THE LINDELÖF DEGREE OF SCATTERED SPACES AND THEIR PRODUCTS

MARLENE E. GEWAND

(Received 1 December 1982, revised 22 March 1983)

Communicated by J. H. Rubinstein

Abstract

Different methods are used to show that a finite or countable product of Lindelöf scattered spaces is Lindelöf. Also, a technique of Kunen is modified to yield results concerning the Lindelöf degree of the G_{δ^-} and G_{α} -topologies on the countable product of compact scattered spaces.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 D 20; secondary 54 B 10. Key words and phrases: Lindelöf degree, scattered spaces, product, G_{δ} -topology, compact, totally Lindelöf, \mathcal{P} -space.

Introduction

Since 1947, when R. H. Sorgenfrey [7] gave an example of a Lindelöf space whose cartesian product with itself was not normal, numerous questions have arisen concerning the products of Lindelöf spaces. We examine here the products of Lindelöf scattered spaces. Telgársky [9] has shown that the product of a Lindelöf *C*-scattered space with a Lindelöf space is Lindelöf. We show by a different method that the finite product of Lindelöf scattered spaces is Lindelöf. By looking at \mathcal{P} -spaces and also by examining the totally Lindelöf property, we are able to show that a countable product of Lindelöf scattered spaces is Lindelöf.

In Section 3 we look at the Lindelöf degree of the G_{δ} - and G_{α} -topologies on countable products of compact scattered or Lindelöf scattered spaces. A technique of Kunen [3] is modified to yield some results here.

This work was partially supported by a grant from the Naval Academy Research Council.

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

Lindelöf degree of scattered spaces

All spaces are assumed to be Hausdorff regular. A space X is said to be scattered if every non-empty subspace of X contains an isolated point. All ordinal spaces are scattered. Given a space X, X_{δ} will represent the set X with the topology generated by the G_{δ} -sets of X. Similarly, X_{α} will denote the set X with the topology generated by the G_{α} -sets (sets which are the intersection of no more than α open sets) of X. L(X) denotes the Lindelöf degree of X (see Juhász [2]). |X| denotes the cardinality of X. The notation $p_n(Y)$ is used for the *n*th projection of Y, a subset of a product space.

2. Finite and countable products

As indicated by the following lemma, the G_{δ} -topology on a space X may be useful in determining the Lindelöf degree of the product of X with another space.

LEMMA 2.1. If $L(X_{\delta}) \leq \beta$, then $L(X \times Y) \leq \beta$ for every Lindelöf space Y.

PROOF. Let \mathcal{C} be an open cover of $X \times Y$. Without loss of generality, we may assume that every member of \mathcal{C} is of the form $G \times H$ where G and H are open in X and Y, respectively.

For each $x \in X$, $\{x\} \times Y$ is Lindelöf and hence it can be covered by a countable subfamily $\mathcal{C}_x \subseteq \mathcal{C}$. For each $x \in X$, let $G_x = \bigcap \{G: G \times H \in \mathcal{C}_x\}$. Since each G_x is a G_δ -set and $L(X_\delta) \leq \beta$, there is a subfamily $\{G_{x(\gamma)}: \gamma \leq \beta\}$ of $\{G_x: x \in X\}$ which covers X. Then $\bigcup \{\mathcal{C}_{x(\gamma)}: \gamma \leq \beta\}$ is a subfamily of \mathcal{C} of cardinality no greater than β which covers $X \times Y$.

Of course this result can easily be generalized to higher cardinalities:

If
$$L(X_{\alpha}) \leq \beta$$
 and $L(Y) \leq \alpha$, then $L(X \times Y) \leq \alpha \cdot \beta$.

But of interest to us here is the countable case as stated in Lemma 2.1.

P. Meyer [4] showed that a compact space X is scattered if and only if X_{δ} is Lindelöf. We give a simple proof of a strengthening in one direction of this result without the Cantor-Bendixon decomposition type argument of Meyer.

THEOREM 2.2. If X is scattered and $L(X) = \omega$, then $L(X_{\delta}) = \omega$.

PROOF. Let \mathcal{C} be a cover of X by G_{δ} -sets. Let $U = \{x \in X : x \in H \text{ and } H \text{ open} in X \text{ implies } H \text{ cannot be covered by a countable subfamily of } \mathcal{C}\}$. U is closed.

Suppose $U \neq \emptyset$. Then U has an isolated point x and there is an open set $G \subseteq X$ such that $G \cap U = \{x\}$. Choose $C(x) \in \mathcal{C}$ such that $x \in C(x)$. We may

assume, without loss of generality, that $C(x) = \bigcap \{G(n): n < \omega\}$ where, for each $n < \omega$, G(n) is open and $G(n + 1) \subseteq \overline{G(n + 1)} \subseteq G(n) \subseteq G$. We consider $\overline{G(n)} - G(n + 1)$ for each $n < \omega$. Each $y \in (\overline{G(n)} - G(n + 1)) \subseteq X - U$ has a neighborhood H(y) which can be covered by a countable subfamily of \mathcal{C} . Furthermore, the family $\{H(y): y \in \overline{G(n)} - G(n + 1)\}$ has a countable subcover since $L(\overline{G(n)} - G(n + 1)) = \omega$. Hence each $\overline{G(n)} - G(n + 1)$ can be covered by a countable subfamily $\mathcal{C}(n) \subseteq \mathcal{C}$. Then $\{C: C \in \mathcal{C}(n), n < \omega\} \cup \{C(x)\}$ is a countable subfamily of \mathcal{C} covering G, which contradicts $x \in U$. Thus $U = \emptyset$.

Since $U = \emptyset$, there is a neighborhood H(x) of x, for each $x \in X$, such that H(x) can be covered by a countable subfamily of \mathcal{C} . X is Lindelöf, so $\{H(x): x \in X\}$ can be reduced to a countable subcover which in turn yields a countable subcover of \mathcal{C} .

An extensive study of covering properties of C-scattered spaces was made by Telgársky [8], [9]. A space X is said to be C-scattered if every non-empty closed subspace has a point with a compact neighborhood in that subspace. It was shown by Telgársky [9] that the product of a Lindelöf C-scattered space with a Lindelöf space is Lindelöf. By Lemma 2.1 and Theorem 2.2 we have the following corollaries.

COROLLARY 2.3. If $L(X) = L(Y) = \omega$ and X is scattered, then $L(X \times Y) = \omega$.

COROLLARY 2.4. A finite product of Lindelöf scattered spaces is Lindelöf.

COROLLARY 2.5. If X is Lindelöf and scattered and if each point of X is a G_{δ} , then $|X| < \omega$.

A space X is a \mathcal{P} -space if every G_{δ} -set in X is open. Combining N. Noble's [5] results on \mathcal{P} -spaces with Theorem 2.2, we can give a simple proof that the countable product of Lindelöf scattered spaces is Lindelöf.

THEOREM 2.6. [5] A countable product of Lindelöf P-spaces is Lindelöf.

COROLLARY 2.7. A countable product of Lindelöf scattered spaces is Lindelöf.

PROOF. Let $\{X(n): n < \omega\}$ be a family of Lindelöf scattered spaces. Then by Theorem 2.2, each $(X(n))_{\delta}$ is a Lindelöf \mathcal{P} -space. $\prod_{n < \omega} (X(n))_{\delta}$ is Lindelöf by Theorem 2.6 and since $\prod_{n < \omega} (X(n))_{\delta}$ maps continuously onto $\prod_{n < \omega} X(n)$, $\prod_{n < \omega} X(n)$ is also Lindelöf.

Another method of determining the Lindelöf degree of a countable product of Lindelöf scattered spaces is by means of totally Lindelöf spaces. J. E. Vaughan has examined this property and its related properties in several papers; [10] and [11] are primary sources. There are spaces which are Lindelöf but not totally Lindelöf [10]. We begin with some definitions.

A filter base \mathcal{G} is said to be finer than the filter base \mathcal{F} if every member of \mathcal{F} contains a member of \mathcal{G} . A filter base is said to be total [10] if each finer filter base has an adherent point (that is, each finer filter base clusters).

A space X is totally Lindelöf [11] if given a filter base \mathcal{F} on X which is stable under countable intersections (that is, if $F(n) \in \mathcal{F}$ for all $n < \omega$, then there exists $F \in \mathcal{F}$ such that $F \subseteq \bigcap \{F(n); n < \omega\}$), there is a filter base \mathcal{G} on X such that

(i) \mathcal{G} is stable under countable intersections,

(ii) \mathcal{G} is finer than \mathcal{F} , and

(iii) \mathcal{G} is total.

With the following lemma we will be able to establish a relationship between Lindelöf scattered spaces and totally Lindelöf spaces.

LEMMA 2.8. If X is the union of a countable number of subsets each of which is totally Lindelöf, then X is totally Lindelöf.

PROOF. Let $X = \bigcap \{A(n): n < \omega\}$ where each A(n) is totally Lindelöf. Let \mathcal{F} be a filter base on X which is stable under countable intersections.

For each $n < \omega$, we define a family $\mathfrak{F}(n)$ as follows: if there exists $F \in \mathfrak{F}$ for which $F \cap A(n) = \emptyset$, let $\mathfrak{F}(n) = \emptyset$; otherwise let $\mathfrak{F}(n) = \{F \cap A(n): F \in \mathfrak{F}\}$.

We observe that there exists $n^* < \omega$ for which $\mathfrak{F}(n^*) \neq \emptyset$. If this were not the case, then for each $n < \omega$, we could choose $F(n) \in \mathfrak{F}$ for which $F(n) \cap A(n) = \emptyset$. Since \mathfrak{F} is stable under countable intersections, there exists $G \subseteq \bigcap \{F(n); n < \omega\}$ and since $X = \bigcup \{A(n): n < \omega\}$, there exists $m < \omega$ such that $G \cap A(m) \neq \emptyset$. But $(G \cap A(m)) \subseteq (F(m) \cap A(m)) = \emptyset$ yields a contradiction.

To see that $\mathfrak{F}(n^*)$ is stable under countable intersections, let $\{F(n): n < \omega\}$ be a countable subfamily of $\mathfrak{F}(n^*)$. For each $n < \omega$, there exists $G(n) \in \mathfrak{F}$ such that $F(n) = G(n) \cap A(n^*)$. Since \mathfrak{F} is stable there exists $G \in \mathfrak{F}$ such that $G \subseteq \cap \{G(n): n < \omega\}$. Now $G \cap A(n^*) \neq \emptyset$ and $(G \cap A(n^*)) \subseteq \cap \{G(n) \cap A(n^*): n < \omega\} = \cap \{F(n): n < \omega\}$.

Since $\mathcal{F}(n^*)$ is stable and $A(n^*)$ is totally Lindelöf, $\mathcal{F}(n^*)$ has a finer filter base $\mathcal{G}(n^*)$ which is total and stable under countable intersections. We note that $\mathcal{G}(n^*)$ is finer than \mathcal{F} and thus X is totally Lindelöf.

THEOREM 2.9. If X is Lindelöf and scattered, then X is totally Lindelöf.

PROOF. Suppose X is Lindelöf and scattered. Let $A = \{x \in X : \text{ every neighborhood of } x \text{ fails to be totally Lindelöf} \}.$

If $X = \emptyset$, we are finished because for each $x \in X$, there is a neighborhood N(x) which is totally Lindelöf. The family $\{N(x): x \in X\}$ can be reduced to a countable subcover of X and Lemma 2.8 can be applied.

If $A \neq \emptyset$, then A has an isolated point a and there exists an open set $G \subseteq X$ such that $G \cap A = \{a\}$. We may assume, without loss of generality, that every point of X except a has a neighborhood which is totally Lindelöf. Suppose \mathfrak{F} is a filter base on X which is stable under countable intersections and suppose some finer filter base \mathfrak{G} , which is stable under countable intersections, does not cluster at a. Then there exists $G \in \mathfrak{G}$ such that $a \notin \overline{G}$. If we can show that \overline{G} is totally Lindelöf, then \mathfrak{G} will cluster in \overline{G} and we will be finished. For each $x \in \overline{G}$, there is a neighborhood N(x) which is totally Lindelöf. Now $\{N(x): x \in X\}$ is an open cover of \overline{G} which is Lindelöf. Hence \overline{G} is a countable union of subsets each of which is totally Lindelöf and by Lemma 2.8, \overline{G} is totally Lindelöf.

With Theorem 2.9 and the following theorem of Vaughan, we are able to reach our conclusion about countable products of Lindelöf scattered spaces in Theorem 2.11.

THEOREM 2.10. [11] A countable product of totally Lindelöf spaces is Lindelöf.

THEOREM 2.11. A countable product of Lindelöf scattered spaces is Lindelöf.

3. The G_{δ} - and G_{α} -topologies

K. Kunen [3] has shown with a most beautiful technique that the Lindelöf degree of the box product of a countable number of compact scattered spaces is no greater than c, the cardinality of the continuum. This technique is modified to reach conclusions about the cartesian product.

The Cantor-Bendixon decomposition of a space X is a non-increasing sequence of closed sets of X defined inductively as follows: Let

 $X^{(0)} = X$

 $X^{(\alpha+1)} = \{x \in X^{(\alpha)}: x \text{ is not isolated in } X^{(\alpha)}\}, \text{ and } x \in X^{(\alpha)}\}$

 $X^{(\lambda)} = \bigcap \{ X^{(\alpha)} : \alpha < \lambda \}$ for λ a limit ordinal.

X is scattered if and only if there exists an α such that $X^{(\alpha)} = \emptyset$. If X is scattered and compact, then the first α for which $X^{(\alpha)} = \emptyset$ is a successor ordinal $\alpha = \beta + 1$ and $X^{(\beta)}$ is finite. In this case, we say the rank of X is β .

THEOREM 3.1. If X(n) is compact and scattered for each $n < \omega$, then $L((\prod_{n < \omega} X(n))_{\delta}) \le c$.

PROOF. Let \mathcal{C} be a cover of $\prod_{n < \omega} X(n)$ by G_{δ} -sets. Without loss of generality, we may assume \mathcal{C} to be a closed cover and if $C \in \mathcal{C}$, then $C = \bigcap \{G(C)_i : i < \omega\}$ with $G(C)_i$ open in $\prod_{n < \omega} X(n)$ for each $i < \omega$.

Consider the tree $T = \bigcup \{c^{\gamma}: \gamma < \omega_1\}$. For $t \in T$, denote the domain of t by dom(t) and for $\xi < c$, let $t\xi$ be the extension of t where $t\xi(\text{dom}(t) + 1) = \xi$. $t \upharpoonright \gamma$ will denote the restriction of t to γ and 0 is the empty function (dom(0) = \emptyset).

We will define, by induction on dom(t), closed Kunen sets K(t) in such a way that a subfamily of $\{K(t): t \in T\}$ refines \mathcal{C} and since |T| = c, we will be finished. Our sets K(t) will be required to satisfy conditions similar to those in Kunen's theorem, namely:

(i) $K(0) = \prod_{n < \omega} X(n)$,

and for each $t \in T$,

(ii) $K(t) \subseteq \bigcup \{K(t\xi): \xi < c\},\$

(iii) $K(t) = \bigcap \{K(t|\gamma): \gamma < \operatorname{dom}(t)\}$ if $\operatorname{dom}(t)$ is a limit ordinal, and

(iv) for each $\xi < c$, either there exists $C \in \mathcal{C}$ such that $K(t\xi) \subseteq C$ or there exists $n < \omega$ for which rank $p_n(K(t\xi)) < \operatorname{rank} p_n(K(t))$.

If these conditions are met, then we will have our refinement. The argument is like Kunen's. If $x \in \prod_{n < \omega} X(n)$, then by (i), (ii), and (iii), there is a function $t \in T$ such that $x \in K(t \upharpoonright \gamma)$ for every $\gamma < \omega_1$. The ranks of $p_n(K(t \upharpoonright \gamma))$, for each *n*, are non-increasing and thus eventually constant. So by (iv), we must eventually get inside a covering set (that is, inside a member of the cover \mathcal{C}).

Our modification of the Kunen technique comes in the way we define our Kunen sets, K(t). We define $K(0) = \prod_{n < \omega} X(n)$ and we take intersections at the limit stages. Now suppose K(t) has already been defined; we will define $K(t\xi)$ for each $\xi < c$. We let $\beta_n = \operatorname{rank} p_n(K(t))$ and $Z(n) = (p_n(K(t)))^{(\beta_n)}$. Since each Z(n) is finite, there exists a subfamily $\mathcal{C}' \subseteq \mathcal{C}$ of cardinality c such that \mathcal{C}' covers $\prod_{n < \omega} Z(n)$. Let $\mathcal{G} = \{G: G \text{ is of the form } G = G(C)_i \text{ for some } C \in \mathcal{C}', i < \omega\}$. The sets $K(t\xi), \xi < c$, will list the c sets K such that either (a) $K = C \cap K(t)$ for some $C \in \mathcal{C}'$ or (b) K is a box, where for some n,

(1) $p_n(K) = p_n(K(t)) - \bigcup \{p_n(G): G \in \mathcal{G}'\}$ where $\mathcal{G}' \subseteq \mathcal{G}$ is finite and $Z(n) \subseteq \bigcup \{p_n(G): G \in \mathcal{G}'\}$, and

(2) $p_m(K) = p_m(K(t))$ for each $m \neq n$.

Conditions (i) and (iii) are obviously met; condition (iv) will be satisfied because of (b) (1) of the definition. We show that condition (ii) is met by assuming $x \in K(t)$ and $x \notin K(t\xi)$ of type (b). Then for each $n < \omega$ and for each finite subfamily $\mathscr{G}' \subseteq \mathscr{G}$, $Z(n) \subseteq \bigcup \{ p_n(G): G \in \mathscr{G}' \}$ implies $x(n) = p_n(x) \in \bigcup \{ p_n(G): G \in \mathscr{G}' \}$. Furthermore, there exists $z(n) \in Z(n)$ such that for every

 $G \in \mathcal{G}, z(n) \in p_n(G)$ implies $x(n) \in p_n(G)$. So if $C \in \mathcal{C}'$ and if $z(n) \in p_n(C) = p_n(\cap \{G(C)_i: i < \omega\}) = \cap \{p_n(G(C)_i): i < \omega\}$, then $x(n) \in p_n(C)$. Defining $z \in \prod_{n < \omega} Z(n)$ so that $p_n(z) = z(n)$ for each $n < \omega$, we have for each $C \in \mathcal{C}', z \in C$ implies $x \in C$. Thus choosing $C \in \mathcal{C}'$ such that $z \in C$, we have $x \in C \cap K(t)$, a Kunen set of type (a).

The following corollary easily follows from Theorem 3.1.

COROLLARY 3.2. If X(n) is a σ -compact, scattered space for each $n < \omega$, then $L((\prod_{n < \omega} X(n))_{\delta}) \leq c$.

With appropriate changes in the proof of Theorem 3.1, we may further extend the result.

THEOREM 3.3. Under GCH, if X(n) is compact and scattered for each $n < \omega$ and if α is a limit cardinal with $cf(\alpha) > \omega$, then $L((\prod_{n < \omega} X(n))_{\alpha}) \leq \alpha$.

Given the closed cover \mathcal{C} of $\prod_{n<\omega} X(n)$ by G_{α} -sets, if $C \in \mathcal{C}$, then $C = \bigcap \{G(C)_{\beta}: \beta < \alpha\}$ with $G(C)_{\beta}$ open in $\prod_{n<\omega} X(n)$ for each $\beta < \alpha$. The proof requires using the tree $T = \bigcup \{\alpha^{\gamma}: \gamma < \omega_1\}$ and the Kunen sets K(t) are defined, by induction on dom(t) to meet the conditions (i)–(iv) of the proof of Theorem 3.1. To define the sets $K(t\xi)$, for $\xi < \alpha$, we follow the route of that proof, but use the family $\mathcal{C} = \{G: G \text{ is of the form } G = G(C)_{\beta} \text{ for some } C \in \mathcal{C}', \beta < \alpha\}.$

We turn our attention now to Lindelöf scattered spaces. It is known that if X is a scattered Lindelöf space and α is the first ordinal such that $X^{(\alpha)} = \emptyset$, then either

(a) $cf(\alpha) = \omega$, or

(b) α is a successor ordinal $\beta + 1$ and $|X^{(\beta)}| \leq \omega$.

If condition (b) is met, we may still call β the rank of X.

There are spaces which satisfy condition (a) but which are not Lindelöf. For example, if $X = \omega_1 \cup \omega_{\omega}$ (the disjoint union), then $\alpha = \omega_{\omega}$ and X is not Lindelöf.

Question: If X(n) is Lindelöf and scattered for each $n < \omega$, then what can be said about $L((\prod_{n < \omega} X(n))_{\delta})$?

To answer this question, it may be necessary to consider several cases depending upon the type of Cantor-Bendixon decomposition each space X(n) possesses.

References

- [1] R. Engelking, General topology (Polish Scientific Publishers, Warsaw, 1977).
- [2] I. Juhász, Cardinal functions in topology (Math. Centre Tracts 34, Mathematical Centre, Amsterdam, 1971).

- [3] K. Kunen, 'Paracompactness of box products of compact spaces', Trans. Amer. Math. Soc. 240 (1978), 307-316.
- [4] P. R. Meyer, 'Function spaces and the Aleksandrov-Urysohn conjecture', Ann. Mat. Pura Appl. 86 (1970), 25-29.
- [5] N. Noble, 'Products with closed projections II', Trans. Amer. Math. Soc. 160 (1971), 169-183.
- [6] M. E. Rudin, Lectures on set theoretic topology (CBMS Regional Conference Series in Mathematics 23, Amer. Math. Soc., Providence, R. I., 1975).
- [7] R. H. Sorgenfrey, 'On the topological product of paracompact spaces', Bull. Amer. Math. Soc. 53 (1947), 631-632.
- [8] R. Telgársky, 'C-scattered and paracompact spaces', Fund. Math. 73 (1971), 59-74.
- [9] R. Telgársky, 'Concerning the product of paracompact spaces', Fund. Math. 74 (1972), 153-159.
- [10] J. E. Vaughan, *Total nets and filters*, Topology Proc. Memphis State Univ. Conf., pp. 259–265 (Marcel Dekker Lecture Notes 24, 1976).
- [11] J. E. Vaughan, 'Products of topological spaces', General Topology and Appl. 8 (1978), 207-217.

Lockheed Missiles and Space Co., Inc. 1111 Lockheed Way 0/81-15, B/157

Sunnyvale, California 94086 U.S.A.