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Abstract

The objective of this study was to investigate how different obesity measures link to circulating metabolites, and whether the connections
are due to genetic or environmental factors. A cross-sectional analysis was performed on follow-up survey data at the Chinese National
Twin Registry (CNTR), which was conducted in four areas of China (Shandong, Jiangsu, Zhejiang and Sichuan) in 2013. The survey col-
lected detailed questionnaire information and conducted physical examinations, fasting blood sampling and untargeted metabolomic mea-
surements among 439 adult twins. Linear regression models and bioinformatics analysis were used to examine the relation of obesity
measures, including body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) with serum metabolite levels
and related pathways. A co-twin control study was additionally conducted among 15 obesity-discordant monozygotic (MZ) pairs (intrapair
BMI difference>3 kg/m2) to examine any differences in metabolites controlling for genetic factors. Eleven metabolites were associated with
BMI, WC and WHR after controlling for genetic and shared environmental factors. Pathway analysis identified pathways such as phenyl-
alanine metabolism, purine metabolism, valine, leucine and isoleucine biosynthesis that were associated with obesity. A wide range of
unfavorable alterations in the serum metabolome was associated with obesity. Obesity-discordant twin analysis suggests that these asso-
ciations are independent of genetic liability.
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Globally, the prevalence of obesity among adults has nearly quad-
rupled over the past four decades (NCD Risk Factor Collaboration,
2017). In 2017, 4.72 million deaths and 148 million disability-
adjusted life years (DALYs) were attributable to high body mass
index (BMI) (GBD 2017 Risk Factor Collaborators, 2018).
Genetic components and unhealthy lifestyles undoubtedly play a
key role in the development of obesity; however, the pathogenic
mechanism has not yet been fully explained (Zhang et al., 2012).
In recent years, with the continuous emergence of new technolo-
gies, the rapid development of omics research may help to obtain a
detailed molecular view of the pathology of complex diseases.

Metabolomics is a powerful tool to investigate the relationships
between serummetabolites and disease states. Recent advances have
allowed for high-throughput targeted or untargeted exploration of
the metabolite changes in body fluids and tissues that may reflect
physiological dysfunction and mirror earlier stages of metabolism
disorders. In recent years, metabolomics is increasingly used to

explore the pathology of metabolic diseases like obesity (Kraus
et al., 2016; Moore et al., 2014; Pietiläinen et al., 2007; Rauschert
et al., 2014). Aromatic amino acids (AAA) (Ho et al., 2016;
Moore et al., 2014; Short et al., 2019), branched-chain amino acids
(BCAA;Ho et al., 2016; Newgard et al., 2009; Short et al., 2019), non-
esterified fatty acids (Newgard et al., 2009; Zeng et al., 2010), acyl-
carnitines (Mihalik et al., 2012) and phospholipids (Pietiläinen et al.,
2007) were reported to be associated with obesity. These metabolites
might indicate important biological processes or represent inter-
mediate phenotypes linking genetic and environmental factors of
obesity and its related diseases.

Twin studies are unique for identifying genetic and environ-
mental determinants of human phenotypes or traits due to iden-
tical (monozygotic; MZ) or partly shared (dizygotic; DZ) genome
backgrounds. Previous twin studies showed genetic factors explain
54–81% of the interindividual variation in BMI (Nan et al., 2012;
Zhou et al., 2015) while heritability for most serum metabolites
ranged from 21% to 79% (Kettunen et al., 2012), demonstrating
a genetic basis for individual differences in serum metabolite
concentrations.

To the best of our knowledge, most of the evidence of metab-
olomic study on obesity has been from the European populations.
Thus, using Chinese adult MZ twins, we aimed to identify obesity-
related serum metabolites and potential metabolic pathways.
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Methods

Study Population and Design

The Chinese National Twin Registry (CNTR) is one of the largest
population-based twin registries in China. In 2013, a questionnaire
survey, physical examinations and fasting blood sampling were
conducted among 1147 adult twin pairs across 4 areas of China
(Shandong, Jiangsu, Zhejiang and Sichuan). Furthermore, DNA
was collected and whole-genome genotyping was conducted on
469 twins. The zygosity of these twins was determined by DNA
analysis. The study has been described elsewhere in detail
(Li et al., 2013). All participants provided written informed con-
sent. The Biomedical Ethics Committee at Peking University
(Beijing, China) approved the study.

Metabolomics detection met the following inclusion criteria in
this study: aged more than 18 years; reared-together twins; blood
donors without histories of cardiovascular disease and cancer;
DNA determined zygosity information. Thus, we finally included
439 twins containing 215 twin pairs for this analysis.

Obesity Measurements

Obesity measures collected in this study wereBMI, waist circum-
ference (WC), waist-to-hip ratio (WHR) and percent body fat
(%BF). Standing height and weight of twins was measured using
a stadiometer (0.1 cm) and a digital balance (TANITA, Tokyo,
Japan, 0.1 kg), respectively. BMI was calculated as weight in kilo-
grams divided by height in meters squared. WC and hip circum-
ference were measured twice using a nonstretchable tape. WC was
measured at the umbilicus, while hip circumference was at the wid-
est part of the buttocks and themean values were used in the analy-
ses. WHR was the ratio of WC and hip circumference. The %BF
was measured by bioelectrical impedance (Body Composition
Analyzer/Scale, TANITA).

Biochemical Measurements

Venous blood samples were drawn from the study subjects after a
12-hour fast. Serum total cholesterol (TC), triglycerides (TG),
high-density lipoprotein cholesterol (HDL-C), low-density lipo-
protein cholesterol (LDL-C), glucose (Glu) and serum insulin were
measured in this sample, described in detail elsewhere (Liao et al.,
2015). Insulin resistance was estimated according to homeostasis
model assessment (HOMA-IR; HOMA-IR= [fasting glucose
(mmol/l) × insulin (U/ml)]/22.5). To minimize the effects of assay
variability, samples from each twin pair were analyzed using the
same assay.

Untargeted Metabolomic Measurements

Sample preparation and analysis. High-resolution metabolo-
mics profiling of MZ and DZ twins was completed using liquid
chromatography with high-resolution mass spectrometry. All
serum samples were analyzed with a 2777C Ultra (High)-
Performance Liquid Chromatography (UPLC) system (Waters,
Massachusetts, USA) connected to an SYNAPTG2XSQTOFmass
spectrometer (Waters, Massachusetts, USA) with electrospray ion-
ization (ESI).

A quality control (QC) sample was made by mixing and blend-
ing equal volumes (20 μL) from each serum sample. QC was used
to represent all the analytes encountered during analysis. For
serum samples, 100 μL of the sample was mixed with 200 μL of
methanol to precipitate protein. The mixture was then centrifuged

at 14, 000 g for 10 min at 4°C. The supernatant was transferred into
a 1.5 ml polypropylene tube for the following metabolic profiling
experiment. In order to ensure system equilibrium, 10 pooled QC
samples were injected at the beginning of the experiment. The QC
samples were injected between every 10 samples to monitor system
stability during the whole experiment. Metabolite features were
detected with an SYNAPT-G2XS QTOF mass spectrometer in
both positive and negative ion modes.

Data Processing and Identification of Metabolites

The raw tandem mass spectrometry datasets were processed
using commercial software Progenesis QI 2.0 (Nonlinear
Dynamics, Newcastle, UK), consisting of raw data import, selec-
tion of possible adducts, peak alignment, peak detection, decon-
volution, dataset filtering and noise reduction. Intensities of each
peak were recorded and a three-dimensional matrix containing
arbitrarily assigned peak indices (retention time and m/z pairs),
sample names (observations) and ion intensity information (var-
iables) was generated. In order to obtain consistent results, the
obtained matrix was further reduced by removing peaks with
more than 80% missing values (ion intensity = 0). PCA was per-
formed for outlier detection and batch effects evaluation using the
preprocessed dataset. As a quality assurance strategy in metabolic
profiling, all retained peaks were normalized to the QC sample
using Robust Loess Signal Correction (R-LSC) based on the peri-
odic analysis of a standard biological QC sample together with the
real plasma samples. The relative standard deviations of the met-
abolic features were calculated across all QC samples, and those
>30% were then removed. The untargeted metabolic analysis
yielded 5580 features in the positive ion mode and 5634 features
in the negative ion mode. Normalization by median was used as
sample normalization and log transformation, and scaling by
standard deviation was used as data normalization. Metabolites
were confirmed by comparison of accurate mass m/z, retention
time and ion intensity to online human metabolome databases
(www.hmdb.ca, level 2 confirmation) or authentic reference stan-
dards (level 1 confirmation) and only these confirmed metabo-
lites (76 features in the positive ion mode and 73 features in
the negative ion mode) were used in the following analysis.
Positive ESI and negative ESI data were analyzed and summa-
rized separately.

Assessment of Covariates

We obtained covariates from questionnaire, including socio-
demographic characteristics (age, sex, region and educational
level) and lifestyle behaviors (tobacco smoking, alcohol drinking,
diet and physical activity). Region was assessed by place of resi-
dence (Shandong, Zhejiang, Jiangsu, Sichuan provinces).
Educational level was defined as illiterate, primary school gradu-
ated, secondary school graduated, high school graduated and
above. Tobacco smoking was coded into three categories (never,
former, current) according to participants’ responses to ‘Do you
smoke?’. Alcohol drinking status was similarly defined depending
on their responses to ‘Do you drink alcohol?’. Physical activity was
measured as a quintile of weeklymetabolic equivalent of tasksmea-
sured by a Chinese version of the International Physical Activity
Questionnaire (Macfarlane et al., 2011). Diet was measured by
three variables: the frequency of having red meat in the past year,
quintile of weekly fresh fruit (grams) consumption and quintile of
weekly fresh vegetable (grams) consumption.
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Statistical Analysis

Metabolomewide association study of obesity measures. Linear
mixed models were implemented to explore the associations
between metabolites and multiple obesity measures. We modeled
each metabolite as a function of the log-transformed BMI, WC,
WHR or %BF using linear mixed models adjusted for age, sex,
zygosity, study sites, smoking, drinking, diet, physical activity, edu-
cation and test batch as fixed effects, and potential correlation
within twin pairs was accounted for by including a random inter-
cept (Carlin et al., 2005).

A sensitivity analysis was conducted by comparing the results
with subjects without self-reported type 2 diabetes, or additionally
adjusted for hypoglycemic/hypolipidemic drug use in recent
months.

Second, to investigate whether these associations were con-
founded by genetic factors, we applied linear fixed models within
MZ twin pairs adjusting for study sites, smoking, drinking, diet,
physical activity, education and test batch. The within-twin-pair
approach automatically takes into account shared genetic and
environmental influences.

To better take the advantages of twins, we used an empirical
Bayes-paired moderated t test to detect differential metabolites
between obesity-discordant MZ twin pairs that were found in
the above MZ twin-pair analysis. Discordant for obesity was
defined as a BMI of 27 kg/m2 or higher in one twin while being less
than 24 kg/m2 in their co-twin (ΔBMI > 3 kg/m2).

All analyses were implemented in R 3.1.2 and we set the thresh-
old for statistical significance at a false discovery rate (FDR) q value
of 0.05 or less, accounting for all metabolites.

Pearson correlations between metabolites with clinical
biochemical indications. The correlations between metabolites
and clinical variables were calculated using Pearson correlations
both individually and by twin-pair amongMZ twins. The logarith-
mic transformation was carried out to better conform to the nor-
mal distribution. In within-pair analysis, biochemical variables and
metabolomics data were twin-normalized by taking the within-
pair difference of the log2-transformed concentration values for
each variable. The reported p value is the probability of getting a
correlation as large as the observed value by random chance, when

the true correlation is zero. All analyses were implemented in R
3.1.2 and the levels of significance are marked as p< .05.

Bioinformatics analysis. MetabolAnalyst 4.0 (http://www.
metaboanalyst.ca/MetaboAnalyst/) was used to perform infor-
matics analysis. MetaboAnalyst combines the results from power-
ful pathway enrichment analysis with the pathway topology
analysis to discover the relevant pathways. The module of pathway
analysis was based on the KEGG database. The p value and impact
value threshold, as calculated via the analysis of pathway topology,
were set to 0.05 and 0.1. Metabolite set enrichment analysis
(MSEA) was performed based on Small Molecule Pathway
Database (SMPDB, http://smpdb.ca/) using over-representation
analysis (ORA) algorithms to identify biologically meaningful pat-
terns significantly enriched in quantitative metabolomics.

All analyses described above were summarized in Figure 1.

Results

The study participants collected 439 twins containing 215 twin
pairs (118 MZ twin pairs), with an average age of 45.1 years (range
18.0–80.9 years, 66.5% were males and 54.9% MZ twins; Table 1).

Metabolomewide Association Study of Obesity Measurements

We first regressed 76 metabolites identified in negative ion mode
against obesity measures (BMI, WC, WHR, %BF) in all twins. We
defined 69 associations that remained significant after FDR adjust-
ment (Supplementary Table 1). The 69 associations were formed
between 23 metabolites and obesity measures. Sensitivity analysis
further adjusted for hypoglycemic or hypolipidemic drugs did not
substantially change our results. When participants with type
2 diabetes were excluded, the associations of obesity measures with
the hexoses and other metabolites remained significant
(Supplementary Table 2a and b).

To assess whether any of the significant associations between
the metabolites and obesity measures were confounded by genetic
or shared environmental factors, we performed within-twin-pair
comparisons using all 118 MZ twin pairs; 19 of the 69 associations
remained significant after FDR adjustment, which was formed
between 11 metabolites and the obesity measures (Table 2).

Fig. 1. Analyses framework of metabolomewide
association analysis of obesity measures. Note:
MZ=monozygotic; BMI = body mass index;
WC =waist circumference; WHR =waist-to-hip
ratio; %BF = percent body fat.
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Eight significant associations (L-phenylalanine, L-isoleucine,
L-tyrosine, uric acid, N-methyl-D-aspartic [NMDA ]acid,
C6H12O6, D-tryptophan and L-glutamine) remained in analysis
with BMI, two significant associations (L-isoleucine and
L-tyrosine) remained in analysis with WC and nine significant
associations (L-tyrosine, NMDA acid, L-isoleucine, uric acid,
L-phenylalanine, C6H12O6, PE(20:2(11Z,14Z)/0:0), PE(20:1
(11Z)/0:0) and suberic acid) remained in analysis with WHR.
These associations are independent of confounding by factors
shared by the co-twins, and are rather due to unique environmen-
tal factors experienced by the individual twins.

According to our definition of ‘discordant obesity’, only 15
pairs of MZ twins were found with this condition. The distribution
of obesity measures and clinical blood biochemical indicators are
presented in Supplementary Table 3. Besides obesity measures, the
serum level of insulin was different between the two groups. Most

of themetabolites were differential between obesity-discordantMZ
twin pairs (Table 3).

In terms of the analysis in positive ion mode, we defined seven
associations that remained significant after FDR adjustment
(Supplementary Table 4). These associations were formed between
three metabolites and obesity measures. Excluding participants
with type 2 diabetes or further adjusting for hypoglycemic or hypo-
lipidemic drugs did not substantially change our results
(Supplementary Table 5a and b). Within-twin-pair linear regres-
sion and matched case control of obesity-discordant MZ twins
did not identify any significant metabolites.

Pearson Correlation between Metabolites with Clinical
Biochemical Indications

The analyses showed positive correlations of L-phenylalanine,
L-isoleucine and L-tyrosine with serum insulin, HbA1c, HOMA,
TC, TG and LDL-C; whereas, L-glutamine showed negative corre-
lations with the abovementioned biomarkers (Table 4). The corre-
lation between L-isoleucine and TC was significant in MZ twin-pair
analysis as well as C6H12O6 with HDL-C, LDL-C and Glu. Most of
the correlations were weakened in the twin-pair analysis.

Metabolic Pathway Analysis and Biological Significance
Interpretation

The result of pathway analysis is shown in Figure 2A and
Supplementary Table 6, and 10 metabolic pathways were identified,
which relates to the proportion of phenylalaninemetabolism that is sig-
nificantly perturbed, followed by tyrosine metabolism, valine, leucine
and isoleucine biosynthesis and purine metabolism. Furthermore, in
order to expand the understanding of metabolic pathway related to
BMI, the module of enrichment analysis was used, which found six
additional pathways, including catecholamine biosynthesis, thyroid
hormone synthesis, nucleotide sugars metabolism, sphingolipid
metabolism, galactosemetabolism and lactose degradation significantly
related to BMI (Figure 2B and Supplementary Table 7).

Discussion

The present metabolomewide association study based on serum
blood samples identified several obesity-related metabolites using
untargeted metabolomic measurements in a Chinese twin sample.
Eleven metabolites were associated with BMI, WC and WHR after
controlling for genetic and shared environmental factors.
Bioinformatics analysis identified pathways such as phenylalanine
metabolism, purine metabolism, valine, leucine and isoleucine bio-
synthesis were associated with obesity. Besides, isoleucine showed
a significant positive correlation with TC inMZ twin-pair analysis.

We first identifiedmetabolites that were significantly associated
with different obesity measures in individual twins. Many of these
obesity-associated metabolites were organic acids and derivatives
followed by lipids/lipid-like molecules. BMI was associated with
more metabolites than any of the other studied obesity measures
(WC,WHR, %BF) in this study. We found that 80% of metabolites
associated with WC was also associated with BMI, and nearly all
the metabolites associating with %BF was also associated with
BMI. Besides, all the metabolites associated with WHR were asso-
ciated with both WC and BMI. These overlaps in the metabolites
reflect known high correlations between the different obesity mea-
sures (Menke et al., 2007).

Table 1. Characteristics of the 439 twins

Characteristics Mean ± SD, or n (%)

Age (years) 45.1 ± 13.2

Men 292 (66.5)

Monozygotic twins 241 (54.9)

Body mass index (kg/m2) 25.0 ± 3.8

Waist circumference (cm) 87.0 ± 10.1

Waist-to-hip ratio 0.90±0.06

Percent body fat 26.7±7.6

Current smokers 141 (32.1)

Current regular drinkers 149 (33.9)

Vegetable consumption (grams/week) 1580.0±963.4

Fruit consumption (grams/week) 1096.2±1121.5

Physical activities (Metabolic Equivalent of Task,
MET/week)

5808.6±5236.0

Red meat consumption

Rarely/monthly consumed 70 (15.9)

One–three times per week 110 (25.1)

Four–six times per week 48 (10.9)

Once per day 131 (29.8)

Two or more times per day 77 (17.5)

Education

Illiterate 51 (11.6)

Primary school graduated 73 (16.6)

Middle school graduated 213 (48.5)

High school graduated 66 (15.0)

College/University or more 36 (8.2)

Study sites

Qingdao 129 (29.4)

Zhejiang 120 (27.3)

Jiangsu 143 (32.6)

Sichuan 47 (10.7)

Note: Current smokers: someone who smoked one or more cigarettes per day in the past half
year; current regular drinkers: someone who drank more than 20 grams of ethanol per week
in the past half year.
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L-phenylalanine, L-isoleucine, L-tyrosine, uric acid, NMDAacid,
D-(þ)-galactose, D-tryptophan remained positively associated with
BMI while L-glutamine was negatively associated with BMI in
within-twin-pair analysis. Further, the obesity-discordant MZ
twin-pair analysis found significantly different levels inmost metab-
olites between co-twins. It has been known for many years that iso-
leucine (Bogl et al., 2016; Muniandy et al., 2019; Vogelzangs et al.,
2020), tyrosine (Ho et al., 2016; Muniandy et al., 2019), phenylala-
nine (Bogl et al., 2016; Ho et al., 2016; Newgard et al., 2009), tryp-
tophan (Kim et al., 2010) and glutamine (Chashmniam et al., 2020;
Oberbach et al., 2011) were biomarkers for obesity, but the studies
were mainly conducted in Caucasian populations or Nordic twin

samples. We first confirmed these results in a Chinese population
using an MZ co-twin study. Significant within-twin-pair associa-
tions between these metabolite levels and BMI point to unique envi-
ronmental factors rather than the shared factors between co-twins as
an underlying contributor.

It has been shown that oxidation during obesity blunts amino
acid metabolism in adipose tissue, therefore resulting in the accu-
mulation of the L-isoleucine in the bloodstream (Hanzu et al.,
2014; Pietilainen et al., 2008). In Pearson correlation analysis,
L-isoleucine showed a significant positive correlation with TC in
MZ twin-pair analysis. Both were risk factors for obesity and
related type 2 diabetes (Wang et al., 2011).

Table 2. Significant metabolites with obesity measures in monozygotic within-twin-pair analysis

RT_M/Z Metabolite_ID Metabolite_name Metabolite category FDR p value logFC

BMI

3.26_164.0712m/z HMDB00159 L-phenylalanine Organic acids and derivatives 1.04E-04 3.38E-06 3.481

1.51_130.0871m/z HMDB00172 L-isoleucine Amino acids and derivatives 1.04E-04 3.78E-06 3.498

1.23_180.0660m/z HMDB00158 L-tyrosine Amino acids and derivatives 1.04E-04 4.10E-06 3.522

0.93_167.0205m/z HMDB00289 Uric acid Organoheterocyclic compounds 4.49E-04 2.95E-05 2.877

0.58_146.0456m/z HMDB02393 N-methyl-D-aspartic acid Amino acids and derivatives 6.24E-03 5.29E-04 2.110

0.59_215.0322m/z HMDB00143 Galactose/mannose/glucose Hexoses 6.24E-03 5.75E-04 2.150

3.75_203.0819m/z HMDB13609 D-tryptophan Organoheterocyclic compounds 2.84E-02 2.99E-03 2.195

0.56_145.0615m/z HMDB00641 L-glutamine Organic acids and derivatives 2.99E-02 3.54E-03 −2.311

WC

1.23_180.0660m/z HMDB00158 L-tyrosine Amino acids and derivatives 1.74E-02 4.26E-04 2.943

1.51_130.0871m/z HMDB00172 L-isoleucine Amino acids and derivatives 1.74E-02 4.57E-04 2.898

WHR

1.23_180.0660m/z HMDB00158 L-tyrosine Amino acids and derivatives 4.36E-04 5.74E-06 3.969

0.58_146.0456m/z HMDB02393 N-methyl-D-aspartic acid Amino acids and derivatives 1.53E-03 4.02E-05 2.837

1.51_130.0871m/z HMDB00172 L-isoleucine Amino acids and derivatives 1.70E-03 6.70E-05 3.576

0.93_167.0205m/z HMDB00289 Uric acid Organoheterocyclic compounds 2.90E-03 1.91E-04 2.933

3.26_164.0712m/z HMDB00159 L-phenylalanine Organic acids and derivatives 7.90E-03 6.24E-04 2.676

0.59_215.0322m/z HMDB00143 Galactose/mannose/glucose Hexoses 2.21E-02 2.39E-03 2.411

8.63_504.3094m/z LMGP02050021 PE(20:2(11Z,14Z)/0:0) Lipids and lipid-like molecules 2.21E-02 2.54E-03 −2.683

8.94_506.3251m/z LMGP02050020 PE(20:1(11Z)/0:0) Lipids and lipid-like molecules 2.21E-02 2.62E-03 −2.515

4.89_173.0814m/z HMDB00893 Suberic acid Lipids and lipid-like molecules 4.39E-02 5.78E-03 1.685

Note: RT_M/Z= retention time(min)_mass-to-charge ratio; BMI= body mass index; WC=waist circumference; WHR=waist to hip ratio. logFC is the log fold change of metabolite values that
associates with the ratio of the higher phenotype value over the lower phenotype values. The regression analysis was using linear fixed model adjusting for smoking, drinking, diet, physical
activity, education and test batch for each phenotype.

Table 3. Differential metabolites in obesity-discordant monozygotic twin-pair analysis

RT_M/Z Metabolite_ID Metabolite_name Metabolite category FDR p value logFC

0.93_167.0205m/z HMDB00289 Uric acid Organoheterocyclic compounds 5.11E-03 6.39E-04 1.053

1.23_180.0660m/z HMDB00158 L-Tyrosine Amino acids and derivatives 1.03E-02 2.58E-03 1.076

0.58_146.0456m/z HMDB02393 N-Methyl-D-aspartic acid Amino acids and derivatives 1.37E-02 5.42E-03 0.758

3.26_164.0712m/z HMDB00159 L-Phenylalanine Organic acids and derivatives 1.37E-02 6.87E-03 1.016

1.51_130.0871m/z HMDB00172 L-Isoleucine Amino acids and derivatives 1.65E-02 1.03E-02 0.857

0.56_145.0615m/z HMDB00641 L-Glutamine Organic acids and derivatives 2.64E-02 1.98E-02 −0.756

3.75_203.0819m/z HMDB13609 D-Tryptophan Organoheterocyclic compounds 3.87E-02 3.38E-02 0.677

Note: RT_M/Z = retention time(min)_mass-to-charge ratio; logFC is the log fold change of metabolite values that associates with the ratio of the higher phenotype value over the lower
phenotype values. The analysis used an empirical Bayes-paired moderated t test adjusted for smoking, drinking and test batch.

18 Chunxiao Liao et al.

https://doi.org/10.1017/thg.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2021.3


Phenylalanine metabolism has the highest impact score in
our pathway analysis (Figure 1). High levels of phenylalanine
and its downstream product, L-tyrosine, are observed in obese
subjects of previous metabolomics studies in twins (Bogl et al.,
2016; Muniandy et al., 2019). The liver is an important organ for
phenylalanine metabolism, and phenylalanine metabolism has
been proposed as a test of liver function (Lara et al., 2000).

Our findings in phenylalanine metabolism might indicate the
involvement of liver dysfunction among obese individuals.

Further, enrichment analysis indicated that catecholamine bio-
synthesis, purine metabolism and sphingolipid metabolism might
be involved in obesity development. Catecholamine functions as
neurotransmitters and hormones within the body. Alterations in
the sympathetic nervous system (SNS) effects on the metabolism

Table 4. Pearson correlations between 4 amino acids with clinical biochemical measurements in 241 monozygotic twins

RT_M/Z Metabolite_name

TC TG HDL-C LDL-C

MZ indiv. MZ pair MZ indiv. MZ pair MZ indiv. MZ pair MZ indiv. MZ pair

1.51_130.0871m/z L-isoleucine 0.13 0.23 0.27 0.18 −0.08 −0.01 0.21 0.17

3.26_164.0712m/z L-phenylalanine 0.11 0.06 0.18 0.01 0.00 0.09 0.09 0.09

1.23_180.0660m/z L-tyrosine 0.10 0.08 0.22 0.00 0.00 0.00 0.18 0.09

0.56_145.0615m/z L-glutamine −0.24 −0.10 −0.29 −0.05 0.03 −0.16 −0.14 −0.15

0.59_215.0322m/z C6H12O6* 0.23 0.13 0.10 −0.07 0.20 0.21 0.30 0.22

RT_M/Z Metabolite_name

Glucose Insulin HbA1c HOMA-IR

MZ indiv. MZ pair MZ indiv. MZ pair MZ indiv. MZ pair MZ indiv. MZ pair

1.51_130.0871m/z L-isoleucine 0.12 0.02 0.23 0.02 0.18 0.09 0.26 0.02

3.26_164.0712m/z L-phenylalanine −0.01 0.01 0.11 0.00 0.15 0.05 0.10 0.01

1.23_180.0660m/z L-tyrosine 0.04 −0.04 0.28 0.04 0.11 −0.04 0.28 0.02

0.56_145.0615m/z L-glutamine −0.28 −0.14 −0.06 0.07 −0.36 −0.17 −0.15 0.01

0.59_215.0322m/z C6H12O6* 0.79 0.57 −0.02 −0.02 0.63 0.48 0.23 0.18

Note: RT_M/Z:retention time(min)_mass-to-charge ratio; TC= total cholesterol; TG= triglycerides; HDL-C= high-density lipoprotein cholesterol; LDL-C= low-density lipoprotein cholesterol; HOMA-IR=
homeostasis model assessment of insulin resistance. *C6H12O6, galactose/mannose/glucose; MZ indiv., Pearson correlations were calculated treating monozygotic twins as individuals; MZ
pair, Pearson correlations were calculated treating monozygotic twins as pairs (115 pairs).
The bold type indicates the correlation was significant at p< .05.

Tyrosine metabolism
Purine metabolism

Phenylalanine metabolism
Phenylalanine, tyrosine and 
tryptophan biosynthesis

(A) (B)

Valine, leucine and isoleucine 
biosynthesis

Fig. 2. The results of pathway analysis and enrichment analysis of the metabolomics data. Note: (A) Pathway analysis is based on Kyoto Encyclopedia of Genes and Genomes
(KEGG). The color and size of each circle are based on p values (yellow: higher p values and red: lower p values) and pathway impact values (the larger the circle the higher
the impact score) calculated from the topological analysis, respectively. Pathways were considered significantly enriched if p < .05, impact 0.1 and number of metabolite
hits in the pathway >1. (B) Enrichment analysis is based on Small Molecule Pathway Database (SMPDB). The color of the bar indicates the p value. The length of the bar
indicates the fold enrichment.
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have been implicated in the development and maintenance of
obesity and insulin resistance (Da et al., 2020; Li et al., 2020).
Experimental studies also found that activation of SNS may pro-
mote the development of hypertension in the rat model of obesity
(Young et al., 1994). Results of these studies indicate the impor-
tance of SNS in regulating metabolic status in obesity. Uric acid
in purine metabolism can induce oxidative stress, and activate
NADPH oxidase and the renin–angiotensin system, which all play
an important role in the pathophysiology of obesity and related
metabolic dysregulation (Sautin et al., 2007; Zhang et al., 2015).
Sphingolipids are bioactive lipids involving in cellular signaling
and regulatory functions (Hannun & Obeid, 2008). Using an
experimental model, Choi and Snider (2015) found that sphingo-
lipid metabolism is significantly affected by dietary nutrient
oversupply, and dysregulation of sphingolipids contributes to
obesity-related cardiovascular disease. The bioactive lipids in
sphingolipid metabolism may function as mediators between
obesity and increased risk of metabolic dysfunction.

NMDA acid is a new obesity-related metabolite found in our
study. NMDA acid is an amino acid derivative acting as a specific
agonist at the NMDA receptor. A previous study has found that
activation of NMDA receptors in the dorsal vagal complex lowers
Glu production and may serve as a therapeutic target for diabetes
and obesity (Lam et al., 2010). Experimental studies suggested that
NMDA increased the levels of reactive oxygen species (ROS), cyto-
solic cytochrome c (cyto c) and 17-kDa caspase-3, but depolarized
mitochondrial membrane potential, leading to cardiomyocyte
apoptosis (Gao et al., 2007; Urushitani et al., 2001). Combined with
our results, this may be the pathologic mechanism of obesity-
induced cardiovascular disease. However, further studies are war-
ranted to elucidate precise mechanisms and understanding of the
role of NMDA in obesity.

Using a twin design combined with an untargeted metabolomic
study to better control for confounders, we observed different asso-
ciations between adiposity and serummetabolite profile. However,
several limitations need to be discussed. First, the cross-sectional
study design limited the causal interpretation between metabolite
profile and obesity traits. Another limitation of our study was the
limited number of metabolites identified. Although we used an
untargeted approach to assess thousands of metabolite features,
only a small fraction can be identified.

In conclusion, obesity is associated with changes in the serum
metabolome toward increased risk of metabolic dysfunction. Our
findings verified the association of phenylalanine, isoleucine,
tyrosine, uric acid and tryptophan with obesity traits in a
Chinese twin population, controlling for genetic and shared envi-
ronmental factors, and additionally identified the important role
of NMDA acid. Differing environments within MZ twin pairs
might produce epigenetic differences and result in the differing
metabolite levels. Further cohort studies with a larger sample size
and more diverse biological sample types are needed to replicate
our findings.
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