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Abstract

Different methods are used to show that a finite or countable product of Lindelof scattered spaces is
Lindelof. Also, a technique of Kunen is modified to yield results concerning the Lindelof degree of the
Gs- and Ga-topologies on the countable product of compact scattered spaces.
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Introduction

Since 1947, when R. H. Sorgenfrey [7] gave an example of a Lindelof space whose
cartesian product with itself was not normal, numerous questions have arisen
concerning the products of Lindelof spaces. We examine here the products of
Lindelof scattered spaces. Telgarsky [9] has shown that the product of a Lindelof
C-scattered space with a Lindelof space is Lindelof. We show by a different
method that the finite product of Lindelof scattered spaces is Lindelof. By
looking at <?-spaces and also by examining the totally Lindelof property, we are
able to show that a countable product of Lindelof scattered spaces is Lindelof.

In Section 3 we look at the Lindelof degree of the Gs- and Ga-topologies on
countable products of compact scattered or LindelSf scattered spaces. A tech-
nique of Kunen [3] is modified to yield some results here.
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[21 Lindeldf degree of scattered spaces 99

All spaces are assumed to be Hausdorff regular. A space X is said to be
scattered if every non-empty subspace of X contains an isolated point. All ordinal
spaces are scattered. Given a space X, Xs will represent the set X with the
topology generated by the G8-sets of X. Similarly, Xa will denote the set X with
the topology generated by the Gn-sets (sets which are the intersection of no more
than a open sets) of X. L( X) denotes the Lindelof degree of X (see Juhasz [2]).
| X\ denotes the cardinality of X. The notationpn(Y) is used for the nth projection
of Y, a subset of a product space.

2. Finite and countable products

As indicated by the following lemma, the Ga-topology on a space X may be
useful in determining the Lindelof degree of the product of X with another space.

LEMMA 2.1. If L(XS) < 0, then L(X X Y) <0for every Lindelof space Y.

PROOF. Let C be an open cover of X X Y. Without loss of generality, we may
assume that every member of Q is of the form GX H where G and H are open in
X and Y, respectively.

For each x G X, {x} X Y is Lindelof and hence it can be covered by a
countable subfamily Qx C Q. For each x G X, let Gx = C\{G: GXH G Qx).
Since each Gx is a Gs-set and L(XS) < /?, there is a subfamily {Gx(yy. y < /}} of
{Gx: xEX) which covers X. Then U {6x(y): y *s P} is a subfamily of Q of
cardinality no greater than /} which covers X X Y.

Of course this result can easily be generalized to higher cardinalities:

I f L ( * J *s j8 and L(Y) ^ a, thenL(*X 7) « a • 0.

But of interest to us here is the countable case as stated in Lemma 2.1.
P. Meyer [4] showed that a compact space X is scattered if and only if Xs is

Lindelof. We give a simple proof of a strengthening in one direction of this result
without the Cantor-Bendixon decomposition type argument of Meyer.

THEOREM 2.2. If X is scattered and L(X) = w, then L(XS) = w.

PROOF. Let Q be a cover of X by Gfi-sets. Let U = {x e X: x e H and H open
in Ximplies H cannot be covered by a countable subfamily of &}. [/is closed.

Suppose U ¥= 0. Then U has an isolated point x and there is an open set
GQX such that G D U = {x}. Choose C(x) G 6 such that x E C(x). We may
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100 Marlene E. Gewand [3]

assume, without loss of generality, that C(x) = D (G(«): n < «} where, for each
n < co, G(n) is open and G(n + 1) C G{n + 1) C G(«) C G. We consider G(n)
- G(n + 1) for each n < w. Each j> E (G(H) - G(n + 1)) C X - U has a
neighborhood //(>0 which can be covered by a countable subfamily of 6.
Furthermore, the family {H(y): y E G(n) — G(n + 1)} has a countable sub-
cover since L{G(n) — G(n + 1)) = w. Hence each G(n) - G(n + 1) can be
covered by a countable subfamily Q{n) QQ. Then {C: C 6 6(n), n < u) U
(C(x)} is a countable subfamily of Q covering G, which contradicts x £ [/. Thus
[/= 0.

Since U = 0, there is a neighborhood #(x) of x, for each x E X, such that
//(x) can be covered by a countable subfamily of Q. X is Lindelof, so {H(x):
x e X} can be reduced to a countable subcover which in turn yields a countable
subcover of 6.

An extensive study of covering properties of C-scattered spaces was made by
Telgarsky [8], [9]. A space X is said to be C-scattered if every non-empty closed
subspace has a point with a compact neighborhood in that subspace. It was
shown by Telgarsky [9] that the product of a Lindelof C-scattered space with a
Lindelof space is Lindelof. By Lemma 2.1 and Theorem 2.2 we have the following
corollaries.

COROLLARY 2.3. IfL(X) - L(Y) = u and X is scattered, then L(XX Y) - u.

COROLLARY 2.4. A finite product of Lindelof scattered spaces is Lindelof.

COROLLARY 2.5. If X is Lindelof and scattered and if each point of X is a Gs, then
\X\<a.

A space A' is a ^P-space if every Gs-set in A" is open. Combining N. Noble's [5]
results on 'S'-spaces with Theorem 2.2, we can give a simple proof that the
countable product of Lindelof scattered spaces is Lindelof.

THEOREM 2.6. [5] A countable product of Lindelof ^-spaces is Lindelof.

COROLLARY 2.7. A countable product of Lindelof scattered spaces is Lindelof.

PROOF. Let {X(n): n < «} be a family of Lindelof scattered spaces. Then by
Theorem 2.2, each (X(n))s is a Lindelof 'S'-space. !!„<„(X(n))s is Lindelof by
Theorem 2.6 and since IIn<u(A'(«))s maps continuously onto Iln<uA"(n),
Un<aX(n) is also Lindelof.
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Another method of determining the Lindelof degree of a countable product of
Lindelof scattered spaces is by means of totally Lindelof spaces. J. E. Vaughan
has examined this property and its related properties in several papers; [10] and
[11] are primary sources. There are spaces which are Lindelof but not totally
Lindelof [10]. We begin with some definitions.

A filter base § is said to be finer than the filter base ^ if every member of f
contains a member of §. A filter base is said to be total [10] if each finer filter
base has an adherent point (that is, each finer filter base clusters).

A space X is totally Lindelof [11] if given a filter base ^ on X which is stable
under countable intersections (that is, if F{n) G f^for all n < «, then there exists
F G f such that F C C\ (F(n); n < «}), there is a filter base § on X such that

(i) % is stable under countable intersections,
(ii) § is finer than f, and
(iii) § is total.
With the following lemma we will be able to establish a relationship between

Lindelof scattered spaces and totally Lindelof spaces.

LEMMA 2.8. / / X is the union of a countable number of subsets each of which is
totally Lindelof, then X is totally Lindelof.

PROOF. Let X = fl {A(n): n < w} where each A(n) is totally Lindelof. Let fbe
a filter base on X which is stable under countable intersections.

For each n < w, we define a family f (n) as follows: if there exists F G 3F for
which F n A(n) = 0 , let <»(n) = 0; otherwise let f (n) = {F n A(n): F E ^ } .

We observe that there exists n* < u for which f(«*) ^ 0 . If this were not the
case, then for each n < w, we could choose F(n) G ^for which F(n) D A(n) = 0 .
Since ^is stable under countable intersections, there exists G Q H{ F(n); n <u}
and since X = U {A(n): n < w}, there exists m < u such that G n A(m) ¥= 0.
But (G n A(m)) C (F(m) n A(m)) = 0 yields a contradiction.

To see that ^(n*) is stable under countable intersections, let {F(n): n < u] be
a countable subfamily of ^(w*). For each n < w, there exists G{n) G ^such that
F(n) = G(n) n A(n*). Since f is stable there exists G E f such that G C
n {G(n): n < w}. Now G D A(n*) ¥= 0 and (G D A(n*)) C D (G(n) n A(n*):
n<u}= r\{F(n):n< w).

Since ^(n*) is stable and A(n*) is totally Lindelof, ^(AJ*) has a finer filter base
@(n*) which is total and stable under countable intersections. We note that §(«*)
is finer than ^ and thus X is totally Lindelof.

THEOREM 2.9. / / X is Lindelof and scattered, then X is totally Lindelof.
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PROOF. Suppose X is Lindelof and scattered. Let A = {x £ X: every neighbor-
hood of x fails to be totally Lindelof}.

If X = 0 , we are finished because for each x G X, there is a neighborhood
N(x) which is totally Lindelof. The family {N(x): x E X) can be reduced to a
countable subcover of X and Lemma 2.8 can be applied.

If A T̂  0 , then A has an isolated point a and there exists an open set G C X
such that G D A = {a}. We may assume, without loss of generality, that every
point of X except a has a neighborhood which is totally Lindelof. Suppose ®s is a
filter base on X which is stable under countable intersections and suppose some
finer filter base §, which is stable under countable intersections, does not cluster
at a. Then there exists G G § such that a £ G. If we can show that G is totally
Lindelof, then § will cluster in G and we will be finished. For each x 6 C , there is
a neighborhood N(x) which is totally Lindelof. Now {N(x): x G X) is an open
cover of G which is Lindelof. Hence G is a countable union of subsets each of
which is totally Lindelof and by Lemma 2.8, G is totally Lindelof.

With Theorem 2.9 and the following theorem of Vaughan, we are able to reach
our conclusion about countable products of Lindelof scattered spaces in Theorem
2.11.

THEOREM 2.10. [11] A countable product of totally Lindelof spaces is Lindelof.

THEOREM 2.11. A countable product of Lindelof scattered spaces is Lindelof.

3. The Gs- and Ga-topologies

K. Kunen [3] has shown with a most beautiful technique that the Lindelof
degree of the box product of a countable number of compact scattered spaces is
no greater than c, the cardinality of the continuum. This technique is modified to
reach conclusions about the cartesian product.

The Cantor-Bendixon decomposition of a space X is a non-increasing sequence
of closed sets of X defined inductively as follows: Let

X<°> - X,
X(a+1) _ | x £ ^(«). x i s n o t i s o l a t e d m ^(«)j; and
X(X) = fl {*<">: a < \} for X a limit ordinal.
X is scattered if and only if there exists an a such that X(a) = 0 . If A' is

scattered and compact, then the first a for which X(a) = 0 is a successor ordinal
a = /} + 1 and X(P) is finite. In this case, we say the rank of X is p.
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THEOREM 3.1. / / X(n) is compact and scattered for each n < w, then
L(.(Un<uX(n))s) < c.

PROOF. Let G be a cover of I1M<U X{n) by G8-sets. Without loss of generality,
we may assume C to be a closed cover and if C E G, then C = D {G(C),: / < w)
with G(C)t open in Iln<w X(n) for each z < w.

Consider the tree r = U (cY: y < w,}. For t E T, denote the domain of t by
dom(f) and for £ < c, let z£ be the extension of / where ?|(dom(z) + 1) = | . f r y
will denote the restriction of t to y and 0 is the empty function (dom(0) = 0).

We will define, by induction on dom(r), closed Kunen sets K{t) in such a way
that a subfamily of {K(t)\ t E T) refines G and since | T\= c, we will be finished.
Our sets K(t) will be required to satisfy conditions similar to those in Kunen's
theorem, namely:

and for each t £ T,
(n)K(t)C
(iii) K(t)= fl {AT(f | y): y < dom(f)} if dom(r) is a hmit ordinal, and
(iv) for each £ < c, either there exists C &Q such that K(t$) C C or there exists

n < (o for which rank pn(K(t£)) < rank pn(K(t)).
If these conditions are met, then we will have our refinement. The argument is

like Kunen's. If x E Un<u X(n), then by (i), (ii), and (iii), there is a function t E T
such that x E K(t r y) for every y < «,. The ranks of pn(K(t [ y)), for each «, are
non-increasing and thus eventually constant. So by (iv), we must eventually get
inside a covering set (that is, inside a member of the cover G).

Our modification of the Kunen technique comes in the way we define our
Kunen sets, K(t). We define Â (O) = Hn<aX(n) and we take intersections at the
limit stages. Now suppose K(t) has already been defined; we will define K(t£) for
each l<c. We let #, = rank/>„(/<:(0) and Z{n) = (pn(K(t))Y^\ Since each
Z(«) is finite, there exists a subfamily G' C G of cardinality c such that C covers
IIn<U)Z(n). Let g = {G: G is of the form G = G(C), for some C E <3', i < «}.
The sets #(*£). £ < c ' w i U Us t t h e c s e t s ^ s u c h t l i a t e i t h e r (a) A" = C n A"(0 for
some C E 6' or (b) A is a box, where for some n,

(l)/7n(AT) =/7M(AT(f)) - U {pn(G): G E §'} where §' C S is finite and Z(«) C

for each m * n.
Conditions (i) and (iii) are obviously met; condition (iv) will be satisfied

because of (b) (1) of the definition. We show that condition (ii) is met by
assuming x E K(t) and x £ K(tl-) of type (b). Then for each n < u and for each
finite subfamily §' C §, Z(n) C U {pn(G): G E §'} implies x(n) = pn(x) E
U {pn(G): G € §'). Furthermore, there exists z(n) E Z{n) such that for every
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G G §, z(n) G pn(G) implies x(n) G />n(G). So if C G <2' and if z(n) G />n(C) =
pn{ n (G(C),: / < «}) = fi {/>n(G(C),): » < «} , then x(n) E pn(C). Defining z G
I I n < u Z(n) so that pn(z) = z(n) for each n < «, we have for each CEG',ZEC

implies i £ C . Thus choosing C G C such that z G C, we have j t £ C n X ( r ) , a
Kunen set of type (a).

The following corollary easily follows from Theorem 3.1.

COROLLARY 3.2. / / X(n) is a a-compact, scattered space for each « < w, then
L((Un<uX(n))s)<c.

With appropriate changes in the proof of Theorem 3.1, we may further extend
the result.

THEOREM 3.3. Under GCH, ifX(n) is compact and scattered for each n < u and
if a is a limit cardinal with cf(a) > w, then L((Un<01 X(n))a) < a.

Given the closed cover G of Rn<uX(n) by Ga-sets, if C e f i , then C =
fl {G(C)p: P<a} with G(C)p open in Iln < u X(n) for each j8 < a. The proof
requires using the tree T = U {ay: y < «,} and the Kunen sets K(t) are defined,
by induction on dom(f) to meet the conditions (i)-(iv) of the proof of Theorem
3.1. To define the sets K(t£), for £ < a, we follow the route of that proof, but use
the family Q= {G: G is of the form G = G(C)p for some C G Q\ 0 < a}.

We turn our attention now to Lindelof scattered spaces. It is known that if X is
a scattered Lindelof space and a is the first ordinal such that Xia) = 0, then
either

(a) cf(a) = w, or
(b) a is a successor ordinal fi + 1 and | X(^ |*£ w.
If condition (b) is met, we may still call /? the rank of X.
There are spaces which satisfy condition (a) but which are not Lindelof. For

example, if X = w, U uu (the disjoint union), then a = uu and X is not Lindelof.
Question: If X(n) is Lindelof and scattered for each n < w, then what can be

said about L((Jln<uX(n))s)l
To answer this question, it may be necessary to consider several cases depend-

ing upon the type of Cantor-Bendixon decomposition each space X(n) possesses.
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