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1. Introduction. The purpose of the present paper1 is to simplify the 
calculation of the Betti numbers of the simple compact Lie groups. 

For the unimodular group and the orthogonal group on a space of odd 
dimension the form of the Poincaré polynomial was correctly guessed by 
E. Cartan in 1929 (5, p. 183). The proof of his conjecture and its extension 
to the four classes of classical groups was given by L. Pontrjagin (13) using 
topological arguments and then by R. Brauer (2) using algebraic methods. 
However, the case of the exceptional Lie groups proved more recalcitrant and 
was finally settled only in 1949 by C. T. Yen (21). Borel and Chevalley (1) 
have recently simplified the calculations for the exceptional groups. Even so, 
they make use of a large number of disparate algebraic and topological results 
including the known facts for the classical groups. Much of their paper was 
already covered by results of Coxeter (9) and Racah (14). Their method 
entails a tedious discussion of special cases. 

Hopf (10) and Samelson (15) showed that for a compact Lie group the 
Poincaré polynomial (the coefficients of which are the Betti numbers) is of 
the form 

pa) = n a + n 
where n is the rank of the group and pi are odd integers. Chevalley (6) proved 
that pi = 2ki — 1 where kt is the degree of a minimal homogeneous invariant 
of the group. We shall show how the kt may be easily obtained. 

As is well known (18), the classification of simple compact Lie groups of 
rank n is closely related to the classification of finite orthogonal groups 
generated by reflections in a space of dimension n. Since this finite group 
associated with the Lie group was first introduced by Killing, we shall call 
it the Killing group and denote it by $ . This group has also been called the 
"kaleidoscopic group" and the "Weyl group." The latter name has little 
justification since, though Weyl made use of it in 1926, it was used by Killing 
and, following him, Cartan, to effect the classification of simple Lie groups. 
All particular cases of the Killing group were described in some detail in 
Cartan's paper (4) in 1896. It has been studied and used by many authors 
including Cartan (3, p. 58; 4), Coxeter (8, chap. 11), Stiefel (18), Weyl 
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(19, § 4 et seq.), and Witt (20). The Killing group of a compact Lie group 
is isomorphic to the quotient group relative to X of the normalizer of a 
maximal abelian subgroup X. Che valley (6) has shown that by restricting 
the minimal invariants to X, the problem of finding kt reduces to that of 
finding the degrees of the minimal homogeneous invariants of the Killing 
group represented by orthogonal transformations in a space of n dimensions. 
Here and throughout the paper n is the rank of the Lie group. 

2. The product of reflections. For a simple Lie group, ©, the Killing 
group, $, represented as a group of congruent transformations in Euclidean 
w-space, En, is generated by n reflections which we shall denote by Ru 

1 < i < n. The relations among Rt are conveniently indicated by a Coxeter 
graph (8, § 11.3, and p. 297). The Coxeter graph of @ consists of n nodes 
joined by branches. The ith. node corresponds to Rt. Two nodes are joined if 
the corresponding two reflections do not commute. The (i, j) branch is marked 
to indicate the period of RiRjf but we can neglect this for present purposes. 
We shall, however, distinguish two types of Coxeter graph. 

In Case I the graph consists of a single chain such as 

• • • • • 

which is the graph for A5. Such graphs occur for the following simple Lie 
groups : 

An (unimodular), Bn (orthogonal group on 2n + 1 variables), 
Cn (symplectic), G2 (the exceptional group of rank 2 and dimension 14), 
FA (the exceptional group of rank 4 and dimension 52). 
In Case II the graph consists of a principal chain with n — 1 nodes, with 

a second chain containing one node emanating from the principal chain. For 
example, 

• • • • • • 

is the graph for E7. Case II includes: 
Dn (the orthogonal group on 2n variables), 
Ee, E7, Es (the exceptional groups of rank 6, 7, 8 and dimension 78, 133, 248 

respectively). 
The product of the n generating reflections, R = R1R2 . . . Rn and its order, 

h, play a fundamental role in what follows. It is of historical interest to note 
that Killing (12, pp. 18-23; 3, p. 58) made use of this same product. Coxeter 
has made a careful study of R (8, § 12.3; 9) and we depend heavily on his 
work. In particular he noticed that if f is a primitive hth root of unity and 

fmi, where 0 < mt < h, 

are the eigenvalues of R, then kt = W j + 1. We shall prove this. Hence 
Coxeter's calculation of ra* determines kf. We shall call the positive integers 
nti the exponents of $ . 
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Definition. By a regular vector we shall mean one which does not lie on a 
reflecting hyperplane of $ . T h u s x is regular if and only if r a -x ^ 0 for every 
positive root vector r a , since the root vectors are orthogonal to the reflecting 
hyperplanes of $ . 

LEMMA 1. The operation R, of order h, has a primitive hth root of unity, f, as 
an eigenvalue which corresponds to a regular eigenvector. With atj as defined 
below and a the minimum eigenvalue of ( a ^ ) , f = eie, where 6 = 2w/h = 
4 arc sin ( |a)*. 

Proof. As was shown by Car tan (3, p . 58) and by Coxeter (9, p . 767) the 
equation 
(1) Rx = Xx 

is equivalent to the equat ions 

(2) bi
ixJ = 0 

where the co-ordinates oc j are distances from the sides of a fundamental 
simplex F of $ . If e* are uni t vectors orthogonal to sides of F , pointing in
wards, and e* is the reciprocal basis of En such t h a t e* -ej = <V, then x = x*e*. 
T h e matr ix bt

j has the form: 

( i(X + 1) ai2\ • • • ain\ \ 

a2i | (X + 1) • • • a2nk J 
ani an2 • • • %(\ + 1) / 

where atj = ajt = — cos {TT/PU), and ptj is the period of RtRj. T h u s an = 1, 
atj < 0 if the distinct i and j nodes are connected by a branch, and atj = 0 
otherwise. The matr ix (a t j) therefore corresponds to wha t Coxeter calls an 
a-form (8, § 10.2). We order the co-ordinates xi, x2, . . . , xn-i to correspond 
in succession to the nodes of the principal chain from left to right, with xn 

corresponding to the end node in Case I, and to the node on the second chain 
in Case I I . In Case II we let q = 2 for Dn and a = 3 for EQ, E7} E8. 

With the notat ion fixed in this way the only non-vanishing elements in 
the ith row of (a^) are : 

(a) in Case I : for i = 1, an , a i 2 ; for i = n, ann-\, ann\ otherwise a^_ i , 

(b) in Case I I : for i = 1, an, <2i2; for i = q, aqq-\, aQq, agq+i, aqn; for i = 
n — 1, aw_iw_2, an-\n-\, for i = n, anq, ann; otherwise, aU-i, au, aii+i. 

The equations (2) are now transformed in Case I by sett ing 

(3a) xj = \ - * y 

and multiplying the ith row by A ^ - 1 ) ; and in Case I I by sett ing 

(3b) Xj = \-^jyj, 1 < j < n - 1 ; xn = \-î«+»yn 
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and multiplying the ith. row by X2(i_1) for 1 < i < n — 1, and the ^th row 
by \iq. Equations (2) then take the form 

(4) {atj - (1 - A)ô„)y = 0 

where 

A = è(X* + X-*). 

For X = 1, (2) reduces to atjy
j = 0 which has no non-trivial solution for the 

simple groups. Thus no vector is fixed under R, and — 1 < A < 1. 
Let a be the smallest eigenvalue of {ai}), then {a^ — aôi^yty* is a positive 

semi-definite connected a-form, so that (a^ — aôij) is of nullity 1 and the 
equations (4), with a — 1 — A have a solution y0

j with y0
j > 0 for all j . Let 

f = eie be the corresponding value of X where 0 < 0 < 2ir. Since a is the 
minimum eigenvalue of (a*y), 0 is the smallest positive angle <f> for which ei4> 

is an eigenvalue of R. The angle 0 = 2ir/p where p is an integer. For let p 
be the smallest integer such that pd is a multiple of 2TT. Then e*0 is a primitive 
pth root of unity. Since the characteristic equation of R has rational co
efficients it has as roots all primitive pth roots of unity and in particular 
ei2r/p. The above minimum property of 0 implies that 0 = 2w/p. 

Equations (3a) or (36), with X replaced by f and yj by y0
j, give an eigen

vector Xo of R. We must show that ra-x0 ^ 0 for all positive root vectors ra. 
To this end, note that 0 < 2w/(n + 1). We prove this by induction on n. 
For n = 1, R = R\, X = —1,0 = 27r/2. In general, the minimum eigenvalue 
a of (dij), is less than or equal to the minimum eigenvalue a of the sub-matrix 
(dij)' with i,j> 1, corresponding to the Coxeter graph obtained by removing 
the first node of the given graph. Now yo1, which does not vanish, is proportional 
by (8, 10.27) to the square-root of the (1, 1) principal minor of {atj — aôij). 
Thus (dij — aôijY is regular and a is not an eigenvalue of (a^) ' . Thus a is 
in fact less than a and if 6' = 2w/t, 0 < 2w/(t + 1). This enables us to 
complete the induction. 

The fact that x0 is regular now follows easily. Each positive root vector 
r« = rjQj where rj are positive rational numbers. Thus 

ra-x0 = rjxj = 23 (r«J c o s $&* ~ w* sin <t>jyo3) 
j 

where the cj>j are obtained from f by equations (3) : in Case I, 

n -+- 1 

and similarly in Case II, 0 < <pj < ir. Thus sin <f>j > 0 and Sra
;' sin <j>jy^ > 0* 

which implies ra-x0 ^ 0. 
To show that f is a primitive ht\i root, assume that fM = 1, for u < h. Then 

RuXo = Xo. But Xo does not lie on a reflecting plane, so it is fixed only under 
the identity (19). Hence Ru = 7, and u = h. 

Since A = 1 — a = cos |0 = 1 — 2 sin2|0, we have 0 = 4 arc sin (|a)5. 
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COROLLARY 1. All the primitive hth-roots of unity occur as eigenvalues of R 
and the corresponding eigenvectors are regular. 

Proof. Since the characteristic equation of R has rational coefficients, the 
first part of the statement follows immediately. 

The mapping of f onto f', another primitive &-root of unity, while keeping 
the rationals Si fixed, determines an automorphism of the field <^(f), which 
sends the co-ordinates Xoi of x0 into the co-ordinates of the eigenvector x0' 
corresponding to f'. Under this mapping ra-x0, which is different from zero 
will not be mapped onto zero. Therefore x0' is regular. 

It follows from this that <j>(h) < n, where </> is Euler's function. From the 
proof of the theorem we also have the limitation h > n + 1. 

COROLLARY 2. The number of reflections in $ is an integral multiple of \h. 

Proof. RuTa'X0 = ra>R-ux0 = f-w(ra-x0). These are distinct and different 
from zero for 1 < u < h. Thus Rura are distinct. The desired result follows, 
if we note that ta and — ra give rise to the same reflection, by partitioning 
the reflections into equivalent classes under the cyclic group generated by R. 

It is in fact easy to verify (8, 12.61) that the number of reflections is equal to 

(5) \nh. 

3. The Jacobian of a basic set of invariants. Che valley (7) has given 
an elegant proof of the fact that any polynomial in x which is invariant under 
$ belongs to the ring generated by n minimal invariants It. If /* has degree 
ki then by a theorem of Molien (16), 

(6) g n a - fr1 = z n a - ««*o_i 

where g is the order of $ and co** are the eigenvalues of the operator k Ç $ . 
Following Shephard and Todd (16, p. 289) we multiply (6) by (1 — t)n and 
set / = 1, whence g = n&*. Subtract (1 — t)~n from both sides of (6), multiply 
by (1 — t)n~l, set / = 1 and we deduce that the number of reflections in $ is 

(7) 2(*« - 1). 

Consider the equations Ii(x) = wu where It are any n algebraically inde
pendent polynomial invariants of $ . For a point x at which the Jacobian 
J = \djli\ 9^ 0, there will be open neighbourhoods of x and w in one-to-one 
correspondence. However, if x lies on one of the reflecting hyperplanes of 
$ , any open neighbourhood of x contains points which are equivalent under 
S and correspond to the same point w. Thus / = Oon the reflecting hyper
planes of $ . 

In particular, if It are a set of minimal invariants the degree X(kt — 1) of 
J is equal to the number of reflecting hyperplanes of $ . Hence, (17). 

LEMMA 2. The Jacobian of n minimal polynomial invariants of $ is equal, 
within a multiplicative constant, to the product of the linear forms whose vanishing 
gives the reflecting hyperplanes of $ . 
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With the above preparation, we may now easily reach the main result of 
the paper by evaluating J for a set of n minimal invariants, in a system of 
co-ordinates in which R is diagonal. Let u* be an eigenvector of R such that 

where ra* are the exponents of $ , with wi = 1. Thus if x = xlx\i goes into 

x = Rx = xY'Ui = x'ut 

then 

X = f X . 

Since Ui is regular by Lemma 1, / ^ 0 at x = a^Ui. Thus for each i there 
is a j such that djlf 9e 0 at xHii. But at this point djli is a multiple of 

and this term arises from a term 

(a 1)"- 1*' 

in /*. This term must be invariant under R; therefore 

(8) kt - 1 + % = 0 (A). 

Since i? is real, together with m;-, A — m3 is an exponent, and since for J ^ 0 
all j must occur, by reordering mj we can arrange that kt = W j + 1 (A). But 

Z % = Z (A — w;) = \nh = YJ (ki — i) 
by (5). Hence 

kt = mt + 1. 

This concludes the proof2 of the 

THEOREM. The degrees ki of a set of minimal polynomial invariants of the 
Killing group, $ , are given by kt = mt + 1, where mt are the exponents of $ . 

Hence from Coxeter's elegant calculation of mt (9) we obtain the 
pi = 2ki — 1 = 2mi + 1, which define the Poincaré polynomial. For the 
simple compact Lie groups the pt are as follows 

An 3, 5, 7, 9, . . . , 2« + 1 
•Bni ^n 3, 7, 11, 15, . . . ,4w - 1 

Dn 3, 7, 11, . . . , 4w - 5, 2« - 1 
G2 3, 11 
F, 3, 11, 15, 23 
E, 3, 9, 11, 15, 17, 23 
E7 3, 11, 15, 19, 23, 27, 35 
Es 3, 15, 23, 27, 35, 39, 47, 59. 

2Professor Coxeter has pointed out that the proof of this theorem is valid not only for the 
groups $ associated with Lie Groups but for any real finite group generated by reflections. 
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4. Remarks. 
(i) If h is known, Coxeter's calculation of m* can sometimes be simplified. 

The primitive &-roots of unity are given by fw where (w, h) = 1. For E8f h = 30 
and the possible u are 1, 7, 11, 13, 17, 19, 23, 29 giving us the eight ntt. For 
E7, h = 18, giving 1, 5, 7, 11, 13, 17 for ra*. The seventh root of unity must 
be real, therefore equal to — 1 corresponding to mt = 9. For E6, h = 12 and 
the above method determines only four of the m { : 1, 5, 7, 11 and further 
argument is needed to obtain 4 and 8. For F±, h = 12 giving 1, 5, 7, 11. 

From the form of the equations (2) one easily proves they are of nullity 
one except in Case II for X = — 1 when they have nullity two. Hence all 
the eigenvalues are simple except X = — 1 in Case II which is double. For 
An, h = n + 1. We know that X = 1 is not an eigenvalue, and that the 
eigenvalues are all different; so they are completely determined. 

(ii) The poles on each side of (6) coincide, therefore if any element of $ 
has as eigenvalue a primitive pt\i root of unity then p divides ki for some i. 
Since each subgroup of ® has associated with it a primitive root of unity by 
Lemma 1, the kt provide a limitation on the possible subgroups. Conversely, 
a knowledge of subgroups partially determines k{. This, evidently, is the 
basis of many of the topological arguments for determining the Betti numbers 
by discussion of subgroups. 

(iii) The symmetry in the sequence of first differences of the pi sometimes 
referred to as "double duality" is explained by the simple fact that R is a 
real operator and together with X, X is an eigenvalue. 

(iv) Previous methods of obtaining ki depended on the explicit construction 
of a set of minimal invariants. These are partly determined by our method. 
For if ms + Ms = h the invariant Is of degree ks = ms + 1 contains the 
term 

Indeed, there will be a term in Is of the form 

xt
m'xs. 

where msnii + m^ = 0(&), for each nti relatively prime to h. Probably 

/ , = E fer* (kxs) 
k 

where k ranges over a set of representatives of the cosets of $ with respect 
to the cyclic group R, but this has not been proved. 

(v) The above proof still contains the inelegancy of using (5) which has 
hitherto only been proved by verification. This is unsatisfactory even if one 
admits that once the h are known the verification is trivial. It would be most 
desirable to give a general proof3 of the following three facts, perhaps not 

3Since this was written, I have learned that R. Steinberg has a paper in the course of publi
cation which deals with (a) and (b). 
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unrelated, which have been observed: (a) the number of reflections in $ is 
\nh\ (b) if the dominant root vector is 2*t<, where tt are a basic set of simple 
roots, then h = 1 + 2z*; (c) $ contains a subgroup isomorphic to ©ra, the 
symmetric group on n objects. 
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