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Summary

We propose an empirical Bayes method based on the extreme value theory (EVT) (BE) for the
analysis of data from spotted microarrays where the interest of the investigator (e.g. to identify
up-regulated gene markers of a disease) or the design of the experiment (e.g. in certain ‘wild-type
versus mutant ’ experiments) limits identification of differentially expressed genes to those regulated
in a single direction (either up or down). In such experiments, unlike in genome-wide microarrays,
analysis is restricted to the tail of the distribution (extremes) of all the genes in the genome. The
EVT provides a platform to account for this extreme behaviour, and is therefore a natural candidate
for inference about differential expression. We compared the performance of the developed BE
method with two other empirical Bayes methods on two real ‘wild-type versus mutant ’ datasets
where a single direction of regulation was expected due to experimental design, and in a simulation
study. The BE method appears to have a better fit to the real data. In the analysis of simulated data,
the BE method showed better accuracy and precision while being robust to different characteristics
of microarray experiments. The BE method, therefore, seems promising and useful for inference
about differential expression in microarrays where either only up- or down-regulated genes are
relevant or expected.

1. Introduction

A common task in microarray studies is to determine
which genes are differentially expressed (DE) between
two cell samples. Different rules for identifying DE
genes have been adopted, many based on the gene-
specific mean and the standard deviation (SD). Their
main limitation originates from the low number of
replicates. More recently, as an alternative to these
methods, a number of empirical Bayes methods have
been proposed (e.g. Efron et al., 2001; Lonnstedt &
Speed, 2002; Gottardo et al., 2003; Newton et al.,
2004). Empirical Bayes methods seem natural in the
context of microarray experiments, because they

summarize information from the whole dataset into
prior parameters to be combined with means and SDs
at the gene level (Lonnstedt & Britton, 2005).

An empirical Bayes approach to differential ex-
pression is a normal mixture model proposed by
Lonnstedt & Speed (2002). This approach was later
extended by Smyth (2004) to general linear models
and modified into an empirical Bayes normal model
(and not mixture model) for variance regularization.
Smyth’s (2004) model represents a posterior odds stat-
istic formulated in terms of a moderated t-statistic,
in which posterior residual SDs are used in place of
ordinary SDs; the model can also account for corre-
lation among technical replicates (Smyth et al.,
2005). It is implemented in Limma (Smyth, 2005), a
popular software package for gene expression analy-
sis. Throughout this paper, we will refer to the
empirical Bayes normal method offered in Limma
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(Lonnstedt & Speed, 2002; Smyth, 2004; Smyth
et al., 2005) as the ‘BN’ method.

The underlying assumption of the BN method is
normal distribution of mean ratios of expressions of
DE genes, i.e. that the DE genes are symmetrically
up- and down-regulated. This assumption is valid for
genome-wide microarray experiments, where interest
lies in detection of all DE genes between two samples,
and typically, out of all the tested genes (the whole
genome), only a fraction is expected to be DE, with
similar numbers of up- and down-regulated genes.
However, in a number of microarray experiments,
only up- or down-regulated genes are of interest.
Examples are certain experiments designed to identify
novel markers for molecular diagnosis and therapy of
diseases (Suzuki et al., 2002; Kobayashi et al., 2004).
Furthermore, in some experiments, regulation is ex-
pected in one direction only (either up or down) due
to the design of the experiments, such as in certain
‘wild-type versus mutant ’ microarrays (Kazmierczak
et al., 2003; van Schaik et al., 2007) and those de-
signed to select DE genes among a group of poten-
tially up- or down-regulated genes that have been
pre-selected either as part of some genome-wide
microarray or other (e.g. Hidden Markov Chain
promoter search) screening methods (Kazmierczak
et al., 2003). In such experimental designs, where only
up- or down-regulated genes are relevant or expected,
the distributional assumption of normality of the BN
method is obviously violated.

As a long-tailed alternative to the normal mixture
model of Lonnstedt & Speed (2002), which assumes
that the DE genes are symmetrically up- and down-
regulated, Bhowmick et al. (2006) proposed a Laplace
mixture model (hereinafter referred to as the ‘BL’
method). Bhowmick et al. (2006) showed that the
asymmetric gene expression data fit better under the
asymmetric BL method. However, while the perform-
ance of BL was similar to the Smyth (2004) and
Lonnstedt & Speed (2002) methods, BL depends on a
large number of replicates for acceptable parameter
estimates. Hence, microarrays with a single relevant
or expected direction of regulation lack an appropri-
ate analytical tool.

Extreme value theory (EVT) has been traditionally
used for risk and financial analysis, and studies of
extreme events, such as intense rainfall and floods.
An important feature of EVT is that it models the
extreme behaviour (the tail of the distribution) rather
than the average behaviour of the systems as classical
statistics do. By focusing on the values located in the
tail of the distribution that diverge extremely from
the mean value of a dataset, EVT provides a natural
framework for detection of DE genes in an exper-
iment where regulation is relevant or expected in a
single direction. Therefore, our objective was to de-
velop a new statistical method, based on EVT, for

analysis of differential expression in experiments in-
terested in or expecting either up- or down-regulated
genes. Application to two experimental datasets and
simulation studies indicated comparatively better
performance of the developed empirical Bayes ex-
treme value distribution (EVD) mixture model (BE)
as compared with the two existing empirical Bayes
methods (BN and BL).

2. Methods

(i) Model setup in the context of linear models

Consider a microarray experiment comparing the
expression (i.e. mRNA transcript) levels of wild-type
and mutant cells, where mutant cells lack a gene
encoding a positive regulator. We wish to identify
genes that differ in their transcript levels between
wild-type and mutant cells exposed to the same
treatment. For the jth replicate of gene g on array i,
we use the log ratio of the expressions:

Ygij= log2

(expression level in wild type)gij
(expression level in mutant)gij

:

Let us assume that we have n arrays, where each array
has G number of genes spotted on it, and each gene
is replicated m times. Therefore, the complete set
of data from the experiment consists of Ygij, g=
1, … ,G, i=1, … ,n, and j=1, … ,m, and so Yg can
be viewed as a vector of mn log ratios observed for a
gene g. We regard the Ygij as random variables from
a normal distribution with mean mg and variance sg

2,
which, although not completely true, is convenient
and found empirically to be roughly the case
(Lonnstedt & Speed, 2002), i.e.

Ygij � N(mg,s
2
g): (1)

A general microarray experiment can be rep-
resented by a linear model (Smyth, 2004), i.e.
E(Yg)=Xbg, where X is an nmrk dimensional design
matrix specifying experimental design and bg is a
vector of k regression coefficients. As we have m rep-
licates of each gene on each array, our design matrix
has m repeated rows corresponding to each set of
m replicate spots. To simplify E(Yg)=Xbg, let �YYg be
the n-vector of array means �YYgi and let �XX be the re-
duced nrk dimensional design matrix in which there
is only one row instead of m rows for each array
combination (Smyth et al., 2005). Then, E(�YYg)=�XXbg.
Now, let agq=cTbg, where c is a vector of q known
constants defining contrasts of biological interest and
agq is a particular contrast or linear combination of
the regression coefficients and suppose that interest
lies in testing H0 : agq=0 (Smyth et al., 2005). For the
rest of the paper, the subscript q will be suppressed for
notational simplicity under the assumption that our
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hypothetical experiment has only one contrast of
interest. We suppose that measurements from genes
spotted on different arrays are independent. However,
we acknowledge that within an array technical
replicates of a gene are correlated. To account for
correlation among replicates, we used a common
correlation factor (Smyth et al., 2005). Let b̂bg be the
estimator of bg from fitting a linear model and let
contrast estimator âag

� �
âag=cTb̂bg. Here, âag is as-

sumed to be a random variable from a normal distri-
bution (as in (1)) with mean mg and variance ng

2 sg
2,

where ng
2 is an unscaled variance of âag that also ac-

counts for a common correlation factor among rep-
licates (Smyth et al., 2005), i.e.

âagjmg, s
2
g � N(mg, n

2
gs

2
g): (2)

The residual variance from fitting a linear model
(sg

2) was assumed to follow a gamma distribution (G;
equivalent to the scaled chi-square distribution as-
sumed by Smyth, 2004) :

s2gjs2
g � G

dg
2
,
dg
2s2

g

 !
, (3)

where dg is the residual degrees of freedom for the
linear model for gene g.

(ii) Empirical Bayes EVD mixture model (BE )

The EVD has three parameters : a location parameter,
a ; a scale parameter, b ; and a shape parameter, c. It
encompasses three classes of distributions with types
I, II and III widely known as the Gumbel, Fréchet and
Weibull families, respectively (Coles, 2001). These are
combined into a single-family model known as the
generalized extreme value (GEV) family of distri-
butions, where the shape parameter (c) determines the
type; the Fréchet and Weibull families have c>0 and
c<0, respectively, while the shape parameter of the
Gumbel family has c=0. Throughout the present
paper, we will use EVD and GEV interchangeably,
both indicating an unspecified family of EVD. In
contrast, when we refer to a specific family we will
use its name (i.e. Gumbel, Fréchet or Weibull distri-
bution).

For an appropriately background corrected and
normalized gene to be DE, its mg value should be
statistically different from zero. Let Ig indicate
whether the gene is DE (mgl0) or not (mg=0), such
that

Ig=
0, if mg=0,
1, if mgl0:

�

We assume that

mgjIg=0 � d(0), (4)

where d(0) denotes the distribution which places unit
mass at mg=0. Because we expect DE genes to be
either up- or down-regulated, we assumed an EVD
prior on mgl0, i.e.

mgjIg=1 � EVD(a, b, c): (5)

An inverse gamma (IG) prior distribution is assumed
on sg

2, with sg
2 equivalent to a prior estimator s0

2 with
d0 degrees of freedom (Smyth, 2004), i.e.

s2
g � IG

d0

2
,
d0s

2
0

2

� �
: (6)

We wish to know whether the gene is DE, i.e. what
is Pr(Ig=1jâag, s

2
g) or what are the odds of differential

expression (more specifically, the natural logarithm of
the odds), BEg :

BEg=log
Pr [Ig=1j(âag, s

2
g)]

Pr [Ig=0j(âag, s2g)]
:

By the Bayes theorem,

Pr[Ig=1j(âag, s
2
g)]=

Pr(Ig=1, âag, s
2
g)

Pr(âag, s2g)

=
Pr(Ig=1)Pr(âag, s

2
gjIg=1)

Pr(Ig=1)Pr(âag, s2gjIg=1)+Pr(Ig=0)Pr(âag, s2gjIg=0)
,

Pr[Ig=0j(âag, s
2
g)]=

Pr(Ig=0, âag, s
2
g)

Pr(âag, s2g)

=
Pr(Ig=0)Pr(âag, s

2
gjIg=0)

Pr(Ig=1)Pr(âag, s2gjIg=1)+Pr(Ig=0)Pr(âag, s2gjIg=0)
:

Then, the log Bayes’ factor is

BEg= log
Pr(Ig=1)

[1xPr(Ig=1)]

Pr[(âag, s
2
g)jIg=1]

Pr[(âag, s2g)jIg=0]

" #
, (7)

where Pr(Ig=1) is the proportion of DE genes (pDE)
in the experiment. The joint densities Pr(âag, s

2
gjIg=1)

and Pr(âag, sg
2jIg=0) are:

Pr(âag, s
2
gjIg=1)=fIg=1(âag, s

2
g)

=
ZZ

f(âagjmg, s
2
g)f(mg)f(s

2
gjs2

g)f(s
2
g) dmgds

2
g

Pr(âag, s
2
gjIg=0)=fIg=0(âag, s

2
g)

=
Z

f(âagjmg=0, s2
g)f(s

2
gjs2

g)f(s
2
g)ds

2
g:

To evaluate the probabilities Pr(âag, s
2
gjIg=1) and

Pr(âag, s
2
gjIg=0), and the BE statistic in (7), we used the

distributions defined in equations (2)–(6), i.e. their
respective likelihood or probability density functions :

f (âagjmg, s
2
g)= 2pn2

gs
2
g

� �x1=2
exp x

1

2n2
gs

2
g

âagxmg

� �2( )
,

(8)
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where x1<âag<1, x1<mg<1, ngsg>0;

f s2gjs2
g

� �
=

dg=2s
2
g

� �dg=2
s2g

� �(dg=2x1)

C dg=2
� � exp xdgs

2
g=2s

2
g

� �
,

(9)

where dg/2>0, dg/2sg
2>0, sg

2>0;

fIg=0(mg)=d(0); (10)

fIg=1(mgja, b, c)=
1

b
1+c

mgxa

b

� �x(1=c)x1

rexp x 1+c
mgxa

b

� �x1=c
� �

(11)

defined on {mg :1+(mgxa)/b>0}, where x‘<mg<‘,
b>0 and x‘<c<‘ (Coles, 2001; Panjer, 2006) ;

f s2
gjs20, d0

� �

=
d0s

2
0=2

� �d0=2 s2
g

� � x1xd0=2ð Þ

C d0=2ð Þ exp xd0s
2
0=2s

2
g

� �
,

(12)

where d0/2>0, d0s0
2/2>0, sg

2>0.
It is not possible to integrate the integral

fIg=1(âag, s
2
g). Therefore, numerical approximation

through the Monte Carlo (MC) integration method
(Tanner, 1996) was applied to obtain the posterior
expectations of fIg=1(âag, s

2
g) and fIg=0(âag, s

2
g) (denoted

as E( fIg=1) and E( fIg=0), respectively) :

E( fIg=1)=
1

r
g
r

i=1
f(âagjmgi, s

2
gi) f (s

2
gjs2

gi)

� �
, (13)

E( fIg=0)=
1

r
g
r

i=1
f(âagjmgi=0, s2

gi) f (s
2
gjs2

gi)

� �
, (14)

where r denotes the number of iterations, while mgi
and sgi

2 denote iid draws from prior distributions
of gene-specific means and variances, respectively.
Thereafter, the expected value of the BE statistic is :

BEg=log
pDE

1xpDEð Þ
E( fIg=1)

E( fIg=0)

	 

: (15)

For an estimator to be useful, a measure of esti-
mation error is required. The estimated Monte Carlo
standard errors (MCSEs) of E( fIg=1) and E( fIg=0)
(denoted as SE( fIg=1) and SE( fIg=0), respectively)
were:

SE( fIg=1)=
1ffiffi
r

p

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gr

i=1[ f (âagjmgi, s
2
gi) f (s

2
gjs2

gi)xE( fIg=1)]
2

rx1

s
, (16)

SE( fIg=0)=
1ffiffi
r

p

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gr

i=1[ f (âagjmgi=0, s2
gi) f (s

2
gjs2

gi)xE( fIg=0)]
2

rx1

s
: (17)

Thereafter, by accounting for error propagation, the
MCSE of the BEg (MCSEg) was estimated by adding
uncertainties in E( fIg=1) and E( fIg=0), i.e. SE( fIg=1)
and SE( fIg=0), in quadrature (Taylor, 1982) :

MCSEg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE( fIg=1)

E( fIg=1)

	 
2
+

SE( fIg=0)

E( fIg=0)

	 
2s
: (18)

BE statistics were evaluated on a PC running on
Windows XP Pro SP2 with an AMD Athlon 64 X2
Dual Core Processor 4200+(2200 MHz) and
2048 Mb of RAM. For a dataset with 200 genes
spotted in triplicate on four arrays (similar to datasets
described in Section 3(i)), the computing time for the
BE method involving 50 000 iterations was roughly
15 s, while the BN and BL methods took roughly 1 s
each. For a considerably larger dataset, with 10 000
genes also spotted in triplicate on four arrays, the
computing time for the BE method with 50 000 iter-
ations was roughly 16 min, while it was roughly 1 min
for each of the BN and BL methods. The R code
implementing the proposed methodology is available
on request from the first author.

(iii) Estimation of hyperparameters

The BE statistic defined in Section 2(ii) uses hyper-
parameters estimated from the data. The parameters
s0
2 and d0 are estimated from sg

2 following Smyth’s
(2004) procedure. The only exception to this rule was
when d0 could not be estimated as in Smyth (2004),
indicating that there is no evidence that the under-
lying gene-specific variances sg

2 vary between genes,
and so in Smyth (2004) d0 was set to positive infinity.
In evaluation of BE statistics, d0 equal to positive in-
finity precludes generation of a prior on sg

2. Therefore,
in such situations, instead of positive infinity we set d0
to 10300, which is close to the largest positive decimal
number on a typical R platform. In terms of pDE, the
BE method uses the same approach as the BN meth-
od; it fixes pDE and then estimates the remaining
hyperparameters (a, b and c). Hyperparameters a, b
and c are estimated simultaneously from âag values
corresponding to a pDE fraction of genes with the
highest moderated t-statistics. The method involves
maximum likelihood estimation (MLE) fitting for the
GEV distribution, with the Nelder–Mead optimiz-
ation method (Nelder & Mead, 1965). The MLE
procedure, subject to the limitations discussed in
Section 5, provides the means and standard errors
(SEs) for the parameters a, b and c. The means are
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used to estimate BE statistics, and the corresponding
SEs provide an indication of the uncertainty around
the estimated mean values. Genes with the top mod-
erated t-statistics (estimated according to Smyth,
2004) were used instead of the top genes ranked by
their ordinary t-statistics as they provided a more
stable estimation of a, b and c.

3. Application to experimental data

(i) Data description

To analyse the performance of BE as compared with
BN and BL, we used two datasets generated in a pre-
vious two-color cDNA microarray study conducted
to identify genes regulated by the sigma factor sB in
the bacterium Listeria monocytogenes (Kazmierczak
et al., 2003). In that study, an L. monocytogenes sigB
null mutant (which lacks the sB protein) and a parent
strain with intact sigB gene (wild-type) were exposed
to two stress conditions, namely osmotic stress and
stationary phase, to identify genes with transcript
levels affected by the sigB deletion under these two
conditions. For each stress condition, two indepen-
dent RNA isolates (biological replicates) for both
wild-type and sigB mutant cells were dye swapped for
a total of four arrays per stress condition. Each array
included 211 test genes, and a number of non-
hybridizing and normalization controls (for details
see Kazmierczak et al., 2003) spotted in triplicate.
Most (166) genes included on the array were identified
by HiddenMarkovModel promoter searches as being
preceded by a putative sB-dependent promoter, while
some genes (36) were included because of previous
reports of their involvement in virulence or stress
response. As sB is a positive regulator of gene ex-
pression with particular importance for regulating
stress response and virulence genes, most genes in
these two experiments are expected to show higher
transcript levels in the wild-type strain as compared
with the sigB deletion strain.

In their analysis, Kazmierczak et al. (2003) con-
sidered all individual spots as repetitions, generating
24 data points for each gene (3 spots per gener4
arraysr2 channels per array), i.e. correlation among
technical replicates was not considered. They reported
findings for 208 of the 211 test genes as three genes
were spotted twice. Prior to analysis, cross-slide mean
normalization (without background correction) and
flooring were performed. The analysis by the Signifi-
cance Analysis of Microarrays (SAM) program
(Tusher et al., 2001) identified 51 (25%) and 41 (20%)
genes with at least 1.5-fold different statistically
significant expressions under osmotic stress and
stationary-phase conditions, respectively.

Prior to our analysis of the two datasets of 211
genes, we performed the background correction and

normalization. The median background fluorescence
intensities are usually recommended for correction of
the background noise because of their robustness to
the outliers. We, however, used the mean background
intensities because the distribution of median back-
ground intensities had a bimodal distribution with
some spots having zero background while the others
were in the higher range of intensities (above 28)
(possibly due to the setup or limitations of the laser
scanner used).

Two background correction procedures seemed
appropriate for the data. The first, the normal-
exponential convolution background correction
model (NeBC) (performed with an offset of 100),
involves fitting of the convolution of normal and
exponential distributions to the foreground inten-
sities using the background intensities as a covariate
(also referred to as the normexp method in Smyth,
2005). The second procedure used was multiplicative
background correction (MBC). This is a novel ap-
proach that involves logarithmic transformation
of the intensity readings before the background
correction and is found (via a series of examples) to
be superior to the additive background correction
and no background correction (Zhang et al., 2006).
Because MBC reportedly gives fewer false positives
than conventional additive background correction
(Zhang et al., 2006) and because its performance
has never been contrasted with NeBC, we used (and
compared) both background correction models in
our study.

The normalization appropriate for the data was the
Lowess normalization (Cleveland & Devlin, 1988),
with up-weighting of the background and normal-
ization control spots, known to be non-DE (http://
bioconductor.org/packages/1.8/bioc/vignettes/limma/
inst/doc/usersguide.pdf). Application of the two
background correction procedures (NeBC and MBC)
to each of the two stress-condition datasets (osmotic
stress and stationary phase) provided a total of four
real model-datasets used in our analyses.

(ii) Results

In all four model-datasets, normalized and back-
ground corrected log2 ratios between genes’ expression
values in wild-type and mutant cells (Ygij) were dis-
tributed asymmetrically around zero and heavily
skewed to the right. This was expected because up-
regulation was anticipated in most of the tested genes.
It was therefore reasonable to assume that the dis-
tribution of mean expressions of DE genes follows
EVD. Hence, the BE method could be applied for
inference about differential expression.

A critical issue in the MC integration methodology,
underlying the BE method, is to determine the num-
ber of iterations that can be safely used as a basis for
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inference. We used 50 000 iterations as they provided
reasonable accuracy of the approximated BE stat-
istics. The achieved MCSEs varied for different genes
and model-datasets. The medians, followed by the
ranges in parentheses, of the achieved MCSEs were
0.05 (0.01–0.42) and 0.03 (0.01–0.82) for the osmotic
stress datasets corrected with the NeBC and MBC
methods, respectively, and 0.38 (0.02–0.92) and 0.18
(0.02–0.52) for the stationary-phase datasets cor-
rected with the NeBC and MBC methods, respect-
ively. In all four model-datasets, MCSEs were the
lowest (<0.1) for the genes with the value of BE
statistic around 0.

For each model-dataset, the gene-specific BN, BL
and BE statistics were approximated. The biological
meaning of the identified DE genes is important.
Hence, for each of the four model-datasets in Fig. 1,
we show the values of the BN, BL and BE statistics,

plotted against contrast estimators from linear models
(âag) (also translated into fold changes, 2âag , for more
intuitive interpretation) and against previous results
of Kazmierczak et al. (2003). In each model-dataset,
genes that ranked very low with the BE statistic have a
fold change below 1. At the same time, the BN stat-
istic ranked high some of the genes with very low fold
change, incorrectly suggesting down-regulation. The
BL statistic gave ambiguous results with high values
for most genes, particularly in the stationary-phase
data. It should be noted that for approximation of the
BN and BE statistics, we fixed the pDEs to those
reported in Kazmierczak et al. (2003). Fixing pDEs to
different values would change the BN and BE vs. fold
change plots. Decreasing pDE would shift the plots to
the right and down, whereas increasing pDE would
shift the plots left and up on the x- and y-axes, re-
spectively.

Fig. 1. The BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL (Bhowmick et al., 2006) and empirical Bayes EVD mixture
model (BE) statistics plotted against the contrast estimators from fitting linear models at the gene level, ‘alpha_g’ (denoted
as âag in the text), also translated into fold changes (FC), and against results reported by Kazmierczak et al. (2003). ‘K’
and the associated right y-axis indicate whether Kazmierczak et al. (2003) reported a gene as DE (‘yes’) or not (‘no’).
‘NeBC’=normal-exponential convolution background correction method. ‘MBC’=multiplicative background correction
method. Two horizontal dashed lines (enclosing a shaded area) indicate the 5th and 95th percentiles of OT of the BE
statistic estimated for the FDR fixed to 0. ‘FNR=(,) ’ denotes false negative rate (5th and 95th percentiles) associated with
the OT.

R. Ivanek et al. 352

https://doi.org/10.1017/S0016672308009427 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009427


Table 1 shows the characteristics of the data and
the values of the hyperparameters estimated for each
of the four model-datasets. The ambiguous results
of the BL method are probably due, at least in part, to
a very high estimated probability that a gene is DE
(w=1; Table 1). The prior variance distributions seem
quite stable among the BN, BL and BE methods,
except for the roughly double value of the scale par-
ameter estimated for the BL method as compared
with that estimated for the BN and BE methods.
Contrary to that, the prior variances differ substan-
tially between background correction methods, being
narrower for the data corrected with MBC, which
may explain the smoother plots of the BN, BL and BE
statistics following MBC. Also, interestingly, corre-
lation among technical replicates tends to be higher
following the NeBC than MBC, demonstrating the
difference between these two procedures.

In the BE statistic, a natural choice of the optimal
threshold (OT) above which a gene could be con-
sidered DE is 0. However, the actual OT depends on
the imposed criteria, such as the cost of a false positive
and false negative. A typical approach in choosing a
rule for interpretation of a statistical test is to control
the type I error probability while maintaining a cer-
tain power. A sensible, powerful and easy to interpret
(Verhoeven et al., 2005) method to control type I
error when multiple statistical tests are performed
is the false discovery rate (FDR) (Benjamini &
Hochberg, 1995). FDR is the expected proportion of
errors among the genes selected to be DE. As a low
FDR often comes at the cost of low sensitivity or
power (i.e. a high false negative rate (FNR)), these
should be controlled jointly (Pawitan et al., 2005).
Because Kazmierczak et al. (2003) considered genes
that had been pre-selected for their expected differ-
ential expression, we chose an FDR=0, i.e. no false
positives were acceptable. The OT for BE (its 5th and
95th percentiles) was determined through simulation
analysis for each of the four model-datasets (as-
suming that the pDEs reported in Kazmierczak et al.
(2003) are true), and is shown in Fig. 1, together with
the associated FNR. Genes whose BE statistic was
above the 95th percentile of the OT could be con-
sidered DE with a high certainty. Genes with a BE
statistic between the 5th and 95th percentiles of the
OT are likely to be DE. BE did rank high (above
the 95th percentile of the OT) some of the genes pre-
viously unidentified by Kazmierczak et al. (2003),
whereas a few of the genes previously reported as DE
by Kazmierczak et al. (2003) were ranked low (below
the 5th percentile of the OT). However, the findings
of the BE method have been validated by other inde-
pendent studies for most of the genes, for which the
result of the BE method differed from those reported
by Kazmierczak et al. (2003) (elaborated in the
Appendix).T
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4. Simulation studies

Based on the hyperparameters estimated from the
data and shown in Table 1, 100 datasets were simu-
lated for each of the four model-datasets. To ease
computational burden, we reduced the number of
iterations in the MC integration model underlying the
BE statistics from 50 000 to 5000. This reduction was
warranted by our empirical observation that genes
with BE around zero (a natural cutoff value for sep-
aration of DE and non-DE genes) have the lowest
MCSEs. With 5000 iterations, the achieved MCSEs
of these genes were below 0.2. So, the reduction did
not jeopardize the ability of the BE to differentiate
between DE and non-DE genes.

The performance of the BN, BL and BE statistics
was tested under the Normal, Laplace and EVD
models. The BE statistic did not do well under the
asymmetric Laplace model and did even worse under
the Normal model. That is expected because the
Normal, and to a lesser extent the asymmetric
Laplace, model permit both up- and down-regulated
genes, while the EVD model allows one direction of

expression (either up- or down-regulation) only.
Because the Normal and Laplace models do not fit
to data from experiments where only one direction of
expression is expected, we only present results of the
simulation under the EVD model.

Simulated datasets (100 of them) were generated
under different scenarios. These were analysed with
BN, BL and BE and the performance of the three
statistics was evaluated based on the FDR vs. FNR
plots, where the lower left corner indicates perfect
performance, with zero false positives and false
negatives. Figure 2 shows FDR vs. FNR plots of 100
simulated datasets overlaid by the horizontal average
curve and box plots showing horizontal spread of
the performance of the three statistics in the four
simulated model-datasets. Averaging over simulated
datasets horizontally mimics the situation when the
experimenter chooses a tolerable FDR and tries to
maximize power. Results for vertical averaging,
corresponding to situations when an experimenter
chooses an acceptable power while minimizing FDR,
are not shown as they were very similar to the results
for horizontal averaging. Figure 2 shows that the

Fig. 2. FDR vs. FNR plots of 100 simulated datasets overlaid by the horizontal average curve and box plots showing
horizontal spread of the performance of the BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL (Bhowmick et al., 2006) and
empirical Bayes EVD mixture model (BE) statistics in the four simulated model-datasets. ‘NeBC’=normal-exponential
convolution background correction method; ‘MBC’=multiplicative background correction method; ‘ne’=not estimated.

R. Ivanek et al. 354

https://doi.org/10.1017/S0016672308009427 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009427


three statistics do very well in all four model-datasets.
The only exception was BL: analysis failed for several
simulated datasets reproduced from the osmotic
model-dataset background corrected with MBC. To
assure fair comparison, the performance of the BL
method in analysis of this model-dataset is not plotted
in Fig. 2. A curve showing average FNR for different
values of FDR (horizontal average curve) in Fig. 2
indicates that BE, on average, has better accuracy
(correct classification of genes as DE and non-DE) in
the simulated data than BN and BL. The horizontal
box plots of the achieved FNR for various FDR show
narrower spread of BE compared with the other two
statistics, indicating better precision (repeatability of
classification success) in the simulated data.

Robustness of the BE statistic, as compared with
the BN and BL statistics, was tested by varying sev-
eral key characteristics of a microarray experiment
(pDE, n, m and G). The pDE was increased and

decreased by +10% and x10%, respectively.
Figure 3 shows, not surprisingly, that as the pDE de-
creases all three B statistics perform worse, while they
do better as the pDE increases. However, overall, BE
consistently performed the best in these simulated
datasets. In the osmotic stress data background cor-
rected with MBC, BL failed under all three simulation
scenarios (pDEx0.10, pDE and pDE+0.10) in sev-
eral of 100 simulated datasets and thus is not shown.

To test the robustness of the model to the number
of arrays (n), usually representing the number of
biological replicates, we simulated the four model-
datasets with n=2, 4 and 8. Figure 4 shows that BE
consistently performed better than BN and BL, but
the margin of BE superiority became smaller as the
number of arrays increased. Interestingly, the im-
provement in the performance gained with the larger
number of arrays was more apparent in the model-
datasets corrected with MBC. The wiggly plot of

Fig. 3. FDR vs. FNR plots showing horizontal average of the BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL
(Bhowmick et al., 2006) and empirical Bayes EVD mixture model (BE) statistics from 100 simulated datasets in the four
simulated model-datasets with the proportion of DE genes (pDE) reported in Kazmierczak et al. (2003) (25 and 20%,
in osmotic stress and stationary-phase data, respectively) and simulating deviations from pDE of x10% and +10%.
‘NeBC’=normal-exponential convolution background correction method; ‘MBC’=multiplicative background correction
method.
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BL for n=2 in osmotic stress and stationary-phase
data corrected with NeBC is a consequence of out-
liers ; in a few simulated datasets, there was a high
FNR estimated for different values of FDR. When
osmotic stress and stationary-phase data corrected
with MBC were used, BL failed in the analysis of
several simulated datasets with n=2 and 4 and n=2,
respectively.

We also tested the sensitivity of the model to the
number of technical replicates (m) ; we simulated
m=1, 3 and 6 (Fig. 5). BE did better in all four
simulated model-datasets, and under all simulated
numbers of technical replicates. BL failed in the
analysis of several simulations of the MBC osmotic
stress dataset when simulated with all three tested
values of m (1, 3 and 6). Interestingly, in the station-
ary-phase data (and to a lesser extent in the osmotic
stress data) corrected with NeBC, the average per-
formance of all three statistics was better under
the simulation with m=3 than m=6. This may be a

consequence of overfitting to the empirical data in
estimation of hyperparameters. The performance of
all three statistics, particularly BN and BL, was re-
markably good in the simulated stationary-phase data
corrected with MBC.

Finally, we also tested the performance of the BE
method in experiments characterized with a high
number of tested genes but with only a few DE genes
(Fig. 6). We ran the models with combinations
(G=200, pDE=0.05) and (G=1000, pDE=0.01)
(note equal number (10) of DE genes in both the
settings). BE did better than the other two statistics
although the margin was not great, particularly in
the stationary-phase data. That is expected because
as the number of genes increases and only a few
genes are DE, the distribution of gene-specific means
becomes closer to the normal distribution. BL failed
in the analysis of several realizations of the osmotic
stress data corrected with MBC under the scenario
with G=200 and pDE=0.05.

Fig. 4. FDR vs. FNR plots showing horizontal average of the BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL
(Bhowmick et al., 2006) and empirical Bayes EVD mixture model (BE) statistics from 100 simulated datasets in the four
simulated model-datasets simulating the number of biological replicates (n) equal to 2, 4 and 8. ‘NeBC’=normal-
exponential convolution background correction method; ‘MBC’=multiplicative background correction method.
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As illustrated above, in all simulated settings, the
performance of the BE model was at least as good as
the performance of the other two models. BL failed in
several simulated datasets under several simulation
settings, mostly due to errors in integration and/or
hyperparameter estimation. We would like to add
here that we performed simulation analysis on the
datasets generated under the modified Normal model
that allows only mean ratios of expressions larger
than 1 (i.e. higher gene expression in the wild-type as
compared with the mutant). The results were similar
to those obtained from simulation under the EVD
model, so they are not shown here.

5. Discussion

We proposed a novel method (BE) for analysis of
microarray data from experiments where only up- or
down-regulated genes were expected or relevant.

Its merit originates from an empirical Bayes frame-
work and foundation in the EVT, as well as its good
accuracy, precision and stability demonstrated in
the simulated datasets. The main limitations of the BE
method pertain to its sensitivity to the assumed pDE
and the higher computational cost of its underlying
numerical approximation through the MC inte-
gration method.

The main asset of empirical Bayes methods in
analysis of differential expression is their use of
information from hundreds or thousands of simul-
taneously tested genes to support testing at the
gene level. However, empirical Bayes methods do
make distributional assumptions, particularly when
the choice of priors for the parameters is limited to
conjugate priors (Lonnstedt, 2001). We stepped out of
the conjugate prior class, and in experiments where
only up- or only down-regulated genes are expected or
relevant, assumed that the mean ratios of expressions

Fig. 5. FDR vs. FNR plots showing horizontal average of the BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL
(Bhowmick et al., 2006) and empirical Bayes EVD mixture model (BE) statistics from 100 simulated datasets in the four
simulated model-datasets simulating the number of technical replicates (m) equal to 1, 3 and 6. ‘NeBC’=normal-
exponential convolution background correction method; ‘MBC’=multiplicative background correction method.
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of DE genes follow the EVD. In microarrays expect-
ing a single direction of regulation, the validity of this
assumption is based on the fact that the distribution
of the true genes’ mean ratios of expressions (the
log of it) cannot be symmetric around zero. In the
experiments where only a certain direction of regu-
lation is relevant, it is advantageous to use the BE
over the BN method even if the gene expression data
are more or less symmetric around zero. That is be-
cause, being restricted to one direction of expression,
due to the design of the experiment or the interest
of an investigator, the genes characterized by such
expressions are actually ‘selected’ beyond a threshold
expression, and so, they show extreme behaviour.

The three families in EVD (Gumbel, Fréchet and
Weibull) have distinct forms of tail behaviour, with
finite limit distributions in its upper end-point for
the Weibull distribution, and infinite ones for the

Gumbel and Fréchet distributions (Coles, 2001).
Furthermore, the density in the upper end-point de-
cays exponentially for the Gumbel distribution and
polynomially for the Fréchet distribution (Coles,
2001). While, consequently, the three families give
quite different representations of the extreme value
behaviour, it may not be obvious which best rep-
resents the data and the problem at hand. It is thus
convenient to use a single family GEV rather than
‘guessing’ which of the three original EVD families
is proper, because the data themselves (through
inference about the shape parameter) determine the
most appropriate type of tail behaviour (Coles, 2001).

To estimate the hyperparameters of the EVD, we
applied the MLE procedure. While many techniques
have been proposed for estimation of hyperpar-
ameters in extreme value models (including graphical
techniques and moment-based and likelihood-based

Fig. 6. FDR vs. FNR plots showing horizontal average of the BN (Lonnstedt & Speed, 2002; Smyth, 2004), BL
(Bhowmick et al., 2006) and empirical Bayes EVD mixture model (BE) statistics from 100 simulated datasets in the four
simulated model-datasets simulating an experiment with a low number of DE genes (10). ‘NeBC’=normal-exponential
convolution background correction method; ‘MBC’=multiplicative background correction method.
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methods), the MLE approach is particularly appeal-
ing due to its all-around utility and adaptability
(Coles, 2001). Indeed, our analyses showed that BE
works well even when hyperparameters a, b and c are
estimated from a small sample of genes (y10) related
to smaller pDE and/or a smaller number of tested
genes G. However, caution is needed when MLE is
used to estimate means and SEs of EVD hyperpar-
ameters. Because the end-points of the GEV distri-
butions are functions of the parameter values,
regularity conditions required for the usual asymp-
totic properties associated with the maximum likeli-
hood (ML) estimator are not satisfied by the GEV
model (Coles, 2001). Particularly, in the experiments
involving detection of down-regulated genes, if the
value of the shape parameter (c) lies between x1 and
x0.5, ML estimators are generally obtainable, but do
not have the standard asymptotic properties, while
when c<x1, ML estimators are unlikely to be ob-
tainable (Smith, 1985). Conversely, when c>x0.5,
ML estimators are regular (have the usual asymptotic
properties) (Smith, 1985). Therefore, in experiments
designed to detect up-regulated genes, where c>0, the
usual asymptotic properties immediately apply. For
detection of down-regulated genes, it is reasonable
to negate the contrast estimators from gene-specific
linear models before estimation of the MLE hyper-
parameters and subsequent approximation of BE
statistics, i.e. to switch from modelling minima to
modelling maxima.

While only one direction of differential expression
is often expected in the wild-type vs. mutant exper-
iments, it is possible to observe a few genes with their
expression in an opposite direction. For example,
while the sigma factor sB is a positive regulator of
gene expression, some genes show higher transcript
levels in a sigB null mutant, likely representing in-
direct effects, which may, however, be biologically
relevant. For example, in the bacterium Staphylo-
coccus aureus, genes encoding a number of exo-
enzymes and toxins show higher transcript levels in a
sigB null mutant strain as compared with the parent
strain with an intact sigB gene, suggesting indirect
negative regulation of these genes by sB (Bischoff
et al., 2004). To test differential expression of a
suspected biologically relevant gene regulated in
the direction opposite to the direction of regulation
of the majority of the genes in the experiment, its
contrast estimator should be negated prior to apply-
ing the BE method. Otherwise, the BE method would
rank this gene low, indicating non-differential ex-
pression.

Because there is no conjugate structure between
the normal likelihood of a gene being DE and the
EVD prior, it is impossible to estimate BE analyti-
cally. Therefore, the MC integration approximation
technique was applied. While this allowed us to base

the choice of the prior on the nature of the problem,
rather than on the available conjugate priors, it came
at the price of a higher, but still reasonable (e.g.
16 min for 50 000 iterations in a dataset with 10 000
genes), computational cost related to a large number
of tested genes and (usually) a large number of iter-
ations required to achieve a reasonable accuracy of
the BE statistics (because the accuracy increases only
as the square root of the number of iterations). The
MCSEs of the estimated BE statistics differed for
various genes, being the lowest for genes with a BE
statistic around zero. That is as expected because
genes with a high mean expression ratio, correspond-
ing to the upper tail of the EVD prior, will likely
have a high BE statistic. Similarly, genes with a high
variance, corresponding to the upper tail of the vari-
ance prior, will likely have a low BE statistic. At each
iteration, the probability of drawing a sample from a
tail is lower than from a body of the prior distri-
bution, so these genes require more iterations to
achieve sufficiently low MCSEs. If the BE statistic is
used to identify DE genes, as in the present study, an
even lower number of iterations may be sufficient.
However, when BE is used with the purpose of precise
ranking of genes by their strength of differential
expression, a larger number of iterations may be
necessary.

As discussed by Smyth (2004), it is possible to esti-
mate pDE from the data, for example, from posterior
odds through MLE or based on the P-values from
t-statistics (moderated or ordinary) (such as in
Langaas et al., 2005 and Wu et al., 2006). Never-
theless, estimation of pDE is unstable (related to
collapse in estimation of posterior odds caused by
boundary values of pDE=1 and pDE=0 having
positive probability), and may be sensitive to the
particular prior distribution assumed for the contrast
estimators from linear models and to dependence
between the genes (Smyth, 2004). To bypass these
problems, Smyth (2004) and Lonnstedt & Speed,
(2002) fixed pDE and then estimated the remaining
hyperparameter. This same approach has been adop-
ted in the BE method. A wrong choice of pDE would
not change the shape of the BE statistic vs. fold
change plot (i.e. ranking of the genes would stay
intact), but it would move the BE up and down on
the y-axis (as in Lonnstedt & Speed, 2002). Also,
through influence of the pDE on the hyperparameters
of EVD, it would vary fold change corresponding
to BE=0. Accepting that BE=0 is a natural cutoff
separating DE from non-DE, the fold change corre-
sponding to this point represents the ‘meaningful
fold change cutoff’ above which a gene could be
considered meaningfully DE. This ‘meaningful fold
change cutoff’ could give some indication of whether
the chosen pDE is wrong. For example, in exper-
iments expecting only up-regulated genes, the
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‘meaningful fold change cutoff’ f1 would indicate
that the selected pDE is too high.

The accuracy and precision of BN, BL and BE were
assessed based on the achieved FDR and FNR over
100 simulated datasets generated under the EVD
model. In an experiment, a researcher could choose
a tolerable FDR and try to minimize FNR (i.e.
maximize power) or choose a tolerable FNR and try
to minimize FDR. In the simulated datasets, we
mimicked both situations, and in both, the accuracy
of the BE method was at least as good as or better
than the other two tested methods. In addition to
being more accurate, BE was also more precise than
BN and BL in the simulated datasets. We also tested
the sensitivity of BE to several key characteristics of a
microarray experiment, namely, the pDE, the number
of arrays (usually representing the number of bio-
logical replicates) and the number of technical rep-
licates, as well as its performance in experiments
with a high number of tested genes but with only a
few DE genes. Overall, BE performed the best in all
four simulated model-datasets and under all the tested
simulated scenarios. When applied to real datasets,
BE performed well, with most of the findings being
validated by other independent studies (elaborated
in the Appendix). This ‘reality check’ is a valuable
addition to simulation studies because datasets used
in simulation analyses have been replicated from the
same model as the BE is built upon, thus limiting
ability of the simulation studies to give a completely
unbiased evaluation of BE performance.

6. Conclusions

In microarray experiments where only one direction
of expression is expected or relevant (only up- or
down-regulation), such as in certain experiments in-
volving wild-type vs. knockout design (Kazmierczak
et al., 2003; van Schaik et al., 2007) and some re-
stricted coverage arrays, including those performed
with the purpose of identifying novel gene markers
and drug targets (Suzuki et al., 2002; Kobayashi
et al., 2004), the nature of genes’ true mean ratios of
expressions is extreme. EVT was designed specifically
to study extreme behaviour, and is therefore an ex-
cellent candidate for use in analysis of differential
expression in such experiments. In this paper, we
proposed a new empirical Bayes method, BE, for
analysis of differential expression that is based on the
EVT, and we compared its performance with two
other empirical Bayes methods reportedly used in
analysis of such data. The first of the two methods,
BN, is a very popular method that is, however, based
on a distributional assumption invalid for exper-
iments where only one direction of expression is an-
ticipated or of interest. The distributional assumption
of the other method, BL, is valid, but the method is

unstable and its performance is still comparable with
BN. Based on the series of simulation analyses and
analyses of two real datasets, we believe that the BE
method has greater accuracy, precision and stability
than the BN and BL methods. It thus seems promis-
ing and useful for analysis of differential expression in
experiments where only up- or down-regulated genes
are relevant or expected. Because custom, restricted-
coverage microarray experiments, including those
described here, are likely to become much more
common in the future due to their possible use in
therapeutic and diagnostic applications (Liu-Stratton
et al., 2004), development and use of appropriate
bioinformatics tools will become vital, and the ad-
vantages of the BE method may become even more
evident.

This work was funded by the National Institutes of Health
(RO1-AI052151-01A1 to Kathryn J. Boor and M.W.) and
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Appendix

The appendix for this paper is available online at the
journal’s website (http://journals.cambridge.org/grh).
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