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ARITHMETIC INVARIANTS 
OF SIMPLICIAL COMPLEXES 

M. BROWN AND A. G. WASSERMAN 

1. Introduction. What invariants of a finite simplicial complex K 
can be computed solely from the values vQ(K), Vi(K), . . . , vt(K), . . . 
where Vi{K) is the number of i-simplexes of K? The Euler chracteristic 
x(K) = ^ i (— 1)^(2£) is a subdivision invariant and a homotopy 
invariant while the dimension of K is a subdivision invariant and 
homeomorphism invariant. In [3], Wall has shown that the Euler chrac
teristic is the only linear function to the integers that is a subdivision 
invariant. In this paper we show that the only subdivision invariants 
(linear or not) of K are the Euler characteristic and the dimension. More 
precisely we prove the following theorem. 

THEOREM. Let Ctf be the class of all finite simplicial complexes and 
F:J^—>S, a function to a set S. If F satisfies i) and ii): 

i) Vi(Ki) = Vi(Ki) for all i implies F(K\) = F(K2), 
ii) K' is a subdivision of K implies F(K') = F(K) 

then F is a function of the Euler characteristic and dimension, i.e., if 
dim K = dim L and X(K) = x(L), then F(K) = F(L). 

2. Definitions. We shall use the word complex to denote a finite 
^-dimensional simplicial complex, where n is held fixed throughout. If Q 
is a complex, define 

v(Q) = (vo(Q),v1(Q)1...,vn(Q)) G Z»+* 

where vt{Q) is the number of i-simplexes in Q. If a is a simplex of Q we 
denote by Qa the stellar subdivision of Q along a, obtained by placing a 
vertex at the barycenter of a and constructing all resultant simplexes. 
(The reader is referred to [1], [2] for this construction and for such terms 
as join, link, star, etc.) In particular \et[at = v(Ain) — v(An) where An 

denotes an w-simplex and At
n denotes the ^-simplex An stellarly sub

divided along an '̂-face A*. It is important to observe that if a is an 
i-simplex of Q then v(Qa) — v(Q) = at if and only if link (o-, Q) is an 
(n — i — 1)-simplex. We are thus lead to defining an t-simplex of an 
w-dimensional complex as autonomous if and only if its link is an 
(n — i — 1)-simplex. An w-simplex of K, which has "no link", is for-
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mally assigned link = 1 = the (—1)-simplex, and is therefore autono
mous. 

If v = (vo, . . . , vn) G Zn+1, define 

X(v) = Z ( - D W 
Finally, let ~ denote the equivalence relation generated by the relations 

K~ Lii v(K) = v(L), 

K ~ L if K is a subdivision of L. 

3. Construction of autonomous simplexes. Let K be a complex 
and a = (do . . . ap), (p ^ 1), a simplex of K with link L. As in [1], [2] we 
write K = (a * L) KJ R. Then Ka is the stellar subdivision of K along 
a = ( f r * ( 7 * L ) U R . This can be realized as a two step process. First 
form K\ = K U (7? * or * L) which is i£ with a cone attached to à * L. 
Then form Ka = Ki — star(cr, i£i), i.e., remove from Ki every simplex 
of which a is a face. Observe that 

link(&a0 . . . ap_i, i£i) = L = link(V, Ki). 

Thus if, instead of removing star(<r, K\) from i£i, we remove star 
(bodo . . . ap_i, i£i) from i£i then the resulting complex KJ has the 
property that v(KJ) = v(KJ). On the other hand, 

link(6a0 . . . ap_2, i£i) = (ap_i VJ ap) * L 

whereupon 

link(fra0 . . • ̂ - 2 , -£</) = ap* L. 

We have proved the following lemma. 

LEMMA 1. Let K be a complex and ap a p-simplex of K, (p è 1), with 
link L. Then there is a complex KJ and a (p — \)-simplex <JV-\ in KJ 
such that v(KJ) = v(Kff) and link(o-p_i/, KJ) is (isomorphic to) the cone 
on L. 

Addendum. If L = 1, i.e., a has no link, then the cone on L is a vertex. 
If (TP is autonomous then ap-i is autonomous. 

LEMMA 2. Let K be a complex and let 0 S N ^ n — 1. Then there is a 
complex K such that 

v(K) = v(K) + an + . . . + aN+1, 

K contains an autonomous N-simplex, and K ~ K. 

Proof. The proof is merely a repeated application of Lemma 1 and its 
addendum beginning with an ^-simplex an of K which is autonomous by 
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definition. Its link is 1 so we get a complex Kffn' with an autonomous 
simplex an-i such that 

v(KJ) =v(Kan) =v(K) +an. 

Apply the lemma now to K0n' and an-i } etc. 

LEMMA 3. Let L be a complex with an autonomous N-simplex <JN and let 
aN be a positive integer. Then there is a subdivision L* of L such that 

v(L*) = v(L) + aNaN. 

Proof. If aN = 1 then L* is the stellar subdivision of L along aN. It is 
easy to see that this new complex again has an autonomous ^-simplex. 
Thus we may perform aN successive subdivisions along autonomous 
iV-simplexes. (Note: In forming the first stellar subdivision, simplexes of 
some dimensions other than N may lose their autonomy. Fortunately, we 
can circumvent that difficulty.) 

4. The goal of this section is Lemma 5. As in Section 2, 

at = v(Ar) - v(An) = v(b * Â* * An~l) - v(An). 

Let us regard v{A1) as a vector in Zn+l. (e.g.: A3 = [4, 6, 4, 1, 00 . . .0] t r). 

LEMMA 4. For 1 ^ i rg n, 

«, = iv(An) - (* + ^(A- 1 ) + . . . + (-1)'(* + j ) » ^ ' ) . 

Proof. Ai is the boundary of A* which is the union of (i + 1) (i — 1)-
simplexes such that the intersection of any p of them is an (n — p)-
simplex. Hence b * Âi * Aw_ï_1 is the union of (i + 1) w-simplexes 
Kon

y . . . , Ktn such that the intersection of any p of them is an in — p)-
simplex. Thus 

v(b * A* * A*"*-1) =v(\J K-) = £ v{KP) - Z v(K; H Kk
n) 

\ j=0 I j j<k 

+ E v{K;r\Kk
nr\Kn - . . . = (* + X W ) 

4<k<t \ 1 / 

- (* + l)vi&r1) + ... + (-i)'(* + J)»(A-'). 

Subtracting v(An) produces the required equation. 

LEMMA 5. Let y = (y0, . . . , yn) £ Zn+1 with x(y) = 0. Then there exist 
integers at such that 

n 

y = ^Laidi. 
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Proof. First note that {tf(A°), ^(A1), . . . ,v(An)\ is a basis for Zn+1 since 
the matrix with these vectors as columns is upper triangular with ones 
along the diagonal. Next we show that (an, an_i, . . . ,ai,u(Aw)) is a 
basis for Zn+1. This follows from Lemma 4, since the matrix with these 
vectors as columns is upper triangular with ± 1 on the diagonal. Therefore 
there exist integers z, at such that 

n 

i=l 

Finally 

0 = x(y) = ZaaM +*x(Aw) = *. 
Proof of theorem. Let K, L be complexes (still iz-dimensional) and sup

pose x(v(K)) = x(v(L)). Then 

X(v(K)) - x(v(L)) = x(v(K) - v(L)) = 0. 

Hence by Lemma 5 there exist integers a± such that 
n 

v(K) = v(L) + Ylaiai-

If di — 0 for all i then v(K) = v(L) so F(v(K)) = F(v(L)) and we are 
done. The rest of the proof is by induction on the largest integer TV such 
that aN 7e- 0. Suppose 

v(K) = v(L) + aNaN + J^ atau 
i<N 

where we assume without loss of generality that aN > 0. If TV = n then 
we need merely to subdivide L along an ^-simplex aN successive times to 
produce a subdivision Lf of L such that v(L') = v(L) + anaN, (this is 
really a case of Lemma 3) and by condition (2) of the Theorem, F(Lf) = 
F(L). Thus 

v(K) = v(U) + X a&t. 
i<N 

By the induction hypothesis F(K) = F(L'). If N < n then we apply 
Lemma 2 to get complexes K ~ K and L ~ L such that 

(i)v(K) = v(K) +an + ... +aN+1 

v(L) = v(L) + an + . . . + aN+1 

(ii) K, L each have an autonomous iV-simplex. 

Thus F(K) = F(K), F(L) = F(L) and 

v(K) = ? ; ( £ ) + aNaN + X) aiai-
i<N 

By Lemma 3 there is a subdivision £* of £ such that 

v(L*) = v(L) + aNaN 

https://doi.org/10.4153/CJM-1980-100-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-100-0


1310 M. BROWN AND A. G. WASSERMAN 

and (since it is a subdivision) F(L*) = F(L). Thus 

v(K) = v(L*) + £ atat 

where 

F(K) = F(K) and F(L*) = F(L). 

By the induction hypothesis F(K) = F(L*) and the proof of the 
theorem is complete. 

Remark. As a consequence of the theorem, and since topological in
variants are subdivision invariants, the only topological invariants that 
can be computed from v{K) are x ( ^ ) and dim K. 

The only homotopy invariant that can be computed from v{K) is 
x(K). For if X(K) = x(L) then F(K) = F(K w AN) and F(L) = 
F(L v A^) and dim(i£ v AN) = dim(L v A^) if N is chosen very large. 
x(KvAN) = x(Lv AA) so F(K v AN) = F(L v A^) since homotopy 
invariants are subdivision invariants. 

An argument similar to (but easier than) the proof of the theorem shows 
that the only topological invariants that can be computed from the 
numbers ct(f ) (the number of non-degenerate critical points of index i of 
a Morse function/: M —> R on a compact manifold M) are x ( ^ 0 and 
dim M. 
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