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LINEAR PARABOLIC EQUATIONS WITH VENTTSEL
INITIAL BOUNDARY CONDITIONS

Yi ZENG AND YOUSONG LUO

The Schauder estimates for solutions of linear second order parabolic equations
with Venttsel initial boundary conditions are proved, and existence and uniqueness
of classical solutions under such an initial boundary condition are established. An
application to an engineering problem is also given.

1. INTRODUCTION

In this paper we are concerned with problems of second order parabolic equations
with initial conditions and boundary conditions of Venttsel type.

Recently, some work has been done on Venttsel boundary value problems of elliptic
equations, see Luo and Trudinger [5, 6], and Korman [4]. Our task here is to extend
the corresponding theory in the elliptic case to the parabolic case.

The motivation of such a consideration is the engineering problem of an oil well. A
mathematical model of the "oil well" formulated by Cannon and Meyer [1] is included
in Section 2. Instead of dealing with this particular model, we consider the general
problems which are also defined in Section 2.

In Section 3, the main theorem of existence and uniqueness of solutions of the
initial boundary problems is stated, and its proof follows in Section 4.

2. THE PROBLEM

We first introduce the problem and then give an example of the physical background
of it.

2.1 NOTATION AND DEFINITIONS. Let 0, be a bounded domain in Rn with smooth
boundary 9fi. Let V be the domain V = fix (0, T] in Rn+1 and 5 be the portion of
the boundary of P , 5 - dfix (0, T]. A variable in V has the form

P = (x, t) = (xu x 2 , • •• ,xn,t)
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466 Y. Zeng and Y. Luo [2]

where x is called a space variable and t is called a time variable. If u is a function
defined in 2?, we denote the space derivatives and the time derivative of u by

du d2u , du
Diu — — , Diju = , and Dtu - — ,

dxi dxidxj dt

respectively.

A function u is said to be Holder continuous with index 0 < a ^ 1 in T> if for

each pair of points P = (x^, ti), Q = (x^, t2) in T>

r , \u(p)-u(Q)\
lttI- = 8 5 P

is finite, where
d(P,Q)=(\x1-x2\

is the parabolic distance from (xi, <i) to (i2, ^2)- We denote the class of all Holder
continuous functions by C a ( P ) . We use C 2 + a ( P ) to denote the class of all functions
u such that

u, Du D2u, Dtu

are all Holder continuous.

Both Ca(j5) and C2+a(jDj are Banach spaces with norms defined as following:

\UL;V =

\D2u\a.v + \Dtu\a.v

where \u\0.v -

D E F I N I T I O N 2 . 1 . An operator

(2.1) L = aijDij + VDi + c-Dt in V

is called a second order parabolic operator if the coefficient matrix {alj(x, t)} is sym-

metric positive definite, that is, for some positive X(x, t), A(x, t)

(2.2) A K f ^ f c f c ^ A K I 2 forai/e = (6,--- ,^n)GKn.

In order to state the Venttsel boundary condition we need to define the tangential
differential operators. Let v = (i/1, . . . , vn) be the unit inward normal vector field on
9f2. Define a matrix {cl f c}n x n whose entries are given by

cik = Sik - viuk,
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where 6xk is the Kronnecker symbol. Then the first order tangential differential operator
and the second order tangential differential operator are then defined by

8i = cikDk, dij = didj, i,j = 1, • • • , n

and the tangential gradient operator is defined by

The second order tangential derivatives so defined are not symmetric generally.

Using the above notation, we define the Venttsel boundary operator as follows:

DEFINITION 2 . 2 . A linear differential operator

(2.3) I = ctijdij + Fdi + 7 - Dt onS

is called Venttsel if

(i) {a l J (x, t)} is a non-negative definite symmetric matrix valued function,
that is

(2.4) aij(x, tfaTij > 0, V(se, t) 6 S and VT? G Rn;

(ii) The vector field 0 = (01, ..., j3n) satisfies

(2.5) /? • v ^ 0 V(x, t)eS.

The conditions (2.4) and (2.5) show that a Venttsel boundary operator is both

parabolic and oblique.

Sometimes it is convenience for us to write the operator (2.3) as

/ = ofiDijU + fDiU + -f-Dt

with e?j - ak'ckic'j and / f = ak'ckj (DjCli) + / ? ' , and we observe that

(2.6) oiivi = 0 V(x, t) G 5 and V* = 1, . . . , n.

Now we are in the position to state the Venttsel initial boundary value problem of
second order parabolic equations as follows:

(2.7) Lu = aijDiju + 6'D{u + cu - Dtu = f in V,

(2.8) u(x, 0) = tp(x) on fi,

(2.9) lu = aijdiju + FDiU + ^u - Dtu = g on 5 .
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2.2 HYDRAULIC FRACTURING. In the field of oil well engineering, high yield of oil in a
well is the most important aspect. In order to increase the flow of oil from a reservoir
into a well, "hydraulic fracturing" is often used. By mechanically fracturing the oil
bearing formation near the well, narrow channels of high permeability are increased
which collect the oil and carry it to the well. The following mathematical model of this
situation was developed by Cannon and Meyer [1].

Consider a region $7 (the reservoir) with outer boundary dil (the reservoir bound-
ary). If the fluid is assumed to be slightly compressible, then Darcy's law gives the
following equation for the reservoir pressure p

(2.10) Di{a(x)Dip) - b{x)Dtp = F(x, t) x e fi, t > 0

where a and b are positive functions describing the permeability of the reservoir, while
F is determined by the forces acting on the fluid. Let F be the well boundary. Known
pressure on the well boundary gives

(2.11) p = <f>(x,t), xeT, t>0.

No flow across the reservoir boundary gives

(2.12) ^ = 0 xedQ, t>0,

where n is the inward normal on 9f2. In addition, an initial pressure distribution

(2.13) p = po{x), i £ f l , t = 0,

is provided. By assuming that ij) = ip(x, t) is a C2 function such that

(2.14) ip = (f>, xeT, t>0,

(2.15) -£- = 0 xedQ, t>0,

(2.16) V>=Po, xeil t = 0

and letting

we reduce the problem (2.10)-(2.13) to

(2.17) Di(aDi(u + V>)) - bDt{u
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(2.18) u = o xer, t>o,

(2.19) -^- = 0 x 6 dn, * > 0,
on

(2.20) u = o, x e r , * = o.

Suppose now that Qi is a long narrow fracture crack in the reservoir outside of the
well, whose centre can be approximated by a surface 5 with its normal v on 5 .

The local width of the fracture, measured along v, is denoted by h(x), where
x £ S. The basic assumption here is that pressure gradient across the fracture is
negligible so that

Du ss 9M

where du is the tangential gradient of u.
Suppose that the permeability function a is discontinuous across S. Then a func-

tion u is a solution if it satisfies (2.17)-(2.20) away from 5 while on S continuity of
pressure and flux are required, so that

lim u(x + ev) = lim u(x — «/),

lim a(x + «/)——(z + ei/) — lim (z — eu)—(x — «/)

where v is the normal to 5 at z £ 5. Thus, in the classical sense (2.17)-(2.20)
described a parabolic interface problem

(2.21) Di(aDi{u + V>)) - bDt{u + V>) - F = 0 o n f i - 5 ,
d(u + ib)

(2.22) 2a v . ' + diUihddu + ij>)) - bDt(u + r/>) -F = 0 on 5
av

where a\ is the permeability along the fracture S, and

(2.23) u = 0

(2.24) £ = 0

(2.25) u = 0

When S coincides with the boundary fl, one can see that this is a Venttsel initial
boundary value problem described in Section 2.1.

on

on

on

r
an
n

t

t

t

>o,
>o

= 0.
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3. THE MAIN THEOREM

THEOREM 3 . 1 . For each T, let V=Slx (0, T] be a C2 + Q domain. Suppose L,
I are both parabolic and the coefficients aij, b{, c; aij, /3', 7 £ Ca(V) . Then for
each f, g £ C"(V) and <p € C2+a(V) , the problem (2.7)-(2.9) has a unique solution

ue c2+a(v).
The existence part of the theorem follows from the standard method of continuity,

that is, we consider first the family of problems (Pa)

(3.1) Lu = f in V,

(3.2) U = <p on 0,

(3.3) alu + (1 - <r)l'u = <rg on 5

with a G [0, 1], and V defined by

I'u = Agnu — Dtu

where Aan = dan is the Laplace-Beltrami operator. The method of continuity (Theo-
rem 5.2 of [3]) says that if

(i) the solutions ua of (Pa) satisfy

(3-4) M2+aiV < C

for a constant C which is independent of ua,
(ii) the problem (Po)

(3.5) lu = f in V,

(3.6) u = ip on n,

(3.7) I'u = 0 on S

is solvable in C2+a,

then the problem (2.7)-(2.9) is also solvable in C2+a.
We shall leave the a priori estimates (3.4) to the sequel, and give the solution of

(Po) here.
Let {^Vi}*=1 be a finite covering for dQ, that is, each Mi is open and \}Mi D dCl.

Let {fi}i=1 be the partition of unity relative to {.A/i}*_i, that is, supper,- C Mi, tr,- ^ 0
t _

and ^2 Oi = 1. We denote MiC\£l by Qi. Then there is a diffeomorphism tpi: Mi -» Rn,
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such that &(n.-) = B+, V>»(9nnM) = B°, where B+ = B+{0) = {y £ K" : \y\ <
1, yn > 0} and B° = B°(0) = {y £ Rn : \y\ <l,yn = 0}. Then the Cauchy problem

(3.8) Au-Dtu = = 0 in B° x (0, T],

(3.9) u = <p on 5°

has a solution u; by the classical theorem for heat equations. Now we define

k

where u; = 2̂  o -0j. It follows that u is a solution of

(3.10) Aenu - Dtu = 0 on 5,

(3.ii) u = ip on an.

By using this solution as the boundary data and solving the resulting first initial

boundary problem of Lu = / , we obtain a solution of the problem (Po).

Therefore the whole problem is reduced to the a priori estimate (3.4).

The uniqueness part of the theorem is an immediate consequence of the maximum
principle in the following section.

4. A priori ESTIMATE

4.1 MAXIMUM PRINCIPLE. The maximum principle provides the earliest and simplest
a priori estimate of a solution. It is of considerable interest that all the estimates
can be derived entirely from comparison arguments based on the maximum principle.
Therefore, we first develop a maximum principle for the initial boundary value problem

The following lemma from [5] is fundamental to Venttsel boundary conditions. We
provide a complete proof here.

LEMMA 4 . 1 . Suppose that I is Venttsel. If (xo, to) £ S is a maximum point of
some function u £ C2(V), then at (XQ, to), we have {diju} ^ 0, Dvu ^ 0 , du = 0, so
that

(4.1) cf'diju + QiDiU ^ 0.

PROOF: We locally flatten the boundary in the following manner. For any point
(xo, to) £ S, we can always find a neighbourhood M of {XQ, to) and a diffeomorphism
* : N -> Rn + 1 such that

<${Nnv) = B+x(-i, l), <&(MnS) = B°x(-i, l)
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and

V{xo,to) = (O, 0),

where B+ and B° are defined as before. For each continuous function v in Af C\T>,
we denote v =v o vp"1 which then belongs to C(B+ U 5°) . Under the diffeomorphism
\I>, we have

(4.2) d i U = c i ^

(4.3) Dvu=vk —^
oxk

and

( 4 4 )

If u achieves its m a x i m u m at (zo, to ) , so does u at (0, 0 ) . It follows tha t

(4.5) Dau = 0, for o- = l , ••• , n - l and Dnu ^ 0,

(4-6) {Daru^-l, < 0.

Notice that close to (xo, to), S is denned by {\Pn = 0}x( —1, 1), so we obtain

(4.7) D9n=\D*n\v

which implies

(4.8) ^ 7 ^ = ° Vi = l , . . . , n .
Oxk

Substituting (4.5) and (4.8) into (4.2) and (4.3), we see

(4.9) diu(xQ, t0) = 0 Vi

and

(4.10) Dvu{x0, to) = \D*n\ Dnu{0, 0) ^ 0.

Now we proceed to show that at (z0)io), {didju} is symmetric and nonnegative,
(although {didju} is not symmetric generally). By substituting (4.8) into (4.4) we see
that the sum

oxk axi
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consis ts of only t h o s e t e r m s for which l ^ c r , r ^ n — 1 . I t follows t h a t

(4.11) = | I > * n | cikc>lDkv
lDnu + cikc'\Dk

= 0.

Inserting (4.5), (4.6) and (4.11) into (4.4) yield

(4.12) {ft0,-u(zo, U)} = {cikJl?~^LDaTu} 1(0,0)̂  0.

The inequality (4.1) is obtained by combining of (4.9), (4.10), (4.12) and the assumption
on I. D

THEOREM 4 . 2 . Suppose that L is degenerate parabolic and I is degenerate

oblique and degenerate parabolic. Let u € C2 (P) satisfy

Lu ^ / , in T>\ it(x, 0) = tp, on J7; lu ̂  g, on S.

We then have the estimates

(4.13) supu ^ CI sup | / | + sup \<p\ + sup \g\ I
v \5 v s /

where C = C(M, T) provided max{|c|, \i\) ^ M.

PROOF: Assume u attains a positive maximum in T>. Let v = e~atu where
(T = M + 1. We then have

supu ^ e ( M + 1 ) T s u p v .
v v

We prove (4.13) in the following cases.

CASE I. If v attains a maximum at (XQ, to) € T>, applying the operator L — a to v

we have at (xo, to),

(L - a)v = a^Dije-^u + ^Die^u + (c - a)e~atu - ^ " " ^

Since ax'DijV ^ 0, biDiV = 0 and Dtv > 0 at (a;0, t0), we have
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which implies

supu 4 sup | / | .

CASE II. If (x0, to) £ ft, we have

supu
v n

CASE III . If (x0, t0) G S. We apply (/ -a) to v to get

(/ - <r)v = e~atlu

> e-atg.

By Lemma 4.1 we have at (xo, to),

and
Dtv > 0,

so that

( 7 - <T)V > e-^g,

that is,
supu ^ sup|s|.

-D S

Combining the above three cases, we get

supu ^ C I sup | / | + sup \<p\ + sup \g\ I

where C depends on M and T.

Uniqueness of the solution to the Venttsel problem follows automatically from the

maximum principle. U

THEOREM 4 . 3 . Let L be degenerate parabolic in T> and I be degenerate

parabolic and degenerate oblique. Suppose that u and v are functions in C2(V)

satisfying Lu ^ Lv in T>, lu ^ Iv on S, u ̂  v on fi. Then u ^ v in T>.

PROOF: Set w = u - v in V, then Lw = L(u - B ) ^ 0 in I>, Iw = l(u - v) ^ 0

on S and u — v ^ 0 on fl. By Theorem 4.2,

supra ^ 0,
v

hence
u ^ v in T>.
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4.2 SCHAUDER ESTIMATES. In addition to the notation introduced in Section 2 we

adopt some more standard notation for Holder norms in a parabolic problem. (See

[3, 2].)

For P = (x, t), Q = (y, s) 6 V we denote

d = dP =dist(P, n + 5),

= min{dp,

and if F is a portion of the boundary manifold fl + S we denote

d = dp = dist (P, (U + S)\T),

= min{<fp, dQj.

A function u is said to belong to the class C2+Q(2?) if the following interior Holder
norm is finite:

(4.14) |U|2*+Q = | < + \dDu\*a + \d2D2u\*a + \d2Dtu\l

where

(4-15) K = |»|0 + H ;

and

The class of functions u which are of C2+a not only in T> but also up to T is
denoted by C2+a(T> U F), and its norm is denoted by |u|2+Q Vur • This norm is defined
also by (4.14) except that d and dpQ are replaced by d and dpQ.

To establish the Schauder estimates we first prove an interpolation inequality which
is a parabolic version of those inequalities for elliptic problems stated in Section 6.8 of
[3]. The method of proof here is also based on [3].

LEMMA 4 . 4 . Let u £ C2+a{V). Then for any e > 0 and some constant C =

C(e) we iave

(4.17)

PROOF: By the definition (4.15)

\dDu\*a = \dDu\0 + [dDuYa.
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u]^ only, because Lemma 6.32 of [3] can be applied toWe proceed to estimate
u|0 to obtain the bound

(4.18)

for each t\ .

Let P = (x, t), Q = (z, s) G V. We define r = fidp and

Er = {ti,r)\\(-x\<r,\T-t\<r2}

where 0 < fi < 1/2 is a constant to be specified later. Let P' = (x', t), P" = (x", t)
be the end points of the line segment of length 2r parallel to the Xi axis and with its
centre at P.

It is obvious that for Q' — (x, s)

(4.19)
\Du(P) - Du(Q)\ \Du(P) - Du(Q')\ \Du{Q<) - Du(Q)\

d(P, Q)a ^ d(P, Q)a

By Lemma 6.32 of [3], we have, for each e2 > 0

d(P,Q)

(4.20) d1+a
aPQ

Du(Q') - Du(Q)

d(Q', D)c \d2D2z
lo "

For the estimate of the first term on the right-hand side of (4.19), we consider

w(x) — u(x, t) — u(x, s).

By the theorem of the mean there is x on the segment between a' and x" in fi such
that

„ . , w(x')-w(x")
(4.21)

that is,

Diu(x, t) - DiU(x, s) = ± [(«(*', *) - u(x', a)) - {u{x", t) - u(x"', a))].
zr

Therefore, if Q' G ETi

rx

Diu{P) - DMQ) = DiU(x, t) - DiU{x, s) + / [Duu{x, t) - Duu(x, a)] dx{,
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and hence
(4.22)

1+a\DMP) - DJU{Q)\ <*j,qYlN»', *)-«(»', J))| \(u[x»,t)-u(x»,a))\\
p« d(P,Q)a ^ 2r V d(P,g')a <^QT /

, .l+a /" \Diiu(x, t) - DijUJx, S)\ _,

provided dpQ < 1.

UQ'tEr,

\Du{P)-Du{Q')\ 2

Inserting (4.18) into (4.23), we obtain

( 4 , 4 )

Now we choose /J, €2 such that / i1"" < e and /i, £2 < C| and then choose ej such
that ei < e and ei//ia < e. Combining all the estimates above we obtain

[dDtt]; ^ C \u\Q + e \dD'u\l + e \d2Dtu\*0 + e[d2D2u]*a

D
LEMMA 4 . 5 . Let T be a portion ofU+S and u G C2+a{T> U Y). Then tor each

e > 0 and some constant C = C(e), we have

(4-26) \dD<,vur < ^ Mo + e kl^+

PROOF: The proof of this lemma differs from that of Lemma 4.4 only at the choice
of P', P".

More precisely, assume first T is only a flat portion of 5, that is,

where E is a domain in R?"1 and 0 < tx < t2 < T.
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To estimate [<fZ?u]̂  in such a case, we consider the line through P parallel to the
xn axis, and let P', P" be the end points of the segment of the above hne truncated
by d(Er D V). Then, instead of (4.19) we have

where d(P', P") ^r.

The remaining proof is the same as before. D

If F is a portion of fi only, the whole proof of Lemma 4.4 carries over. For general
F , the result is only a combination of the two cases above.

The following Lemma is an immediate consequence of Lemmas 4.4 and 4.5.

LEMMA 4 . 6 . IfuG C 2 + Q ( P ) and dn is also of C 2 + Q , then for each e > 0 and
some C = C(e) we have

(4.28) \Du\a^\Cu\0 + e\u\2+a.

THEOREM 4 . 7 . Let V be a C2+a domain and u G C2+a(V) be a solution of

(2.7)-(2.9), f,gE C°°(V) . Suppose that following conditions hold,

(a) a«fcfc£A|£|2 VeGK";
of'viV} ^ -̂  I7?!2 Vv e R n s u c A tiiat f-L" and (*> *) e S;

(b) |a« , 6% c | a i l > l | a « , /3S 7^.5- ^ A for some A > 0.

We tiien have
\v\2+a-.v ^ C(\u\o.v + \<p\2+a.v + \g\Q.v + \f\a.v)

where C = C(n, a, A, A, e, 5 ) .

PROOF: We assume u £ C2+a is a solution of equations (2.7)-(2.9) and suppose
that the boundary is locally flattened, that is (2.9) becomes

(4.29) a'tD,tu + 0iDiu + -yu-DtU = g onB2x(0,T).

Setting G = g - j3nDnu, we can rewrite (4.30) as

(4.30) a'lD,tu + fiDiU + -yu - Dtu = G on B°x(0, T).

Thus, (4.31) may be considered as a parabolic equation in the n dimensional domain
B ° x ( 0 , T ) . If we apply the Schauder interior estimates of the first initial-boundary
value problem [2] for this equation, we can obtain for G 6 Ca(B°x(0, T ) ) ,
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where C = C(n, a, A, A). This implies that

(4-32) | U | 2 + a ; S ^ C(|«|0.B + \g\a.v + d \Du\a]V).

Using the global estimates of the first initial-boundary value problem Theorem 3.2.6 of

[2], we have

(4.33) \n\2+a.v ^ C(|u|0.c + \u\2+a.s + \<p\2+a.v + \f\a.v).

Now, we insert (4.32) into (4.33) to obtain,

(4-34) \u\2+a.v ^ C(\u\0.v + \u\0.v + \Du\a.v + \<p\2+a.v + \g\a.v + \f\a.v)

where C = C(n, a, A, A, 5) . We have by Lemma 4.6,

(4-35) \Du\a.v < C2 \u\0.v + t \u\2+a.v .

If we substitute the right-hand side of (4.36) into (4.35), we obtain

\U\2+a;V ^ C'(lUloi1>+C'2 IwlojP+elw^+ojD + IV^+aiXI + lffla;D + \f\a;T>)-

Hence, we have, for sufficiently small e

where C = C(n, a, A, A, 5) . D
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