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ABSTRACT

This is an introductory article on Chaos giving the def-
inition of Chaos, source and tools of Chaos, routes to chaos,
measurement of chaos, chaos through resonance. The Duffing
equation has been mentioned as a problem of double resonance
leading to chaos and finally some problems relating to chaos
in the Slar system have been described.

INTRODUCT ION

The discovery of new types of dynamic behaviour in phy-
sical systems in the last decade has brought about new analy-
tic and experimental techniques in dynamics. Principal amongst
these new discoveries is the existence of chaotic, unpredict-~
able kehaviour in many non-linear deterministic systems. Ob-
servations of chaotic and prechaotic behaviour have keen ob-
served in all areas of classical physics including solid ard
fluid mechanics, thermo-fluid phenomena, electro-magnetic
systems and in the area of acoustics.

To mention a few, the following scientists have contri-
hited to the development of classical and modern techniques
studying chaotic behaviour of a dynamical system.

a) Classical : Newton, Lagrange, Kamilton, Poin-care,
Birkhoff
k) Modern :+ Kolomogrov, Arnold, Moser (KAM); EHemnon,

Feignenbaum, Visiom, Henrard, Chirikov,
Cohen, Froschle, Deprit, Szebehely,Contro-
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polus, Brumberg, Bhatnagar, Rity, Moon, Lie
and many others.

Deterministic and chaotic motion

In the Newtonian deterministic system, initial condi-
tions determine an orbit.

A deterministic system is one in which the values of
Xy for i > (n+l) can be determined from the values of Xie

i < n. In the simplest case this is witten in the form
Xpgp = fx))

This can be recognized as a difference equation. The idea can
be generalised for more than one variable.

CHAOS

Def. 1: If with very slight changes in the initial condi-
tions of a deterministic system, the orbit is random, then
the motion is said to be chaotic.

Def. 2: Almost all bounded motions with atleast one posi-
tive Liapunov characteristic exponents (L.C.E) are cha-
otic.

SOURCE AND TOOLS OF CHAOS

The modern advances in non-linear dynamics in both ma-
thematical theory and analytical techniques have been match-
ed by the development of new experimental and numerical tools
for studying the dynamics of non-linear systems. The list of
exper imental and numerical tools to study systems with chao-
tic, dynamics includes the following:

- Phase plane methods

- Pseudo phase plane methods
- Bifurcation diagrams

- Fast Fourier transforms

- Auto-correlation functions
- Poincare maps

- Douhle poincare maps

~ Reduction to one-dimensional maps
- Liapunov exponents

- Fractal dimensions

- Invariant distrilutions

- Chaos diagrams

- Basic boundary diagrams

These techniques expand the scientist ability to analyse

the dynamics of complex systems. The specific technique de-
pends in part on the particular nature of the system.However
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in the case of simple one degree-of-freedom non-linear sys-
tems, a simple procedure has been developed to look for chao-
tic behaviour.

The ability to classify the nature of oscillations can
provide a clue as to how to control them. For example, if
the system is thought to be linear, large periodic oscilla-
tions may be traced to a resonance effect. lwever, if the
system is non-linear, a limit cycle may be the source of per-
iodic vilration, which in turn may be traced to some dynamic
instability in the system.

In order to identify non-periodic or chaotic motions
the following check list is provided:

i) Identify nonlinear elements in the system

ii) Check for sources of random input in the system
iii) Obkserve time history of measured signal

iv) Iook at phase plane history

v) Observing limit cycle

vi) Examine Fourier spectrum of signal

vii) Take poincar€ map of signal

viii) Vary system parameters (bifurcation diagram).

Now we shall discuss kriefly the above mentioned eleme-
nts through vhich we identify non-periodic or chaotic motions:

1, Mnl inear Elements

A chaotic system must have nonlinear elements or proper-
ties. A linear system canmot exhibit chaotic behaviour. In a
linear system periodic in-puts produce periodic out-puts of
the same period.

In a nonlinear system periodic inputs can produce peri-
odic or sub-harmonic or chaotic motion.

2; Random Inputs

By definition, chaotic motion arise from deterministic
physical systems or deterministic differential or difference
equations. A very low input disturbance is required if one is
to attribate mon-periodic {(or chaotic) response to a determi-
nistic system behaviour.

3. Time History

Usually the first clue to chaotic motion, in general,is
obtained, through the study of amplitude with time. Non-perio-
dicity and instability leads to chaos.

The motion is observed to exhibit no visible pattern or
periodicity.
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4. Limit Cycle
Def: An isolated periodic orbit is a limit cycle jJoll-
owirg are examples of 1-1t. cycle, 2~1t. cycle, 3-lt cycle.

@ (J (3

Fig.1(a) Fig.1(b) Fig.1(c)

I-Lt.Cycle 2-L1% Cycle 3-Lt. Cycle

In general 3-1t cycle leads to chaos.

5. Phase Space br phase plane in the case of one-degree
of freedom)

. Def: The phase~space is defined as the set of points
&,x) or &,p) or (q,q).

¥hen the motion is periodic (Fig. 2), the phase-plane

orbit traces out a closed curve. Whereas chaotic motions on
the other hand have orbit which never close or repeat.
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Na%

Fig.2 (a)

6. Poincare Map

Def: The [x (tn),x (tn)] is called a Poincare map, where t,

Fig.2 (b)

is selected according to some rule (Fig. 3)
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Chaotic motion
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a) Vhen tn:l—period, the orbit consists of one point.
b) when t, = 2-period, the orbit consists of two points.

c) 3-period leads to chaos.

Example: Xy = ¢ sin(wlt + dl) +c, sin(wzt + d2).

This represents
w.

a) a periodic motion, when ;1_1— is rational.
Wl 2

b) quasi-periodic, when o is irrational.
2

¢) chaos.

If the Poincare map does not consist of either a finite
set of points or closed orbit then the motion may be chaotic.

7. Fourier Spectrum

¥henever there is the appearance of a hroad spectrum of
frequencies in the output when the input is a single frequen-
cy harmonic motion there is a possibility of a chaotic motion.
Quppose initially there is a dominant frequency a precur sor
to chaos is the appearance of sub-harmonics in the frequen-
cies spectrum wo/n, mwo/n; m,n e I.

8. Resonance
Consider the system

.. 2 . .
x +nx=fk); £fx) is of period m.If m and n are com-
mensurable, resonance occurs.

Def: If the hasic frequencies of a dynamical system are com=-
mensurable, the phenomenon of resonance occurs.

Example: (i) In the solar system the satellite hyperion is
progbly- trumbhling chaotically.

(ii) Double resonance leads to chaos. It is shown by the
study of the Duffing equation.
9. Routes to Chaos

i) Variation of parameter

In varying the controlling parameter, the appearance of
subharmonic periodic terms leads to chaos. Several models of
prechaotic behaviour have been observed in both mumerical
and physical experiments.

ii) Period Doubling

In the period doubling phenomenon, one starts with a
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fundamental period motion. Then as some experimental parame-
ter is varied, sayithe motion undergoes a bifurcation or
change to a periodic motion with twice the period of original
oscillation. As)is changed, further, the system undergoes
bifurcation to periodic motions with twice the period of the
previous oscillation.

Feigenbaum has discovered a very interesting result for
the critical values of A:

A
A

- A
L _“)‘1 , § = 4,6692016..., n > =
n+l n

In practice, this limit approaches by the third or 4th
bifurcation.

This process accumulates at a critical value of the
parameter after which the motion becomes chaotic.

iii) Quasi-periodic

Def: An orbit on a torus is quasi-periodic if it is closed.

In case the orbit on a torus is not closed, it leads to
chaos.

iv) Intermittances

In this case, one observes long periods of periodic mo-
tion with bursts of chaos. As one varies the controlling pa-
rameter the chaotic bursts become more frequent and longer.

v) Fixed Points

Def: If f&) = x then x is called a fixed point.

There are stable fixed points and unstable fixed points.
Unstable fixed points lead to chaos.

Strange Attractors: Vwhen in the neighbourivod of a fixed point
we get similar structure within a structure - we call it a
strange attractor. We came across strange attractors in plasma
physics.

vi) Measurement of chaos

@) Fractal dimension:
Consider N discrete points of the orbit

%)

i ’ i=l'2'--.'N.
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We define distance between two points

Siy = |x; = le
and correlation function
cle) = 1t ];2- (Namber of pairs of i,j for
n+o N which Sij <r)

Def: Fractional dimension

_ log c (x)
4= 1% T

r—+0

1) Orbit is periodic, whend = 0
2) Orbit is quasi-periodic, whend =1
3) Orbit is chaotic if 1 <4 < 2

b) Lyapunov Exponents:

Lyapunov exponents enable us to decide whether or not
a system is chaotic. Chaos in deterministic systems implies
a sensitive dependence on initial conditions. This means that
if two trajectories start close to one another in phase-space,
they will more exponentially away from each other for small
times on the average.

Thus if d, is a measure of the initial distance bet~
ween the two starting points, at a latter time the distance
is

At

dat) =a8_ 2 (for contimious orbit)

(for discrete orbit)

The choice of base 2 is convenient hut arbitrary are called
Lyapunov exponents. We have
daf(t, )
1 n k
A= o X log ——-(-—TT
tx %% k=1 do &g

-
n

1 n af x)
1t == I log, | ==2L|
e N g0 2 dx

where discrete mapping is Xog = £ (xn). Then the criterion
for chaos becomes

A,A > 0 chaotic,

A A < 0 regular motion.
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vi) Chaos Through Double Resonance
KAM - Result:

If we are given an integrable system with N degree of
freedom, then its trajectory in the 2N-dimensional phase-spa-
ce are constrained to lie on N-dimensional surfaces in the
phase-~space. These N-dimensional surfaces are called KAM sur-
faces.

If we perturb such a system by a weak perturbation wh=
ich makes the system non-integrable, most KAM surfaces remain
intact. Hbowever, the perturbation induces resonance zones lo-
cally in the phase~space which make the system chaotic in the
region of the chaotic zones.

As the perturbation grows, these resonance zones dJgrow
and destroy the KAM surfaces around them. Overlap of two res-
onance zones destroys KaM surfaces. When all KAM surfaces are
destroyed, chaos starts.

Fkample 1: Duffing Oscillator: Reichl and Zheng (1987) has
discussed somewhat in detaill about the transition from reg-
ular to chaotic behaviour in the conservative Duffing Oscilla-
tor.

They have analysed the phenomenon of resonance over-
lap using renormalization group methods and have derived and
discussed mappings which contain the essential features of
the passage from regular to chaotic behaviour in local regions
of the phlmase-space.

Fkample 2: Chaos in the Slar System: The chaotic behavi~
our in the Solar system has been reviewed by Wisdom (1987).

We may state here, briefly some aspects of chaotic
behaviour in the Solar system.

1. Saturn satellite hyperion is currently trumbling chao-
tically, its rotation rate and spin axis orientation under -
goes significant chaotic variations on a time scale of only

a couple of orbit periods (Wisdom, Peale, Mignard,1984).

2. Chaotic orbital evolutitn seems to be an essential in-
gredient in the explanation of the Kirkwood gaps in the dis-
tribution of asteroids. The predicted boundary of the Kirk-
wod gap is in close agreement with the observed population
of asteroids (Wisdom,1985).

Henrard (1988) has also stated that if Wisdom's effect
can explain the 3/1 gap just as well as resonance sweeping
does, can it do the same for 2/1 gap? This is not evident
according to Henrard.
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