On Absolute Summability for any Positive Order

By C. E. Wixn (Egyptian University).

(Received 24th May, 1932. Read 4th June, 1932.)
§ 1. Absolute summability according to Cesàro's method has been defined by Fekete ${ }^{1}$ for positive integral orders, as follows:-

Denoting the r th partial sum of a series Σu_{n} by S_{n}^{r} and its r th mean, namely ${ }^{2} S_{n}^{r} / A_{n}^{r}$, by s_{n}^{r}, we can regard s_{n}^{r} as the sum of the series

$$
\sum_{\nu=0}^{n} u_{\nu}^{r} \equiv \sum_{\nu=0}^{n}\left(s_{\nu}^{r}-s_{\nu-1}^{r}\right) \quad\left(s_{-1}^{r}=0\right)
$$

Thus the convergence of Σu_{n}^{r} is equivalent to summability (C, r). If now this series is absolutely convergent, we say that Σu_{n} is absolutely summable (C, r), or summable $|C, r|$.

The above definition can be adapted without change for nonintegral orders; it is the object of the present paper to extend to all positive orders the consistency and product results given by Fekete. As a preliminary investigation bearing on the question appears an analogue of Toeplitz's theorem for sequences of bounded variation, the sufficiency only, and not the necessity, being taken into consideration.
§2. If s_{n} is a sequence of bounded variation, i.e. for which

$$
\Sigma u_{n}=\Sigma\left(s_{n}-s_{n-1}\right)
$$

is absolutely convergent, then

$$
t_{n}=\sum_{\nu=0}^{n} a_{n, \nu} s_{\nu} \quad\left(a_{n, \nu}=0, \text { if } \nu>n\right)
$$

is also of bounded variation, provided that the double sum

$$
\begin{equation*}
\sum_{\theta \leqq \nu \leqq n \leqq v}\left|a_{n, \nu}-a_{n-1, \nu}\right|<K \tag{1}
\end{equation*}
$$

for all values of N.

[^0]For we have

$$
\begin{aligned}
v_{n}=t_{n}-t_{n-1} & =\sum_{\nu=0}^{n}\left(a_{n, v}-a_{n-1, v}\right)\left(u_{0}+u_{1}+\ldots+u_{\nu}\right) \\
& =\sum_{i=0}^{n} u_{i} \sum_{\nu=i}^{n}\left(a_{n, v}-a_{n-1, v}\right) ;
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=0}^{N}\left|v_{n}\right| & \leqq \sum_{n=0}^{N} \sum_{i=0}^{n}\left|u_{i} \sum_{v=i}^{n}\right| a_{n, v}-a_{n-1, v} \mid \\
& =\sum_{i=0}^{N}\left|u_{i}\right| \sum_{i \leq \nu \leqq n \leqq N}^{\sum}\left|a_{n . v}-a_{n-1, \nu}\right| \\
& <K \sum_{i=0}^{N}\left|u_{i}\right|
\end{aligned}
$$

A simple case presents itself, when

$$
\sum_{\nu=i}^{n}\left(a_{n, \nu}-a_{n-1, v}\right) \geqq 0 \quad(0 \leqq i \leqq n)
$$

For then

$$
\begin{aligned}
\left|v_{n}\right| & \leqq \sum_{i=0}^{n}\left|u_{i}\right| \sum_{r=i}^{n}\left(a_{n, v}-a_{n-1, v}\right) \\
& =\sum_{v=0}^{n}\left(a_{n, v}-a_{n-1, v}\right) \sigma_{v}
\end{aligned}
$$

where $\sigma_{\nu}=\sum_{i=0}^{\nu}\left|u_{i}\right|$. It follows that

$$
\sum_{n=0}^{N}\left|v_{n}\right| \leqq \sum_{\nu=0}^{N} a_{N, \nu} \sigma_{r}
$$

Consequently, if the ordinary Toeplitz conditions hold, we can deduce, without assuming (1), that Σv_{n} converges absolutely.
§3. We next prove two lemmas.
Lemma I.

$$
\frac{1}{A_{n}^{p+q+1}} \sum_{\nu=i}^{n-j} A_{\nu}^{v} A_{n-\nu}^{q}
$$

does not increase as n increases $(p>-1, q>-1, p+q>-1 ; i, j, \geqq 0)$. We have

$$
0<\alpha_{\nu}=\frac{A_{v}^{p} A_{n-r}^{q}}{A_{n}^{p+q+1}} \lesseqgtr \frac{A_{v}^{p} A_{n-v-1}^{q}}{A_{n-1}^{p+q+1}}=\beta_{v}
$$

according as

$$
\nu \leqq \frac{p+1}{p+q+1} n=\nu_{1}, \quad \text { say }
$$

Hence, for $0 \leqq \nu \leqq \nu_{1}$,

$$
a_{0}+a_{1}+\ldots+a_{v}<\beta_{0}+\beta_{1}+\ldots+\beta_{v} ;
$$

and for $\nu_{1}<\nu<n_{i}$ noting that

$$
\sum_{v=0}^{n} a_{v}=\sum_{v=0}^{n} \beta_{v}=1
$$

we get

$$
\begin{aligned}
a_{0}+a_{1}+\ldots+a_{\nu} & =1-\left(\alpha_{\nu+1}+\alpha_{\nu+2}+\ldots+\alpha_{n}\right) \\
& <1-\left(\beta_{\nu+1}+\beta_{\nu+2}+\ldots+\beta_{n-1}\right) \\
& =\beta_{0}+\beta_{1}+\ldots+\beta_{\nu} .
\end{aligned}
$$

Therefore

$$
\frac{1}{A_{n}^{p+q+1}} \sum_{\nu=0}^{i-1} A_{v}^{p} A_{n-v}^{i}
$$

decreases, as n increases ($i>0$). And in the same way

$$
\frac{1}{A_{n}^{p+q+1}} \sum_{\nu=0}^{j-1} A_{\nu}^{q} A_{n-v}^{p}
$$

decreases, as n increases $(j>0)$. Our result thus follows, since ${ }^{1}$

$$
\frac{1}{A_{n}^{p+q+1}} \sum_{\nu=i}^{n-j} A_{\nu}^{p} A_{n-\nu}^{q}=\frac{1}{A_{n}^{p+q+1}}\left\{\sum_{\nu=0}^{n}-\sum_{\nu=0}^{i-1}-\sum_{\nu=n \rightarrow j-1}^{n}\right\} A_{\nu}^{p} A_{n-\nu}^{q}
$$

Lemma II.

$$
A_{j}^{l} \sum_{\nu=0}^{\infty} \frac{A_{v}^{k-1}}{A_{j+\nu}^{k+l}}
$$

is finite for all $j \geqq 0, k \geqq 0, l>0$.
When $k=0$, the sum reduces to unity. Otherwise we have $\sum_{\nu=0}^{i} A_{v}^{k-1}=A_{j}^{k}$, and as i becomes great,

$$
A_{i}^{r} \cong \frac{i^{r}}{\Gamma(r+1)}(r>-1)
$$

so that

$$
\begin{aligned}
\sum_{\nu=0}^{\infty} \frac{A_{\nu}^{k-1}}{A_{j+\nu}^{k+l}} & =\left(\sum_{\nu=0}^{j}+\sum_{\nu=j+1}^{\infty}\right) \frac{A_{\nu}^{k-1}}{A_{j+\nu}^{k+l}} \\
& >\frac{A_{j}^{k}}{A_{j}^{k+l}}+O \sum_{\nu=j+1}^{\infty}\left(\frac{\nu}{j+\nu}\right)^{k-1} \frac{1}{(j+\nu)^{l+1}}=O\left(\frac{1}{j^{l}}\right),
\end{aligned}
$$

[^1]which yields the required result. We conclude with our two theorems.
§4. Theorem I. If Σu_{n} is summable $|C, k|$, then it is also summable $|C, k+l|, \quad(k \geqq 0, \quad l>0)$.
We have
\[

$$
\begin{aligned}
s_{n}^{k+l}=\frac{S_{n}^{k+l}}{A_{n}^{k+l}} & =\sum_{\nu=0}^{n} \frac{A_{n-\nu}^{l-1} A_{v}^{k}}{A_{n}^{k+l}} s_{\nu}^{k} \\
& =\sum_{v=0}^{n} a_{n \nu} s_{v}^{k}, \text { say }
\end{aligned}
$$
\]

and from Lemma I, with $j=0$, it appears that ${ }^{1}$

$$
\sum_{\nu=i}^{n}\left(a_{n, \nu}-a_{n-1, \nu}\right) \geqq 0
$$

Consequently, in view of our earlier remarks, the series Σu_{n}^{k+l} converges absolutely.

Theorem II. If Σu_{n} is summable $|C, k|$ and Σv_{n} is summable $|C, l|$, then the product series

$$
\Sigma w_{n} \equiv \Sigma\left(u_{0} v_{n}+u_{1} v_{n-1}+\ldots+u_{n} v_{0}\right)
$$

is summable $|C, k+l|, \quad(k \geqq 0, l \geqq 0)$.
When k and l are both zero, this reduces to the well-known theorem on the multiplication of two absolutely convergent series. We may suppose then that $l>0$. Denoting the partial sums of order r for Σu_{n} and Σv_{n} by S_{n}^{r} and T_{n}^{r} respectively, we have, when $|x|<1$,

$$
\begin{aligned}
(1-x)^{-k-l-1} \sum_{n=0}^{\infty} u_{n} x^{n} \cdot \sum_{n=0}^{\infty} v_{n} x^{n} & =(1-x)^{-k} \sum_{n=0}^{\infty} u_{n} x^{n} \cdot(1-x)^{-l-1} \sum_{n=0}^{\infty} v_{n} x^{n} \\
& =\sum_{n=0}^{\infty} S_{n}^{k-1} x^{n} \cdot \sum_{n=0}^{\infty} T_{n}^{l} x^{n}
\end{aligned}
$$

Hence the partial sum of order $k+l$ for the product series is

$$
\begin{aligned}
P_{n}^{k+l} & =\sum_{\nu=0}^{n}\left(S_{\nu}^{k}-S_{\nu-1}^{k}\right) T_{n-\nu}^{l} \\
& =\sum_{\nu=0}^{n}\left(A_{\nu}^{k} s_{\nu}^{k}-A_{\nu-1}^{k} s_{\nu-1}^{k}\right) A_{n-\nu}^{l} t_{n-\nu}^{l}
\end{aligned}
$$

[^2]and
\[

$$
\begin{aligned}
w_{n}^{k+l} & =\frac{P_{n}^{k+l}}{A_{i,}^{k+l}}-\frac{P_{n-1}^{k+l}}{A_{n-1}^{k+l}} \\
& =\sum_{\nu=0}^{n}\left(A_{\nu}^{k} s_{\nu}^{k}-A_{\nu-1}^{l} s_{\nu-1}^{l}\right)\left(\frac{A_{n-\nu}^{l} t_{n-v}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l} t_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right) \\
& =\sum_{\nu=0}^{n}\left(A_{\nu}^{k-1} s_{\nu}^{l}+A_{\nu-1}^{k} u_{\nu}^{k}\right)\left\{\left(\frac{A_{n-\nu}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right) t_{n-\nu}^{l}+\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}} v_{n-\nu}^{l}\right\} \\
& =\sum_{\nu=0}^{n} A_{\nu}^{k-1} s_{\nu}^{k}\left(\frac{A_{n-\nu}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right) t_{n-\nu}^{l}+\sum_{\nu=0}^{n-1} A_{\nu}^{k-1} s_{\nu}^{k} \frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}} v_{n-\nu}^{l} \\
& +\sum_{\nu=1}^{n} A_{\nu-1}^{k} u_{\nu}^{k}\left(\frac{A_{n-\nu}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right) t_{n-\nu}^{l}+\sum_{\nu=0}^{n-1} A_{\nu-1}^{k} u_{\nu}^{k} \frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}} v_{n-\nu}^{l} \\
& =\Sigma_{1}+\Sigma_{2}+\Sigma_{3}+\Sigma_{4}, \quad \text { say. }
\end{aligned}
$$
\]

Now

$$
\begin{aligned}
\Sigma_{1} & =\sum_{\nu=0}^{n} A_{\nu}^{k-1} \sum_{i=0}^{\nu} u_{i}^{l} \sum_{j=0}^{n-\nu} v_{j}^{l}\left(\frac{A_{n-\nu}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right) \\
& =\sum_{0 \leqq i+j \leq n} u_{i}^{k} v_{j}^{l}\left\{\sum_{v=i}^{n-j} \frac{A_{v}^{k-1} A_{n-\nu}^{l}}{A_{n}^{k+l}}-\sum_{\nu=i}^{n-j-1} \frac{A_{\nu}^{k-1} A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right\} .
\end{aligned}
$$

But the expression in brackets is $\geqq 0$ by Lemma I. Hence

$$
\begin{aligned}
\left|\Sigma_{1}\right| \leqq & \sum_{0 \leqq i+j \leqq n}\left|u_{i}^{k}\right|\left|v_{j}^{l}\right|\left\{\sum_{\nu=i}^{n-j} \frac{A_{\nu}^{k-1} A_{n-\nu}^{l}}{A_{n}^{k+l}}-\sum_{\nu=i}^{n-j-1} \frac{A_{\nu}^{k-1} A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right\}, \\
\sum_{n=1}^{N}\left|\Sigma_{1}\right| & \leqq \sum_{0 \leqq i+j \leqq N}\left|u_{i}^{k}\right|\left|v_{j}^{l}\right| \sum_{\nu=i}^{N-j} \frac{A_{\nu}^{k-1} A_{N-\nu}^{l}}{A_{N}^{k+l}} \\
& \leqq \sum_{0 \leqq+j \leqq N}\left|u_{i}^{k}\right|\left|v_{j}^{l}\right| \leqq \sum_{i=0}^{\infty}\left|u_{i}^{k}\right| \sum_{j=0}^{\infty}\left|v_{j}^{l}\right|=O(1) .
\end{aligned}
$$

Next, using Lemma II, we get, when \bar{s} is the upper bound of $\left|s_{\nu}\right|$,

$$
\begin{aligned}
\sum_{n=1}^{N}\left|\Sigma_{2}\right| & \leqq \bar{s} \sum_{n=1}^{N} \frac{1}{A_{n}^{k+l}} \sum_{v=0}^{n-1} A_{v}^{k-1} A_{n-\nu-1}^{l}\left|v_{n-\nu}^{l}\right| \\
& =\bar{s} \sum_{j=1}^{N}\left|v_{j}^{l}\right| O(1)=O(1) .
\end{aligned}
$$

In Σ_{3} we notice that, for $k>0$,

$$
\left|\frac{A_{n-\nu}^{l}}{A_{n}^{k+l}}-\frac{A_{n-\nu-1}^{l}}{A_{n-1}^{k+l}}\right|=\left|\frac{A_{n-\nu}^{l-1}}{A_{n}^{k+l}}-\frac{k+l}{n} \frac{A_{n-\nu-1}^{l}}{A_{n}^{k+l}}\right|<K \frac{A_{n-\nu}^{l-1}}{A_{n}^{k+l}}
$$

${ }^{1}$ It should be observed that Σ_{1} and Σ_{2} do not occur when $k=0$.
and, for $k=0$, the expression is equal to

$$
\frac{\nu A_{n-v}^{l-1}}{n A_{n}^{l}}<K^{\prime} \frac{A_{\nu-1}^{1} A_{n-\nu}^{2-1}}{A_{n}^{i+1}}
$$

Σ_{3} can therefore be treated like Σ_{2}, so that $\sum_{n=1}^{N}\left|\Sigma_{3}\right|=O$ (1).

Finally

$$
\begin{aligned}
& \left|\Sigma_{4}\right| \leqq \sum_{\nu=0}^{n-1}\left|u_{\nu}^{l_{i}}\right|\left|v_{n-\nu}^{l}\right| \\
& \sum_{n=1}^{N}\left|\Sigma_{4}\right| \stackrel{-}{n}_{\leqq}^{\sum_{\nu=0}^{\infty}\left|u_{\nu}^{k}\right| \sum_{\nu=0}^{\infty}\left|v_{\nu}^{l}\right|=O(1) .} .
\end{aligned}
$$

Combining results we see that $\sum_{n=1}^{N}\left|w_{n}^{k+l}\right|$ is finite for all N, i.e. that the product series is summable $|C, k+l|$.

[^0]: ${ }^{1}$ Math. ès Term. Ert. (1911), pp. 719.726.
 $2 A_{n}^{r}$ stands for $\binom{n+r}{n}$.

[^1]: ${ }^{\mathbf{1}}$ If i or j is zero, we omit the corresponding sum.

[^2]: ${ }^{1} a_{n-1, n}$ vanishes, if we take $A_{-1}^{r}=0(r=0,-1,-2 \ldots)$. This follows, if we suppose $A_{n-1}^{r}=A_{n}^{r} \frac{n}{n+r}$ true for $n=0$.

