
VECTOR LATTICES WITH DUALS OF INTEGRAL TYPE 

H. W. ELLIS* 

1. Introduction. Marston Morse and William Transue (4; 5; 6) have 
developed a theory of seminormed Banach spaces of complex or real-valued 
functions called MT spaces. For E a locally compact space, $lE the space of 
real-valued functions on E, and K the space of real-valued functions on E with 
compact supports, a real MT space A is a vector subspace of $lE containing K 
and provided with a suitable seminorm NA. Each element 0 of the A^-dual A* 
of A determines a Radon measure ^ on E, and <f>(f) = ffd^ is valid on A 
where the integration is in the Bourbaki sense. Problems considered include the 
compatibility of different MT spaces and the relations between the MT spaces 
and the spaces Li(</>) of integrals determined by the measure dual. 

In this paper dtE is replaced by an arbitrary o--Dedekind complete space R 
and K by a Riesz subspace C of R. Certain order-bounded linear functionals <f> 
on C, called integrals, replace the Radon measure functionals and determine 
integration spaces Z,i(0) by an extension method of Nakano (7). If A is a 
Riesz subspace of R containing C and NA is a suitable seminorm on A, every 
element <j> of A* determines an integral on C for which <£ is the Nakano exten
sion on A. Such a pair {A, NA) is called an abstract Morse-Transue or AMT 
space. The principal MT results extend to the abstract case, the arguments now 
being lattice theoretic. Recent work of Luxemburg and Zaanen (3), in part 
drawing on earlier work by Nakano, helps to clarify and extend the theory 
(§5 below). The theory of MT spaces and part of the theory of Lx spaces (2) is 
included in the AMT theory for suitable choices of R and C. 

The author wishes to express his appreciation to Professor Hidegoro Nakano 
for suggesting the topic of this investigation and for invaluable suggestions 
concerning the vector lattice setting. 

2. Integrals and their Nakano extensions. We shall use in general the 
definitions of (3). A vector or linear lat t iced is cr-Dedekind complete (sequen
tially continuous) if an £ R+, n = 1, 2, . . . implies that Ai° an £ R\ Dedekind 
complete (universally continuous) if for every collection a\ 6 R+, A G A, 
Ax£A#x G R] super Dedekind complete (super-universally continuous) if it is 
Dedekind complete and such that there exists a countable subsequence a\iy 

Xi G A, with Aid\i= Axa a\- A linear subspace of a linear lattice is called a 
Riesz subspace if it is closed under the lattice operations. A Riesz subspace of a 
o--Dedekind complete vector lattice R is called a sequentially continuous or 

Received June 14, 1966. 
*Partly supported by a National Research Council (Canada) Senior Research Fellowship. 

330 

https://doi.org/10.4153/CJM-1968-030-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-030-8


VECTOR LATTICES 331 

cr-Dedekind complete subspace if it is a a-Dedekind complete vector space 
contained in R that is closed under countable infima and suprema. A Riesz 
subspace 5 of i? is an ideal if x 6 S, a Ç i^with \a\ < \x\ implies that a Ç S. 

Let C be a Riesz subspace of a c-Dedekind complete vector lattice R, C~ the 
set of order-bounded linear functional on C.lîun £ C+, w = 1, 2, . . . , An°°= i un 

exists ini^+, the elements being considered as elements of R. If un J, and Awn = 0 
in i?, we write un j 0 (i?). Observe that if C is not sequentially continuous, the 
collection {un} need not have an infimum in Cor may have an infimum different 
from that in R. 

Let Of = (0 € C~: un j 0 implies <l>(un) —» 0 as n —» oo ) (3, VI ) ; C f = (0 
G C~: ^n J, 0 (i£) implies that 0(«») —> 0 as w —> oo). Always C/~ D Cc~ D {0}. 
It is shown in (3, VII, p. 674) that for 0 = C[0, 1], the continuous functions on 
[0, 1], Of = {0}. For E a locally compact space, C the continuous functions on 
E with compact supports, R = dlE, un J, 0 (R) implies that un —> 0 uniformly 
and this implies that Of = C~. Here again Of may reduce to {0}. The elements 
of Of will be called C-integrals or just integrals. When 0 is a sequentially 
continuous Riesz subspace of R, Of = Cf. The spaces Of and Of are normal 
subspaces of the universally continuous linear lattice C~ ordered pointwise 
on C, the arguments for Of being analogous to those for Of (3, VI ). 

Using the method of Nakano (7) we extend each positive 0 £ Of to upper 
and lower functional on R. For each x £ R we set 

0*0) = inf (lim^œ 0(a*), for all increasing sequences (a/f), # * € C, 
with V(xAfl j ) = x (in i?)) 

= + oo if no such sequence exists ; 

0*0) = sup ( l i m ^ 0(&j), for all sequences 64,6* € C, 

with A(* V bt) = x (in #)) 
= — oo , if no such sequence exists. 

As shown in (7 ) the functional 0* and 0* have the following properties (with 
values in the extended reals) : 

N l . 0*(O) = 0*(O) = 0. 

N2. 0*(-x) = -0*(x),0*(x) = -0*(x) . 

N3. 0*(ax) = a0*(x), 0*(ax) = a0*(x) if a > 0. 

N4. 0*(x) + 0*0) > 0*(x + 3O > 0*0) + 0*0), 

when the sums have sense. Similarly 

0*(x) + 0*60 < 0*0 + y) < 0*0) + 0*0)-
N5. 0*(x) + 0*0) > 0*0 V y ) + 0*0 A y), 

0*0) + 0*0) < 0*0 V y) + 0*0 A y). 
N6. 0*0) > 0*0). 
N7. 0*0) > 0*0), 0*0) > 0*60 if x > y. 
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N8. lim 0*(xw) = #*(#) if xn ] x. 

N9. lim 0*(xw) = 0*(x) if xw J, x. 

N10. 0*(a) = 0*(a) = 0(a) for ail a Ç C. 

We note the following additional properties: 

2.1. If xn Î x (xw I x), xn € C, x £ R, then 0*(x) = 0*(x). 

If x„ Î x, 0*(x) > 0(xn), n = 1,2, by N7 whence 

0*0*0 > lim^e, 0 ( O = 0*(x), 

by N8. With N6 this gives the first part of 2.1. 

2.2. FromN4andN10, i fx £ R,u e C, 

0*(x + w) = 0*(x) + 0 (w) , 0* (x + W) = 0*(x) + 0 (w) . 

2.3. From 2.2 and N2, for all u 6 C, 

0*(x) — 0*(x) = 0*(x + u) — 0*(x + w) 

= 0*(x — u) + 0*(^ — x). 

For <p > 0 letLi(0) denote the elements x G i? for which 0*(x) = 0*(x), the 
common value being finite. Then Li(<f>) is a sequentially continuous Riesz 
subspace of R containing C. Setting 0 = 0* = 0* on Z,](0), 0 is linear on Z>i(0). 

LEMMA 2.1. Let L be an arbitrary Riesz space and suppose that un A / Î / , 
*>n A f | f . Then if wn = un A »„, wn A f Î / . 

Proof. Clearly/ A ww < / , w = 1, 2, . . . . Let h be an arbitrary upper bound 
of this set. Then 

h > um A vm A / > un A *v A / , » fixed, m > n, 

> un Aff n = 1, 2, . . . . 

Thus fe> / a n d / = V(wnAf). 

THEOREM 2.1. (i) 7 / 0 G CV~ and a > 0, then a 0* = (a0)* and a0* = (a0)* 
ow R. (ii) 7/ 0i, 02 G Cë~+, ^ w (0i + 02)* = 0i* + 02* and (0i + 02)* = 0i* 
+ 02* onR+. (iii) If fa > 02 > 0 on C+, 0i* > 02* and 0i* > 02* onR+. 

Proof of (ii). Let 0 = fa + 02 in Cc~+. Let {̂ w} be a monotone sequence in 
C+. Then 0 < <t>(un) = fa(un) + fa{un) < <» , w = 1, 2, . . . , and 

lining 0(>w) = l i m ^ 0 i O J + l i m ^ fa(un) 

in the non-negative extended reals $K+. If w G i^+ with 0i*(w) < °° and 
02* (w) < 00, there are sequences un\, un A u\ u with the limits on the right 
simultaneously near 0i*(w) and fa*(u) (using Lemma 2.1). This implies that 

(*) 0*(*O < fa*(u) + fa*(u). 
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Since <t>*(u) is finite, there exist such sequences with lim <j>(un) arbitrarily near 
0*(^), leading to the opposite inequality and thus to equality in (*). Similar 
considerations show that if one side is infinite so is the other. Similar arguments 
using decreasing sequences give the result for the lower extensions. 

THEOREM 2.2. If 0X, 02 G Cë~+ and 0 = 0i + 02, then 

Lifr) = L i ( 0 i ) n L i ( > 2 ) . 

Proof. On £i(0i) P\Li(02), <I>+* = <£+*, 0~* = 0~* and all are finite. Thus 
Theorem 2.1 (ii) shows that \</>\* = |0|* on positive elements. If u is arbitrary, 
N4 and N2 then imply that 

M*(«) = M*(*+) - l*l*(«") = l*U(«+) - l*U(«") = l*U(«) 
and w G Za(|0|). 

On Li(|0|)+, |0|* = |0|* and both are finite. By Theorem 2.1, 0+* + 0~* 
= |0|* = \<j)\* = 0+* + 0-*. Since all are positive on positive elements and 
0+* > 0+*, 0-* > 0-*, it follows that 0+* = 0+* and 0-* = 0~*. Thus Li(|0|) 
C Li(</>i) C\ Li(<l>2) and the proof is complete. 

Let 0 G Cf. Then 0 = 0+ - 0~ on C with 0+, 0 - Ç CV~+. Writing |0| = 0+ 
+ <t>~~, \<p\> <P+> a n d <p~ on C have linear extensions |0| = |0|* = |<p|*, 0+ = 0+* 
= 0+*, and 0~ = 0~~* = 0~* toLi(|0|). The linear extension of an arbitrary 0 is 
now defined to be 0+ — <jr on Li(|0|) and Li(0) is defined to coincide with 
Li(|0|) = LiO+) n L i ( 0 - ) . F o r a l l x i n L i ( 0 ) 

0 0 ) = 0+(x) - <T(x) = tf>+(*+) - <t>+(x~) - 0"(x+) + 0-(ar), \<t>(x)\ < |0|(W)* 

A seminorm p on a Riesz space L is called a Riesz or monotone seminorm if 
p(f) < p(g) when [fi < |g|. On Li(0) = Li(|0|) p<p, defined by p<p(u) = |0|(|«|), 
is a Riesz seminorm. 

THEOREM 2.3. C is dense in Li(0) for the pep seminorm topology. 

Proof. There is no loss of generality in assuming that 0 > 0 and / > 0. Then 
pep = 0 is linear on Li(0)+ . From the definition of 0 = 0* on Li(0), given e > 0 
there exists a sequence {ww} in C with un\, un A / Î / , and 

l i m ^ 0 K ) > 0(f) = 0*(/) > lining 0(>w) - e/4, 4>{un A /)T"-i </>(/). 

Thus for n sufficiently large 

1*0) -*(«»)I = | 0 ( / - ^ ) | < e/4, 

0 < 0 ( O - *(w„ A / ) = </>K -UnAf)< \<i>{un -f)\ +<t>(f - un A f) < e/4. 

Now 0 < |/ — un\ — (f — u^ = 2(/ — Un)~ = 2{un — un A / ) , 

0 < 0(1/ - un\) - 0(f - Un) = 2 0 K -UnAf)< e/2, 

<K\f-Un\) < M~un)\ + e/2 < e. 
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3. Abstract Morse-Transue (AMT) spaces. Fix R, a o--Dedekind or 
Dedekind complete Riesz space, and C a Riesz subspace of R. Let A be a Riesz 
subspace of R containing C and suppose that A has a non-trivial Riesz semi-
norm NA. 

Let A* denote the dual of A for the seminorm topology, As* = A* r\ Af. 
For <f> G A~ let <j>c denote the restriction of <t> to C. If # 6 4̂ë* and ww J, 0 (R) 
with the elements un in C and thus in A, 4>c(un) = <f>(un) —> 0 as » —> °° so that 
0c 6 Cë~. Thus to each <f> G ^4^* corresponds a space of integrable elements 
Li(0c). We define 

®A = f^rtA? Li(4>e) = n 0 <^^Z<i (# c ) . 

Completing the definition, A (or (A, NA)) will be called an abstract Morse 
Transue (AMT) space if 

(i) A C QA. 
(ii) For every 0 G -4^*, ̂  = <t>* = <£c*onA 

(iii) ,4* = ^ * . 
These conditions correspond respectively to the Morse-Transue conditions 

that: every x G A is integrable with respect to every measure in the measure 
dual, <j>(x) can be recovered by integrating with respect to the measure corre
sponding to <j>, and the measure dual is isomorphic to all of A*. Clearly (ii) 
implies (i). 

THEOREM 3.1. (A, NA) is an AMT space (with respect to C and R) if and only 
if for every <j> G A*, </>c* = 0C* = <t>on A. 

All that needs to be verified is that these conditions imply (iii). If <f> G A* and 
un I 0 (R) with un G Ay n = 1, 2, . . . , <f>e*(un) —> 0 by N9 so that 4>{un) —> 0 
and 4> G A*. 

THEOREM 3.2. If A is an AMT space, C is NA-dense in A. 

Proof. Assume the theorem to be false. Then the Hahn-Banach theorem 
asserts the existence of a point x0 G A — C and 4/ G A* with <t>'(x) = 0 in C, 
<l>'(xo) 9e 0 . T h e n <$> c = 0 on C, <f>' * = <£'c* = 0 on A, contradicting (ii). 

THEOREM 3.3. If (A, NA) is an AMT space, un J, 0 (R) implies that NA(un) -> 0. 

Proof. Since A* = A-*, un 10 (R) implies that 4>(un) —> 0 for every <j> G A'', 
i.e. {̂ w} converges weakly to zero. The argument of (3, VII, Lemma 22.6, 
p. 671 ) then applies to complete the proof. 

COROLLARY. If (A, NA) is an AMT space and unîu(R) in A+, then 
NA(un)]NA(u). 

Examples. For any Riesz seminorm Nc, (C, Nc) is an AMT space if and only 
if C* = Cc*. Since C* C C~, this is always the case if C~ = Cf. 

If C is too small, the spaces in the preceding paragraph may be the only 
AMT spaces for C and R. For example, let X be an arbitrary set of points, 
R = 9Î*, where 9î denotes the reals and R has the natural partial order. Let C 
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denote the constant functions on X. Then C~ = Cf is isomorphic to 9Î. Let 
u(x) = 1 in X. Then for each <f> G C~,f G R, 

**(/) = (sup*€x/(x))0(>) > (inf*€x/(*))0(tt) = <£*(/) 

unless/ 6 C. Thus for any (^4, NA), 12A = C and (i) implies that no 4̂ larger 
than C can be an AMT space. 

For every <j> G Cf, (£ i (#) , p<p) is an A M T space. 
We can assume that </> > 0. Since L\{<f>) is cr-Dedekind complete, un If means 

the same in R and Li(0). Since p̂> and 0 = 0* coincide on Li(<£)+, 

P^ W | 0 if un i 0, 

by N9. This implies that every tf in £i(0)* is in Li(0*) so that (iii) holds. 
JFe wex/ wote / t o if0<<l>' G Li(«)*, ^i(0'c) > i i (0 ) . Since 0'C < | |0' | |0 on 

C W c * < (||*1I*)* = H* ,||**onLi(*)+ CR+ by Theorem 2.1. 
If/ G Li(0) and v 6 C, 2.3 implies that 

0 < 4>'*(f) - <l>'c*(f) = 4>'c*(f -v)+ 4>'*(v - / ) 

< 2 0 ' C * ( | / - H ) < 2 | | 0 1 | 0 ( | / - ^ | ) . 

Since Cisp^-denseinLi(*), 0r
c*(/) = </>'c*(f) and / 6 Li(<t>'c). 

To prove (ii) we note that for every u G C,/ G Lifo), 

\*'o(f) - *'(/)! < I^Cf) - *'.(«)! + l*'(f) - *'(«)! 
< 2 | | * ' | | * ( | / - » | ) 

and the right side can be made arbitrarily small by choice of u G C. 

4. Extensions of AMT spaces and normed AMT spaces. Let (A, NA) be 
an arbitrary AMT space. From Banach space theory (iii) implies that for all 
/ 6 A, 

NA(f) = sup |*(f)|. 
<p€A* 

llolKl 

By (3, VII, Lemma 22.3), ||*|| = || |*| || and, since NA(f) = NA(\f\), 

NA(f) = sup |* | ( | / | ) = sup 0(l/ | ) . 
<t>£A* <f>€A*-{-

\\<t>\\<l \\<t>\\<l 

Using this formula, NA can be extended from A to 12A. Replacing 0 by 0* in 
<p(L/1) gives an extension to all of R (valued in the non-negative extended reals). 
We shall use the notation NA also for the above extension. Then, on R, NA 

satisfies: 
4.1. 0<NA(f) < +00, 

4.2. NA(af) = aNA(f),a>0, 

4.3. N*(f + g)<NA(f)+NA(g), 

4.4. ^ ( / ) < ^ ( g ) i f | / | < | g | , 

4.5. NA(fn) î ^ i NA(f) if 0 < fn Î / . 
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From 4.4 we see that NA(f) = NA(\f\). Property 4.5 is an easy consequence 
of N8 which is valid for all 0 G A*+. 

Let FA = [f G R: NA(f) < œ]. Then FA is an ideal of R and thus is <r-
Dedekind complete. NA is a Riesz seminorm on FA. FA is closed for the 
seminorm topology. 

S e t $ 4 = [f G R: NA(f) = 0]. Clearly $A C 0A, FA. 
N o w / = g if/ — g G ^A defines equivalence relations on C, 4 , 1H, F"\ and 

i?. Using boldface type for equivalence classes and spaces of equivalence 
classes, 

f = f + $A inR, FA, and ttA ; = / + $A H A in A ; 

= / + $ inCinC. 

Then iV^ is uniquely denned on R and is a norm on C, A, and FA. Partially 
order R b y / < g if, for each/ G f, g G é> (/ ~" g)+ £ ^ Then R is c-Dedekind 
complete and C and A are Riesz subspaces of R with C C A C R- We shall 
show that (A, NA) is a normed AMT space with respect to C and R. 

Now A* and A* consist of the same elements. Suppose that un j 0 (R). We 
shall show that for each <p G A* there then exists a sequence u'n J, 0 (R) with 
Wn\ C Li(<p), u'n G un, n = 1, 2, . . . . Since A* = A-* by assumption, this 
will imply that (iii) holds for A. 

We first note that if u G u and u > 0, then u~ £ $A C\ A and w+ G u. 
Let U\ > 0 be an arbitrary element of Ui, u2 any element of U2. Since Ui > U2, 
(«2 — ^ i ) + G $A P\ ^4. Set 2/2 = [w2 — (u2 — ui)+]+. Then w'2 G -4 and 
^' i = u\ > w2. The remaining elements u'n are determined similarly by induc
tion. Let v = Au'n, which exists in R since R is o--Dedekind complete. Since 
0 = Aura, v < 0 and v+ G $A . Let ^"n = w'w — z/+. Then w"w j , 0 in R and in 
Li(</>) for every 0 G A*. I t follows that lim $ ( u j = lim <f>{u,f

n) = 0 and 
* G A,*. 

We next show that (ii) holds for every 0 G A* = Ac*. Let u G u G A 
0 G A*+ = ,4*+.Then</>c*(u) = </>c*(̂ ) = 0C*(^) = 0c*(u). 

In the analogous MT case FA is always TV^-complete. Let C = A = R 
denote the bounded Lebesque integrable functions on (0, 1) seminormed by 

Ni(f) = f l/l dx 

and with identifications. Then A is an AMT space and FA = R is not complete. 
That this example is typical is illustrated by the following theorem. 

THEOREM 4.1. The normed space FA is NA-complete if and only if un > 0, 
n = 1, 2, . . . , 

X) NA(un) < 00 implies that X un G R. 
1 1 
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Proof. Completeness in norm implies this condition with £ T un in FA by (3, 
VIII, Theorem 26.3). Conversely, if the condition is satisfied, YA un Î ]Li°° un so 
that, by 4.5 and 4.3, 

/ oo \ / m \ oo 

NA{ E u» = lim NA( E u j < E ^ ( u , ) < œ -
\ 1 / WÎ->oo \ 1 / 1 

and 5Zi° uw £ FA . The theorem is then completed by applying Theorem 26.3 
quoted above. 

THEOREM4.2. If f G RandNA(f) = + « > , / g ÛA. ThusQA C PA. (Compare 
(5, Theorem 5.1, p. 351 ).) 

Proof. By definition 
iVA(/) = sup **( | / | ) . 

IMI<1 

The hypothesis implies the existence in A*+ of a sequence {<£„} with 

**(|/ |) >2\ \\<f>n\\ < 1, » = 1,2, . . . . 
Set 

CP 

0' = E 4>n/2n. 

It is easily verified that <£' G A*+ with 1|0'| | < 1. 
By Theorem 2.1, for N = 1, 2, . . . , 

*' > ( Ç ^/2W)* = Ç *.*/2" on P+. 
Thus 

4>'*(l/l) > E 0/(l/l)/2" > N 
1 

for every iV. T h u s / $ £i(<£') and therefore not in 12A. 

5. Compatible AMT spaces. Two AMT spaces (A, NA) and (5 , iVB) (with 
respect to the same C and R) will be called compatible if A* = B* and 
NA = NB on C. 

When A is not c-Dedekind complete we let Af+ = [f £ R: f = A^w (in P) 
for some sequence {un} C A+] and set A' = ^4/+ — Af+. Then ^4' is the 
smallest <7-Dedekind complete Riesz subspace of R containing A. Hf Ç A,+, 
there exist sequences {un}, \vn] in^4+withww lf,vn j / ( i n P ) . 

LEMMA 5.1. A' C ŒA. 

Proof. Let <j> G -4*+,/ G vl /+, «» j / , v„ Î / (inP) with each un, vn in 4+. Now 

**(/) - <*>*(/) = **(f) - *(«0 + 4>fe - Un) - 0*(f) - *(«„). 

Since un — vn I 0 (P), <£(̂ w — flw) —•> 0. Furthermore </>*(/) — <K*0 —> 0 by N8 
and #*(/) — 0(ww) —» 0 by N9. Thus 0*(f) = 0*(f) and both are finite since/ is 
bounded above in A. T h u s / £ Pi(0) for each positive 0 and therefore is in UA. 
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THEOREM 5.1. (-4, NA) and (A/ NA') are compatible AMT spaces. 

Proof. Here NA' denotes the extension of NA from A to A'. I t is thus 
sufficient to show that A* = A'*. If 0 € A*, 0* = 0* is linear on A' since 
A' C £i(0). Furthermore, where 0 < un\f,un G A,f G -4', 

l**(fll < 1*1*0) = lim^co 1*1 W < ||*|| HmiV^K) 
= 11*11 N*(f), 

using 4.5. Since > is obvious, ||0*|U'* = I ML*. From N9 it follows that 
** G -4/*. 

Conversely, each 0 in A'*+ determines a 0' G ^4* = 4̂ë* by restriction to ^4. 
From linearity it follows that 0 is monotone on A,+. Thus if / > 0, un J,/, 
»n17, {«nK W C A,<f>(f - vn),<t>(un - f) < 0'(>w - »n). Since«n - i>„ jOCR), 
*'(wtt — vn) —>0 and 0(f) = lim 0(#n) = lim <t>(vn). I t follows that 0 = 0'* on 
-4; so that the correspondence between A* and A'* is 1-1 and norm-preserving. 
This implies that (A', NA') is an AMT space and that this space is compatible 
with(,4,i\M). 

THEOREM 5.2. (i) (A', NA) is super Dedekind complete and if fa, a G SI, is a 
system of elements of A/+ filtering down to zero, fa J,a€a 0, then NA(fa) j , 0. (ii) 
Every order-bounded increasing sequence in A' has a norm limit. 

Proof. By Theorem 3.3 if fn [ 0, în G A', NA(fn) J, 0. Since A' is o--Dedekind 
complete, the conditions of (3, X, Theorem 33.4, p. 503) are satisfied. 

If (A, NA) is an AMT space for Candi?, (C, NA) is compatible with (A, NA). 
This follows from the definition. Obviously (C, NA) is the smallest AMT space 
compatible with (A, NA). 

Let Â denote the closure of A in FA for the NA seminorm topology. (Compare 
(4, §13).) 

THEOREM 5.3. (Â, NA) is an AMT space contained in £lA and compatible with 
(A, NA) and is maximal in the sense that every AMT space compatible with 
{A, NA) is contained in (Â, NA). 

Proof. We first note that À is a Riesz subspace of R. Let u G Â. Since C is 
dense in A, there exist un G C with 

linv,œ NA(u — un) = 0. 

I t follows easily that Â is linear. Now \u\ G R and each \un\ G C. Thus, since 

N ~ Wn\\ = (\U\ - Wn\)+ + (\u\ - \un\)~ 

< 2(\u — un\)
+ = 2\u — un\, 

lirn,,^ NA(\u\ - \un\) = 0, 

and \u\ G Â. This implies that u+ and u~ G Â and Â is closed under the 
lattice operations. 

On I 

NA(u) = sup 0*(M). 
0€A*+ 

II0IK1 
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With u, un as in the preceding paragraph, and each <f> G 4*+ , using 2.3, 

<t>*(u) - 4*(u) = <t>*{u - tin) + 4>*(un - u) < 2\\<t>\\ NA(u - O , 

n = 1, 2, I t follows that u G 12A, A C ÛA. Thus if 0 G A*, <t> = 0* is 
linear on A. By continuity, <j> is bounded on Â with the same norm as on A. 
Using N9, each 0 G ^4* extends to 0 G J^*. 

Let 0 6 Â*, 0' = 0|i4. Then <£' extends to <?' on Â. Let « £ I , iVA(^ — un) 
—>0,un G C. Then 

\<t>(u) - 0 » | = l*(« - *0 + <?'K " «)l < (11*11 - ll^'ID^C" ~ O , 
w = 1, 2, . . . , and<£ = </>'. 

COROLLARY l . I w complete if FA is complete. 

COROLLARY 2. If A = Li(</>), 4̂ = Â. 

In this case A = tiA and is therefore maximal. 

COROLLARY 3. À D A'. 

THEOREM 5.4. Every f 6 £lA that is majorized above and below by elements of A' 
(equivalently of C) is in A', i.e. A' is an ideal of£hA. 

Proof. Let f G &A+ and suppose that there exists v G C with f < v. Choose 
0 < v € v Pi C , / G f C\ A' with O < / < v, and let 0 G 4*+. Then 0*(jf) < oo 
and there exist sequences unx\™= i with wn* A / Î*/ and 

l i m ^ </>(uni) > <fr*(f) > l i m ^ <t>(uni) — 1/n, n = 1, 

The sequences can be assumed to be bounded above by v and thus/ n — V$ unt 
exists in A' since ^4' is cr-Dedekind complete. Using Lemma 2.1 and induction» 
it can be assumed tha t / < fn [n. Thus 

**(/) < *O0 < **(/) - V»f « = 1, 2, . . . , 
and l i n v ^ 0(/*n) = <£*(/). 

Let /^ = A/n. Then <£*(f*>) = 0*(f). Since A' is Dedekind complete by 
Theorem 5.2, f = A ^ A * + f* exists in A' with f > f. Since £lA C Li(</>), each <j> 
is linear on &A. Thus 

**(f - f) = **(f) - **(f) = 0, 

for each 0 G A*+, NA(f' - f) = Oand V = f G A'. 

THEOREM 5.5. Â w aw idea/ of £lA. If every increasing sequence of elements of A / + 

that is bounded in norm is a Cauchy sequence, then À = £lA. Theorem 5.2 extends 
to Â. 

Proof. By Theorem 3.3, if un j 0, un G À, then NA(un) | 0 a s w - ^ œ . If 
f G À+, NA(f) < oo and there exists un A f î f, with un G C. By the preced
ing theorem un A f G A' C Â. Then f - un A f j 0 so that NA(f - un A f) 
- > 0 a s w - + o o . I f 0 < g < f , 

g ~ un A g = (g - u»)+ < (f - u»)+ = f - u „ A f 
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and NA(g — un A é) ~~* 0 as n —» œ. Thus g Ç À' = À. It follows that Â is an 
ideal of QA. 

If f Ç QA, NA{i) < oo by Theorem 4.2. There then exists a sequence 
{un A f} inA 'wi thu w A f | f . B y 4 . 5 

NA(un A f ) î i ^ ( f ) . 

Since uM A f is a Cauchy sequence by hypothesis, iV4(f — un A f) —> 0 as 
w —> oo and f Ç Â ; = À. (Compare (5, Theorem 7.2, p. 359).) 

THEOREM 5.6. (aA, iVA) w an AMT space if and only if QA = À. 

Proof. If QA = À, Theorem 5.3 applies. Now&A is a Riesz subspace of R 
normed by NA. Since A C.QA and compatibility is an equivalence relation, 
(aA, NA) cannot be compatible with (A, NA) if &A ^ Â. For each </> in A* the 
Nakano extension gives an extension <£* = 0* on &"1 that is iVA-bounded. If 
<f> Ç &A*+, 0 determines <£' € A* by restriction to A and 4> extends to £lA. 
Since QA is linear, non-compatibility implies the existence of some </> = $ — 0' 
in QA* with ^ = 0 on A'. We can assume that </> > 0 and that there exists x 
with 0(x) > 0. As in the previous theorem, there exists u M | x with each 
un G A'. Thus x — un I 0 but $(x — un) = $(x) for all n. Thus <£ Ç fiA* and 
not in &CA*J condition (iii) is violated, and C1A is not an AMT space. 

The following example illustrates the preceding result. Compare (3, XI , 
p. 509). Let R denote the space of sequences x = (xi, X2, . . .) ; C = c0, the 
space of sequences convergent to zero ; A = C, NA the uniform norm on A. 
Then ,4 = A' = Â is norm complete so that C~ = C* (3, VIII, Theorem 26.4). 
I t is easy to show that C* is equivalent to h by the correspondence 
y(x) = S xi Ji- If un i 0, NA(un) I 0 as n —> oo. This implies that C~ = Of 
and, noting that C is o--Dedekind complete (actually super Dedekind com
plete) , 

Thus (C, iVA) is a normed AMT space. 
Let 0 < y Ç C*; 0 < x Ç i?, xw = (xf, x2

w, . . .), xt
n = xu i = 1, 2, . . . , n; 

= 0, i > n. Then y*(x) = ,y*(x) < oo on R+ by 2.1. The extended NA is 
given by 

NA(x) = supt \xf\, 

and tiA = FA = /oo. The Hahn-Banach theorem implies the existence of 
Banach generalized limits <j>{x) = (H — B)lim xn with 

limn-*» ^ > #(*0 > limn^co ^ , 

0 ^ d> e (/oo)*. For every x G C = l , 0 ( x ) = 0. 

6. Real MT spaces as AMT spaces. In this section we let E be an arbitrary 
locally compact space, C the functions continuous on E with compact supports, 
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and R = $tE. Then C~ corresponds to the space of all Radon measures on E and 
Cr = Cf. 

For 0 G C~+ we consider Li(0) = Li (0*) under the norm iVA = p<p 
extended by NA(u) = p*(|w|) to JR. I t is well known that Li(0*) is complete 
under p<p, but we include a proof adapted to the present context. We shall 
show that the hypotheses of Theorem 4.1 are satisfied so that FA is complete 
and thus Za(0) *s complete since it is norm closed in FA. 

Let un > 0, n = 1, 2, . . . , £ i ° 0*(u„) <_°°. There exist ^w G un, ww > 0, 
un fw and thus there exists u(t) valued in jft+ with un(t) | w(/) for all t G £ . 
Let Eo = [t: u(t) < « ] , w'(*) = M(0X*O.

 T h e n «' € R+> E î «<X*o î «' and, 
from 4.5 and 4.3, 0*(V) < £ " 0*(O < °° and u ' G FA . To show that u ' = 
E T u« w e show that for each n, un — unXE0 G $A . Suppose that there exists 
no with 

«' = UnoXBo, 0*0') = a > 0. 
Since ( E ï ut) A (ZM') Î (Xtt') for every K, 0 < K < « , by 4.5 

l i n v ^ 0*( £ «<) > l i n v ^ 0 * [ ( £ «<) A (Ku') J = 0*( i^ ' ) = Xa. 

/ n \ co 

0*1 ] ^ Uij < ]T) <t>*(ut) < oo for every w. 

By hypothesis, 

Thus we have a contradiction for n, K sufficiently large. 
I t follows that Li(0) is a completion of C for p<p. Since this is also the case 

for the space of equivalence classes of functions integrable with respect to the 
Radon measure 0 for the Bourbaki theory and the two theories coincide on C, 
both theories give the same spaces of integrable functions. It follows that if A 
is a Riesz substance of R and C C A C R and NA is a Riesz seminorm on A, 
then the MT and AMT spaces QA coincide and the MT and AMT extensions of 
NA coincide o n û A and (A, NA) is an AMT space if and only if it is an MT space. 

We next compare the extensions of NA to R+. In the Bourbaki theory (1), 
0 G C~ is first extended to lower semi-continuous functions valued in $K+ and 
then to arbitrary functions valued in $R+. We have defined 0* and 0* above 
only for functions valued in 9î. The two theories are comparable for equivalence 
classes of functions if we consider, in the Bourbaki case, only those equivalence 
classes containing finite functions. We shall use the notation J*|f| d<j> for the 
Bourbaki extensions of 0, FA(B) for the f G R with J*|f| d<t> < » . Note 
that if f G FA(B), f contains finite elements. We shall show that FA = FA(B). 

We note first that if 0*(/) < oo 9 € > 0, there e x i s t s G Cwithwn î , wTO A / Î / 
and 0*(f) > l i m ^ <j>{un) — e. 

Now u = Vn ^«exists in dlE and is l.s.c. with 

f*u d(j) = lim Jun d<j> = lim <t>(un) < 0*(f) + e, 

J * s% * 

fd<j> = inf \ ud<f> < 0*(f) + e. 
u>f J 

u l . s . c 
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Since e > 0 is arbitrary, J*f dcj> < 0*(f) and f G FA . 
By (1, Prop. 5, p. 150) if / > 0 is l.s.c. and J*/d0 < « , then f 6 Li(0). 

This implies that </>*(f) = 0*(f) = J*f rf0f 

J * /̂  * 
f d 0 = inf g d * = inf <£*(g) > 4>*(f). 

£ l .s.c. g l . s . c 

Thus FA = FA(£) and J* and 0* coincide on FA = F 4 ( 5 ) . 
We have seen that the theory of AMT spaces (for the C and R in this 

section) and the theory of MT spaces are equivalent. Thus Theorem 5.6 
answers affirmatively a question on p. 116 of (6). 

7. Lx-spaces as AMT spaces. Let (X, 5, /z) denote an arbitrary cr-finite 
measure space, R the measurable functions in 9Î* with the natural order, 
C the Riesz subspace of R of simple functions (i.e. of functions each assuming 
only a finite number of real values different from zero with each value assumed 
in a set in S of finite measure). Let A be a Riesz subspace of R containing C. 

We want to determine when A is both an AMT space and an Lx-space (2). 
We assume that NA is a non-trivial Riesz seminorm on A. If NA is to extend to a 
length function, it must satisfy (2, p. 576), 

(LI) ' NA(Xe) = 0 if ix(e) = 0 , ^ 5 . 

By Theorem 3.3 we also need 

6.1. NA(un) i 0 if un I 0 (R), un G A, n = 1, 2, . . . . 

We consider (A, NA) where NA is a Riesz seminorm satisfying (LI) ' and 6.1. 
Let <j> G A*+. Then <f>c G Cf. If / G R+, there exists a sequence {un) C C+ 

with wn J / . This implies by 2.1 that 0* = 0* on i?+. If / G 4 , 

l**(/) - <Kf)l < 2 | | * | | ^ ( f - un), n = 1, 2, . . . , 

so that 0 = 0* = 0* on 4̂ and (^4, NA) is an AMT space by Theorem 3.1. 
OnR+ the extended NA satisfies 4.1-4.5 of §4 and (LI) ' and these conditions 

imply that (LI) in (2) is also satisfied. NA can be extended to all measurable 
functions valued in ${x by (L5) and is then a length function (2). The space 
Lx, A = NA, of equivalence classes of functions modulo X-negligible functions 
is an Lx-space and is therefore complete (2, Theorem 3.1, p. 579). In the 
present case 

L* =aA = FA D Â. 
From Theorem 5.6, Lx is an AMT space if and only if £2A = À. 
Let <t> G A*+. Then <j> defines a set function on 5 by <j>{e) = <j>(xe)- From 

6.1 it follows that <j> is countably additive and from (LI) ' that it is absolutely 
continuous with respect to fx. The Radon-Nikodym theorem then asserts the 
existence of a positive measurable function g with 

<t>(j) =Sfgdv< », 
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for a l l / G R+. Both sides are finite on Lx and, where X* is the length function 
conjugate to X, it follows easily that | |$| | = X*(g) and g £ Lx*. This implies 
that (Z*)* = Lx*. 
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