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Homotopy Classification of Projections in
the Corona Algebra of a Non-simple
C∗-algebra

Lawrence G. Brown and Hyun Ho Lee

Abstract. We study projections in the corona algebra of C(X) ⊗ K, where K is the C∗-algebra of com-

pact operators on a separable infinite dimensional Hilbert space and X = [0, 1], [0,∞), (−∞,∞),

or [0, 1]/{0, 1}. Using BDF’s essential codimension, we determine conditions for a projection in the

corona algebra to be liftable to a projection in the multiplier algebra. We also determine the condi-

tions for two projections to be equal in K0, Murray–von Neumann equivalent, unitarily equivalent, or

homotopic. In light of these characterizations, we construct examples showing that the equivalence

notions above are all distinct.

1 Introduction

Our goal is to study projections in the corona algebra of a non-simple stable rank

one C∗-algebra. The work presented here originated from a lifting problem: Let

A be a C∗-algebra and D a closed ideal of A. We are interested in whether every

unitary in A/D is liftable to a partial isometry in A. It happens whenever D has an

approximate identity of projections, a weaker condition than real rank zero. We are

concerned with the case where D has stable rank one. It might not be possible in

general, but constructing an explicit counter-example is not trivial. One solution is

to find a stable, projectionless, stable rank one algebra D such that K0(D) is non-

trivial, and then consider an extension of D by C(T) that comes from a unitary u in

the corona algebra of D with non-trivial K1-class. i.e.,

0 −→ D −→ A −→ C(T) −→ 0

We can observe that u cannot be lifted to a unitary (if so, [u] = 0, which is a contra-

diction) nor can it be lifted to a partial isometry, because there are no any non-zero

projections available to be the defect projections of a partial isometry.

If we denote the C∗-algebra of compact operators on a separable infinite dimen-

sional Hilbert space by K, the cone and suspension of K are (stably) projectionless,

but their K0-groups are trivial. Let I be the cone or suspension of K and suppose

that we have a projection p in the corona algebra of I, denoted by C(I), which does

Received by the editors December 27, 2010; revised November 11, 2011.
Published electronically December 23, 2011.
This paper is based on the Ph.D. dissertation [12] of the second author, written under the direction of

the first author. This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea funded by the Ministry of Education, Science, Technology (2011-0009978).

AMS subject classification: 46L05, 46L80.
Keywords: essential codimension, continuous field of Hilbert spaces, Corona algebra.

755

https://doi.org/10.4153/CJM-2011-092-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-092-x


756 L. G. Brown and H. H. Lee

not lift (stably), but its K0-class does lift. If a is a self adjoint element that lifts p in

the multiplier algebra M(I), we take D0 to be the C∗-algebra generated by a and I so

that the quotient D0/I is isomorphic to C. Then the Busby invariant is determined

by sending 1 to p, and we have the commutative diagram

0 −−−−→ I
j

−−−−→ D0 −−−−→ C −−−−→ 0
∥∥∥

y
y p

0 −−−−→ I −−−−→ M(I) −−−−→ C(I) −−−−→ 0.

By the long exact sequence, we have

K0(I) −−−−→ K0(D0) −−−−→ K0(C)
∂0

−−−−→ K1(I)
y

y p

∥∥∥

K0(I) −−−−→ K0(M(I)) −−−−→ K0(C(I))
∂0

−−−−→ K1(I).

Since ∂0([p]0) = 0, ∂0 : K0(C) → K1(I) becomes trivial. Thus K0(D0) ∼= K0(C). In

particular, K0(D0) is non-trivial. The facts that p and also any finite sum p ⊕ · · · ⊕ p

do not lift imply that D0 is stably projectionless. This leads us to the question: when

does such a projection p in the corona algebra of I exist?

As a corollary we can obtain a stably projectionless, stable rank one C∗-algebra D

from D0 such that its K0-group is non-trivial, which is also of independent interest.

Note that D is not simple from our construction. There is a rather substantial liter-

ature on simple, stably projectionless C∗-algebras with K-groups equal to Ki(C) or

trivial K-groups [9, 10, 14, 16]. In Elliott’s classification program these algebras have

played important roles since the Jiang-Su algebra appeared. But interest is growing in

non-simple C∗-algebras that absorb a stably projectionless, (strongly) self-absorbing

C∗-algebra. We hope that our construction is worthwhile to those interested in clas-

sification.

Let I be of the form C(X)⊗K where X = [0, 1], [0,∞), (−∞,∞) or [0, 1]/{0, 1}.

In what follows we represent an element f in the corona algebra of I by finite par-

titions and operator valued functions on the subintervals that agree modulo com-

pacts at partition points. This approach is proven to be useful when f is a projection

since the functions on the subintervals can be taken to be projection-valued. Thus

a projection in the corona algebra of I is locally liftable in the above sense and their

transitions are described by pairs of projections in B(H) whose difference is com-

pact. Further, we can quantify the transitions using the essential codimension. This

quantification allows us not only to solve lifting problems but also to give conditions

for homotopy equivalence, unitary equivalence, Murray–von Neumann equivalence,

and K0-equivalence of two projections in the corona algebra.

This paper is arranged as follows. In Section 2 we review the notion of essential

codimension of two projections in B(H) and derive some facts that will be needed

later. (In fact, the definition of essential codimension was given in [3], and some

properties were provided without proofs in [1]. Here we review the definition and
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provide complete proofs of its properties.) In Section 3 we give a necessary and suf-

ficient condition for the liftability of a projection in the corona algebra of I. In Sec-

tion 4, we give criteria for homotopy equivalence ∼h, unitary equivalence ∼u, and

Murray–von Neumann equivalence ∼ of two projections p, q in C(I) ⊗ Mn for some

n. In addition, we determine the condition for the liftability of the K0-class of a pro-

jection; i.e., we clarify when it becomes trivial in K0. Then we construct a projection

that does not lift but whose K0-class does lift if, applicable. Also, we construct ex-

amples such that [p]0 = [q]0 in K0 but p ≁ q, p ∼ q but p ≁u q, and p ∼u q but

p ≁h q. Section A is an appendix that reviews some rudiments of continuous fields

of Hilbert spaces and proves some results that are crucial ingredients for the above.

2 Essential Codimension

Throughout the article H denotes a separable infinite dimensional Hilbert space, K

the C∗-algebra of compact operators on H, and B(H) the C∗-algebra of bounded

operators on H.

Definition 2.1 ([3]) When p, q are projections in B(H) such that p − q ∈ K, we

define the essential codimension of p and q, which will be denoted as [p : q]. If p and

q have infinite rank, let V , W be isometries such that VV ∗
= q,WW ∗

= p. Then

[p : q] =

{
Ind(V ∗W ) if p, q have infinite rank,

rank(p) − rank(q) if p, q have finite rank.

Note that [p : q] is independent of the choice of V and W . In fact, if we have

isometries V1,V2 such that V1V ∗
1 = q and V2V ∗

2 = q, then U = V ∗
2 V1 is a unitary

and UV ∗
1 W = V ∗

2 W . It follows that Ind(V ∗
1 W ) = Ind(V ∗

2 W ). The other case is

proved similarly.

Proposition 2.2 [ : ] has the following properties:

(i) if p2 ≤ p1, then [p1 : p2] is the usual codimension of p2 in p1, which is

rank(p1 − p2);

(ii) [p1 : p2] = −[p2 : p1];

(iii) [p1 : p3] = [p1 : p2] + [p2 : p3];

(iv) [p1 + p ′
1 : p2 + p ′

2] = [p1 : p2] + [p ′
1 : p ′

2] when sensible.

Proof For (i), let Vi be the isometries corresponding to pi for i = 1, 2. Then V ∗
2 V1

is a co-isometry, because p2 p1 = p2. Hence,

Ind(V ∗
2 V1) = dim ker(V ∗

2 V1) = rank(1 − (V ∗
2 V1)∗V ∗

2 V1) = Tr(V ∗
1 (p1 − p2)V1)

= Tr(p1 − p2) = rank(p1 − p2)

if p and q are infinite rank, where Tr : L1(H) → C is the usual trace map.

(ii) is evident from the definition.

For (iii), if the pi ’s have finite rank, it is easy. If the pi ’s have infinite rank, we

choose isometries such that ViV
∗
i = pi . Then V ∗

3 V2V ∗
2 V1−V ∗

3 V1 ∈ K, and therefore

Ind(V ∗
3 V1) = Ind(V ∗

3 V2V ∗
2 V1) = Ind(V ∗

3 V2) + Ind(V ∗
2 V1).
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Finally, note that pi + p ′
i is a projection if and only if pi and p ′

i have orthogonal

ranges or pi p ′
i = 0. If both pi and p ′

i have finite rank, then

rank(pi + p ′
i ) = rank(pi) + rank(p ′

i ) for i = 1, 2,

and (iv) is obvious. If pi has infinite rank and p ′
i has finite rank, then pi + p ′

i − pi ∈ K

for i = 1, 2:

[p1 + p ′
1 : p2 + p ′

2] = [p1 + p ′
1 : p1] + [p1 : p2] + [p2 : p2 + p ′

2]

= rank(p ′
1) + [p1 : p2] − rank(p ′

2)

= [p1 : p2] + [p ′
1 : p ′

2].

If both pi and p ′
i have infinite rank, note that p ′

1 p2, p ′
2 p1 ∈ K. If U : H → H ⊕ H

is a unitary, then V =
[
V1 V ′

1

]
U and W =

[
V2 V ′

2

]
U are suitable isometries

for p1 + p ′
1 and p2 + p ′

2, where Vi and V ′
i are isometries such that ViV

∗
i = pi and

V ′
i V ′

i
∗
= p ′

i for i = 1, 2. So

[p1 + p ′
1 : p2 + p ′

2] = Ind(V ∗W ) = Ind(U ∗(V ∗
1 V2 ⊕ (V ′

1 )∗V ′
2 )U )

= Ind(V ∗
1 V2 ⊕ (V ′

1 )∗V ′
2 ) = Ind(V ∗

1 V2) + Ind((V ′
1 )∗V ′

2 )

= [p1 : p2] + [p ′
1 : p ′

2].

Lemma 2.3 Let p and q be projections in B(H) such that p − q ∈ K. If there is a

unitary U ∈ 1+K such that U pU ∗
= q, then [p : q] = 0. In particular, if ‖p−q‖ < 1,

then [p : q] = 0.

Proof If the ranges of p and q are finite dimensional, rank(p) = rank(U pU ∗) =

rank(q). Now assume that p and q are infinite dimensional and let W be an isometry

such that WW ∗
= p. Then V = UW is an isometry such that VV ∗

= q.

[p : q] = Ind(V ∗W ) = Ind(W ∗U ∗W ) = Ind(W ∗W + compact) = Ind(I) = 0.

Now if ‖p − q‖ < 1, we can take a = (1 − q)(1 − p) + qp ∈ 1 + K. Since aa∗ =

a∗a = 1 − (p − q)2 ∈ 1 + K,

‖a∗a − 1‖ = ‖p − q‖2 < 1, ‖aa∗ − 1‖ = ‖p − q‖2 < 1.

Moreover, ap = qp = qa. Hence, a is an invertible element and U = a(a∗a)−
1
2 ∈

1 + K is a unitary such that U pU ∗
= q.

If a pair of projections p, q such that p − q ∈ K is given, we can diagonalize p − q

by the spectral theorem. Let Eλ(T) be the eigenspace of an operator T correspond-

ing to the eigenvalue λ. Then we can characterize [p : q] in terms of E1(p − q) and

E−1(p − q). Though this could be done by a direct method, here we take a more

complicated approach based on the classification of pairs of projections that was first

given by Dixmier [6], and Kreǐn, Kranosel´skiǐ, and Mil´man [11], independently.

The virtue of this approach is that we can also obtain information about other eigen-

values that will be crucial for proving Corollary 2.6.
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Proposition 2.4 [p : q] = dim E1(p − q) − dim E−1(p − q).

Proof Let M and N be the ranges of p and q respectively, and let H11 = M ∩ N,

H10 = M∩N⊥, H01 = M⊥∩N, H00 = M⊥∩N⊥, and H0 = (H00⊕H10⊕H01⊕H11)⊥.

It is possible to identify both H0 ∩ M and H0 ∩ M⊥ with L2(X) for some measure

space X in such a way that p|H0
, which is denoted by p0, and q|H0

, which is denoted

by q0, are given by

p0 =

(
1 0

0 0

)
and q0 =

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
,

where φ is a measurable function on X such that 0 < φ(x) < π
2

for x ∈ X. Here

p0 and q0 operate on L2(X) ⊕ L2(X), and the matrices are operator matrices, whose

entries are multiplication operators.

If we denote p|H11
by p11 and p|H10

by p10, then p = p11 + p10 + p0. Similarly,

q = q11 +q01 +q0. Now p−q = p10−q01 + p0−q0 ∈ K implies that p0−q0 ∈ K(H0)

and p10 − q01 ∈ K(H10 ⊕ H01). Then since

p0 − q0 =

(
sin2 φ − cosφ sinφ

− cosφ sinφ − sin2 φ

)
∈ K(H0),

X is a discrete space {xn} and φ(xn) → 0 as n → ∞. Therefore

U =
⊕(

cosφ(xn) sinφ(xn)

− sinφ(xn) cosφ(xn)

)
∈ 1 + K(H0).

Since U is unitary and U ∗p0U = q0, [p0 : q0] = 0 by Lemma 2.3. On the other hand,

p10 − q01 ∈ K(H10 ⊕ H01) means rank(p10) and rank(q01) are finite, and

[p10 : q01] = rank(p10) − rank(q01) = dim(E1(p − q)) − dim(E−1(p − q)).

Since [p : q] = [p0 : q0]+[p10 : q01]+[p11 : q11] by Proposition 2.2, [p : q] = [p10 : q01],

and the result follows.

Remark 2.5 (i) [p : q] is the number of +1’s minus the number of −1’s in the

diagonalization of (p − q).

(ii) The other non-zero points in the spectrum of p − q come from p0 − q0. They

are sinφ(xn) and − sinφ(xn). Note that this part of the spectrum is symmetric

about 0 (even considering multiplicity); i.e., dim Eλ(p − q) = dim E−λ(p − q)

for 0 < λ < 1.

Corollary 2.6 Suppose projections pt , qt ∈ B(H) are defined for each t in an interval.

Then [pt : qt ] is constant if pt − qt is norm continuous in K

Proof Fix a point t ; we are going to show that there is a δ > 0 such that whenever

|t − s| < δ, we have [ps : qs] = [pt : qt ].

Let A1 = pt − qt . Since A1 is compact, its spectrum σ(A1) is discrete. So we

can take a neighborhood U = U−1 ∪ U0 ∪ U1 containing σ(A1), where the Ui ’s
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are disjoint open disks centered at i such that the distance between them is positive.

Choose a positive number R such that γ±1, the circles of radius R centered at ±1, are

contained in U±1 and σ(A1)∩U±1 ⊂ V±1, the interior of γ±1. By the semicontinuity

of spectrum, there is a δ > 0 such that σ(ps − qs) ⊂ V−1 ∪ U0 ∪ V1 for |s − t| < δ.

Now set A2 = ps − qs. By the Riesz functional calculus we have projections

ri =
1

2πi

∫

γ1

(z − Ai)
−1dz and si =

1

2πi

∫

γ−1

(z − Ai)
−1dz

for i = 1, 2. Moreover, if we take δ small enough, we also have ‖r1 − r2‖ < 1 and

‖s1 − s2‖ < 1. Then rank(r1) = rank(r2) and rank(s1) = rank(s2) by Lemma 2.3.

Note that

rank(si) =
∑

1−R<λ<1

dim E−λ(Ai) + dim E−1(Ai).

Similarly,

rank(ri) =
∑

1−R<λ<1

dim Eλ(Ai) + dim E1(Ai).

So Remark 2.5(ii) implies that

[p1 : q1] = dim E1(A1) − dim E−1(A1)

= rank(r1) − rank(s1) = rank(r2) − rank(s2)

= dim E1(A2) − dim E−1(A2) = [p2 : q2].

Now we want to prove the most important property of the essential codimension.

Theorem 2.7 Let p and q be projections in B(H) such that p − q ∈ K. There is a

unitary U in 1 + K such that U pU ∗
= q if and only if [p : q] = 0.

Proof One direction is proved by Lemma 2.3.

For the other direction, suppose that [p : q] = 0. Using the notation in the the

proof of Proposition 2.4, we know that p0 and q0 are unitarily equivalent by a unitary

U0. In addition, from [p : q] = rank(p10) − rank(q01) = 0, there is a unitary W in

B(H10 ⊕H01) such that W p10W ∗
= q01. Now we have a unitary U = U0 +W + 1H11

+

1H00
∈ 1 + K such that U pU ∗

= q.

Remark 2.8 Let E be a Hilbert B-module. If π, σ : A → L(E) are representations,

we say that π and σ are properly asymptotically unitarily equivalent and write π ≅ σ
if there is a continuous path of unitaries u : [0,∞) → U(K(E)+C1E), u = (ut )t∈[0,∞)

such that

• limt→∞ ‖utπ(a)u∗
t − σ(a)‖ = 0 for each a ∈ A;

• utπ(a)u∗
t − σ(a) ∈ K(E) for each t ∈ [0,∞) and a ∈ A.

The use of the word “proper” reflects the crucial fact that all implementing uni-

taries are of the form “identity + compact” [5]. A result of Dadarlat and Eilers shows

that if φ, ψ : A → M(B ⊗ K) is a Cuntz pair, then [φ, ψ] vanishes in KK(A,B) if and
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only if φ ⊕ γ ≅ ψ ⊕ γ for some representation γ : A → M(B ⊗ K). As a corollary,

they have shown that if φ, ψ : A → B(H) is a Cuntz pair of admissible representations

(faithful, non-degenerate, and its image does not contain any non-trivial compacts),

then [φ, ψ] vanishes in KK(A,C) if and only if φ ≅ ψ. Now we apply this to A = C.

Without loss of generality we can assume p and q, which come from a Cuntz pair in

KK(C,C), are very close if [p : q] = 0. Then z = pq + (1 − p)(1 − q) ∈ 1 + K is

invertible and pz = zq. If we consider the polar decomposition of z as z = u|z|, it is

easy to check that u ∈ 1 + K and upu∗
= q. Thus Theorem 2.7 can be obtained from

a KK-theoretic result.

In the next section, we need the following facts.

Proposition 2.9 Let p, q be projections such that p − q ∈ K.

(i) If q has finite rank, then [p : q] ≥ − rank(q).

(ii) If 1 − q has finite rank, then [p : q] ≤ rank(1 − q).

Proof Straightforward.

3 Lifting Projections

Let X be [0, 1], [0,∞), (−∞,∞) or T = [0, 1]/{0, 1} and let I = C(X) ⊗ K, which

is the C∗-algebra of (norm continuous) functions from X to K, vanishing at infinity

where applicable. Then M(I) is Cb(X,B(H)) the set of bounded functions from X

to B(H) where B(H) is given the double-strong topology. Let C(I) = M(I)/I be the

corona algebra of I and let π : M(I) → C(I) be the natural quotient map.

In general, an element f of the corona algebra C(I) can be represented as follows:

Consider a finite partition of X, or X r {0, 1} when X = T, given by partition points

x1 < x2 < · · · < xn, all of which are in the interior of X, and divide X into n +

1 (closed) subintervals X0,X1, . . . ,Xn. Take fi ∈ Cb(Xi ,B(H)) such that fi(xi) −
fi−1(xi) ∈ K for i = 1, 2, . . . , n and f0(x0) − fn(x0) ∈ K, where x0 = 0 = 1 if X is T.

We call ( f0, f1, . . . , fn) a local representation of f. For example, if f = π( f ) for some

f ∈ M(I), then we can take fi = f |Xi
. However, the point of this local representation

is that, by Theorem 3.1, when f is a projection we can find ( f0, f1, . . . , fn) such that

each fi is a projection-valued function.

Note that the coset in C(I) represented by ( f0, . . . , fn) consists of functions f in

M(I) such that f − fi ∈ C(Xi ,K) for every i, and f − fi vanishes (in norm) at any

infinite endpoint of Xi . Thus ( f0, . . . , fn) and (g0, . . . , gn) define the same element of

C(I) if and only if fi − gi ∈ Cb(Xi ,K) for i = 0, . . . , n and fi − gi vanishes at any

infinite endpoint of Xi .

J. Calkin [4] showed that in this setting projection can always be lifted when X is

a single point. In our situation we have the following theorem.

Theorem 3.1 If f is a projection in C(I), we can find an ( f0, . . . , fn) as above such

that each fi is projection-valued.

Proof Let f be an element of M(I) such that π( f ) = f. Without loss of generality,

we can assume f is a self-adjoint element such that 0 ≤ f ≤ 1.
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(i) Suppose X does not contain any infinite point. Choose a point t0 in X. Since

f (t0) − f 2(t0) is compact, there are a, b with 0 < a < b < 1/4 such that

σ( f (t0) − f 2(t0)) ⊂ Uab = [0, a) ∪ (b, 1/4]. Since f − f 2 is norm continuous,

there is an open set Ot0
containing t0 such that σ( f (t) − f (t)2) ⊂ Uab for all t in Ot0

.

Let α and β be the points in (0, 1/2) such that α − α2
= a and β − β2

= b. Then

σ( f (t)) omits (α, β) for t in Ot0
. If φt0

is a continuous function such that φt0
= 0 on

[0, α] and φt0
= 1 on [β, 1], then φt0

( f ) − f is in I and φt0
( f (t)) is a projection for t

in Ot0
.

Since X is compact and Ot0
’s give an open cover, there is a partition and corre-

sponding values t0, t1, . . . , tn such that Xi ⊂ Oti
. Then let fi = φti

|Xi
.

(ii) Let X be [0,∞). Since f 2 − f vanishes at ∞, there is M > 0 such that

‖ f 2(t) − f (t)‖ < 1/3(1 − 1/3) if t ≥ M. Then σ( f (t)) omits (1/3, 2/3) for such

t . If φ is a continuous fucntion such that φ = 0 on [0, 1/3] and φ = 1 on [2/3, 1],

then φ( f ) − f is in I and φ( f (t)) is a projection for t ≥ M. As in part (i) find a local

representation ( f0, . . . , fn−1) for [0,M]. Then take Xn = [M,∞) and fn = φ( f )|Xn

(iii) The case X = (−∞,∞) is similar to (ii).

Given a (projection-valued) representation ( f0, . . . , fn) of the projection f in

C(I), we can associate integers ki = [ fi(xi) : fi−1(xi)] for i = 1, . . . , n and k0 =

[ f0(x0) : fn(x0)] in the circle case.

Proposition 3.2 If all ki ’s are equal to 0, then f is liftable to a projection in M(I).

Proof First we consider the case X = [0, 1], [0,∞), or (−∞,∞). We construct

perturbations f ′
1 , . . . , f ′

n of f1, . . . , fn so that f ′
i (xi) = f ′

i−1(xi) for i = 1 · · · n and f ′
n

agrees with fn in the some neighborhood of ∞ if the right end point of X is ∞.

Observe that if ki = [ fi(xi) : fi−1(xi)] = 0 for some i, there is a unitary U in 1 + K

such that U fi(xi)U
∗
= fi−1(xi) by Theorem 2.7. Since the set of such unitaries is

path connected, there is a norm continuous path Ui : Xi → U(H)∩ (1 + K) such that

Ui(xi) fi(xi)Ui(xi)
∗
= fi−1(xi) and Ui = 1 in a left neighborhood of xi+1. If i = n

and the right endpoint of Xi is ∞, the last condition is replaced by Ui(t) = 1 for

t ≥ xn + 1. Then let f ′
i = Ui fiU

∗
i .

If X = T, construct f ′
1 , . . . , f ′

n as above, and also construct a similar perturbation

of f0.

If f, which is represented by ( f0, f1, . . . , fn), is liftable to a projection g in M(I),

we also represent f by (g0, . . . , gn) where gi = g|Xi
. Then, for each i, [gi(x) : fi(x)]

is defined for all x. From Corollary 2.6 this function must be constant on Xi . Let

li = [gi(x) : fi(x)]. Since gi(xi) = gi−1(xi), we have

[
gi(xi) : fi(xi)

]
+
[

fi(xi) : fi−1(xi)
]
=

[
gi−1(xi) : fi−1(xi)

]

by Proposition 2.2(iii). Thus,

(3.1) li − li−1 = −ki for i > 0 and l0 − ln = −k0 in the circle case.
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Moreover, by Proposition 2.9 and Lemma 2.3 we have the following restrictions on

li .

If for some x in Xi , fi(x) has finite rank, then li ≥ − rank( fi(x)).(3.2)

If for some x in Xi , 1 − fi(x) has finite rank, then li ≤ rank(1 − fi(x)).(3.3)

If either end point of Xi is infinite, then li = 0.(3.4)

The above provides necessary conditions for a projection f in C(I) to be liftable to

a projection in M(I). We claim that these necessary conditions are also sufficient. To

show this, we need a well-known identification of a strongly continuous projection-

valued function on a topological space with a continuous field of Hilbert spaces [8,

252–253]. Given a separable Hilbert space H, there is a one-to-one correspondence

between complemented subfields H = ((Hx)x∈X,Γ) of the constant field defined by

H over a paracompact space T and strongly continuous projection-valued functions

p : X 7→ B(H), where Hx is p(x)H. Thus two continuous fields of Hilbert spaces

defined by p and p ′ are isomorphic if and only if there is a double strongly continuous

valued function u on T such that uu∗
= p ′ and u∗u = p.

The following lemma, for which we claim no originality, plays an important role

in the proof of Theorem 3.4. However, its proof is rather long, so we include the

proof in an Appendix (see Corollary A.5).

Lemma 3.3 If X is a separable metric space such that dim(X) ≤ 1 and H is a con-

tinuous field of Hilbert spaces over X such that dim(Hx) ≥ n for every x in X, then H

has a trivial subfield of rank n. Equivalently, if p is a strongly continuous projection-

valued function on X such that rank(p(x)) ≥ n for every x in X, then there is a norm

continuous projection-valued function q such that q ≤ p and rank(q(x)) = n for every

x in X.

Theorem 3.4 A projection f in C(I) represented by ( f0, . . . , fn) is liftable to a projec-

tion in M(I) if and only if there exist l0, . . . , ln satisfying (3.1)–(3.4).

Proof Given li ’s satisfying (3.2), (3.3), and (3.4), we will show there exists a pertur-

bation (g0, . . . , gn) of ( f0, . . . , fn) such that li = [gi(xi) : fi(xi)]. It follows from this

and (3.1) that [gi(xi) : gi−1(xi)] = 0 for i > 0 and [g0(x0) : gn(x0)] = 0 in the circle

case.

li = 0 : Take gi = fi . Note that by (3.4) this implies the necessary condition on the

perturbation at any infinite endpoints.

li > 0 : By Lemma 3.3 and (3.3) the continuous field determined by 1 − fi has a

rank li trivial subfield that induces a norm continuous projection-valued function

q ≤ 1 − fi . So we take gi = fi + q.

li < 0 : Similarly, by Lemma 3.3 and (3.2) the continuous field determined by fi has

a rank −li trivial subfield which induces a projection-valued function q ′ ≤ fi . So we

take gi = fi − q ′.

Corollary 3.5 If X has an infinite endpoint, then p⊕0 and p⊕1 both liftable implies

that p is liftable.
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Proof There can be only one choice of the li ’s satisfying (3.1) and (3.4), and thus

there is a single choice of li ’s that works for both p⊕0 and p⊕1. Then (3.2) for p⊕0

implies (3.2) for p, and (3.3) for p ⊕ 1 implies (3.3) for p.

It will be shown in Example 4.14 that this implication does not hold if X has no

infinite endpoint.

4 Homotopy Classification of Projections

Recall that Ki(C(I)) = Ki+1(I) (i taken mod 2). Thus

K0(C(I)) =

{
Z, if X = (−∞,∞) or T(= [0, 1]/{0, 1})

0, otherwise.

We want to analyze these isomorphisms in a concrete way to compute K0-classes

of projections in C(I), where I = C(X) ⊗ K and X = (−∞,∞) or X = T =

[0, 1]/{0, 1}, in terms of the representations of Section 3. Since Mn(I) ≃ I, we can

represent a projection f in Mn(C(I)) by ( f1, f2, . . . , fn), where fi ’s are in Mn(M(I)) =

M(Mn(I)) and each of them is projection-valued: fi(x) is in Mn(B(H)) ≃ B(Hn)) ≃
B(H). Thus it will suffice to compute K0-classes of projections in C(I).

Given two nontrivial projections p, q in C(I), let us assume that there is a partial

isometry π(u) in C(I) such that π(u)∗π(u) = p and π(u)π(u)∗ = q for some u in

M(I). If (p0, . . . , pn) and (q0, . . . , qn) are local liftings of p and q respectively, using

the same partition, we can represent π(u) by (u0, . . . , un) where ui = qiu|Xi
pi . Thus

the following holds:

qi − uiui
∗, pi − ui

∗ui ∈ C(Xi) ⊗ K.

This implies that for x in Xi we can view ui(x) as a Fredholm operator from pi(x)H

to qi(x)H, and thus we can define the Fredholm index for ui(x). As we shall see, this

index plays a key role.

Proposition 4.1 Ind(ui(x)) is constant on Xi . In particular, if Xi has an infinite

endpoint, then Ind(ui(x)) = 0.

Proof For x0 in Xi we have

ker
(

ui(x0)
)
=

{
h ∈ pi(x0)H | ui(x0)∗ui(x0)h = 0

}
= E1

(
pi(x0) − ui(x0)∗ui(x0)

)

(recall that Eλ(T) is the eigenspace of T corresponding to the eigenvalue λ for T in

B(H)). Similarly, ker(ui(x0)∗) = E1(qi(x0) − ui(x0)ui(x0)∗).

Note that the spectrum of pi(x0) − ui(x0)∗ui(x0) omits an interval (1 − ǫ, 1) for

some ǫ in (0, 1). Then there is a δ > 0 such that σ(pi(x0) − ui(x0)∗ui(x0)) omits the

interval
(
1 − 2ǫ

3
, 1 − ǫ

3

)
for |x − x0| < δ.

By the Riesz functional calculus (see the proof of Corollary 2.6),

dim
(

E1

(
pi(x0) − ui(x0)∗ui(x0)

))
=

∑

0≤λ≤ǫ/3

dim
(

E1−λ

(
pi(x) − ui(x)∗ui(x)

))
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for |x − x0| < δ. Similarly,

dim
(

E1

(
qi(x0) − ui(x0)ui(x0)∗

))
=

∑

0≤λ≤ǫ/3

dim
(

E1−λ

(
qi(x) − ui(x)ui(x)∗

))

for |x − x0| < δ. Since

dim E1−λ

(
pi(x) − ui(x)∗u(x)

)
= dim Eλ

(
ui(x)∗ui(x)

)
= dim Eλ

(
ui(x)ui(x)∗

)

= dim E1−λ

(
qi(x) − ui(x)u(x)∗

)

for λ > 0,

∑

0<λ≤ǫ/3

dim
(

E1−λ

(
pi(x) − ui(x)∗ui(x)

))
=

∑

0<λ≤ǫ/3

dim
(

E1−λ

(
qi(x) − ui(x)ui(x)∗

))
.

Thus,

Ind
(

ui(x0)
)

= dim
(

E1

(
pi(x0) − ui(x0)∗ui(x0)

))
− dim

(
E1

(
qi(x0) − ui(x0)ui(x0)∗

))

= dim
(

E1

(
pi(x) − ui(x)∗ui(x)

))
− dim

(
E1

(
qi(x) − ui(x)ui(x)∗

))

= Ind
(

ui(x)
)

for |x − x0| < δ.

The claim follows from the fact that each Xi is connected.

We will denote the index of ui on Xi by ti . If ui(xi) = vi |ui(xi)| is a polar decom-

position of ui(xi) in B(H) and ui−1(xi) = vi−1|ui−1(xi)| is a polar decomposition of

ui−1(xi), then

ti =
[

pi(xi) : v∗i vi

]
−
[

qi(xi) : viv
∗
i

]
,

ti−1 =
[

pi−1(xi) : v∗i−1vi−1

]
−

[
qi−1(xi) : vi−1v∗i−1

]
.

(4.1)

The facts that pi(xi)−pi−1(xi), qi(xi)−qi−1(xi) ∈ K imply that ui(xi)−ui−1(xi) ∈ K.

Then it is easily shown that

vi − vi−1 ∈ K, v∗i vi − v∗i−1vi−1, viv
∗
i − vi−1v∗i−1 ∈ K.

By Proposition 2.2,

[
pi(xi) : pi−1(xi)

]
=

[
pi(xi) : v∗i vi

]
+
[

v∗i vi : v∗i−1vi−1

]
+
[

v∗i−1vi−1 : pi−1(xi)
]
,

[
qi(xi) : qi−1(xi)

]
=

[
qi(xi) : viv

∗
i

]
+
[

viv
∗
i : vi−1v∗i−1

]
+
[

vi−1v∗i−1 : qi−1(xi)
]
.
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By subtracting, we have

[
pi(xi) : pi−1(xi)

]
−
[

qi(xi) : qi−1(xi)
]
=

ti − ti−1 +
[

v∗i vi : v∗i−1vi−1

]
−
[

viv
∗
i : vi−1v∗i−1

]
.

Let W,V be isometries such that WW ∗
= v∗i vi ,VV ∗

= v∗i−1vi−1. Then V ′
=

vi−1V,W ′
= viW are isometries such that V ′V ′∗

= vi−1vi−1
∗,W ′W ′∗

= viv
∗
i .

Then

[viv
∗
i : vi−1v∗i−1] = Ind(V ′∗W ′) = Ind(V ∗v∗i−1viW )

= Ind(V ∗v∗i viW ) (vi−1 − vi ∈ K)

= Ind(V ∗WW ∗W ) = Ind(V ∗W )

= [v∗i vi : v∗i−1vi−1].

Thus, if we let ki = [pi(xi) : pi−1(xi)], li = [qi(xi) : qi−1(xi)], then we have

(4.2) ti − ti−1 = ki − li .

Proposition 4.2 Suppose there is a partial isometry π(u) in C(I), where I =

C(−∞,∞) ⊗ K or C(T) ⊗ K, such that π(u)∗π(u) = p and π(u)π(u)∗ = q for some

u in M(I). If (p0, . . . , pn) and (q0, . . . , qn) are local liftings of p and q respectively, then

n∑

i=1

[
pi(xi) : pi−1(xi)

]
=

n∑

i=1

[
qi(xi) : qi−1(xi)

]

or, in the circle case,

n∑

i=1

[
pi(xi) : pi−1(xi)

]
+
[

p0(x0) : pn(x0)
]

=

n∑

i=1

[
qi(xi) : qi−1(xi)

]
+
[

q0(x0) : qn(x0)
]
.

Proof By taking a sum in both sides of (4.2), we have
∑

ki −
∑

li = tn − t0. Using

the second part of Proposition 4.1 we have tn = t0 = 0.

In the circle case, add (4.2) for i = 1, . . . , n + 1 (i taken modulo n + 1).

Lemma 4.3 If a projection f in C(I), where I = C(−∞,∞) ⊗ K or C(T) ⊗ K,

has two different local liftings ( f1, . . . , fn) and (g1, . . . , gn), then
∑

[ fi(xi) : fi−1(xi)] =∑
[gi(xi) : gi−1(xi)].

Proof Note that

[
gi(xi) : fi(xi)

]
+
[

fi(xi) : fi−1(xi)
]

+
[

fi−1(xi) : gi−1(xi)
]
=

[
gi(xi) : gi−1(xi)

]
.
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Equivalently,

[
fi(xi) : fi−1(xi)

]
−
[

gi(xi) : gi−1(xi)
]
=

[
fi(xi) : gi(xi)

]
−

[
fi−1(xi) : gi−1(xi)

]
.

Hence, by Corollary 2.6, in the (−∞,∞)-case

∑[
fi(xi) : fi−1(xi)

]
−
∑[

gi(xi) : gi−1(xi)
]
=

[
fn(xn) : gn(xn)

]
−
[

f0(x1) : g0(x1)
]
.

Since fn − gn ∈ C0[xn,∞) ⊗ K and f0 − g0 ∈ C0(−∞, x1] ⊗ K, [ fn(xn) : gn(xn)] =

[ f0(x1) : g0(x1)] = 0 by Corollary 2.6, and the conclusion follows.

In the circle case the conclusion follows similarly, by adding n + 1 equations.

Now we are ready to define a map χ : K0(C(I)) → Z as follows: Let α = [p] − [q]

be an element of K0(C(I)), and let (p0, . . . , pn) and (q0, . . . , qn) be local liftings of p

and q respectively. Then

χ(α) =

n∑

i=1

[
pi(xi) : pi−1(xi)

]
−

n∑

i=1

[
qi(xi) : qi−1(xi)

]

or

n+1∑

i=1

[
pi(xi) : pi−1(xi)

]
−

n+1∑

i=1

[
qi(xi) : qi−1(xi)

]

with xn+1 = x0 in the case X = [0, 1]/{0, 1}. Note that χ is well defined by Proposi-

tion 4.2 and Lemma 4.3. The next goal is to show that χ is an isomorphism.

Lemma 4.4 Let (p0, . . . , pn) and (q0, . . . , qn) be local liftings of p and q such that

rank(1 − qi(x)) = rank(qi(x)) = ∞ for each x in Xi .

If
n∑

i=1

[pi(xi) : pi−1(xi)] =

n∑

i=1

[qi(xi) : qi−1(xi)],

or, in the circle case,

n∑

i=1

[
pi(xi) : pi−1(xi)

]
+
[

p0(x0) : pn(x0)
]

=

n∑

i=1

[
qi(xi) : qi−1(xi)

]
+
[

q0(x0) : qn(x0)
]
,

then we can find a perturbation (q ′
0, . . . , q

′
n) of q such that [pi(xi) : pi−1(xi)] =

[q ′
i (xi) : q ′

i−1(xi)] for i = 1, . . . , n (in the circle case, i = 1, . . . , n + 1 with i mod-

ulo n + 1).
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Proof Let [pi(xi) : pi−1(xi)] = ki , [qi(xi) : qi−1(xi)] = li , and di = ki − li . Then note

that
∑

di = 0 by assumption.

Let q ′
0 = q0. Suppose that we have q ′

0, . . . , q
′
i such that [p j(x j) : p j−1(x j)] =

[q ′
j(x j) : q ′

j−1(x j)] = k j for j = 1, . . . , i. Then [qi+1(xi+1) : q ′
i (xi+1)] = li+1 −

∑i
k=1 dk

by Lemma 4.3.

If di+1 +
∑i

k=1 dk ≥ 0, let q be a projection-valued (norm continuous) function

such that q ≤ 1 − qi+1 and rank(q(x)) = di+1 +
∑i

k=1 dk, using Lemma 3.3.

Take q ′
i+1 = q + qi+1. Then

[q ′
i+1(xi+1) : q ′

i (xi+1)] = [qi+1(xi+1) : q ′
i (xi+1)] + [q(xi+1) : 0]

= li+1 −
i∑

k=1

dk + di+1 +

i∑

k=1

dk

= li+1 + ki+1 − li+1 = ki+1

If di+1 +
∑i

k=1 dk < 0, let q be a projection-valued (norm continuous) function

such that q ≤ qi+1 and rank(q(x)) = −(di+1 +
∑i

k=1 dk) , take q ′
i+1 = qi+1 − q.

Note that

[
q ′

i+1(xi+1) : q ′
i (xi+1)

]
+
[

q(xi+1) : 0
]
=

[
qi+1(xi+1) : q ′

i (xi+1)
]

Thus

[
q ′

i+1(xi+1) : q ′
i (xi+1)

]
= li+1 −

i∑

k=1

dk +

(
di+1 +

i∑

k=1

dk

)

= li+1 + di+1 = ki+1

In the (−∞,∞)-case we continue this recursion through step n−1 and take q ′
n = qn.

In the circle case we continue the recursion through step n. In both cases we have

directly obtained all but one of the equations [qi(xi) : qi−1(xi)] = ki , and the last

follows from the hypothesis and Lemma 4.3.

Next we have an analogous result that is more symmetrical.

Lemma 4.5 Let (p0, . . . , pn) and (q0, . . . , qn) be local liftings of p and q such that

rank(pi(x)) = rank(qi(x)) = ∞ for each x in Xi .

If

∑[
pi(xi) : pi−1(xi)

]
=

∑[
qi(xi) : qi−1(xi)

]

or
∑[

pi(xi) : pi−1(xi)
]
=

∑[
q ′

i (xi) : q ′
i−1(xi)

]

for i = 1, . . . , n + 1 modulo n + 1, then we can find perturbations (q ′
0, . . . , q

′
n) of q and

(p ′
0, . . . , p ′

n) of p such that [p ′
i (xi) : p ′

i−1(xi)] = [q ′
i (xi) : q ′

i−1(xi)] for all i.
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Proof The proof proceeds as above with one exception: If di+1 +
∑i

k=1 dk ≥ 0, we

make p ′
i+1 ≤ pi rather than making q ′

i+1 ≥ qi .

Theorem 4.6 The map χ : K0(C(I)) → Z is an isomorphism. Thus [p] = [q] if

and only if
∑

ki =
∑

li where (p0, . . . , pn) and (q0, . . . , qn) are local liftings of two

projections p and q respectively, and ki = [pi(xi) : pi−1(xi)], li = [qi(xi) : qi−1(xi)].

Proof Suppose that α = [p] − [q] is an element of K0(C(I)) such that χ(α) = 0.

Replace p with p⊕1⊕0 and q with q⊕1⊕0, and choose local liftings (p0, . . . , pn)

and (q0, . . . , qn).

Then by Lemma 4.4 we arrange ki = li for each i. Since rank(pi(x)) =

rank(qi(x)) = ∞, there is a (double) strongly continuous function ui on each Xi

such that ui
∗ui = pi , uiui

∗
= qi (see Theorem A.1). Note that ui−1(x) is a unitary

from pi−1(x)H onto qi−1(x)H so that Ind(ui−1(xi)) = 0. Then ki = li implies that

Ind
(

qi(xi)ui−1(xi)pi(xi)
)
= −li + Ind

(
ui−1(xi)

)
+ ki = 0,

where the first index is for maps from pi(xi)H to qi(xi)H, and, for example, the index

of pi−1(xi)pi(xi) as a map from pi(xi)H to pi−1(xi)H is ki . Also

qi(xi)ui−1(xi)pi(xi) − ui−1(xi) ∈ K.

There is a compact perturbation vi of qi(xi)ui−1(xi)pi(xi) such that v∗i vi = pi(xi),

viv
∗
i = qi(xi), and vi − ui−1(xi) ∈ K. By the triviality of the continuous field of

Hilbert spaces determined by pi and the path connectedness of the unitary group of

B(H), there is a path {v(t) : t ∈ [xi , x]} such that v(t)∗v(t) = v(t)v(t)∗ = pi(t),

v(xi) = ui(xi)
∗vi , and v(x) = pi(x) for some x in Xi . Then we let wi = uiv on [xi , x]

so that

wi(xi) − ui−1(xi) = vi − ui−1(xi) ∈ K,

w∗
i wi = v∗ui

∗uiv = v∗piv = pi ,

wiw
∗
i = uivv∗ui

∗
= ui piui

∗
= qi .

Finally, we define

u ′
i =

{
wi , on [xi , x],

ui , on [x, xi+1].

In the (−∞,∞)-case we do the above for i = 1, . . . , n and let u ′
0 = u0. In the circle

case we do it for i = 0, . . . , n. This shows that p ∼ q and completes the proof of the

injectivity of χ. The surjectivity of χ is fairly obvious and will follow from examples

presented later in this section.

Corollary 4.7 Suppose that (p0, . . . , pn) and (q0, . . . , qn) are local liftings of two

projections in C(I). If rank(pi(x)) = rank(qi(x)) = ∞ for some i, then there exists

a strongly continuous operator valued function ui such that ui
∗ui = pi , uiui

∗
= qi ,

and ui(xi) − ui−1(xi) ∈ K if and only if ki = li , where ki = [pi(xi) : pi−1(xi)] and

li = [qi(xi) : qi−1(xi)].
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Corollary 4.8 [p]0 is liftable if and only if p ⊕ 1 ⊕ 0 is liftable.

Proof Since K0(M(I)) = 0, we know that [p]0 is liftable if and only if [p]0 = 0. The

latter is equivalent to
∑

ki = 0. Thus, if [p]0 is liftable, then p ⊕ 1 ⊕ 0 is liftable to a

projection by Theorem 3.4.

Conversely, since the theorem implies that [p⊕1⊕0] = [p], the liftability of p⊕1⊕0

implies the liftability of [p].

Remark 4.9 In the cases X = [0, 1] and X = [0,∞), which correspond to

K0(C(I)) = 0, p is always liftable when there is a local representation of p such that

all the ranks and coranks are infinite.

In the following we further apply the tools involving Fredholm indices and essen-

tial codimensions to characterize other equivalence relations as well. From now on X

can be any of [0, 1], [0,∞), (−∞,∞), or [0, 1]/{0, 1}.

Proposition 4.10 Suppose that two projections p, q ∈ C(I) are represented by local

liftings (p0, . . . , pn), (q0, . . . , qn) respectively. Let ki = [pi(xi) : pi−1(xi)] and li =

[qi(xi) : qi−1(xi)] for i = 1, . . . , n. Then p ∼ q in C(I) if and only if there exist (finite)

ti ’s such that

(i) rank(pi(x)) = ti + rank(qi(x)), ∀x ∈ Xi ,

(ii) ti − ti−1 = ki − li ,

(iii) ti = 0 if Xi has an infinite endpoint.

Proof Assume that p ∼ q in C(I). As we already observed, we then have a

(u0, . . . , un) such that qi − uiu
∗
i , pi − u∗

i ui ∈ C(Xi) ⊗ K. We derived (ii) and (iii)

in (4.2) and Proposition 4.1, where ti denotes the Fredholm index of ui(x) as an op-

erator from pi(x)H to qi(x)H. If rank(pi(x)) is finite, the formula (4.1) implies that

rank(qi(x)) is also finite and Ind(ui(x)) = ti = rank(pi(x)) − rank(qi(x)). Similarly,

if rank(pi(x)) is infinite, rank(qi(x)) is also. Thus rank(pi(x)) = rank(qi(x)) + ti

holds. Thus (i) is proved.

Conversely if rank(pi(x)) = rank(qi(x)) + ti and ti ≥ 0 for a particular i, then

rank(pi(x)) ≥ ti , thus there is a norm continuous projection-valued function p ≤ pi

such that rank(p(x)) = ti by Lemma 3.3. Let p ′
i = pi − p, q ′

i = qi . And if ti < 0,

then −ti ≤ rank(qi(x)), and we let q ′
i = qi − q, rank q = −ti , and p ′

i = pi . Then

(p ′
0, . . . , p ′

n) and (q ′
0, . . . , q

′
n) are local liftings for p and q, and we have reduced to

the case ti = 0.

So there are continuous functions ui such that ui
∗ui = p ′

i , uiui
∗
= q ′

i by Proposi-

tion A.4. It follows that

Ind
(

q ′
i (xi)ui−1(xi)p ′

i (xi)
)

= −
[

q ′
i (xi) : q ′

i−1(xi)
]

+ Ind
(

ui−1(xi)
)

+
[

p ′
i (xi) : p ′

i−1(xi)
]
= 0

and

q ′
i (xi)ui−1(xi)p ′

i (xi) − ui−1(xi) ∈ K.

Then by Lemma A.6 we can perturb ui to get u ′
i such that u ′

i (xi)− u ′
i−1(xi) ∈ K as in

the proof of Theorem 4.6.
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Remark 4.11 Although we changed local representations in the second part of the

above proof, it is not hard to see that, in terms of the given local representations, we

recover the original ti ’s via the process discussed before and after Proposition 4.1.

Since p ∼u q is equivalent to p ∼ q and 1 − p ∼ 1 − q, we get the following

statement immediately from Proposition 4.10.

Corollary 4.12 Suppose that two projections p, q ∈ C(I) are represented by local

liftings (p0, . . . , pn), (q0, . . . , qn) respectively. Let ki = [pi(xi) : pi−1(xi)] and li =

[qi(xi) : qi−1(xi)] for i = 1, . . . , n. Then p ∼u q in C(I) if and only if there exist (finite)

ti ’s and si ’s such that

(i) rank(1 − pi(x)) = si + rank(1 − qi(x)), ∀x ∈ Xi ,

(ii) rank(pi(x)) = ti + rank(qi(x)), ∀x ∈ Xi ,

(iii) ti − ti−1 = ki − li ,

(iv) si + ti = si−1 + ti−1,

(v) ti and si are zero if Xi has an infinite endpoint.

In general, p ∼h q in C(I) if and only if upu∗
= q, where u is connected to 1 in the

unitary group of C(I). It is said that a (non-unital) C∗-algebra A has good index theory

if whenever A is embedded as an ideal of a unital C∗-algebra B and u is a unitary in

B/A such that ∂1([u]) = 0 in K0(A), there is a unitary in B that lifts u (see [2, 2–3]).

It was proved by G. Nagy [13] that any stable rank one C∗-algebra has good index

theory. Since I is of the form C(X) ⊗ K where dim X ≤ 1, I has stable rank one and

I has good index theory. Also, recall that the unitary group of the multiplier algebra

of a stable C∗-algebra is path connected (even contractible). Thus in our situation

p ∼h q if and only if upu∗
= q where u has trivial K1-class.

Corollary 4.13 Suppose that two projections p, q in C(I) are represented by local

liftings (p0, . . . , pn), (q0, . . . , qn) respectively. Let ki = [pi(xi) : pi−1(xi)] and li =

[qi(xi) : qi−1(xi)] for i = 1, . . . , n. Then p ∼h q in C(I) if and only if there exist (finite)

ti ’s, si ’s such that

(i) rank(1 − pi(x)) = si + rank(1 − qi(x)), ∀x ∈ Xi ,

(ii) rank(pi(x)) = ti + rank(qi(x)), ∀x ∈ Xi ,

(iii) ti − ti−1 = ki − li ,

(iv) si + ti = si−1 + ti−1 = 0,

(v) ti and si are zero if Xi has an infinite endpoint.

Proof Assume that p ∼h q; i.e., upu∗
= q where u has trivial K1-class. Then

(i),(ii),(iii), the first equality of (iv), and (v) follow from Corollary 4.12. By good

index theory there is a unitary u in M(I) such that upiu
∗ − qi ∈ C(Xi) ⊗ K for

each i. Hence qi(x)u(x)pi(x) and (1 − qi(x))u(x)(1 − pi(x)) are Fredholm opera-

tors from pi(x)H to qi(x)H and from (1 − pi(x))H to (1 − qi(x))H respectively. If

ti = Ind(qi(x)u(x)pi(x)) and si = Ind((1 − qi(x))u(x)(1 − pi(x)), then the proof of

Proposition 4.1 and the related discussion imply that

ti + si = Ind
(

qi(x)ui(x)pi(x)
)

+ Ind
(

(1 − qi(x))ui(x)(1 − pi(x))
)

= 0.
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For the converse direction we may assume X has no infinite endpoints, since other-

wise K1(C(I)) = 0. Then as in the proof of Proposition 4.10, we construct v,w in C(I)

such that v∗v = p, vv∗ = q, w∗w = 1 − p, ww∗
= 1 − q. Then, cf. Remark 4.11,

v and w are given by local representations (v0, . . . , vn), (w0, . . . ,wn), where vi(x) is a

Fredholm operator of index ti from pi(x)H to qi(x)H and wi(x) is a Fredholm oper-

ator of index si from (1 − pi(x))H to (1 − qi(x))H. Now if u = v + w, we see that

[u]1 = Ind(vi + wi) = 0 via the map K1(C(I)) → K0(I) → K0(K) ≃ Z, which is

induced from evaluation at a point.

We conclude this section with some examples, in particular including a projection

in C(I) that does not lift (stably) but whose K0-class does lift.

Example 4.14 Consider a partition {x1, x2} that divides X into three subintervals

X0,X1,X2. Let p be given by a local representation (p0, p1, p2), where

rank(p0(x1)) = rank(p2(x2) = 1,

rank(p1(x1)) = rank(p1(x2)) = 0,

p0(0) = p2(1) = 1 if X = [0, 1]/{0, 1},

∃a ∈ X1 such that p1(a) = 1,

∃b ∈ X0 such that p0(b) = 0

The last condition may be omitted if X has an infinite endpoint.

Then k1 = −1, k2 = 1 (and k0 = 0 in the circle case). Thus the K0-class of p

is 0. Condition (3.1) is equivalent to l0 = l2 and l1 = l0 + 1. If X has no infinite

endpoint, by the last condition either (3.2) or (3.4)) implies l0 ≥ 0, and (3.3) implies

l1 ≤ 0. Thus p does not lift, and similar reasoning shows that p ⊕ · · · ⊕ p does

not lift. However, p ⊕ 0 is liftable, since we may now take l0 = l2 = 0, l1 = 1.

If X has no infinite endpoint, then p ⊕ 1 is also liftable, since we may then take

l0 = l2 = −1, l1 = 0. But in all cases 1 − p is an example of a non-liftable projection

such that (1 − p) ⊕ 1 is liftable.

Example 4.15 (a) There are easy examples to show that [p] = [q] does not imply

p ∼ q and that p ∼ q does not imply p ∼u q. For the first take p = 1 and q = 0, and

for the second take p = 1 ⊕ 1 and q = 1 ⊕ 0, noting that M2(C(I)) ≃ C(I).

(b) We can also illustrate these phenomena with [p] = [q] 6= 0 using a partition

into two subintervals:

For the first, in the (−∞,∞)-case, let rank(p0(x1)) = a, rank(p1(x1)) = b,

rank(q0(x1)) = c, and rank(q1(x1)) = d, where a, b, c, d < ∞, b − a = d − c,

but a 6= c. In the circle case add the condition p0(0) = p1(1) = q0(0) = q1(1) = 0.

For the second, note that if pi ’s and qi ’s just above have finite rank everywhere,

then 1 − p ∼ 1 − q though p ≁ q.

If X has an infinite endpoint, then K1(C(I)) = 0, and hence p ∼u q implies

p ∼h q. The next example shows that this implication does not hold in the other two

cases.
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Example 4.16 Let p and q be given by projection-valued functions defined on all

[0, 1](the partition is irrelevant here). Take p so that

rank
(

p(1/2)
)
= 1, p(0) = p(1) = 1, and rank

(
p(x)) = rank((1 − p)(x)

)
= ∞

for x 6= 0, 1/2, 1. Similarly, rank(q(1/2)) = 0, q(0) = q(1) = 1, and rank(q(x)) =

rank((1 − q)(x)) = ∞ for x 6= 0, 1/2, 1. Then p ∼ q and all ti ’s must be 1, and

1 − p ∼ 1 − q and all si ’s must be 0.

A Appendix

In this section, we show some results about continuous fields of Hilbert spaces that

were used implicitly or explicitly in this article. We refer the reader to [7, 8] for a

complete introduction to this notion. Recall that a continuous field of Hilbert spaces

over a topological space X is a family of Hilbert spaces (Hx)x∈X together with a vector

space Γ consisting of vector sections ξ in the product space
∏

x∈X Hx satisfying the

following two conditions:

(1) The norm x → ‖ξ(x)‖ is continuous on X for each ξ ∈ Γ.

(2) The set {ξ(x) | ξ ∈ Γ} is norm dense in Hx for each x ∈ X.

If Hx is the same Hilbert space H for every x, and Γ consists of all continuous map-

pings of X into H, H is called a constant field. A field (isometrically) isomorphic to

a constant field is said to be trivial. If H
′

= ((H
′

x )x∈X,Γ
′

) is a continuous filed of

Hilbert spaces over T, H
′

x is a closed subspace of Hx for each t , and Γ
′

⊂ Γ, then H
′

is called a subfield of H. Furthermore, we call H
′

= ((H
′

x )x∈X,Γ
′

) a complemented

subfield of H = ((Hx)x∈X,Γ) if there is a subfield H
′ ′

= ((H
′ ′

x )x∈X,Γ
′ ′

) such that

H
′

x ⊕H
′ ′

x = Hx for every x. Also, we say that H is separable if Γ has a countable subset

Λ such that {ξ(x) | ξ ∈ Λ} is dense in Hx for each x. As we already mentioned, com-

plemented subfields of the constant field over X are in one-to-one correspondence

with strongly continuous projection-valued functions from X to B(H).

Theorem A.1 ([7, Lemma 10.8.7]) If X is paracompact and of finite dimension, ev-

ery separable continuous field H = ((Hx)x∈X,Γ) of Hilbert spaces over X such that

dim(Hx) = ∞ for every x is trivial. Thus two continuous fields H, H ′ of Hilbert spaces

over X such that dim Hx = dim H ′
x = ∞ are isomorphic.

Theorem A.2 ([8]) Let X be a paracompact space and let H be a separable continuous

field of Hilbert spaces over X. Then it is isomorphic to a complemented subfield of a

trivial field, and thus is isomorphic to a continuous field defined by a strongly continuous

projection-valued function p : X 7→ B(H).

Given any continuous field H = ((Hx)x∈X,Γ) and any closed subset A of X, there

is a continuous subfield H
0 such that

H0
x =

{
Hx, x /∈ A,

0, x ∈ A.

Lemma A.3 and Proposition A.4 may be known by experts and could be deduced

from Robert and Tikuisis [15, Theorem 4.3], but we shall give our proofs of these for
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the convenience of readers. We denote by dim the covering dimension of a topologi-

cal space.

Lemma A.3 If X is a separable metric space such that dim X ≤ 1, if H is a continuous

field of Hilbert spaces over X such that Hx 6= 0 for every x ∈ X, if f is a continuous

section of H, and if ǫ > 0, then there is a continuous section g such that ‖g(x)− f (x)‖ <
ǫ and g(x) 6= 0 for every x ∈ X.

Proof There is a countable open cover {Un} of X such that each H|Un
has a non-

vanishing section. By paracompactness of X there is a closed, locally finite refine-

ment, {Fn}, for {Un}. Then for each n we have

(A.1) H|Fn
= Ln ⊕Kn,

where Ln is a trivial subfield of rank one. Choose a strictly increasing sequence {ǫn}
of positive numbers such that ǫn < ǫ. We will recursively construct compatible sec-

tions gn over Fn such that gn(x) 6= 0 and ‖gn(x) − f (x)‖ ≤ ǫn for every x ∈ Fn. The

local finiteness ensures that the resulting global section g is continuous on X.

To construct gn, let A = Fn ∩ (
⋃n−1

k=1 Fk)(A = ∅ if n = 1). We have a non-vanishing

section g ′ on A such that ‖g ′(x) − f (x)‖ ≤ ǫn−1 for every x ∈ A, and we wish to ex-

tend g ′ to Fn. Choose ǫ ′ and ǫ ′ ′ so that ǫn−1 < ǫ ′ < ǫ ′ ′ < ǫn, and write f = f 1 ⊕ f 2,

g ′
= g1 ⊕ g2 relative to the decomposition (A.1).

We first extend g2 to all of Fn so that ‖g2(x) − f 2(x)‖ ≤ ǫ ′ for every x ∈ X. To

do this, let h be an arbitrary extension of g2 to Fn, which exists by [8, Proposition

7]. Then let B = {x ∈ Fn | ‖h(x) − f 2‖ ≥ ǫ ′}, and note that A ∩ B = ∅. Let

φ : Fn 7→ [0, 1] be a continuous function such that φ|B = 1 and φ|A = 0, and take

g2
= φ f 2 + (1 − φ)h.

Next, we extend g1 to a section k on all of Fn so that ‖k(x) − f 1(x)‖2 + ‖g2(x) −
f 2(x)‖2 ≤ (ǫ ′ ′)2. It will be convenient to identify sections of Ln with complex valued

functions and define

φ(s, z) =

{
z, if |z| ≤ s,

s z
|z| , if |z| > s,

for s > 0 and z ∈ C. Thus φ is continuous on (0,∞) × C. Now extend the function

g1 − f 1 to l on Fn and let k(x) = f 1(x) + φ(σ(x), l(x)), where

σ(x) = ((ǫ ′ ′)2 − ‖g2(x) − f 2(x)‖2)1/2.

Finally, we must modify k to obtain the non-vanishing property without changing

k|A. Let

C = {x ∈ Fn | g2(x) = 0}, D = {x ∈ C | k(x) = 0}, and δ =
ǫn − ǫ ′ ′

2
.

Since D ∩ A = ∅, there is an open neighborhood V of D such that V ∩ A = ∅. Let

G = V ∩ C and E = ((V \ V ) ∩ C) ∪ {x ∈ G | ‖k(x)‖ = δ}. By dimension theory,
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there is a non-vanishing continuous function r on G such that r|E = k|E. Then define

g1|C by

g1(x) =

{
φ(δ, r(x)) if x ∈ V ∩C and ‖k(x)‖ < δ,

k(x) otherwise on C.

Note that if xn ∈ V ∩ C , ‖k(xn)‖ < δ and if xn → x for some x not satisfying these

conditions, then r(x) = k(x) and ‖k(x)‖ ≤ δ. Thus

g1(xn) → φ(δ, r(x)) = k(x)

This implies that g1 is continuous on C and ‖g1 − k‖ < 2δ.

Now g1 is defined on C ∪ A, and we extend g1 to Fn so that ‖g1(x) − k(x)‖ ≤ 2δ
for every x in Fn. This can be done as in the previous paragraph. Then gn = g1 ⊕ g2

satisfies all required properties.

Proposition A.4 If X is a separable metric space such that dim X ≤ 1, and if H and

K are separable continuous fields of Hilbert spaces over X such that dim Hx = dim Kx

for every x ∈ X, then H ∼= K.

Proof For n = 1, 2, . . . , let Un = {x ∈ X | dim Hx ≥ n}, an open set. Let Ln

be a trivial line bundle over Un, extended by zero as to be a continuous field over X.

Thus continuous sections of Ln can be identified with continuous complex-valued

functions on X that vanish on X r Un. We will show that H ∼=
⊕∞

1 Ln. Since the

same argument applies to K, the result follows.

To do this, we construct recursively a sequence {en} such that en is a continuous

section of H|Un
, such that

‖en(x)‖ = 1 for every x ∈ Un, 〈en(x), em(x)〉 = 0 if n < m and x ∈ Um.

We will impose additional conditions on the en’s, but first we point out that any such

en’s give rise to complemented subfields Mn, where (Mn)x = span(en(x)). Moreover

if we write H = H
′
n ⊕M1 ⊕ · · ·⊕Mn, then dim(H ′

n)x = max(dim Hx − n, 0). It will

be enough to consider the case n = 1. Note that for any continuous section f of H

the function c1 defined by

c1(x) =

{
〈 f (x), e1(x)〉, x ∈ U1

0, x /∈ U1

is continuous, since |〈 f (x), e1(x)〉| ≤ ‖ f (x)‖ and f vanishes on X \ U1. Thus g =

f −c1e1 may be regarded as a continuous section of H such that ‖g(x)‖2
= ‖ f (x)‖2−

‖c1(x)‖2. This implies that H ′
1 = M

⊥
1 is indeed a continuous subfield of H. The

dimension formula given above is obvious, and it follows that {x | dim(H ′
n)x ≥

1} = Un+1. Now we proceed by induction on n, working with H
′
1 instead of H.

Let { fm} be a sequence of continuous sections of H such that Hx = span( fm(x))

for each x. Let {gn} be a sequence that includes each fm infinitely many times. We

choose the en’s so that for each n and x, the projection of gn(x) on (H ′
n)x has norm at

most 1/n. If this is so, then H ∼=
⊕

Mn, and since Mn
∼= Ln, the result follows.
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Assume that ek has already been constructed for k < n. Let h be the H
′
n−1 com-

ponent of gn. Apply Lemma A.3 to H
′
n−1|Un

and h|Un
with ǫ = 1/n. (Recall that

Un = {x | (H ′
n−1)x 6= 0}.) Thus we obtain a non-vanishing section l on Un, such

that ‖h(x) − l(x)‖ ≤ 1/n for every x. If en(x) = l(x)/‖l(x)‖, then en satisfies all our

requirements.

Corollary A.5 If X is a separable metric space such that dim(X) ≤ 1 and H is a

continuous field of Hilbert spaces over X such that dim(Hx) ≥ n for every x in X, then

H has a trivial subfield of rank n. Equivalently, if p is a strongly continuous projection-

valued function on X such that rank(p(x)) ≥ n for every x in X, then there is a norm

continuous projection-valued function q such that q ≤ p and rank(q(x)) = n for every

x ∈ X.

Proof This follows from the above proof. The required subfield is M1 ⊕ · · · ⊕Mn.

If H is a trivial field over an interval [a, b], for any unitary u on Ha we always

have a continuous path of unitaries connecting u and 1 over [a, b]. But the triviality

condition of a given continuous field can be loosened as follows. Here again we do

not claim any originality.

Lemma A.6 Let H be a separable continuous field of Hilbert spaces over an interval

[a, b] and u a unitary operator on Ha. Then there is a unitary endomorphism v of H

such that v(a) = u and v(b) = 1.

Proof There is a self-adjoint h in B(Ha) such that eih
= u. Let H ′ be a trivial infinite

rank continuous field on [a, b] and H
′ ′
= H ⊕H

′, so that H ′ ′ is also trivial. Then

there is a self-adjoint endomorphism k of H ′ ′ such that k(a) = h ⊕ 0. Let p be the

obvious projection from H
′ ′ to H, and let h̃ = pkp, regarded as an endomorphism

of H. Then let v = eiφh̃, where φ is a continuous scalar function such that φ(a) = 1

and φ(b) = 0.

The following fact, which is needed for examples in Section 4, may be known to

experts, but we could not locate any reference, so we give our proof.

Proposition A.7 Let φ and ψ be lower semi-continuous functions on X, taking values

in {0, 1, . . . , n, . . . ,∞}. Suppose that φ(x) + ψ(x) is infinite everywhere. Then there

exists a strongly continuous projection-valued function p on X such that for any x in X

rank(p(x)) = φ(x) and rank((1 − p)(x)) = ψ(x).

Proof For n = 1, . . . , let Un = {x | φ(x) ≥ n} and Vn = {x | ψ(x) ≥ n}. Then

the Un’s and Vn’s are open sets. Let Ln be as in the proof of Proposition A.4, and

L = ⊕∞
1 Ln. Similarly define Mn and M using the Vn’s. Then L ⊕ M has infinite

rank everywhere and hence is isomorphic to H∞. Thus L may be regarded as a

complemented subfield of H∞ and is therefore given by a projection-valued function

with the required properties.
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