwise velocity (ũ2) field at the mid-span of the
domain. Gravity (g) acts in the negative x2 direction, and the fluid flows in the positive x2 direction. Only a
portion of the entire domain is shown.
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Figure 17. Wall-normal variation of the production of TKE due to shear (PS) and buoyancy (PB). The black
dot-dashed vertical line represents the wall-normal location of the velocity maximum, which is used to
demarcate the inner and the outer layers.

3.2.4. Role of LSMs in turbulence production
In turbulent buoyancy layers, the Reynolds shear stress and the streamwise turbulent heat
flux are responsible for the production of TKE (Giometto et al. 2017; Maryada et al. 2022).
The shear production (PS) and buoyancy flux (PB) are defined as

PS = −〈u1u2〉∂ �u2

∂x1
, (3.8a)

PB = 2
Re

〈u1ϑ〉. (3.8b)

The wall-normal variation of the shear production and the buoyancy flux are shown in
figure 17. It is clear from the figure that both shear and buoyancy are dominant producers
of TKE in the vertical buoyancy layer. Most of the TKE is produced in the outer layer at
the Prandtl number and Reynolds number investigated, consistent with the DNS results of
Giometto et al. (2017). It should be noted that despite the flow being driven by buoyancy,
shear still dominates over buoyancy in terms of TKE production. The relative dominance
of shear over buoyancy was also observed in unstratified NCBLs and transitional buoyancy
layers having a Prandtl number of 0.71 (Janssen & Armfield 1996; Maryada et al. 2022).
Similarities between the current flow at Pr = 0.71 and the flow at Pr = 1 (Giometto et al.
2017) are also immediately evident, where shear dominates TKE production. This is in
contrast to transitional unstratified vertical NCBLs at Pr = 7.0 where buoyancy dominates
(Zhao et al. 2017).

In the inner layer, the shear production is positive in a layer close to the wall. In a region
that is bounded by this layer and the velocity maximum, the shear production is negative.
It indicates counter-gradient turbulent flux, a characteristic feature of turbulent buoyancy
layers (Giometto et al. 2017). In this region, the buoyancy flux is positive and is responsible
for most of the production of TKE. In the outer layer, PS mostly dominates over PB until
the edge of the boundary layer. Near the edge of the boundary layer, at x1 > 0.6δbl, PB
is negative, suggesting that buoyancy at these wall-normal locations is responsible for the
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Figure 18. Streamwise–spanwise two-point cross-conditional correlation coefficient map of Reynolds shear
stress RCC

u1u2
and streamwise turbulent heat flux RCC

u2ϑ at (a,b) x1/δbl = 0.04 and (c,d) x1/δbl = 0.3. Black
contours in (a,c) represents RCC

u1u2
and red contours in (b,d) represents RCC

u2ϑ . The contour lines are −0.05,
0.05, 0.15 and 0.25. Negative values are represented using dashed contours.

destruction of TKE. The dual role of buoyancy flux in producing and destroying TKE was
also observed in transitional buoyancy layers (Maryada et al. 2022).

Figure 17 only indicates the wall-normal locations where the TKE production is
dominant. The two-point cross-correlations of u1 and u2 (RCC

u1u2
), and u2 and ϑ (RCC

u2ϑ
)

are calculated to understand the momentum and heat transfer associated with the LSMs.
These are defined as

RCC
u1u2

= 〈u1(x2, x3)u2(x2 + �x2, x3 + �x3)〉
σu1σu2

, (3.9a)

RCC
u2ϑ

= 〈u2(x2, x3)ϑ(x2 + �x2, x3 + �x3)〉
σu2σϑ

. (3.9b)

The two-point cross-correlations of Reynolds shear stress and streamwise turbulent heat
flux at x1 = 0.04δbl and x1 = 0.3δbl are shown in figure 18. The wall-normal location of
x1 = 0.04δbl represents the wall-normal location in the inner layer where the buoyancy
variance is significant. In comparison, x1 = 0.3δbl represents the wall-normal location in
the outer layer where the wall-normal velocity variance and Reynolds shear stress are
significant (see figure 4).

It is evident from figure 18(a) that, in the inner layer, the two-point cross-correlation of
the Reynolds shear stress does not extend to large streamwise and spanwise distances,
implying the absence of large-scale coherence. This suggests that the high-speed or
low-speed LSMs are not strongly correlated with the wall-normal velocity fluctuations.

In figure 18(c), large-scale coherence of Reynolds shear stress is observed in the outer
layer, albeit with a shorter length scale than streamwise velocity fluctuations (see figure 9).
The two-point cross-correlation of Reynolds shear stress in a turbulent boundary layer also
has a shorter streamwise length scale than the streamwise length scale of the two-point
correlation of streamwise velocity fluctuations (Sillero et al. 2014).

The two-point correlation map in figure 18(c) shows a region of positive correlation
flanked by regions of negative correlation. This implies that the high-speed streamwise
velocity fluctuations are correlated with positive wall-normal velocity fluctuations, and
the low-speed streamwise velocity fluctuations are correlated with negative wall-normal
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velocity fluctuations. Therefore, the high-speed fluid in the outer layer comprises an
upwash flow, while the low-speed fluid in the outer layer comprises a downwash flow.

The mean Reynolds shear stress is negative in the inner layer and positive in the
outer layer of the vertical buoyancy layer (see figure 4b), and the positive value of the
cross-correlation near �x2 = �x3 = 0 is consistent with the sign of the Reynolds shear
stress in the outer layer.

If a decomposition of the Reynolds shear stress is made according to quadrant analysis
(Wallace 2016), it would imply that the high-speed LSMs are composed of Q1 quadrant
events (u1 > 0, u2 > 0) and the low-speed LSMs are composed of Q3 quadrant events
(u1 < 0, u2 < 0). It should be stressed that this is opposite to what is observed in canonical
wall-bounded turbulence, where Q2 (u1 < 0, u2 > 0) and Q4 (u1 > 0, u2 < 0) events
dominate the flow field (Ganapathisubramani et al. 2005; Dennis & Nickels 2011; Lee
& Sung 2011; Hwang et al. 2016; Wallace 2016).

Large-scale streamwise coherence is observed in the two-point cross-correlation
maps of streamwise turbulent heat flux in both the inner and outer layers, evident in
figure 18(b,d). The streamwise length scale of the streamwise turbulent heat flux is
shorter than the streamwise length scale of streamwise velocity fluctuations. Similar to
the two-point correlation of the Reynolds shear stress, RCC

u2ϑ
is biased in the downstream

direction.
Regions of negative streamwise two-point cross-correlation surround a region of

positive two-point correlation. This indicates that the positive streamwise velocity
fluctuations are correlated with positive buoyancy perturbations (higher temperature than
the mean buoyancy field). Negative streamwise velocity fluctuations are correlated with
negative buoyancy perturbations (lower temperature than the mean buoyancy field).
Decomposing the streamwise turbulent heat flux using quadrant analysis would imply
that the high-speed motions are composed of Q1 quadrant events (u1 > 0, ϑ > 0) and
the low-speed LSMs comprised Q3 quadrant events (u1 < 0, ϑ < 0).

The positive value of the cross-correlation near �x2 = �x3 = 0 is consistent with the
ensembled averaged streamwise turbulent heat flux, which is positive across most of the
turbulent buoyancy layer and is only negative at its edge (see figure 4b).

By comparing the cross-correlations of the Reynolds shear stress and streamwise
turbulent heat flux, it is clear that the high-speed LSMs are composed of upwash
flow having relatively higher temperatures, and the low-speed LSMs are composed of
downwash flow having relatively lower temperatures.

To better understand this distribution of Reynolds shear stress and streamwise turbulent
heat flux, the instantaneous streamwise velocity fluctuations overlayed with intense events
of Reynolds shear stress and streamwise turbulent heat flux are shown in figure 19. The
visualisation is similar to the one used by Dennis & Nickels (2011), who investigated
LSMs in a turbulent boundary layer. In the inner layer, the intense events of Reynolds shear
stress and streamwise turbulent heat flux are marginally better correlated with low-speed
motions (figure 19a,c), suggesting that low-speed motions are the dominant contributors
of Reynolds shear stress and turbulent heat flux. High-speed motions also contribute to
Reynolds shear stress and streamwise turbulent heat flux but do not carry significant
portions of them. The distribution of Reynolds shear stress is similar to that of Reynolds
shear stress in turbulent boundary layers (Dennis & Nickels 2011).

The distribution of Reynolds shear stress and streamwise turbulent heat flux in the
outer layer (figure 19b,d) reveals the striking differences between the turbulent buoyancy
layer and canonical wall-bounded turbulence. In the outer layer, the extreme events of
the Reynolds shear stress and the streamwise turbulent heat flux are strongly correlated
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Figure 19. Instantaneous intense positive (red) and negative (blue) streamwise velocity fluctuations overlayed
with contours (black) of intense events of Reynolds shear stress and streamwise turbulent heat flux at (a,c)
x1/δbl = 0.04 and (b,d) x1/δbl = 0.3. The red contours correspond to u2 > 0.25 �u2m and the blue contours
correspond to u2 < −0.25 �u2m where �u2m is the maximum mean flow velocity. The black contour lines in (a,b)
correspond to the contours of 〈u1u2〉 > 2σ〈u1u2〉 and the black contour lines in (c,d) correspond to the contours
of 〈u2ϑ〉 > 2σ〈u1ϑ〉, where σ is the standard deviation. Gravity acts in the negative x2 direction, and the fluid
flows in the positive x2 direction.

with high-speed LSMs, implying that the high-speed LSMs are the dominant contributors
of Reynolds shear stress and streamwise turbulent heat flux in the outer layer. This
differs from canonical wall-bounded turbulence where low-speed LSMs are shown to be
dynamically more important (Dennis & Nickels 2011). Quadrant analysis (Wallace 2016)
also demonstrates that the Q1 events (u1, u2 > 0 and u2, ϑ > 0) contribute around 60 %
of mean Reynolds shear stress and around 65 % of mean streamwise turbulent heat flux
at x1 = 0.3δbl. As the high-speed LSMs mostly comprised Q1 events, it can be presumed
that the high-speed LSMs are responsible for most of the production of TKE in the outer
layer. This is qualitatively similar to unstratified turbulent NCBLs, where Q1 events in the
outer layer significantly contribute to Reynolds shear stress (Hattori et al. 2006).

3.3. Streamwise and spanwise energy spectra
Along with two-point correlations, premultiplied spectra can indicate the presence of
large-scale structures in turbulent flows (Toh & Itano 2005; Hutchins & Marusic 2007).
The premultiplied one-dimensional streamwise and spanwise spectra of u+

2 are shown
in figure 20. The premultiplied spectra demonstrate that most of the streamwise energy
is present in the outer layer of the turbulent buoyancy layer at the Reynolds number
investigated. Only a minimal amount of streamwise energy is present in the inner layer.
This is consistent with the mean values reported in figure 4(a), which is expected as
the integral of the energy spectra of streamwise velocity fluctuations is equivalent to the
ensemble-averaged streamwise velocity variance.
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Figure 20. Premultiplied one-dimensional energy spectra of u+
2 . (a) Spectra in the streamwise direction and

(b) spectra in the spanwise direction. The horizontal and vertical axes are normalised by the boundary layer
thickness. White crosses are used to indicate the location of the peak of the energy spectra.

The premultiplied streamwise energy spectrum shown in figure 20(a) exhibits an
energy peak at x1 ≈ 0.12δbl and λx2 ≈ 3.5δbl (shown with a white cross in figure 20a).
The premultiplied spanwise energy spectrum shown in figure 20(b) has an energy peak
at x1 ≈ 0.17δbl and λx3 ≈ δbl (shown with a white cross in figure 20b). Here, λx2 and
λx3 are the streamwise and spanwise wavelengths, respectively. At x1 ≈ 0.17δbl, in the
streamwise direction, the dominant wavelength is similar to the streamwise length scale of
3 obtained from the two-point streamwise correlations. At x1 ≈ 0.17δbl, in the spanwise
direction, the wavelength corresponding to the energy peak is similar to the spanwise
length of 0.75 obtained from the two-point streamwise correlations. Minor differences
are expected as the length scales are calculated using a finite threshold for the two-point
correlation coefficient (Sillero et al. 2014). Nevertheless, this suggests that the dominant
energy-containing motions in the turbulent buoyancy layer are located in the outer layer
at the Reynolds number investigated and are related to LSMs of streamwise velocity
fluctuations.

Even in terms of one-dimensional streamwise and spanwise energy spectra of
streamwise velocity fluctuations, the characteristics of the LSMs observed in the present
case are different from what is traditionally observed in turbulent boundary layers. In the
zero pressure gradient turbulent boundary layer, a spectral peak is observed close to the
wall whose wavelength scales well with viscous units, not the outer ones. It is commonly
referred to as the inner peak and is a consequence of the quasi-streamwise vortices in
the inner wall cycle (Hutchins & Marusic 2007; Jiménez 2018). An outer peak in the
spectra is observed only at high Reτ (Hutchins & Marusic 2007; Marusic 2001; Smits
et al. 2011; Marusic & Adrian 2012; Solak & Laval 2018). The turbulent vertical buoyancy
layer exhibits dominant signatures of energetic large-scale structures at this Reτ , evident
from figure 20. This suggests that moderate-Reτ is sufficient to observe LSMs in turbulent
vertical buoyancy layers. Therefore, it is stressed that despite Reτ being used to quantify
the turbulent character of the vertical buoyancy layer, a direct comparison with the zero
pressure gradient turbulent boundary layer at the same Reτ to examine LSMs should be
avoided.
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From figure 20, it is also evident that the streamwise and spanwise domain extents are
large enough to enclose the most energetic contours of streamwise velocity perturbations,
validating the choice of the domain size.

4. Conclusions

Using two-point correlations and one-dimensional streamwise and spanwise energy
spectra, it has been demonstrated that streamwise velocity fluctuations in the turbulent
buoyancy layer having a Prandtl number of 0.71 at a Reynolds number of 800 exhibit
large-scale streamwise coherence. The large-scale streamwise coherence is due to
LSMs having streamwise length scales greater than the boundary layer thickness. Such
large-scale streamwise coherence is notably absent in wall-normal and spanwise velocity
fluctuations and buoyancy fluctuations.

Both the positive (high-speed) and negative (low-speed) streamwise velocity
perturbations form long and narrow LSMs in the inner and outer layers. The two-point
correlations show that the low-speed LSMs exhibit streamwise coherence over larger
distances than the high-speed LSMs; however, this difference is only marginal. The LSMs,
especially in the outer layer, meander significantly, and this meandering is correlated
with the sign of the spanwise velocity fluctuations. The meandering due to spanwise
velocity fluctuations is dominant across most of the outer layer of the vertical buoyancy
layer.

Two-point correlation in the wall-normal direction demonstrates that the LSMs extend
across almost the entire thickness of the boundary layer, indicating significant wall-normal
coherence. In the inner layer, the statistical structure is inclined in the downstream
direction; however, in the outer layer, the structure is inclined in the upstream direction.

In the outer layer, two-point correlations and conditional sampling reveal that the
high-speed LSMs are related to upwash flow having relatively higher temperatures, and the
low-speed LSMs are related to downwash flow having relatively lower temperatures. The
high-speed LSMs are dynamically more relevant in producing turbulence kinetic energy
than the low-speed LSMs.

Comparing the two-point correlations and premultiplied streamwise and spanwise
energy spectra shows that the streamwise velocity motions exhibiting large-scale
coherence are the dominant energy-containing motions in the turbulent buoyancy layer,
implying that at the Reynolds number investigated, the length scale of energy-containing
eddies is of the order of the boundary layer thickness.

Overall, it is demonstrated that large-scale high-speed and low-speed motions populate
the turbulent buoyancy layer and are dynamically relevant for producing and sustaining
turbulence.
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Figure 21. The ratio of the gradient of the Reynolds stress FR to the buoyancy force Fbuoy. The red dashed
vertical line represents the location of the velocity maximum, demarcating the inner layer from the outer layer.

Appendix A. Viscous effects in the outer layer of the buoyancy layer

For a fully developed turbulent boundary layer, the Navier–Stokes equation in (2.2a), with
the help of Reynolds decomposition, can be simplified as

∂〈u1u2〉
∂x1︸ ︷︷ ︸
FR

= 1
Re

∂2 �u2

∂x2
1︸ ︷︷ ︸

Fvisc

+ 2
Re

ϑ̄︸︷︷︸
Fbuoy

, (A1)

where FR is the gradient of the Reynolds shear stress or the turbulent force, Fvisc is the
viscous force, and Fbuoy is the force due to buoyancy.

The above equation states that, throughout the buoyancy layer, there is a balance between
the viscous force, the gradient of the Reynolds shear stress and buoyancy. This does not
imply that all the terms are equal at all the wall-normal locations. Different terms are
dominant at different wall-normal locations of the buoyancy layer. This force balance is
qualitatively similar to that observed in canonical wall-bounded turbulence (Fife et al.
2005; Wei et al. 2005).

In a high-Reτ wall-bounded turbulent flow, viscous effects are expected to dominate in
regions close to the wall, and they are no longer the leading-order terms in regions far
away from the wall. Then, the force balance equation in (A1) can be simplified to

∂〈u1u2〉
∂x1︸ ︷︷ ︸
FR

≈ 2
Re

ϑ̄︸︷︷︸
Fbuoy

, (A2)

such that there is a balance between the gradient of the Reynolds shear stress and buoyancy.
It should be noted that no specific assumptions are made regarding the magnitude of
Reτ except that the flow is representative of a fully developed turbulent flow. A similar
analysis was carried out in unstratified vertical natural convection (Wei 2020; Wei, Wang
& Abraham 2021).

If the Reτ investigated in the current study is representative of such a fully developed
flow, then the balance in (A2) is also expected to hold. Figure 21 shows the ratio of the
buoyancy force to the gradient of the Reynolds shear stress. It is evident from the figure
that the gradient of the Reynolds shear stress is in approximate balance with buoyancy
for most of the outer layer, demonstrating that the viscous effects are not significant. As
viscous force is not dominant in the outer layer, ν is not a controlling parameter of the flow
(Wei 2020; Wei et al. 2021). This demonstrates that, despite viscosity being dominant
close to the wall, its impact is negligible away from the wall, with it only acting on
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small-scale eddies. Similar conclusions regarding the effect of viscosity were also drawn
in canonical wall-bounded turbulence (Fife et al. 2005; Wei et al. 2005; Marusic et al.
2013). This suggests that the low-Re effects are expected to be only marginal in the outer
layer at Re = 800.
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