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Abstract

We study the stability of inviscid, incompressible swirling flows of variable density with
respect to azimuthal, normal mode disturbances. We prove that the wave velocity of
neutral modes is bounded. A further refinement of Fung’s semi-elliptical instability
region is given. This new instability region depends not only on the minimum
Richardson number, and the lower and upper bounds for the angular velocity like Fung’s
semi-ellipse, but also on the azimuthal wave number and the radii of the inner and outer
cylinders. An estimation for the growth rate of unstable disturbances is obtained and it
is compared to some of the recent asymptotic results.
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1. Introduction

Recent research on the stability of vortices is motivated by the aircraft trailing vortex
problem [10]. It has been pointed out in the review article of Spalart [14] that the
vorticity profiles appropriate for these problems should be continuous. However,
the analytical study of the instability of constant density swirling flows of inviscid
incompressible fluids with respect to infinitesimal normal mode disturbances was
initiated long ago by Howard and Gupta [7]. When the disturbances are only
axisymmetric, a number of general analytical results, such as the Richardson number
criterion for instability, a semicircle theorem for the instability region and an estimate
for the growth rate of unstable modes, can be found in that article. Since obtaining
general analytical results for the three-dimensional disturbances is very difficult, they
have considered the problem of stability of swirling flows with respect to a special class
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210 H. Dattu and M. Subbiah [2]

of nonaxisymmetric disturbances, namely, the azimuthal (also called two-dimensional)
disturbances. Let (r, θ, z) be a cylindrical polar coordinate system. Consider the motion
of an inviscid, incompressible homogeneous fluid in the annular region between two
infinite cylinders at r = R1,R2, where 0 < R1 < R2 < ∞. Then the basic flow has the
velocity (0, V(r), 0), and the pressure is calculated from the Euler equations. The
azimuthal disturbances are of the form f (r)eim(θ−ct), where m is a nonzero integer,
called the azimuthal wave number, c = cr + ici is the complex wave velocity and
Ω = V/r is the angular velocity. The only general result for this problem known
at that time was the Rayleigh theorem on instability, namely, a necessary condition
for instability was that DZ should change sign at least once, with D = d/dr as the
differential operator and Z the basic flow vorticity [3]. However, substantial progress
has been made on this problem subsequently. Shukhman [13] has constructed the
angular velocity profile

Ω(r) = ±

[
Ω1 + Ω2

2
+

(
Ω2 −Ω1

2

)
tanh

(1
d

log
r
R

)]
as an analogue of the mixing layer profile in the parallel flow theory, where Ω1,Ω2, d
and R are the parameters of the model. Note that d is a shear width parameter, R > 0
is a scale parameter and ±Ω1 and ±Ω2 are limiting values of the angular velocity in
the limits r → 0 and r → +∞, respectively. In the absence of the cylinders, that is,
when the fluid is in an open environment, Shukhman [13] has shown that this flow is
stable when m = 1 for all values of d, but, when m = 2, it is stable for d = dcritical = 1/2
and unstable for d < dcritical. Subbiah [15] has found an estimate for the growth rate
of unstable modes and also upper and lower bounds on the phase velocity of neutral
modes. Maslowe and Nigam [10] have developed a nonlinear critical layer analysis for
general profiles, while Shukhman [13] has constructed an analysis for a special profile.

Now we will discuss the problem under consideration in this paper, namely, the
two-dimensional stability of swirling flows of inviscid, incompressible and variable
density fluids. This problem has also been studied in many articles (see e.g. the
articles by Pierro and Abid [2, 11]) previously. The stability of a heterogeneous
swirling flow with velocity (0,V(r), 0) and density ρ0(r) confined within an annular
region R1 ≤ r ≤ R2 between two concentric cylinders was considered by Fung and
Kurzweg [5]. Following the usual normal mode analysis, they have considered
infinitesimal azimuthal disturbances, that is, disturbances of the form f (r)eim(θ−ct),
and derived the linear stability equation and the associated boundary conditions.
Subsequently, Fung [4] has obtained some of the important general analytical results.
In particular, he has defined a local Richardson number, J = Ω2(Dρ0)/ρ0r(DΩ)2, with
D as the differential operator, and derived a semicircle theorem and a semi-ellipse
theorem for instability regions. If a ≤ Ω(r) ≤ b, then for basic flows satisfying the
condition abDρ0 ≥ 0, a semicircle theorem giving the instability region within the
complex wave velocity of unstable modes was derived. In addition, he has derived a
semi-ellipse theorem for the instability region, when the condition J < 1/4 is satisfied
by the Richardson number. The semicircle theorem was proved by adapting the
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[3] A note on the two-dimensional instability of swirling flows 211

method of Howard [6], while the semi-ellipse theorem was proved by that of Kochar
and Jain [8], both developed in the context of parallel shear flows. However, unlike
the semi-ellipse of Kochar and Jain [8], Fung’s semi-ellipse depended not only on the
minimum Richardson number Jm (which is the minimum of J(r) over the flow domain
[R1,R2]), but also on the upper and lower bounds of the azimuthal velocity. Instability
of the constant angular velocity basic flow was also demonstrated by Fung [4] when
Dρ0 < 0, and it was interpreted as an instability due to a density variation, only because
there was no shear in this flow. Davalos-Orozco and Vazquez-Luis [1] have studied the
instability of an interface between two inviscid fluids inside a rotating annulus between
two cylinders with infinite dimensions, and pointed out the reason for not excluding
the disturbance with the azimuthal wave number m = 1, when the inner cylinder was
present.

In a recent work on this problem, Dixit and Govindarajan [2] have studied the
instability of the Rankine vortex. Though the stability equation studied is the equation
of Fung and Kurzweg [5], they have considered the stability problem in the absence
of the cylinders with infinite dimensions and, consequently, they have considered
only the modes m , 1. As there was no shear in the Rankine vortex, they studied
the instability by computing the growth rate of unstable modes as a function of
Atwood number [2] rather than the Richardson number. In the case of swirling
flows without cylinders, the instability of slowly varying velocity profiles was studied
asymptotically in the large azimuthal wave number limit by Pierro and Abid [11].
The basic flows considered in that work include general velocity profiles of the form
(0, V(r),W(r)) and the disturbances considered are also general, that is, they are of
the form f (r)ei(kz+mθ−ωt). Of course, the density of the basic flow is a nonconstant
function of r. They have also pointed out that swirling flows are important for
many application devices and as a fundamental problem considering their relevance to
aircraft trailing vortices, vortical transport of momentum and energy in meteorology
and vortex breakdown [12]. As such, these problems are widely studied, but the
physical mechanisms of their instabilities, when density variations are present, are
not generally discussed. In a variable density swirling flow, there are ingredients for
the development of two fundamental instabilities, namely, instabilities due to density
variations and instabilities due to differential rotation. Also, it is pointed out that the
instabilities due to density variations is characterized by the formation of bubbles and
spikes for positive and negative buoyant fluids, respectively.

The instability of swirling flows considered by Pierro and Abid [11] was restricted
to slowly varying basic velocity profiles, and the instability analysis was an asymptotic
analysis valid for large axial or azimuthal wave numbers. For the case of azimuthal
disturbances, they have obtained an expression for the growth rate, and observed that
the growth rate was unbounded for |m| � 1 (see equation (22) of their article [11]).
They have introduced the equivalent of the Brunt–Väisäla frequency as N2(r) =

−(V2/r)(Dρ0/ρ0) (in our notation). Though Pierro and Abid [11] did not have any
restriction on the sign of Dρ0 in their asymptotic analysis, N(r) should be real only
for negatively buoyant fluids. They have also numerically studied the instability
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of Batchelor-like vortices [12] with density of the basic flow ρ0(r) = ρ∞[1 + (s − 1)
exp(−r2)], where ρ∞ is the density at r = ∞ and s the axial to ambient density ratio.
Note that (s − 1)/(s + 1) is the Atwood number. Their numerical results demonstrate
the instability of the Batchelor-like vortices if s & 1, and this corresponds to negatively
buoyant fluids again. Pierro and Abid [12] have shown numerically that the linear
asymptotical results in their earlier article [11] that are valid for large azimuthal wave
numbers also work for lower values of m, and they are valid in the nonlinear regime.

Now we state the results obtained in the present paper. Upper and lower bounds
for the wave velocity of neutral modes are determined here. We have obtained a
generalized semi-elliptical region that depends not only on the minimum Richardson
number, and upper and lower bounds on the angular velocity in common with Fung’s
semi-elliptical region, but also on the azimuthal wave number and the radii of the
cylinders. For an infinite R2 our generalized semi-ellipse reduces to Fung’s semi-
ellipse, but for finite R2 it lies inside Fung’s semi-ellipse. Since Jm ≥ 1/4 implies
stability of the swirling flow [4], the instability region should reduce to the line ci = 0
as Jm → (1/4)−. This is true for the instability region obtained in this paper and this
may be compared with that of Fung [4], which remains a semi-ellipse even in the
limit Jm → (1/4)−. A further consequence of the derivation of our generalized semi-
elliptical region is that we are able to obtain an estimate for the growth rate of unstable
disturbances. This estimate for growth rate is derived independently, and a further
improvement of this is also given. This can be compared with the estimation of Pierro
and Abid [11]. Our estimation is valid for all values of the azimuthal wave number
m, while theirs is valid for only large values of m. Another difference is that our
estimation is valid for positively buoyant fluids and for all smooth velocity profiles,
whereas theirs is valid for slowly varying velocity profiles.

2. Formulation of the problem

We consider the motion of an inviscid, incompressible and density stratified fluid
between concentric cylinders of radii R1 and R2 with 0 < R1 < R2 < ∞. Also, we
consider a basic flow with velocity (0,V(r), 0), pressure P0(r) and density ρ0(r), where
the pressure is related to the velocity and density by dP0/dr = ρ0(V2/r). The disturbed
flows are given by the velocity (u,V + v,w), pressure P0(r) + p and density ρ0(r) + ρ

with equations

(ρ + ρ0)
(
∂u
∂t

+ u
∂u
∂r

+
(V + v)

r
∂u
∂θ

+ w
∂u
∂z
−

(V + v)2

r

)
= −

∂(P0 + p)
∂r

,

(ρ + ρ0)
(
∂(V + v)

∂t
+ u

∂(V + v)
∂r

+
(V + v)

r
∂(V + v)
∂θ

+ w
∂(V + v)

∂z
+

u
r

(V + v)
)

= −
1
r
∂p
∂θ
,

(ρ + ρ0)
(
∂w
∂t

+ u
∂w
∂r

+
(V + v)

r
∂w
∂θ

+ w
∂w
∂z

)
= −

∂p
∂z
,
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∂u
∂r

+
u
r

+
1
r
∂(V + v)
∂θ

+
∂w
∂z

= 0,

∂ρ

∂t
+ u

∂(ρ + ρ0)
∂r

+
(V + v)

r
∂ρ

∂θ
+ w

∂ρ

∂z
= 0.

For infinitesimal disturbances, the nonlinear terms can be neglected to get the
following linear system of partial differential equations:

ρ0

(
∂u
∂t

+
V
r
∂u
∂θ
−

2V
r

v
)
−

V2

r
ρ = −

∂p
∂r
, (2.1)

ρ0

(
∂v
∂t

+ u
dV
dr

+
V
r
∂v
∂θ

+
V
r

u
)

= −
1
r
∂p
∂θ
, (2.2)

ρ0

(
∂w
∂t

+
V
r
∂w
∂θ

)
= −

∂p
∂z
, (2.3)

∂u
∂r

+
u
r

+
1
r
∂v
∂θ

+
∂w
∂z

= 0, (2.4)

∂ρ

∂t
+ u

dρ0

dr
+

V
r
∂ρ

∂θ
= 0. (2.5)

We consider the two-dimensional (that is, disturbances with w = 0 and ∂/∂z(u, v) = 0)
normal mode disturbances which are of the form

(u, v, p, ρ) = (û(r), v̂(r), p̂(r), ρ̂(r))eim(θ−ct),

where m is a positive integer, called the azimuthal wave number, θ is the azimuthal
angle and c = cr + ici is the (complex) phase velocity. When mci > 0, it is called the
growth rate of an unstable mode. Substituting these variables into the equations (2.1)–
(2.5), we get the following system of ordinary differential equations:

ρ0(im(Ω − c)û − 2Ωv̂) −
V2

r
ρ̂ = −

dp̂
dr
,

ρ0

(
im(Ω − c)v̂ +

(dV
dr

+
V
r

)
û
)

= −
imp̂

r
,

dû
dr

+
û
r

+
imv̂

r
= 0,

im(Ω − c)ρ̂ +
dρ0

dr
û = 0.

(2.6)

Evaluating all variables in terms of û(r), and dropping ̂,

ρ = −
Dρ0

im(Ω − c)
u, (2.7)

v = −
r

im
D∗u, (2.8)

p =
−rρ0

im
(−r(Ω − c)D∗u + D∗Vu), (2.9)
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with the differential operators D = d/dr and D∗ = D + 1/r. Now, substituting (2.7)–
(2.9) in (2.6), we get the second order ordinary differential equation

D(ρ0r2D∗u) +

{
−ρ0m2 −

rD[ρ0D∗(rΩ)]
Ω − c

+
rΩ2Dρ0

(Ω − c)2

}
u = 0 (2.10)

with boundary conditions

u = 0 at r = R1,R2. (2.11)

The eigenvalue problem consisting of equations (2.10) and (2.11) has been derived by
Fung and Kurzweg [5]. If we take u = (Ω − c)F, then

D(ρ0r2D∗[(Ω − c)F]) +

{
−m2ρ0(Ω − c) − rD(ρ0D∗(rΩ)) +

rΩ2Dρ0

Ω − c

}
F = 0 (2.12)

with boundary conditions

F(R1) = 0 = F(R2). (2.13)

For unstable modes ci > 0, G = (Ω − c)1/2F is well defined and

(Ω − c)D(ρ0r2D∗G) +
ρ0r2DΩD∗G

2
+

D(ρ0r2DΩG)
2

−
ρ0r2(DΩ)2G

4(Ω − c)

+

{
−m2ρ0 − rD(ρ0D∗(rΩ)) +

rΩ2Dρ0

Ω − c

}
G = 0 (2.14)

with boundary conditions

G(R1) = 0 = G(R2). (2.15)

If the perturbation stream function is φ(r)eim(θ−ct), then u = −imφ/r and, substituting
this in (2.10),

ρ0

(
D∗D −

m2

r2

)
φ + Dρ0Dφ +

{
Ω2Dρ0

r(Ω − c)2 −
D(ρ0Z)
r(Ω − c)

}
φ = 0 (2.16)

with Z = rDΩ + 2Ω as the basic vorticity and the boundary conditions

φ = 0 at r = R1,R2. (2.17)

When the fluid is homogeneous, that is, when ρ0 is constant, equation (2.16) reduces
to equation (2.2) of Shukhman [13].

3. Boundedness of the wave velocity of neutral modes

The wave velocity c is real for neutral modes. For singular neutral modes, it is
bounded since a ≤ c ≤ b. So, it is enough to prove that c is bounded for nonsingular
neutral modes. For nonsingular neutral modes, either c < a or c > b, and so Ω − c , 0
in [R1,R2]. For such modes, we have the following general result.
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Theorem 3.1. The wave velocity of any nonsingular neutral mode is bounded, and the
lower and upper bounds are given by

a +
D(ρ0Z)min(R2 − R1)2

2π2(ρ0)minR1
−

(R2 − R1)2 √∆max

2π2(ρ0)minR1

≤ c ≤ b +
D(ρ0Z)max(R2 − R1)2

2π2(ρ0)minR1
+

(R2 − R1)2 √∆max

2π2(ρ0)minR1
,

where
∆max = max

[R1,R2]
[(D(ρ0Z))2 + (4(ρ0)minR1π

2Ω2Dρ0/(R2 − R1)2)].

Proof. Multiplying equation (2.16) by rφ (which is real) and integrating over the
interval (R1,R2),∫ R2

R1

ρ0

(
D∗D −

m2

r2

)
φ(rφ) dr +

∫ R2

R1

Dρ0Dφ(rφ) dr

+

∫ R2

R1

{
Ω2Dρ0

(Ω − c)2 −
D(ρ0Z)
(Ω − c)

}
|φ|2 dr = 0. (3.1)

Now ∫ R2

R1

ρ0D∗Dφ · (rφ) dr =

∫ R2

R1

ρ0
D(rDφ)

r
(rφ) dr

=

∫ R2

R1

D(rDφ)ρ0φ dr

= [rDφ]R2
R1
−

∫ R2

R1

rDφ(Dρ0φ + ρ0Dφ) dr.

Consequently,∫ R2

R1

ρ0D∗Dφ · (rφ) dr = −

∫ R2

R1

DφDρ0rφ dr −
∫ R2

R1

ρ0r|Dφ|2 dr (3.2)

(by applying the boundary conditions (2.17)).
Using (3.2) and (3.1),∫ R2

R1

ρ0r|Dφ|2 dr +

∫ R2

R1

m2

r
|φ|2 dr +

∫ R2

R1

{D(ρ0Z)(Ω − c) −Ω2Dρ0

(Ω − c)2

}
|φ|2 dr = 0. (3.3)

Note that in (3.3), if c is sufficiently large, the last integral is dominated by the first
integral (by Sobolev embedding) and, therefore, the sum of the left-hand side must
be strictly positive, which is a contradiction. Consequently, the wave velocity c is
bounded. Now we use the well-known Raleigh–Ritz inequality [3], which yields
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R1

ρ0(|Dφ|2r dr ≥ (ρ0)minR1

∫ R2

R1

|Dφ|2 dr

≥
(ρ0)minR1π

2

(R2 − R1)2

∫ R2

R1

|φ|2 dr.

Using this estimate and dropping the second term in (3.3),∫ R2

R1

[ (ρ0)minR1π
2

(R2 − R1)2 (Ω − c)2 + D(ρ0Z)(Ω − c) −Ω2Dρ0

]
|φ|2

(Ω − c)2 dr ≤ 0.

This means that there is a r0 ∈ (R1,R2) such that

(ρ0)minR1π
2

(R2 − R1)2 (Ω(r0) − c)2 + D(ρ0Z)(r0)(Ω(r0) − c) −Ω2(r0)Dρ0(r0) ≤ 0.

We can rewrite this inequality as

(ρ0)minR1π
2

(R2 − R1)2 c2 −

[2Ω(ρ0)minR1π
2

(R2 − R1)2 + D(ρ0Z)(r0)
]
c +

(ρ0)minR1π
2Ω2(r0)

(R2 − R1)2

+ D(ρ0Z)(r0)Ω(r0) −Ω2(r0)ρ0(r0) ≤ 0, (3.4)

which is a quadratic inequality in c. If we only consider the equality sign in (3.4), we
have a quadratic equation in c with discriminant

∆ = [D(ρ0Z)(r0)]2 +
4(ρ0)minR1π

2Ω2(r0)Dρ0(r0)
(R2 − R1)2 .

A negative quadratic discriminant means the nonexistence of the nonsingular neutral
modes. A nonnegative quadratic discriminant and the fact that the coefficient of c2 is
positive imply that c should be bounded from below and above, and

Ω(r0) +
D(ρ0Z)(r0)(R2 − R1)2

2π2(ρ0)minR1
−

(R2 − R1)2 √∆(r0)
2π2(ρ0)minR1

≤ c ≤ Ω(r0) +
D(ρ0Z)(r0)(R2 − R1)2

2π2(ρ0)minR1
+

(R2 − R1)2 √∆(r0)
2π2(ρ0)minR1

.

This implies that

a +
D(ρ0Z)min(R2 − R1)2

2π2(ρ0)minR1
−

(R2 − R1)2 √∆max

2π2(ρ0)minR1

≤ c ≤ b +
D(ρ0Z)max(R2 − R1)2

2π2(ρ0)minR1
+

(R2 − R1)2 √∆max

2π2(ρ0)minR1
,

which completes the proof. �

When ρ0 is constant, our result reduces to that of Subbiah [15]. Pierro and Abid [11]
have pointed out an important difference between swirling flows with Dρ0 ≥ 0 and
Dρ0 ≤ 0. The flows are characterized by bubbles for positively buoyant fluids (that is,
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when Dρ0 ≥ 0) and spikes for negatively buoyant fluids (that is, when Dρ0 ≤ 0). For
the positively buoyant fluids, the discriminant ∆ is always nonnegative, whereas for
negatively buoyant fluids the discriminant ∆ is nonnegative if the density ρ0(r) and the
velocity V(r) satisfy the condition

|Dρ0|max ≤
[D(ρ0Z)]2

min(R2 − R1)2

4(ρ0)minR1π2Ω2
max

.

The following is an example of a basic flow satisfying this condition:

Ω(r) = ±

[
Ω1 + Ω2

2
+

(
Ω2 −Ω1

2

)
tanh

(1
d

log
r
R

)]
with Ω1 = 0.5,Ω2 = 1, d = 1/4,R = 2 and

ρ0(r) =
1
2

[
(ρ1 + ρ2) − (ρ1 − ρ2) tanh

(r − (R1 + R2)/2
0.1

)]
with ρ1 = 6, ρ2 = 7,R1 = 1 and R2 = 11.

4. Instability regions for arbitrary angular velocity and density profiles

We obtain instability regions within which the complex phase velocities, c,
corresponding to unstable modes lie in the (cr, ci)-plane using the classical integral
method. Since our results are improvements on the results of Fung [4], our analysis is
a continuation of his analysis. The details of the derivation of his results are given in
the Appendix.

The semi-elliptical instability region of Fung [4] is valid for flows satisfying the
condition abJ > 0. As pointed out in [4], this semi-ellipse is different from that of
Kochar and Jain [8] for stratified parallel shear flows, since the minor axis of the semi-
ellipse of Fung depends on the upper and lower bounds of the angular velocity. Note
that Fung’s semi-elliptical region has an important limitation, namely, it remains a
semi-ellipse even when Jm = 1/4. Since a sufficient condition for stability is J ≥ 1/4
(see Appendix), it is desirable that the instability region should reduce to the line
ci = 0 when Jmin → (1/4)−. Since this does not happen similarly to the instability
regions obtained in [4], we try to improve the semi-elliptical instability region of
Fung [4]. Here our analysis is based on the adaptation of the method of Makov and
Stepanyants [9] to the present context of rotating flows. In an analogous inequality
used in the proof of Fung’s semi-ellipse theorem, we combine the first term and
the fourth term of the inequality (A.11). Consequently, the dependence on the wave
number m vanishes in the final result. However, we do not combine the terms at this
stage, and the wave number m appears in the inequality.

Next we rewrite the inequality (A.11) as

E2 + B2 + m2D2 −

∫ R2

R1

ρ0r3|DΩ| |F| |D∗F| dr ≤ (1 − 4Jm)B2, (4.1)

https://doi.org/10.1017/S1446181115000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000036
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where

E2 =

∫ R2

R1

ρ0|Ω − c|r3|D∗F|2 dr, B2 =

∫ R2

R1

ρ0r3|DΩ|2

4|Ω − c|
|F|2 dr

and D2 =

∫ R2

R1

ρ0|Ω − c| |F|2r dr.

Since ∫ R2

R1

ρ0r3|DΩ| |F| |D∗F| dr

≤

(
4
∫ R2

R1

ρ0r3|Ω − c| |D∗F|2 dr
)1/2(∫ R2

R1

ρ0r3|DΩ|2

4|Ω − c|
|F|2 dr

)1/2

= 2EB,

using the estimate in (4.1),

E2 + B2 + m2D2 − 2EB ≤ (1 − 4Jm)B2,

that is, E2 + m2D2 − 2EB + 4JmB2 ≤ 0.

Solving this inequality with respect to E,

B − (B2 − m2D2 − 4JmB2)1/2 ≤ E ≤ B + (B2 − m2D2 − 4JmB2)1/2,

which yields E2 + m2D2 ≤ 2B2
(
1 − 2Jm +

(
1 − m2 D2

B2 − 4Jm

)1/2)
. (4.2)

Now

D2

B2 =

∫ R2

R1
ρ0|Ω − c| |F|2r dr∫ R2

R1
|F|2ρ0r3|DΩ|2/4|Ω − c| dr

≥
4c2

i

∫ R2

R1
ρ0|F|2r dr

|DΩ|2maxR2
2

∫ R2

R1
ρ0|F|2r dr

,

that is,
D2

B2 ≥
4c2

i

|DΩ|2maxR2
2

. (4.3)

Since |Ω − c| ≥ ci,

E2 + m2D2 =

∫ R2

R1

ρ0|Ω − c|r3|D∗F|2 dr + m2
∫ R2

R1

ρ0|Ω − c| |F|2r dr

≥ ci

∫ R2

R1

ρ0[r2|D∗F|2 + m2|F|2]r dr,

that is, E2 + m2D2 ≥ ci

∫ R2

R1

Q dr, (4.4)
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and

B2 =

∫ R2

R1

ρ0r3|DΩ|2

4|Ω − c|
|F|2 dr ≤

1
4ci

∫ R2

R1

ρ0r3|F|2|DΩ|2 dr. (4.5)

Using the estimates (4.3)–(4.5) in (4.2),∫ R2

R1

ρ0r3|F|2|DΩ|2 dr ≥
2c2

i

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

∫ R2

R1

Q dr. (4.6)

Now

ab
∫ R2

R1

Dρ0r2|F|2 dr = ab
∫ R2

R1

rΩ2Dρ0

ρ0r2(DΩ)2)
·
ρ0r3(DΩ)2

Ω2 |F|2 dr

= ab
∫ R2

R1

J
ρ0r3(DΩ)2

Ω2 |F|2 dr

≥ abJm

∫ R2

R1

ρ0r3(DΩ)2

Ω2 |F|2 dr

≥
aJm

b

∫ R2

R1

ρ0r3(DΩ)2|F|2 dr

≥
aJm

b
2c2

i

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

∫ R2

R1

Q dr,

which yields

ab
∫ R2

R1

Dρ0r2|F|2 dr

≥
aJm

b
2c2

i

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

∫ R2

R1

Q dr. (4.7)

Substituting (4.7) in (A.8) and using the fact that
∫ R2

R1
Q dr > 0, we have the following

generalized semi-ellipse theorem.

Theorem 4.1. The complex phase velocity c of any unstable azimuthal mode must lie
inside the generalized semi-ellipse(

cr −
a + b

2

)2
+

(
1 +

2aJm/b

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

)
c2

i ≤

(b − a
2

)2
. (4.8)

Note that in the absence of an outer cylinder when R2 is infinite, the generalized
semi-ellipse in Theorem 4.1 reduces to the semi-ellipse of Fung [4]. However, when
the outer cylinder is present at r = R2 < ∞, the generalized semi-elliptical region of
Theorem 4.1 definitely lies inside the semi-elliptical region of Fung [4]. Another
consequence of this result is given in the next section.
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5. An estimation of the growth rate in the presence of the cylinders

One more important relation follows explicitly from (4.8): stipulation of a
nonnegative radicand involved in the condition

m2c2
i ≤ ( 1

4 − Jm)R2
2 max

[R1,R2]
{(DΩ)2}, (5.1)

which, in fact, sets an additional restriction on ci. The inequality (5.1) is derived from
(A.10), adapting the method of Howard [6]. Dropping the term

∫ R2

R1
ρ0r3|D∗G|2 dr from

the left-hand side and using 1/|Ω − c|2 ≤ 1/c2
i ,

m2
∫ R2

R1

ρ0|G|2r dr ≤
(1/4 − Jm)(DΩ)2

maxR2
2

c2
i

∫ R2

R1

ρ0|G|2r dr,

that is, m2c2
i ≤ (1/4 − Jm)(DΩ)2

maxR2
2. Since the integration is over a finite interval,

[R1,R2], the dropped term may be estimated by using the well-known Rayleigh–Ritz
inequality [3] by adapting the method of Makov and Stepanyants [9]:∫ R2

R1

ρ0r3|D∗G|2 dr =

∫ R2

R1

ρ0r3
(
|D(rG)|

r

)2
dr

≥ (ρ0)minR1

∫ R2

R1

|D(rG)|2 dr

≥
(ρ0)minR1π

2

(R2 − R1)2

∫ R2

R1

|rG|2 dr

≥
(ρ0)minR3

1π
2

(R2 − R1)2

∫ R2

R1

|G|2 dr.

Therefore, from (A.10),( (ρ0)minR3
1π

2

m2(R2 − R1)2 + (ρ0)minR1

)
m2 ≤

(1
4
− Jm

) ∫ R2

R1

ρ0r3(DΩ)2

4|Ω − c|2
|G|2 dr

≤
1
c2

i

(1
4
− Jm

)
R3

2(DΩ)2
max(ρ0)max,

which yields the estimate

m2c2
i ≤

(ρ0)max

(ρ0)min

(1/4 − Jm)R3
2(DΩ)2

max

(R3
1π

2/m2(R2 − R1)2 + R1)
. (5.2)

This estimate for growth rate of an unstable mode depends on the radii of the cylinders
R1 and R2 and their difference R2 − R1. If the distance between the two cylinders tends
to zero, then it follows that the growth rate mci → 0. The boundedness of the growth
rate of unstable modes given in (5.1) and the improvement given in (5.2) are only valid
in the presence of an outer cylinder at a finite distance r = R2. Note that the growth rate
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of unstable modes has been found by Pierro and Abid [11] by the large azimuthal wave
number asymptotic analysis, that is, for m� 1. Their result shows that the growth rate
(see equation (22) of Pierro and Abid [11]) is an unbounded function of m for m� 1.
The reason for the difference between our result and theirs is as follows.

(i) Their result is an asymptotic result valid for large |m| but without any restriction
on the sign of (Dρ0), whereas our result is valid for any value of |m| but restricted
to the case of (Dρ0) being nonnegative.

(ii) The presence of the cylinders at r = R1 and R2 gives our bound, while in their
analysis the cylinders are absent.

The instability of Batchelor-like vortices with density profile ρ0(r) = ρ∞[1 + (s − 1)
e−r2

] has been numerically studied by Pierro and Abid [11], where s is the axial to
ambient density ratio. In the case of two-dimensional disturbances, they have shown
instability for s & 1. This corresponds to Dρ0 ≤ 0, that is, density is a decreasing
function of r.

6. Further refinement of instability regions for specific angular velocity profiles

The general results obtained in Section 4 apply to arbitrary density and velocity
profiles for a stratified flow. Now we shall show that the generalized semi-elliptical
region of Section 4 can be improved for a special class of angular velocity profiles.
Recall that the apparent inequality

0 ≥
∫ R2

R1

(Ω − a)(Ω − b)Q1 dr

=

∫ R2

R1

Ω2Q1 dr − (a + b)
∫ R2

R1

ΩQ1 dr + ab
∫ R2

R1

Q1 dr (6.1)

plays a central role in proving the semicircle, semi-ellipse and generalized semi-ellipse
theorems. Substituting the integrals [4]∫ R2

R1

ΩQ1 dr = cr

∫ R2

R1

Q dr,
∫ R2

R1

Ω2Q1 dr = (c2
r + c2

i )
∫ R2

R1

Q dr

and
∫

Q1 dr =

∫
Q dr +

∫
(Dρ0)r2|F|2 dr (6.2)

in (6.1), we obtain (A.8), which yields Fung’s semicircle after dropping the last term
on the left-hand side. The closer the right-hand side of (6.1) is to its upper limit
of zero, the more exact is the estimate of the (cr, ci) parameter region for growing
perturbations. For this purpose, we decrease the absolute value of the first integral in
(6.1), substituting Q1 by a smaller nonnegative function

rρ0[r|DF| −
√

m2 − 1|F|]2 = Q1 − 2r2ρ0

√
m2 − 1|DF| |F|,

which yields
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0 ≥
∫ R2

R1

(Ω − a)(Ω − b)rρ0[r|DF| −
√

m2 − 1|F|]2 dr

=

∫ R2

R1

(Ω − a)(Ω − b)Q1 dr − 2
√

m2 − 1
∫ R2

R1

r2ρ0(Ω − a)(Ω − b)|DF| |F| dr

=

∫ R2

R1

Ω2Q1 dr − (a + b)
∫ R2

R1

ΩQ1 dr + ab
∫ R2

R1

Q1 dr

+ 2
√

m2 − 1
∫ R2

R1

r2ρ0

[(b − a
2

)2
−

(
Ω −

a + b
2

)2]
|DF| |F| dr. (6.3)

Using (6.2) in the above inequality (6.3),

0 ≥ {c2
r + c2

i − (a + b)cr + ab}
∫ R2

R1

Q dr + ab
∫ R2

R1

(Dρ0)r2|F|2 dr

+ 2
√

m2 − 1
∫ R2

R1

r2ρ0

[(b − a
2

)2
−

(
Ω −

a + b
2

)2]
|DF| |F| dr. (6.4)

This inequality generalizes (A.8) and contains an additional final term greater than
zero. Neglecting the second and third terms in (6.4) yields Fung’s semicircle
theorem [4], while neglecting the third term with a suitable estimate of the second
term gives his semi-ellipse. An estimate of the second term of (6.4) different from the
one obtained by Fung gives our generalized semi-ellipse Theorem 4.1 in Section 4.
Now, keeping the third term in (6.4), we will find an estimate for the same, which will
give an improved instability region.

Hence, we now estimate the third term on the right-hand side of (6.4), substituting
it either by an equivalent expression or by one with a smaller absolute value. For this
purpose, we see that when the condition∫ R2

R1

r2ρ0

[(b − a
2

)
−
{Ω − (a + b)/2}2

(b − a)/2

]
|DF| |F| dr ≥

∫ R2

R1

dr3ρ0|DF| |F| |DΩ| dr, (6.5)

where d is a constant with dimension of distance, is satisfied, the inequality (6.4)
can be strengthened, expressing the last component in terms of the integral

∫
Q dr.

Unfortunately, validity of (6.5) in the general case has not been proved. Now we will
identify a class of basic angular velocity profiles that will satisfy the equation (6.5). In
particular, equating the integrand on the left- and right-hand sides of (6.5), we obtain
the differential equation

DΩ = ±
2

(b − a)

[(b − a
2

)2
−

(
Ω −

a + b
2

)2]
, (6.6)

which has a solution

Ω(r) = ±

[a + b
2

+

(b − a
2

)
tanh

( log r
d

+ e
(b − a

2

))]
, (6.7)
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where e is an arbitrary constant. If we choose e such that e{(b − a)/2} = −(log R)/d,
where R is a constant, then

Ω(r) = ±

[a + b
2

+

(b − a
2

)
tanh

(1
d

log
r
R

)]
, (6.8)

which is the profile given by Shukhman [13]. Note that Shukhman [13] has constructed
this angular velocity profile as a model for a mixing layer of rotating fluid which
is an analogue of the mixing layer for a plane flow widely used in the literature.
He has discussed the linear instability of this model flow with homogeneous density
and the nonlinear instability as well. It is interesting that the Shukhman profile [13]
given in (6.8) is obtained as a solution of an ordinary differential equation satisfied by
the angular velocity that is necessary for the applicability of the improved instability
region.

The inequality (6.5) is satisfied for the profiles (6.7) or smoother ones, that is,
profiles for which

|DΩ| ≤
2

b − a

[(b − a
2

)2
−

(
Ω −

a + b
2

)2]
.

For these profiles, the inequality (6.4) takes the form

0 ≥
[(

cr −
a + b

2

)2
+ c2

i −

(b − a
2

)2] ∫ R2

R1

Q dr + ab
∫ R2

R1

(Dρ0)r2|F|2 dr

+ 2d
√

m2 − 1
(b − a

2

) ∫ R2

R1

ρ0r3|DΩ| |DF| |F| dr. (6.9)

Now we estimate the last term by using the relation between F and G, that is, from
G = (Ω − c)1/2F,

|DG|2 ≥ |Ω − c| |DF|2 +
|DΩ|2

4|Ω − c|
|F|2 − |DΩ| |F| |DF|.

This yields ∫ R2

R1

ρ0(r2|DG|2 + m2|G|2)r dr

≥

∫ R2

R1

ρ0r|Ω − c|(r2|DF|2 + (m2 − 1)|F|2) dr

+

∫ R2

R1

r3ρ0|DΩ|2|F|2

4|Ω − c|
dr −

∫ R2

R1

r3ρ0|DΩ| |F| |DF| dr,

that is,
∫ R2

R1

ρ0(r2|DG|2 + m2|G|2)r dr

≥

∫ R2

R1

|Ω − c|Q1 dr +

∫ R2

R1

r3ρ0|DΩ|2

4|Ω − c|
|F|2 dr

−

∫ R2

R1

r3ρ0|DΩ| |F| |DF| dr. (6.10)
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Now, using integration by parts and the boundary conditions (2.15),∫ R2

R1

ρ0[r2|D∗G|2 + m2|G|2]r dr

≥ (ρ0)minR1

∫ R2

R1

[r2|D∗G|2 + m2|G|2] dr

= (ρ0)minR1

[∫ R2

R1

(r2|DG|2 + m2|G|2) dr
]

+ (ρ0)minR1

[∫ R2

R1

|G|2 dr + (r|G|2)R2
R1
−

∫ R2

R1

|G|2 dr
]

= (ρ0)minR1

[∫ R2

R1

(r2|DG|2 + m2|G|2) dr
]

≥
(ρ0)minR1

(ρ0)maxR2

[∫ R2

R1

ρ0(r2|DG|2 + m2|G|2)r dr
]
,

that is,
∫ R2

R1

ρ0(r2|DG|2 + m2|G|2)r dr ≤ λ
∫ R2

R1

ρ0[r2|D∗G|2 + m2|G|2]r dr,

where λ = [(ρ0)maxR2/(ρ0)minR1] > 1. Then, from (A.10),∫ R2

R1

ρ0(r2|DG|2 + m2|G|2)r dr ≤ λ
(1
4
− Jm

) ∫ R2

R1

ρ0r3(DΩ)2

|Ω − c|2
|G|2 dr. (6.11)

Substituting (6.11) in (6.10) and since |Ω − c| ≥ ci and 1/|Ω − c| ≥ 1/(b − a),∫ R2

R1

ρ0r3|DΩ| |DF| |F| dr ≥ ci

∫ R2

R1

Q1 dr +
λ(Jm − 1/4) + 1/4

b − a

∫ R2

R1

ρ0r3(DΩ)2|F|2 dr,

provided that λ(Jm − 1/4) + 1/4 > 0, that is, Jm ≥ (1/4)(1 − 1/λ).
Using the inequality (4.6) and since

∫ R2

R1
Q1 dr ≥ (a/b)

∫ R2

R1
Q dr, (6.11) reduces to∫ R2

R1

ρ0r3|DΩ| |DF| |F| dr ≥
cia
b

∫ R2

R1

Q dr +
λ(Jm − 1/4) + 1/4

b − a

∫ R2

R1

ρ0r3(DΩ)2|F|2 dr

≥
cia
b

∫ R2

R1

Q dr +
λ(Jm − 1/4) + 1/4

b − a

×
2c2

i

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

∫ R2

R1

Q dr.

Substituting this estimate in (6.9), dropping the term ab
∫ R2

R1
Dρ0r2|F|2 dr (since we

have taken Dρ0 ≥ 0) and since
∫ R2

R1
Q dr > 0,
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cr −

a + b
2

)2
+

{
ci +

ad
b

√
m2 − 1

(b − a
2

)}2

+
2d
√

m2 − 1{λ(Jm − 1/4) + 1/4}c2
i

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

≤

(b − a
2

)2[
1 +

a2d2

b2 (m2 − 1)
]
.

And, if we do not drop the term ab
∫ R2

R1
Dρ0r2|F|2 dr and use the estimate given in (4.7),(

cr −
a + b

2

)2
+

{
ci +

ad
b

√
m2 − 1

(b − a
2

)}2

+ 2
d
√

m2 − 1{λ(Jm − 1/4) + 1/4} + aJm/b

1 − 2Jm +

√
1 − 4Jm − 4m2c2

i /R
2
2(DΩ)2

max

c2
i

≤

(b − a
2

)2[
1 +

a2d2

b2 (m2 − 1)
]
. (6.12)

Thus, we have proved the following result.

Theorem 6.1. For angular velocity profiles satisfying the conditions (6.6) and (6.4),
the instability region for arbitrary unstable modes is given by (6.12).

If we put m = 1, then (6.12) reduces to (4.8), but for other values of m the instability
region given by (6.12) lies not only inside the semicircle and semi-ellipse of Fung [4]
but also inside the generalized semi-ellipse given by (4.8) of the present paper. As
noted earlier in the context of an improvement of Fung’s semi-ellipse, the presence of
an outer cylinder at a finite distance r = R2 is also essential for the above result.

7. Discussion of the result

For the stability problem of inviscid swirling flows with variable density with
respect to two-dimensional disturbances, we have obtained a number of new results
in the present paper. The boundedness of the wave velocity of neutral modes has been
proved for the first time here.

Dixit and Govindarajan [2] and Pierro and Abid [11] studied the stability problem
of swirling flows in the absence of cylinders. This means that R1 = 0 and R2 = ∞

and, in this situation, the condition of Theorem 3.1 becomes [D(ρ0Z)]2 ≥ 0, which is
satisfied without any restriction on the basic velocity or density.

Our generalized semi-elliptical region of instability is an improvement on the
semicircular and semi-elliptical regions of Fung [4] in the following way: the
instability region given by (4.8):

(i) lies inside the semicircular region of Fung and it reduces to his semicircle when
Jm → 0;
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(ii) it depends on the minimum Richardson number Jm and the minimum and
maximum of the angular velocity like Fung’s semi-ellipse; in addition, it also
depends on the azimuthal wave number m and the radius of the outer cylinder
R2. In fact, when R2 →∞, it reduces to Fung’s semi-elliptical region;

(iii) it reduces to the line ci = 0 when Jm → (1/4)− in accordance with the sufficient
condition for stability, derived in the Appendix;

(iv) an estimate for the growth rate mci follows from the nonnegativity of the term
inside the square root in (4.8).

The estimate of growth rate (5.2) of an unstable mode depends on the radii of the
cylinders R1 and R2 and their difference R2 − R1. If the distance between the two
cylinders tends to zero, then it follows that the growth rate mci → 0. The boundedness
of the growth rate of unstable modes given in (5.1) and the improvement given in (5.2)
are valid in the presence of the outer cylinder at a finite distance r = R2 only. Note that
the growth rate of unstable modes has been found by Pierro and Abid [11] by the large
azimuthal wave number asymptotic analysis, that is, for m� 1. Their result shows that
the growth rate (see equation (22) of their article [11]) is an unbounded function of m
for m� 1. The reason for the difference between our result and theirs is as follows.

(i) Their result is an asymptotic result valid for large |m|, but without any restriction
on the sign of (Dρ0); whereas our result is valid for any value of |m|, but restricted
to the case of (Dρ0) being nonnegative.

(ii) The presence of the cylinders at r = R1 and R2 gives our bound, while in their
analysis the cylinders are absent and, consequently, R1 = 0 and R2 =∞.

Pierro and Abid [11] have studied the instability of Batchelor-like vortices with
density profile ρ0(r) = ρ∞[1 + (s − 1)e−r2

], where s is the axial to ambient density
ratio. In the case of two-dimensional disturbances, they have shown instability for
s & 1. This corresponds to Dρ0 ≤ 0, that is, density is a decreasing function of r.

For further understanding of the results of the present paper, namely, the estimates
for the growth rate and the instability regions, we plot the curves defining the ranges
of cr and ci by choosing Ω(r) = (a + b)/2 + [(b − a)/2] tanh((1/d) log (r/R)) with
a = 0.5, b = 1, d = 1/4,R = 2 and for a particular value of Jmin, namely Jm = 0.2. In
Figure 1, the breaks of the curves indicate that the radicand in (4.8) becomes negative
for sufficiently large m. Therefore, the additional restriction stipulated by (5.1) occurs
in the imaginary part of the wave velocity. In this figure, the bold line is Fung’s
semi-ellipse and the dashed line is Fung’s semicircle. It is clear from this figure that
the maximum of the imaginary part of the wave velocity depends on the azimuthal
wave number as well as Jm. The inequalities (4.8) and (5.1) enable us to estimate
the dependence of the maximum growth rate on Jm. The family of lines in Figure 2
represent the estimates of mci versus Jm at different values of m.

We now consider a velocity profile of the type (6.8), assuming that density is an
arbitrary smooth function of r. The range of (cr, ci) defined by (6.12) is shown in
Figure 3 for different values of m and Jm = 0.2. The value of λ is computed by taking
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m = 3

m = 4
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ci

cr
0.7 0.8 0.9 1.0

Figure 1. Dependence of the complex wave velocity range for growing perturbations on the wave number
m, plotted using (4.8) at Jm = 0.2. The dashed line shows Fung’s semicircle, the heavy curve is given
for Fung’s semi-ellipse and the generalized semi-ellipse is given for different values of m, namely,
m = 2,m = 3,m = 4.

m = 2

m = 1

m = 3

Jm

0.250.200.150.100.050.00

1.0

0.8

0.6

0.4

0.2

0.0

mcimax

Figure 2. Estimates of the maximum growth rate mci versus the minimum Richardson number Jm at
different m. The thick line gives the growth rate given by (5.1). The improved estimates following from
the generalized semi-ellipse (4.8) are given for different values of m.
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Figure 3. Dependence of the complex wave velocity range for growing perturbations on the dimensionless
wave number m for a particular velocity profile of the type (6.8), plotted using (6.12) at Jm = 0.2. The
dashed line shows Fung’s semicircle and the heavy curve is given for Fung’s semi-ellipse. The dotted line
gives the generalized semi-ellipse for m = 2.

the density profile

ρ0 =
1
2

[
(ρ1 + ρ2) − (ρ1 − ρ2) tanh

(r − (R1 + R2)/2
0.1

)]
,

which Dixit and Govindarajan [2] have used by choosing ρ1 = 6, ρ2 = 7,R1 = 1, R2 = 4,
and this yields λ = 14/3. Note that the curves corresponding to equal values of m are
located in Figure 3 lower than in Figure 1. From Figure 3, we see that the instability
region for m = 2 as given by (6.12) lies inside that given by (4.8). The improved
instability region is valid for disturbances with m , 1. It may be noted here that
Fung [4] has discussed a basic flow which is stable for m = 1 but unstable for m , 1.
Also, Shukhman [13] has shown that the angular velocity profile constructed by him is
stable for m = 1 and all values of d but it becomes unstable for m = 2 when d < 1/2. In
the context of parallel shear flows, Makov and Stepanyants [9] have plotted the growth
rate versus the wave number curve for different values of the minimum Richardson
number. Unlike that situation, in the case of the stability of swirling flows to azimuthal
disturbances, the wave number m varies over discrete values, and we have plotted the
growth rate mci versus the minimum Richardson number Jmin curve for different values
of the wave number.
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8. Concluding remarks

We will make some remarks on the stability problem of variable density swirling
flows with particular reference to the problem that needs to be solved for a better
understanding of the problem. It is necessary to compute the maximum growth rate
curves as a function of the minimum Richardson number, Jm, for positively buoyant
fluids so that it can be compared with the growth rate curves given in the present
paper. For constant density swirling flows, a necessary condition for instability is that
DZ should change sign in the flow domain. Now, we should find the role of DZ in
the stability analysis of variable density swirling flows. In particular, we should find
instability regions that depend on the term DZ. Finally, the wave velocity of neutral
modes should be computed so that it can be compared with the bounds given in the
present paper.
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Appendix

Multiplying equation (2.12) by rF∗, where F∗ is the complex conjugate of F, and
integrating the final equation over the flow region,∫ R2

R1

(Ω − c)D(ρ0r2D∗[(Ω − c)F])rF∗ dr

+

∫ R2

R1

{−m2ρ0(Ω − c)2 − rD(ρ0D∗(rΩ))(Ω − c) + rΩ2Dρ0}r|F|2 dr = 0. (A.1)

Now, by using the integration by parts formula and making use of the boundary
conditions (2.13),∫ R2

R1

(Ω − c)D(ρ0r2D∗[(Ω − c)F])rF∗ dr

=

∫ R2

R1

ρ0r2DΩ(Ω − c)|F|2 dr +

∫ R2

R1

Dρ0r3DΩ(Ω − c)|F|2 dr

+

∫ R2

R1

ρ0r3D2Ω(Ω − c)|F|2 dr −
∫ R2

R1

(Ω − c)2ρ0r3|D∗F|2 dr.

Substituting the above equation in (A.1) yields∫ R2

R1

(Ω − c)2Q dr +

∫ R2

R1

[2rD(ρ0Ω)(Ω − c) − rΩ2(Dρ0)]|F|2r dr = 0, (A.2)

where Q = ρ0[r2|D∗F|2 + m2|F|2]r ≥ 0.
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Further, let Q1 = ρ0[r2|DF|2 + (m2 − 1)|F|2]r ≥ 0. Then equation (A.2) reduces to a
relatively simple form

∫ R2

R1

(Ω2 − 2cΩ)Q1 dr + c2
∫ R2

R1

Q dr = 0. (A.3)

The real and imaginary parts of (A.3) give∫ R2

R1

Ω2Q1 dr − 2cr

∫ R2

R1

ΩQ1 dr + (c2
r − c2

i )
∫ R2

R1

Q dr = 0, (A.4)∫ R2

R1

ΩQ1 dr = cr

∫ R2

R1

Q dr. (A.5)

Since a = Ωmin and b = Ωmax over R1 ≤ r ≤ R2, a ≤ Ω ≤ b, and we have the apparent
inequality ∫ R2

R1

(Ω − a)(Ω − b)Q1 dr ≤ 0, (A.6)

which is the basis for the proof of Fung’s semicircle theorem.
It follows that ∫ R2

R1

Q1 dr =

∫ R2

R1

Q dr +

∫ R2

R1

Dρ0r2|F|2 dr. (A.7)

Using (A.4), (A.5) and (A.7) in (A.6),

{c2
r + c2

i − (a + b)cr + ab}
∫ R2

R1

Q dr + ab
∫ R2

R1

(Dρ0)r2|F|2 dr ≤ 0. (A.8)

If abDρ0 ≥ 0, then the last term in (A.8) can be dropped and, since
∫ R2

R1
Q dr > 0, the

semicircle theorem of Fung [4], namely,(
cr −

a + b
2

)2
+ c2

i ≤

(b − a
2

)2
,

follows.
For nonaxisymmetric instabilities of heterogeneous swirling flows the semicircle

theorem of Fung [4] holds under a restriction, namely, the product of the density
gradient and the upper and lower bounds of the velocity is greater than or equal to
zero. If this restriction is violated, then the phase velocity may no longer be bounded
and an example supporting this has been given by Fung. However, when abDρ0 > 0,
we have the semicircular instability region of Fung that has been derived just above.
Adapting the method of Kochar and Jain [8] to the case of swirling flows, one gets
from (2.14) the equality∫ R2

R1

ρ0[r2|D∗G|2 + m2|G|2]r dr +

∫ R2

R1

(
J −

1
4

)
ρ0r2(DΩ)2

|Ω − c|2
|G|2r dr = 0, (A.9)
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where J is the local Richardson number defined earlier. It follows from (A.9) that a
necessary condition for instability is J < 1/4 at least once in (R1,R2). Consequently,
it is necessary that Jmin < 1/4 for instability. Alternatively, it means that a sufficient
condition for stability is Jmin ≥ 1/4.

From equation (A.9),∫ R2

R1

ρ0[r2|D∗G|2 + m2|G|2]r dr ≤ (1 − 4Jm)
∫ R2

R1

ρ0r3(DΩ)2

4|Ω − c|2
|G|2 dr. (A.10)

Now, since G = (Ω − c)1/2F,

|D∗G|2 ≥ |Ω − c| |D∗F|2 +
|DΩ|2

4|Ω − c|
|F|2 − |DΩ| |F| |D∗F|.

Substituting the above inequality in (A.10) yields∫ R2

R1

ρ0r3|Ω − c| |D∗F|2 dr +

∫ R2

R1

ρ0r3|DΩ|2

4|Ω − c|
|F|2 dr −

∫ R2

R1

ρ0r3|DΩ| |F| |D∗F| dr

+ m2
∫ R2

R1

ρ0r|Ω − c| |F|2 dr ≤ (1 − 4Jm)
∫ R2

R1

ρ0r3|DΩ|2

4|Ω − c|
|F|2 dr. (A.11)

Using the transformation G = (Ω − c)1/2F and adapting the method of Kochar and
Jain [8], ∫ R2

R1

ρ0r3|DΩ|2|F|2 dr ≥
4c2

i

∫ R2

R1
Q dr

[1 + (1 − 4Jm)1/2]2 . (A.12)

Now, using (A.12),

ab
∫ R2

R1

Dρ0r2|F|2 dr = ab
∫ R2

R1

J
ρ0r3(DΩ)2

Ω2 |F|2 dr

≥
aJm

b

∫ R2

R1

ρ0r3(DΩ)2|F|2 dr

≥
aJm

b

4c2
i

∫ R2

R1
Q dr

[1 + (1 − 4Jm)1/2]2 .

Hence,

ab
∫ R2

R1

Dρ0r2|F|2 dr ≥
aJm

b

4c2
i

∫ R2

R1
Q dr

[1 + (1 − 4Jm)1/2]2 . (A.13)

Substituting (A.13) in (A.8) and, since
∫ R2

R1
Q dr > 0, we have the following semi-

ellipse of Fung [4]:(
cr −

a + b
2

)2
+

(
1 +

4aJm

b[1 + (1 − 4Jm)1/2]2

)
c2

i ≤

(b − a
2

)2
.
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