ON A THEOREM OF RAV CONCERNING EGYPTIAN FRACTIONS

BY
WILLIAM A. WEBB

Problems involving Egyptian fractions (rationals whose numerator is 1 and whose denominator is a positive integer) have been extensively studied. (See [1] for a more complete bibliography). Some of the most interesting questions, many still unsolved, concern the solvability of

$$
\frac{m}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{k}}
$$

where k is fixed.
In [2] Rav proved necessary and sufficient conditions for the solvabilty of the above equation, as a consequence of some other theorems which are rather complicated in their proofs. In this note we give a short, elementary proof of this theorem, and at the same time generalize it slightly.

Theorem 1.

$$
\begin{equation*}
\frac{m}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{k}} \tag{1}
\end{equation*}
$$

if and only if there exist positive integers M and N and divisors D_{1}, \ldots, D_{k} of N such that $M / N=m / n$ and $D_{1}+D_{2}+\cdots+D_{k} \equiv 0(\bmod M)$. Also, the last condition can be replaced by $D_{1}+D_{2}+\cdots+D_{k}=M$; and the condition $\left(D_{1}, D_{2}, \ldots\right.$, $\left.D_{k}\right)=1$ may be added without affecting the validity of the theorem.

Proof. Suppose there exist M and N and divisors D_{1}, \ldots, D_{k} of N such that $M / N=m / n$ and $D_{1}+D_{2}+\cdots+D_{k}=r M$. Then

$$
\begin{equation*}
\sum_{i=1}^{k} \frac{1}{r N / D_{i}}=\frac{r M}{r N}=\frac{m}{n} \tag{2}
\end{equation*}
$$

and so (1) is solvable. This holds regardless of whether $r=1$ or whether $\left(D_{1}, D_{2}, \ldots, D_{k}\right)=1$.

Now suppose that (1) is solvable, then

$$
\begin{equation*}
\frac{m}{n}=\sum_{i=1}^{k} \frac{1}{x_{i}}=\frac{\sum_{i=1}^{k} x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{k}}{x_{1} x_{2} \cdots x_{k}} \tag{3}
\end{equation*}
$$

Letting M and N be the numerator and denominator of the right hand fraction in (3) and letting $D_{i}=x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{k}$ our theorem is satisfied. Furthermore
$D_{1}+D_{2}+\cdots D_{k}=M$. Also, letting $d=\left(D_{1}, D_{2}, \ldots, D_{k}\right), M^{\prime}=M / d, N^{\prime}=N / d$, $D_{i}^{\prime}=D_{i} / d$ then M^{\prime}, N^{\prime} and the D_{i}^{\prime} also satisfy the theorem, and $\left(D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{k}^{\prime}\right)=1$.

This theorem would give an effective means of deciding the solvability of (1) if we could obtain an upper bound for the least M and N satisfying the theorem. Letting $M=C m$ and $N=C n$ we want a bound B such that if (1) is solvable, then our theorem is satisfied for some $C \leq B$. This is possible to do inductively, although the bounds obtained are rather cumbersome. We illustrate with the cases $k=2$ and 3-these cases are the most important and have been most extensively studied in other contexts.

Theorem 2. Letting $M=C m$ and $N=C n$, theorem 1 is satisfied with
(i) $C \leq(n+1) / m \quad$ if $k=2$
(ii) $C \leq \max _{x \in[n / m, 3 n / m]} \frac{n x^{2}+x}{m x-n} \quad$ if $k=3$.

Proof. Suppose without loss of generality that $(m, n)=1$ and $m / n=\left(1 / x_{1}\right)+$ $\left(1 / x_{2}\right)$. In this case we know that there exist $d_{1}, d_{2} \mid n$ such that $d_{1}+d_{2}=t m$. Then theorem 1 is satisfied with $C=t$ and $t \leq(n+1) / m$ since $\left(d_{1}, d_{2}\right)=1$ which implies $d_{1}+d_{2} \leq n+1$. Examples such as $3 / 11$ show that this is the best possible bound for C in the case $k=2$.
Now suppose $m / n=1 / x_{1}+1 / x_{2}+1 / x_{3}$, where $x_{1} \leq x_{2} \leq x_{3}$. By applying part (i) to $m / n-1 / x_{1}$ we get the bound given in (ii) since obviously $x_{1} \in(n / m, 3 n / m]$. The maximum occurs at either $x=[n / m]+1$ or $[3 n / m]$ depending on the values of m and n in the specific case considered. A simpler bound for C such as $(n+m)\left(n^{2}+n m+m\right) / m^{2}$ could be used in (ii) although some precision would be lost.

The case where the x_{i} are allowed to be negative is also of considerable interest. A result completely analogous to Theorem 1 can be proved in this case with only the most minor changes. This extends Lemmas 2 and 3 of [3].

References

1. M. N. Bleicher, A new algorithm for the expansion of Egyptian fractions, J. of Number Theory, Vol. 4 (1972), 342-382.
2. Y. Rav, On the representation of a rational number as a sum of a fixed number of unit fractions, J. Reine Angew. Math. 222 (1966), 207-213.
3. B. M. Stewart and W. A. Webb, Sums of fractions with bounded numerators, Can. J. Math., 18 (1966), 999-1003.
[^0]
[^0]: Washington State University

