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Abstract

Let a ∈ R, and let k(a) be the largest constant such that sup |cos(na) − cos(nb)| < k(a) for b ∈ R implies
that b ∈ ±a + 2πZ. We show that if a cosine sequence (C(n))n∈Z with values in a Banach algebra A
satisfies supn≥1 ‖C(n) − cos(na).1A‖ < k(a), then C(n) = cos(na).1A for n ∈ Z. Since

√
5/2 ≤ k(a) ≤ 8/3

√
3

for every a ∈ R, this shows that if some cosine family (C(g))g∈G over an abelian group G in a Banach
algebra satisfies supg∈G ‖C(g) − c(g)‖ <

√
5/2 for some scalar cosine family (c(g))g∈G , then C(g) = c(g)

for g ∈ G, and the constant
√

5/2 is optimal. We also describe the set of all real numbers a ∈ [0, π]
satisfying k(a) ≤ 3

2 .
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1. Introduction

Let G be an abelian group. Recall that a G-cosine family of elements of a unital normed
algebra A with unit element 1A is a family (C(g))g∈G of elements of A satisfying the
so-called d’Alembert equation

C0 = 1A,C(g + h) + C(g − h) = 2C(g)C(h), (g ∈ G, h ∈ G).

A R-cosine family is called a cosine function, and a Z-cosine family is called a
cosine sequence.

A cosine family C = (C(g))g∈G is said to be bounded if there exists M > 0 such that
‖C(g)‖ ≤ M for every g ∈ G. In this case, we set

‖C‖∞ = sup
g∈G
‖C(g)‖, dist(C1,C2) = ‖C1 −C2‖∞.

A cosine family is said to be scalar if C(g) ∈ C.1A for every g ∈ G. It is easy to see and
well known that a bounded complex-valued cosine sequence satisfies C(n) = cos(an)
for some a ∈ R.
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Strongly continuous operator valued cosine functions are a classical tool in the study
of differential equations (see, for example, [1, 3, 14, 18]) and a functional calculus
approach to these objects was developed recently in [10, 11].

Bobrowski and Chojnacki proved in [4] that if a strongly continuous operator
valued cosine function on a Banach space (C(t))t∈R satisfies supt≥0 ‖C(t) − c(t)‖ < 1/2
for some scalar bounded continuous cosine function c(t), then C(t) = c(t) for t ∈ R,
and Zwart and Schwenninger showed in [16] that this result remains valid under the
condition supt≥0 ‖C(t) − c(t)‖ < 1. The proofs were based on rather involved arguments
from operator theory and semigroup theory. Very recently, Bobrowski et al. [5]
showed more precisely that if a cosine function C = C(t) satisfies supt∈R ‖C(t) − c(t)‖ <
8/3
√

3 for some scalar bounded continuous cosine function c(t), then C(t) = c(t) for
t ∈ R, without any continuity assumption on C, and the same result was obtained
independently by the author in [9]. The constant 8/3

√
3 is obviously optimal, since

supt∈R |cos(at) − cos(3at)| = 8/3
√

3 for every a ∈ R \ {0}.
The author also proved, in [9], that if a cosine sequence (C(t))t∈R satisfies

supt∈R ‖C(t) − cos(at)1A‖ = m < 2 for some a , 0, then the closed algebra generated
by (C(t))t∈R is isomorphic to Ck for some k ≥ 1, and there exists a finite family
p1, . . . , pk of pairwise orthogonal idempotents of A and a family (b1, . . . , bk) of distinct
elements of the finite set ∆(a,m) := {b ≥ 0 : supt∈R |cos(bt) − cos(at)| ≤ m} such that
C(t) =

∑k
j=1 cos(b jt)p j (t ∈ R).

Also, Chojnacki developed, in [6], an elementary argument to show that if (C(n))n∈Z

is a cosine sequence in a unital normed algebra A satisfying supn≥1 ‖C(n) − c(n)‖ <
1 for some scalar cosine sequence (c(n))n∈Z , then c(n) = C(n) for every n, which
obviously implies the result of Zwart and Schwenninger. His approach is based on
an elaborated adaptation of a very short elementary argument used by Wallen in [19]
to prove an improvement of the classical Cox–Nakamura–Yoshida–Hirschfeld–Wallen
theorem [7, 12, 15] which shows that if an element a of a unital normed algebra A
satisfies supn≥1 ‖a

n − 1‖ < 1, then a = 1.
Applying this result to the cosine sequences C(ng) and c(ng) for g ∈ G, Chonajcki

observed, in [6], that if a cosine family C(g) satisfies supg∈G ‖C(g) − c(g)‖ < 1 for some
scalar cosine family c(g), then C(g) = c(g) for every g ∈ G.

In the same direction, Schwenninger and Zwart showed, in [17], that if a cosine
sequence (C(n))n∈Z in a Banach algebra A satisfies supn≥1 ‖C(n) − 1A‖ <

3
2 , then

C(n) = 1A for every n.
The purpose of this paper is to obtain optimal results of this type. We prove a

‘zero-
√

5/2’ law: if a cosine family (C(g))g∈G satisfies supg∈G ‖C(g) − c(g)‖ <
√

5/2
for some scalar cosine family (c(g))g∈G, then C(g) = c(g) for every g ∈ G. Since
supn≥1|cos(2nπ/5) − cos(4nπ/5)| = cos(2π/5) + cos(π/5) =

√
5/2, the constant

√
5/2

is optimal.
In fact, for every a ∈ R, there exists a largest constant k(a) such that

supn≥1 |cos(nb) − cos(na)| < k(a) implies that cos(nb) = cos(na) for n ≥ 1, and there
exists b ∈ R such that supn≥1 |cos(na) − cos(nb)| = k(a) (see the remark following
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Proposition 2.2). We prove that if a cosine sequence (C(n))n∈Z in a Banach algebra
A satisfies supn≥1 |C(n) − cos(na)1A| < k(a), then C(n) = cos(na).1A for n ≥ 1. This
follows from the following result, which was proved by the author in [9].

Theorem 1.1. Let (C(n))n∈Z be a bounded cosine sequence in a Banach algebra A. If
spec(C(1)) is a singleton, then the sequence (C(n))n∈Z is scalar, and so there exists
a ∈ R such that C(n) = cos(na).1A for n ≥ 1.

The second part of the paper is devoted to a discussion of the values of the
constant k(a). As mentioned above, it follows from [17] that k(0) = 3

2 , and it is
obvious that k(a) ≤ supn≥1|cos(na) − cos(3na)| ≤ 8/3

√
3 if a < (π/2)Z. We observe that

k(a) = 8/3
√

3 if a/π is irrational, and we prove, using basic results about cyclotomic
fields, that k(a) < 8/3

√
3 if a/π is rational.

We also show that the set Ω(m) := {a ∈ [0, π] : k(a) ≤ m} is finite for every m <
8/3
√

3. We describe in detail the set Ω( 3
2 ) : it contains 43 elements, and the only

values for k(a) for which k(a) < 3
2 are

√
2/5 = cos(π/5) + cos(2π/5) ≈ 1.1180,

√
2 =

cos(π/4) + cos(3π/4) ≈ 1.4142 and cos(2π/11) + cos(3π/11) ≈ 1.4961.
The zero-

√
5/2 law follows from the fact that k(a) ≥ cos(π/5) + cos(2π/5) =

√
5/2

for every a ∈ R.
We also show that, given a ∈ R and m < 2, the set Γ(a,m) of scalar cosine sequences

(c(n))n∈Z satisfying supn∈Z |c(n) − cos(na)| ≤ m is finite. This implies that if a cosine
sequence (C(n))n∈Z satisfies supn∈Z ‖C(n) − cos(an)1A‖ ≤ m, then there exists k ≤
card(Γ(a,m)) such that the closed algebra generated by (C(n))n∈Z is isomorphic to Ck

and there exists a finite family p1, . . . , pk of pairwise orthogonal idempotents of A and
a finite family c1, . . . , ck of distinct elements of Γ(a,m) such that

C(n) =

k∑
j=1

cos(c jn)p j, (n ∈ Z).

This last result does not extend to cosine families over the general abelian group.
Let G = (Z/3Z)N; we give an easy example of a G-cosine family (C(g))g∈G with
values in l∞ such that the closed subalgebra generated by (C(g))g∈G equals l∞, while
supg∈G ‖1l∞ −C(g)‖ = 3

2 .
The author warmly thanks Christine Bachoc and Pierre Parent for providing the

arguments from number theory which lead to a simple proof of the fact that k(a) <
8/3
√

3 if a < πQ.

2. Distance between bounded scalar cosine sequences

We introduce the following notation, to be used throughout the paper.

Definition 2.1. Let a ∈ πQ. The order of a, denoted by ord(a), is the smallest integer
u ≥ 1 such that eiua = 1.
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Recall that a subset S of the unit circle T is said to be independent if zn1
1 · · · z

nk

k , 1 for
every finite family (z1, . . . , zk) of distinct elements of S and every family (n1, . . . , nk) ∈
Zk such that n j , 0 for 1 ≤ j ≤ k. It follows from a classical theorem of Kronecker
(see, for example, [13], page 21) that if S = {z1, . . . , zk} is a finite independent set, then
the sequence (zn

1, . . . , z
n
k)n≥1 is dense in Tk. We deduce from Kronecker’s theorem the

following observation.

Proposition 2.2. Let a ∈ [0, π]. For m ≥ 0, set

Γ(a,m) =
{
b ∈ [0, π] : sup

n≥1
|cos(na) − cos(nb)| ≤ m

}
.

Then Γ(a,m) is finite for every m < 2.

Proof. Fix m ∈ [1, 2). Notice that if b ∈ R and if the set {eia, eib} is independent, then
it follows from Kronecker’s theorem that the sequence ((eina, einb))n≥1 is dense in T2,
and so supn≥1 |cos(na) − cos(nb)| = 2 and b < Γ(a,m).

Suppose that (a/π) ∈ Q, and denote by u the order of a, so that eiua = 1. If (b/π) < Q,
then the sequence (eiunb)n≥1 is dense in T, and so

2 ≥ sup
n≥1
|cos(na) − cos(nb)| ≥ sup

n≥1
|1 − cos(nub)| = 2,

which shows that b < Γ(a,m).
The same argument shows that if (a/π) < Q and if (b/π) ∈ Q, then b < Γ(a,m). So

we are left with two situations:

(1) a/π < Q, and there exists p , 0, q , 0 and k ∈ Z such that bq = ap + 2kπ; and
(2) a/π ∈ Q and b/π ∈ Q.

We consider the first case. Replacing b ∈ [0, π] by −b ∈ [−π, 0], if necessary, we
can assume that p ≥ 1 and q ≥ 1, and we can assume that

qb = pa +
2kπ

r
,

with greatest common divisor (gcd)(p, q) = 1, r ≥ 1, gcd(r, k) = 1 if k , 0.
Since (ra/π) < Q,

sup
n≥1
|cos(na) − cos(nb)|

≥ sup
n≥1
|cos(nrqa) − cos(nrqb)|

= sup
n≥1
|cos(nrqa) − cos(nrpa)| = sup

t∈R
|cos(qt) − cos(pt)|.

Since gcd(p,q) = 1, supt∈R |cos(qt) − cos(pt)| = 2 if p or q is even, so we can assume
that p and q are odd. Set s = (q − 1)/2.

It follows from Bezout’s identity that there exist n ≥ 1 such that e2inpπ/q = e2isπ/q,
and setting t = 2nπ/q,

sup
t∈R
|cos(qt) − cos(pt)| ≥ 1 − cos

( 2sπ
2s + 1

)
= 1 + cos

(
π

q

)
.
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The same argument shows that

sup
t∈R
|cos(qt) − cos(pt)| ≥ 1 + cos

(
π

p

)
.

Hence
p ≤

π

arccos(m − 1)
, q ≤

π

arccos(m − 1)
.

Also

sup
n≥1
|cos(na) − cos(nb)| ≥ sup

n≥1
|cos(nqa) − cos(nqb)|

= sup
n≥1

∣∣∣∣∣cos(nqa) − cos
(
npa +

2nkπ
r

)∣∣∣∣∣.
Assume that k , 0. Since gcd(k, r) = 1, there exists u ≥ 1 such that 2ukπ/r ∈

(2π/r) + 2πZ. This gives

sup
n≥1
|cos(na) − cos(nb)| ≥ sup

n≥1

∣∣∣∣∣cos(nuqa) − cos
(
npua +

2nπ
r

)∣∣∣∣∣.
If r is even, set r1 = r/2.

sup
n≥1

∣∣∣∣∣cos(nuqa) − cos
(
npua +

2nπ
r

)∣∣∣∣∣
≥ sup

n≥0
|cos((2n + 1)r1uqa) − cos((2n + 1)r1upa) + π|.

Since 2r1ua < πQ, there exists a sequence (n j) j≥1 of integers such that

lim
j→+∞

|ei2n jr1ua+ir1ua| = 1,

so that
lim

j→+∞
|cos((2n j + 1)r1uqa) − cos((2n j + 1)r1upa) + π| = 2,

and, in this situation, supn≥1 |cos(na) − cos(nb)| = 2.
So we can assume that r is odd. Set r1 = (r − 1)/2. The same calculation as above

gives

sup
n≥1

∣∣∣∣∣cos(nuqa) − cos
(
npua +

2nπ
r

)∣∣∣∣∣
≥ sup

n≥1

∣∣∣∣∣cos((nr + r1)uqa) − cos
(
(nr + r1)upa +

2(nr + r1)
r

π
)∣∣∣∣∣

≥ 1 + cos
(2r1

r
π − π

)
= 1 + cos

(
π

r

)
.

Hence r ≤ π/arccos(m − 1).
This gives

|k| ≤
r

2π
|qb − pa| ≤

(
π

arccos(m − 1)

)2
.
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We see that Γ(a,m) is finite if a/π < Q and that

card(Γ(a,m)) ≤
( 2π
arccos(m − 1)

)5
.

Now consider the case where a/π ∈ Q, b/π ∈ Q. We first discuss the case where
a = 0, b , 0. We know that b = pπ/q, where 1 ≤ p ≤ q, gcd(p, q) = 1.

If p = q = 1, then b = π and supn≥1 |1 − cos(nπ)| = 2. So we may assume that
p ≤ q − 1. If p is odd,

sup
n≥1
|1 − cos(nb)| ≥ |1 − cos(qb)| = 1 − cos(pπ) = 2.

So we can assume that p is even, so that q is odd. Set r = (q − 1)/2. There exists
n0 ≥ 1 and r ∈ Z such that n0 p − r ∈ qZ and

sup
n∈Z
|1 − cos(nb)| ≥ |1 − cos(2n0b)| =

∣∣∣∣∣1 − cos
( 2rπ
2r + 1

)∣∣∣∣∣ = 1 + cos
(
π

q

)
.

Again q ≤ π/arccos(m − 1) and card(Γ(0,m)) ≤ (π/arccos(m − 1))2.
Now assume that a , 0 and let u ≥ 2 be the order of a.

sup
n≥1
|1 − cos(nub)| = sup

n≥1
|cos(nua) − cos(nub)| ≤ m,

and so there exists c ∈ Γ(0,m) such that cos(nc) = cos(nub) for n ≥ 1. In particular,
cos(c) = cos(ub), and b = ±(c/u) + (2kπ/u), where k ∈ Z.

card(Γ(a,m)) ≤ 2u card(Γ(0,m)) ≤ 2u
(

π

arccos(m − 1)

)2
. �

We do not know whether it is possible to obtain a majorant for card(Γ(a,m)) which
depends only on m when a ∈ πQ.

Remark. It follows immediately from Proposition 2.2 that, for every a ∈ R, there
exists b ∈ R such that k(a) = supn≥1 |cos(na) − cos(nb)|.

Theorem 2.3. Let a ∈ R, let m < 2 and let (C(n))n∈Z be a cosine sequence in a Banach
algebra A such that supn≥1 ‖C(n) − cos(na)‖ ≤ m. Then there exists k ≤ card(Γ(a,m))
such that the closed algebra generated by (C(n))n∈Z is isomorphic to Ck, and there
exists a finite family p1, . . . , pk of pairwise orthogonal idempotents of A and a finite
family b1, . . . , bk of distinct elements of Γ(a,m) such that

C(n) =

k∑
j=1

cos(nb j)p j, (n ∈ Z).
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Proof. Since cn = Pn(c1), where Pn denotes the nth Tchebishev polynomial, A1 is the
closed unital subalgebra generated by c1 and the map χ→ χ(c1) is a bijection from Â1
onto specA1

(c1). Now let χ ∈ Â1. The sequence (χ(cn))n≥1 is a scalar cosine sequence
and

sup
n≥1
|cos(na) − χ(cn)| < 2.

It follows from Proposition 2.2 that specA1
(c1) := {λ = χ(c1) : χ ∈ Â1} is finite.

Hence Â1 is finite. Let χ1, . . . , χm be the elements of Â1. It follows from the standard
one-variable holomorphic functional calculus (see, for example, [8]) that there exists,
for every j ≤ m, an idempotent p j of A1 such that χ j(p j) = 1 and χk(p j) = 0 for k , j.
Hence p j pk = 0 for j , k, and

∑m
j=1 p j is the unit element of A1.

Let x ∈ A1. Then (p jcn)n∈Z is a cosine sequence in the commutative unital Banach
algebra p jA1, and specp jA1

(p jc1) = {χ j(c1)}.
Since supn≥1 ‖p j cos(na) − p jcn‖ ≤ 2‖p j‖, the sequence (p jcn)n≥1 is bounded, and it

follows from Theorem 2.3 that (p jcn)n≥1 is a scalar sequence and there exists β j ∈ [0, π]
such that p jcn = χ j(cn)p j = cos(nβ j)p j for n ∈ Z.

Hence cn =
∑m

j=1 χ j(cn)p j =
∑m

j=1 cos(nβ j)p j for n ≥ 1. Since A1 is the closed unital
subalgebra of A generated by c1, x =

∑m
j=1 χ j(x)p j for every x ∈ A1, which shows that

A1 is isomorphic to Cm. �

Corollary 2.4. Let a ≥ 0 ∈ R and let k(a) be the largest positive real number m such
that Γ(a,m) = {a} for every m < k(a). If (C(n))n∈Z is a cosine sequence in a Banach
algebra A such that supn≥1‖C(n) − cos(na)1A‖ < k(a), then C(n) = cos(na)1A for n ∈ Z.

Theorem 2.3 does not extend to cosine families over general abelian groups, as
shown by the following easy result.

Proposition 2.5. Let G := (Z/3Z)N. Then there exists a G-cosine family (C(g))g∈G with
values in l∞ which satisfies the following two conditions.

(i) supg∈G ‖1l∞ −C(g)‖ = 3
2 .

(ii) The algebra A generated by the family (C(g))g∈G is dense in l∞.

Proof. Elements g of G can be written in the form g = (gm)m≥1, where gm ∈ {0, 1, 2}.
Set

C(g) :=
(
cos

(2gmπ

3

))
m≥1

.

Then (C(g))g∈G is a G-cosine family with values in l∞ which obviously satisfies (i)
since cos(2π/3) = cos(4π/3) = − 1

2 .
Now let φ = (φm)m∈Z be an idempotent of l∞ and let S := {m ≥ 1 | φm = 1}. Set

gm = 1 if m ∈ S , gm = 0 if m ≥ 1,m < S and set g = (gm)m≥1.

C(0G) −C(g) = 1l∞ −C(g) = 3
2φ,

and so φ ∈ A. We can identify l∞ to C (βN), the algebra of continuous functions on the
Stone–Cĕch compactification of N, and βN is an extremely disconnected compact set,
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which means that the closure of every open set is open (see, for example, [2], Ch. 6,
Section 6). Since the characteristic function of every open and closed subset of βN is
an idempotent of l∞, the idempotents of l∞ separate points of βN, and it follows from
the Stone–Weierstrass theorem that A is dense in l∞, which proves (ii). �

3. The values of the constant k(a)

It was shown in [17] that k(0) = 3
2 . We also have the following result.

Proposition 3.1. k(a) = 8/3
√

3 if a/π is irrational and k(a) < 8/3
√

3 if a/π is rational.

Proof. Assume that a/π < Q. Then 3a < ±a + 2πZ and

k(a) ≤ sup
n≥1
|cos(na) − cos(3na)| = sup

x∈R
|cos(x) − cos(3x)| =

8

3
√

3
.

We saw above that if b/π in Q, then supn≥1|cos(na) − cos(nb)| = 2, and we also
know that supn≥1 |cos(na) − cos(nb)| = 2 if pa − qb < 2πZ for (p, q) , (0, 0). So if
supn≥1 |cos(na) − cos(nb)| < 2, there exists p ∈ Z \ {0}, q ∈ Z \ {0} and r ∈ Z such that
pa − qb = 2rπ.

If p , ±q, then it follows from [9, Lemma 3.5] that

supn≥1|cos(na) − cos(nb)| ≥ supn≥1|cos(nqa) − cos(nqb)|
= supn≥1|cos(qna) − cos(pna)|
= supx∈R|cos(qx) − cos(px)|

= supx∈R

∣∣∣∣∣cos
( p

q
x
)
− cos(x)

∣∣∣∣∣ ≥ 8

3
√

3
.

We are left with the case where b = ±a + (2sπ/r), where r ∈ Z \ {−1, 0, 1}, and we
can restrict attention to the case where b = a + (2sπ/r), where r ≥ 2, 1 ≤ s ≤ r − 1,
gcd(r, s) = 1. It follows from Bezout’s identity that there exists, for every p ≥ 1, some
positive integer u such that ub − ua − (2pπ/r) ∈ 2πZ. If r is even, set p = r/2. Since
the set {ei(2n+1)a}n≥1 is dense in the unit circle,

sup
n≥1
|cos(nb) − cos(na)| ≥ sup

n≥1
|cos((2n + 1)ub) − cos((2n + 1)ua)|

= 2 sup
n≥1
|cos((2n + 1)ua)| = 2.

Now assume that r is odd, and set p = (r − 1)/2.

sup
n≥1
|cos(nb) − cos(na)|

≥ sup
n≥1
|cos((2n + 1)ub) − cos((2n + 1)ua)|

≥ sup
n≥1

∣∣∣∣∣cos
(
(2nr + 1)ua + (2nr + 1)

(
π −

π

r

))
− cos((2nr + 1)ua)

∣∣∣∣∣
≥ sup

x∈R

∣∣∣∣∣cos(x) + cos
(
x −

π

r

)∣∣∣∣∣ ≥ 2 cos
(
π

2r

)
≥
√

3 >
8

3
√

3
.
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Now assume that a/π is rational. If the order of a is equal to one, then k(a) = 1.5, and
we will see later that this is also true if the order of a equals two or four.

Otherwise,

k(a) ≤ sup
n≥1
|cos(na) − cos(3na)| = max

1≤n≤u
|cos(na) − cos(3na)|.

We know that |cos(nx) − cos(3nx)| < 8/(π
√

3) if x < ± arccos(1/
√

3) + πZ. If na ∈
±arccos(1/

√
3) + πZ for some n ≥ 1, then arccos(1/

√
3)/π would be rational and

α := 1/
√

3 + (
√

2i)/
√

3 would be a root of unity. So β = α2 = − 1
3 + (2

√
2i)/3 would

have the form β = e2ikπ/n for some n ≤ 1 and some positive integer k ≥ n such that
gcd(k, n) = 1.

Let Q(β) be the smallest subfield of C containing Q ∪ β. Since 3β2 + 2β + 3 = 0,
the degree of Q(β) over Q is equal to two. On the other hand, the Galois group
Gal(Q(β)/Q) is isomorphic to (Z/nZ)×, the group of invertible elements of Z/nZ, and
(see [20, Theorem 2.5])

H(n) = deg(Q(β)/Q) = 2,

where H(n) = card((Z/nZ)×) denotes the number of integers p ∈ {1, . . . , n} such that
gcd(p, n) = 1.

Let P(n) be the set of prime divisors of n. It is well known that, writing n =

Πp∈P(n) pαp (see, for example, [20, Exercise 1.1]),

H(n) = Πp∈P(n) pαp−1(p − 1).

It follows immediately from this identity that the only possibilities for getting
H(n) = 2 are n = 3, n = 4 and n = 6. Since β3 , 1, β4 , 1 and β6 , 1, we see that
β/π is irrational, and so k(a) < 8/3

√
3 if a/π is rational. �

We know that if a/π is rational and if b/π is irrational, then supn≥1 |cos(na) −
cos(nb)| = 2. We discuss now the case where a/π and b/π are both rational, with
b < ±a + 2πZ.

Lemma 3.2. Let a, b ∈ (0, π].

(i) If 7a ≤ b ≤ π/2 or if π/2 ≤ b ≤ 5π/6, with |b − (2π/3)| ≥ 7a, then

sup
n≥1
|cos(na) − cos(nb)| > 1.55.

(ii) If (5π/6) ≤ b ≤ π and if b ≥ 4a, then

cos(a) − cos(b) > 1.57.

Proof.
(i) Assume that 7a ≤ b ≤ π/2, let p be the largest integer such that pb < 3π/4 and

set q = p + 1. We know that 3π/4 ≤ qb ≤ 5π/4, 0 ≤ qa ≤ 5π/28, so

sup
n≥1
|cos(na) − cos(nb)| ≥ cos(qa) − cos(qb) ≥ cos

(5π
28

)
+ cos

(
π

4

)
> 1.55.
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Now assume that π/2 ≤ b ≤ 5π/6, with |b − 2π/3| ≥ 7a, and set c = |3b − 2π|. Since
|b − (2π/3)| ≤ π/6, 21a ≤ c ≤ π/2, so

sup
n≥1
|cos(na) − cos(nb)|

≥ sup
n≥1
|cos(3na) − cos(3nb)|

= sup
n≥1
|cos(3na) − cos(nc)| ≥ |cos(3a) − cos(c)| > 1.55.

(ii) If 5π/6 ≤ b ≤ π and if b ≥ 4a, then 0 < a ≤ π/4 and

cos(a) − cos(b) ≥ cos
(
π

4

)
+ cos

(
π

6

)
> 1.57. �

Lemma 3.3. Let p, q be two positive integers such that p < q.

(i) If q , 3p, then there exists up,q ≥ 1 such that, if ord(a) ≥ up,q,

sup
n≥1
|cos(npa) − cos(nqa)| >

8
√

3
.

(ii) If q = 3p, then, for, every m < 8/3
√

3, there exists up(m) ≥ 1 such that, if
ord(a) ≥ up(m),

sup
n≥1
|cos(npa) − cos(3npa)| > m.

Proof. Set λ = supx∈R |cos(px) − cos(qx)| = supx≥0|cos(px) − cos(qx)|. An elementary
verification shows that λ > 8/3

√
3 if q , 3p and λ = 8/3

√
3 if q = 3p (see, for

example, [9]). Now let µ < λ, and let η < δ be two real numbers such that
|cos(px) − cos(qx)| > µ for η ≤ x ≤ δ. Since {eian}n≥1 = {e2niπ/u}1≤n≤u, we see that
supn≥1 |cos(npa) − cos(nqa)| > µ if 2π/u < δ − η, and the lemma follows. �

Lemma 3.4. Assume that a/π and b/π are rational, let u ≥ 1 be the order of a and let v
be the order of b.

(i) If u , v, u , 3v, v , 3u, then supn≥1 |cos(na) − cos(nb)| ≥ 1 + cos(π/5) > 1.8 >
8/3
√

3.
(ii) If u = v and if b < ±a + 2πZ, then there exists w ∈ Z such that 2 ≤ w ≤ u/2 and

gcd(u,w) = 1 satisfying

sup
n≥1
|cos(na) − cos(nb)| = sup

n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2nwπ
u

)∣∣∣∣∣. (3.1)

Conversely, if a ∈ πQ has order u, then, for every integer w such that gcd(w, u) =

1, there exists b ∈ πQ of order u satisfying (3.1).
(iii) If v = 3u, then there exists an integer w such that 1 ≤ w ≤ u/2 and gcd(u,w) = 1

satisfying

sup
n≥1
|cos(na) − cos(nb)| = sup

n≥1

∣∣∣∣∣cos
(2nπ

3u

)
− cos

(2nwπ
u

)∣∣∣∣∣. (3.2)

Conversely, if a ∈ πQ has order u, then, for every integer w such that
gcd(w, u) =1, there exists b ∈ πQ of order 3u satisfying (3.2).
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(iv) If u = 3v, then there exists an integer w such that 1 ≤ w ≤ u/6 and gcd(u/3,w) = 1
satisfying

sup
n≥1
|cos(na) − cos(nb)| = supn≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(6nwπ
u

)∣∣∣∣∣. (3.3)

Conversely, if the order u of a ∈ πQ is divisible by three, then, for every integer
w such that gcd(u/3,w) = 1, there exists b ∈ πQ of order u/3 satisfying (3.3).

Proof.
(i) Assume that u , v, say, u < v, and let w , 1 be the order of ub, which is a divisor

of v. We know that ub = 2πα/w, with gcd(α,w) = 1, and there exists γ ≥ 1 such that
αγ − 1 ∈ wZ.

sup
n≥1
|cos(na) − cos(nb)| ≥ sup

n≥1
|cos(nuγa) − cos(nuγb)| = sup

1≤n≤w
1 − cos

(2nπ
w

)
.

If w is even, then supn≥1 |cos(na) − cos(nb)| = 2. If w is odd, set s = (w − 1)/2.

sup
n≥1
|cos(na) − cos(nb)| ≥ 1 − cos

(2sπ
w

)
= 1 + cos

(
π

w

)
.

If w ≥ 5,

sup
n≥1
|cos(na) − cos(nb)| ≥ 1 + cos

(
π

5

)
> 1.8 >

8

3
√

3
.

If w = 3, let d = gcd(u, v) and set r = (u/d). Then w = 3 = (v/d) > r. So either r = 1
or r = 2.

If r = 2, u = 2d, v = 3d, a = (2pπ/2d) = (pπ/d) with p odd, b = (2qπ/3d) with
gcd(q, 3d) = 1, and so

2≥ sup
n≥1
|cos(na) − cos(nb)| ≥ |cos(3da) − cos(3db)|

≥ |cos(3pπ) − cos(2qπ)| = 2.

If r = 1, then u = d and v = 3d = 3u.
We thus see that if v > u and v , 3u, then supn≥1 |cos(na) − cos(nb)| ≥ 1 + cos(π/5) >

1.8 > 3/
√

3, which proves (i).
(ii) Assume that u = v and that b < ±a + 2πZ. There exists α, β ∈ {1, . . . , u − 1},

with α , β, α , u − β such that a ∈ ±(2απ/u) + 2πZ and b ∈ ±(2βπ/u) + 2πZ, and
gcd(α, u) = gcd(β, u) = 1. It follows from Bezout’s identity that there exists γ ∈ Z
such that αγ − 1 ∈ uZ. If βγ ± 1 ∈ uZ, then we would have αβγ ± α ∈ αuZ ⊂ uZ, and
β ± α ∈ uZ, which is impossible. Hence γβ − w ∈ uZ for some w ∈ {2, . . . , u − 2},
gcd(w, u) = 1 since gcd(γ, u) = gcd(β, u) = 1, and
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sup
n≥1
|cos(na) − cos(nb)|

≥ sup
n≥1
|cos(nγa) − cos(nγb)|

= sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2nwπ
u

)∣∣∣∣∣ ≥ sup
n≥1

∣∣∣∣∣cos
(2nαπ

u

)
− cos

(2nαwπ
u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nαπ

u

)
− cos

(2nβπ
u

)∣∣∣∣∣ = sup
n≥1
|cos(na) − cos(nb)|.

By replacing w by u − w, if necessary, we can assume that 2 ≤ w ≤ u/2.
Now let w ∈ Z such that gcd(u,w) = 1. We know that a = 2απ/u, with gcd(α, u)

= 1. The same argument as above shows that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2nwπ
u

)∣∣∣∣∣ = sup
n≥1
|cos(na) − cos(nb)|,

with b = 2wαπ/u, which has order u.
(iii) Now assume that v = 3u. There exists α ∈ {1, . . . , u − 1} and β ∈ {1, . . . , 3u − 1}

such that a ∈ ±(2απ/u) + 2πZ and b ∈ ±(2βπ/3u) + 2πZ, and gcd(α,u) = gcd(β,3u) =1.
Let γ ∈ Z such that βγ − 1 ∈ 3uZ. Then gcd(γ, 3u) = 1 and a fortiori gcd(γ, u) = 1.
There exists w ∈ Z such that 1 ≤ w ≤ u/2 and αγ ∈ ±w + uZ, and we see, as above,
that

sup
n≥1
|cos(na) − cos(nb)|

= sup
n≥1

∣∣∣∣∣cos
(2nαπ

u

)
− cos

(2nβπ
3u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nαγπ

u

)
− cos

(2nβγπ
3u

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(2nwπ

u

)
− cos

(2nπ
3u

)∣∣∣∣∣.
Conversely, let a = 2απ/u ∈ πQ have order u, and let w ∈ Z be such that

gcd(u,w) =1. If α is not divisible by three, then gcd(α, 3u) = 1. If α is divisible
by three, then u is not divisible by three, and so α + u ∈ α + uZ is not divisible by
three. So we can assume, without loss of generality, that α is not divisible by three,
and there exists β ≥ 1 such that αβ − 1 ∈ 3uπZ. Similarly, we can assume, without
loss of generality, that w is not divisible by three, and there exists γ ≥ 1 such that
wγ − 1 ∈ 3uπZ. Set b = (2αγπ/3u). Then b has order 3u, and we see, as above, that

sup
n≥1

∣∣∣∣∣cos
(2nwπ

u

)
− cos

(2nπ
3u

)∣∣∣∣∣
≥ sup

n≥1

∣∣∣∣∣cos
(2nαγwπ

u

)
− cos

(2nαγπ
3u

)∣∣∣∣∣
= sup

n≥1
|cos(na) − cos(nb)| ≥ sup

n≥1

∣∣∣∣∣cos
(2nαγwβwπ

u

)
− cos

(2nαγβwπ
3u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nwπ

u

)
− cos

(2nπ
3u

)∣∣∣∣∣,
which concludes the proof of (iii).
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(iv) Clearly, the first assertion of (iv) is a reformulation of the first assertion of
(iii). Now assume that the order u of a ∈ πQ is divisible by three, set v = u/3, write
a = 2απ/u and let w ∈ Z such that gcd(w, v) = 1. We see, as above, that we can assume,
without loss of generality, that gcd(u,w) = 1.

Since gcd(α, u) = 1, a fortiori gcd(α, v) = 1, so that gcd(αw, v) = 1, so that b :=
6αwπ/u has order v and we see, as above, that a, b, u and w satisfy (3.3). �

In order to use Lemma 3.4, we introduce the following notions.

Definition 3.5. Let u ≥ 2, denote by ∆(u) the set of all integers s satisfying 1 ≤ s ≤ u/2,
gcd(u, s) = 1 and let ∆1(u) = ∆(u) \ {1}. We set

σ(u) = inf
w∈∆(u)

[
sup
n≥1

∣∣∣∣∣cos
(2π
3u

)
− cos

(2wπ
u

)∣∣∣∣∣],
θ(u) = inf

w∈∆1(u)

[
sup
n≥1

∣∣∣∣∣cos
(2π

u

)
− cos

(2wπ
u

)∣∣∣∣∣],
with the convention θ(u) = 2 if ∆1(u) = ∅.

Notice that ∆1(u) = ∅ if u = 2, 3, 4 or 6 and that ∆1(u) , ∅ otherwise, since, as we
observed above, H(n) = card((Z/nZ)×) ≥ 3 if n < {1, 2, 3, 4, 6}.

We obtain the following corollary, which shows, in particular, that the value of k(a)
depends only on the order of a.

Corollary 3.6. Let a ∈ πQ and let u ≥ 1 be the order of a.

(i) If u is not divisible by three, then k(a) = inf(σ(u), θ(u)).
(ii) If u is divisible by three, then k(a) = inf(σ(u/3), σ(u), θ(u)).

Proof. Set:

• Λ1(a) = {b ∈ πQ|b < ±a + 2πZ, ord(b) = ord(a)};
• Λ2(a) = {b ∈ πQ|ord(b) = 3ord(a)};
• Λ3(a) = {b ∈ πQ|3ord(b) = ord(a)};
• Λ4(a) = {b ∈ πQ|ord(b) , ord(a) , 3ord(b)};

and, for 1 ≤ i ≤ 4, set

λi(a) = inf
b∈Λi(a)

sup
n≥1
|cos(na) − cos(nb)|,

with the convention λi(a) = 2 if Λi(a) = ∅.
Since b < ±a + 2πZ if ord(b) , ord(a), λ2(a) ≤ 8/3

√
3, and it follows from

Lemma 3.4(i) that
k(a) = inf

1≤i≤4
λi(a) = inf

1≤i≤3
λi(a)

and it follows from Lemma 3.4(ii), (iii) and (iv) that λ1(a) = θ(u) if ∆1(u) , ∅, that
λ2(a) = σ(u) and that λ3(a) = σ(u/3) if u is divisible by three. �
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We know that ∆1(2) = ∆1(4) = ∅, and so k(a) = σ(2) if ord(a) = 2 and k(a) = σ(4)
if ord(a) = 4, and an immediate verification then shows that k(a) = 3

2 if ord(a) ∈ {2, 4}.
We have the following theorem.

Theorem 3.7. Let m < 8/3
√

3. Then the set Ω(m) := {a ∈ [0, π] : k(a) ≤ m} is finite.

Proof. It follows from Lemma 3.3 applied to 2π/u and 6π/u that there exists u0 ≥ 1
such that, for u ≥ u0,

(i) sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ > m if 2 ≤ w ≤ inf
(u
2
, 6

)
,

(ii) sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(2(3w + 1)nπ
u

)∣∣∣∣∣ > m if 0 ≤ w ≤ 6,

(iii) sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(2(3w + 2)nπ
u

)∣∣∣∣∣ > m if 0 ≤ w ≤ 6.

Let u ≥ u0, and let w be an integer such that 2 ≤ w ≤ u/2. If 2wπ/u ≤ π/2 or if
2wπ/u ≥ 5π/6, it follows from Lemma 3.2 and property (i) that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ > m.

Now assume that π/2 ≤ 2wπ/u ≤ 5π/6. If |w − (u/3)| ≥ 7, it follows from
Lemma 3.2 that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ > 1.55 > m.

If |w − (u/3)| < 7, set r = |3w − u|. Then 0 ≤ r ≤ 20 and

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ ≥ sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(2nrπ
u

)∣∣∣∣∣.
If u is not divisible by three, then either r = 3s + 1 or r = 3s + 2, with 0 ≤ s ≤ 6, and

it follows from (ii) and (iii) that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ > m.

If u is divisible by three then r is also divisible by three. Set v = u/3 and s = r/3.
Then 0 ≤ s ≤ 6 and

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ ≥ sup
n≥1

∣∣∣∣∣cos
(2nπ

v

)
− cos

(2nsπ
v

)∣∣∣∣∣.
If s ∈ {2, 3, 4, 5, 6}, it follows from (i) that, if u ≥ 3u0,

sup
n≥1

∣∣∣∣∣cos
(2nπ

v

)
− cos

(2snπ
u

)∣∣∣∣∣ > m.
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Now assume that s = 0. If u ≥ 15, then v ≥ 5 and

sup
n≥1

∣∣∣∣∣cos
(2nπ

v

)
− cos

(2snπ
u

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(2nπ

v

)
− 1

∣∣∣∣∣ ≥ 1 + cos
(
π

5

)
> 1.8 > m.

Now assume that s = 1. With ε = ±1,

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nπ

3v

)
− cos

(2nπ
3v

+
2nεπ

3

)∣∣∣∣∣
≥ sup

n≥1

∣∣∣∣∣cos
(2(3n + 1)π

3v

)
− cos

(2(3n + 1)π
3v

+
2επ
3

)∣∣∣∣∣
=
√

3
∣∣∣∣∣sin

(2nπ
v

+
2π
3v

+
επ

3

)∣∣∣∣∣.
There exists p ≥ 1 and q ∈ Z such that (π/2) − (π/v) ≤ (2pπ/v) + (2π/3v) + (επ/3) +

2qπ ≤ (π/2) + (π/v) and we obtain, for u ≥ 21, w = v ± 1,

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ ≥ √3 cos
(
π

v

)
≥
√

3 cos
(
π

7

)
≥ 1.56 > m.

We thus see that if u ≥ u0 is not divisible by three or if u ≥ max(21, 3u0) is divisible
by three, for 2 ≤ w ≤ (u/2),

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2wnπ
u

)∣∣∣∣∣ ≥ m,

so that k(2π/u) > m.
It follows from Corollary 3.6 that k(a) depends only on the order u of a. Hence

k(a) > m if u ≥ max(21, 3u0), which shows that Ω(m) is finite. �

We now want to identify the real numbers a for which k(a) ≤ 1.5.
If a ∈ πQ has order one, two or four, then supn≥1 |cos(an) − cos(3an)| = 0. We also

know the following elementary facts.

Lemma 3.8. Let a ∈ πQ, and let u < {1, 2, 4} be the order of a.

(1) If u < {3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 22, 24, 30}, then

sup
n≥1
|cos(an) − cos(3an)| > 1.5.

(2) If u ∈ {3, 6, 9, 12, 15, 18, 24, 30}, then

sup
n≥1
|cos(an) − cos(3an)| = 1.5.

(3) If u ∈ {5, 10}, then

sup
n≥1
|cos(an) − cos(3an)| =

√
5

2
.
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(4) If u ∈ {8, 16}, then

sup
n≥1
|cos(an) − cos(3an)| =

√
2.

(5) If u ∈ {11, 22}, then

sup
n≥1
|cos(an) − cos(3an)|=−cos

(8π
11

)
+ cos

(24π
11

)
= cos

(2π
11

)
+ cos

(3π
11

)
≈ 1.4961.

Proof. We know that {eian}n≥1 = {e2inπ/u}1≤n≤u, and so

sup
n≥1
|cos(an) − cos(3an)|= sup

n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(6nπ
u

)∣∣∣∣∣
= sup

1≤n≤u

∣∣∣∣∣cos
(2nπ

u

)
− cos

(6nπ
u

)∣∣∣∣∣
and the value of supn≥1 |cos(an) − cos(3an)| depends only on the order u of a.

The function x → cos(x) − cos(3x) is increasing on [0, arccos(1/
√

3)] and
decreasing on [arccos(1/

√
3),− arccos(1/

√
3)], and 0.275π < arccos(1/

√
3) < 0.333π.

Since cos(x) − cos(3x) > 1.5 if x = 0.275π or if x = 0.333π, there exists a closed
interval I of length 0.058π on which cos(x) − cos(3x) > 1.5. So, if u ≥ 35 > 2

0.058 ,
there exists n ≥ 1 such that (2nπ/u) ∈ I, and

sup
n≥1
|cos(an) − cos(3an)| > 1.5 ∀n ≥ 35.

The other properties follow from computations of sup1≤n≤u |cos(2nπ/u) −
cos(6nπ/u)| for 3 ≤ u ≤ 34 and are left to the reader. �

We now wish to obtain similar estimates for supn≥1 |cos(2π/n) − cos(2sπ/n)| for
s ∈ {2, 4, 5, 6}. Set fs(x) = cos(x) − cos(sx), θs = supx≥0 | fs(x)|, δs = supx≥0 | f

′′
s (x)|. If s

is even, θs = 2, and a computer verification shows that θs > 1.8 for s = 5. It follows
from the Taylor–Lagrange inequality that if fs attains it maximum at αs, then

| fs(x) − θs| ≤
δs

2
(x − αs)2, | fs(x)| ≥ θs −

δs

2
(x − αs)2,

and so | fs(x)| > 1.5 if (x − αs)2 ≤ (2θs − 3)/δs. So if ls <
√

(2θs − 3)/δs, there exists a
closed interval of length 2ls on which | fs(x)| > 1.5. Let us ≥ (π/ls) be an integer.

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ > 1.5 ∀u ≥ us.

Values for us are given in Table 1.
We obtain the following lemma.
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Table 1. Values of us, s = 2, 4, 5, 6.

s θs δs ls us

2 2 ≤5 0.4472 8
4 2 ≤17 0.2425 13
5 >1.8 ≤26 0.1519 21
6 2 ≤37 0.1644 20

Lemma 3.9. Let u ≥ 4 be an integer and let s ≤ u/4 be a nonnegative integer, with s , 1.
If s , 3, then

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2nsπ
u

)∣∣∣∣∣ > 1.5

Proof. If s = 0, then

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2nsπ
u

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− 1

∣∣∣∣∣ > 1.8.

If s ≥ 7, the result follows from Lemma 3.2(i). If s ∈ {2, 4, 6}, the result follows
from Table 1 since u ≥ 4s. If s = 5, the result also follows from the table for u ≥ 21,
and a direct computation shows that

sup
n≥1

∣∣∣∣∣cos
(2nπ

20

)
− cos

(10nπ
20

)∣∣∣∣∣ = sup
1≤n≤20

∣∣∣∣∣cos
(nπ
10

)
− cos

(nπ
2

)∣∣∣∣∣
= 1 + cos

(
π

5

)
> 1.8. �

Now set gs(x) = cos(3x) − cos(sx), θs = supx≥0 |g(s)|, δs = supx≥0 |g
′′
s (x)|. If s is

even, θs = 2, and a computer verification shows that θs > 1.85 for s = 5, θs > 1.91
for s = 7, s = 11, θs > 1.97 for s = 13, s = 17, θs > 1.96 for s = 19. We see, as above,
that if ls <

√
(2θs − 3)/δs and if us ≥ π/ls is an integer,

sup
n≥1

∣∣∣∣∣cos
(2snπ

u

)
− cos

(6nπ
u

)∣∣∣∣∣ > 1.5 ∀u ≥ us.

Our results are shown in Table 2.
We will be interested here in the case where u is not divisible by three and where

(2sπ/u) ≤ (π/2), which means that u ≥ 4s. So we are left with s = 2, u = 8, 10 or 11,
and with s = 5, u = 20. We obtain, by direct computation,

sup
n≥1

∣∣∣∣∣cos
(4nπ

8

)
− cos

(6nπ
8

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(nπ

2

)
− cos

(3nπ
4

)∣∣∣∣∣ = 2.

sup
n≥1

∣∣∣∣∣cos
(4nπ

10

)
− cos

(6nπ
10

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(2nπ

5

)
− cos

(3nπ
5

)∣∣∣∣∣ = 2.

sup
n≥1

∣∣∣∣∣cos
(4nπ

11

)
− cos

(6nπ
11

)∣∣∣∣∣ = cos
(20π

11

)
− cos

(30π
11

)
= cos

(2π
11

)
+ cos

(3π
11

)
≈ 1.4961.

sup
n≥1

∣∣∣∣∣cos
(10nπ

20

)
− cos

(6nπ
20

)∣∣∣∣∣ = sup
n≥1

∣∣∣∣∣cos
(nπ

2

)
− cos

(3nπ
10

)∣∣∣∣∣ > 1.80.
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Table 2. Values of us, 2 ≤ s ≤ 20, s not divisible by three.

s θs δs ls us

2 2 ≤13 0.2774 12
4 2 ≤23 0.2085 16
5 >1.85 ≤34 0.1435 22
7 >1.91 ≤58 0.1189 27
8 2 ≤73 0.1170 27

10 2 ≤109 0.0958 33
11 >1.91 ≤130 0.0794 40
13 >1.97 ≤178 0.0727 44
14 2 ≤205 0.0698 45
16 2 ≤275 0.0603 53
17 >1.97 ≤298 0.0562 56
19 >1.96 ≤390 0.0486 65
20 2 ≤409 0.0494 64

We obtain the following lemma.

Lemma 3.10. Let u, s be positive integers satisfying u ≥ 4 and u/4 ≤ s ≤ 5u/12, with
s ≥ 2, so that u ≥ 5.

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣

×



= cos
(
π

5

)
+ cos

(2π
5

)
if u = 5, s = 2 or if u = 10, s = 3,

=
√

2 if u = 8, s = 3 or if u = 16, s = 5,

= cos
(2π
11

)
+ cos

(3π
11

)
if u = 11, s = 3 or s = 4 or if u = 22, s = 7,

=1.5 if u = 9 or u = 12, s = 3,
>1.5 otherwise.

Proof. Set r = |3s − u|. Since (2π/3) − (π/2) = (5π/6) − (2π/3) = (π/6), 0 ≤ (2πr/u) ≤
(π/2). If r ≥ 21, it follows from the second assertion of Lemma 3.2(i) applied to
a = 2π/u and b = 2sπ/u that supn≥1 |cos(2nπ/u) − cos(2snπ/u)| > 1.5.

If u is not divisible by three, then r is not divisible by three either, and it follows
from the discussion above that if r , 1, r , 2, r ≤ 20, or if r = 2, u , 11, then

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ ≥ sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(2rnπ
u

)∣∣∣∣∣ > 1.5.

If r = 2, u = 11, then |s − 11
3 | = |s − (u/3)| = 2

3 , and so s = 3 and

sup
n≥1

∣∣∣∣∣cos
(2nπ

11

)
− cos

(6nπ
11

)∣∣∣∣∣ = sup
1≤n≤11

∣∣∣∣∣cos
(2nπ

11

)
− cos

(6nπ
11

)∣∣∣∣∣
=

∣∣∣∣∣cos
(8π
11

)
− cos

(24π
11

)∣∣∣∣∣ = cos
(2π
11

)
+ cos

(3π
11

)
≈ 1.4961.
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The condition r = 1 gives |s − (u/3)| = 1
3 , and so s = (u − 1)/3 if u ≡ 1 mod 3, and

s = (u + 1)/3 if u ≡ 2 mod 3. In this situation,

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣≥ sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(6snπ
u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(6nπ
u

)∣∣∣∣∣.
Since |s − (u/3)| = 1

3 , it follows from Lemma 3.8 that if n < {5, 8, 10, 11, 16, 22}, or
if u = 5, s , 2, or if u = 8, s , 3, or if u = 10, s , 3, or if u = 11, s , 4, or if u = 16,
s , 5, or if u = 22, s , 7, then

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ > 1.5.

A direct computation then shows that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣
= sup

1≤n≤u

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣
=


cos

(
π

5

)
+ cos

(2π
5

)
if u = 5, s = 2 or if u = 10, s = 3,

√
2 if u = 8, s = 3 or if u = 16, s = 5,

cos
(2π
11

)
+ cos

(3π
11

)
if u = 11, s = 4 or if u = 22, s = 7.

We now consider the case where u = 3v is divisible by three. Then r is also divisible
by three. If r = 0 and if u , 9, then

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ ≥ sup
n≥1

∣∣∣∣∣cos
(2nπ

v

)
− 1

∣∣∣∣∣ > 1.8.

If u = 9, then s = 3 and

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ = sup
1≤n≤9

∣∣∣∣∣cos
(2nπ

9

)
− cos

(2nπ
3

)∣∣∣∣∣ = 1.5.

Now assume that r = 3, which means that s = v + ε, with ε = ±1.

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ = sup
1≤n≤3v

∣∣∣∣∣cos
(2nπ

3v

)
− cos

(2nπ
3

+
2εnπ

3v

)∣∣∣∣∣
= 2 sup

1≤n≤3v

∣∣∣∣∣sin
(nπ

3
+

(1 + ε)nπ
3v

)∣∣∣∣∣∣∣∣∣∣sin
(
−

nπ
3

+
(1 − ε)nπ

3v

)∣∣∣∣∣
= 2 sup

1≤n≤3v

∣∣∣∣∣sin
(nπ

3

)∣∣∣∣∣∣∣∣∣∣sin
(nπ

3
+

2nπ
3v

)∣∣∣∣∣
≥
√

3 sup
0≤n≤v

∣∣∣∣∣sin
( (3n + 1)π

3
+

2(3n + 1)π
3v

)∣∣∣∣∣
=
√

3 sup
0≤n≤v

∣∣∣∣∣sin
(2nπ

v
+

(v + 2)π
3v

)∣∣∣∣∣.
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Since sin(x) >
√

3/2 for π/3 < x < 2π/3, there exists n ∈ {1, . . . , v} such that
sin((2nπ/v) + ((v + 2)π/3v)) >

√
3/2 if v ≥ 7, so

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ > 1.5 if u ≥ 21.

We are left with the cases where u = 6, v = 2, s = 1 or 3, u = 9, v = 3, s = 2 or 4,
u = 12, v = 4, s = 3 or 5, u = 15, v = 5, s = 4 or 6, u = 18, v = 6, s = 5 or 7. But s = 1
is not relevant, and the condition u/4 ≤ s ≤ 5u/12 is not satisfied for u = 6, s = 3 and
for u = 9, s = 2 or 4.

Direct computations, which are left to the reader, show that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣

>1.64 if u = 15 and s = 4,
>1.70 or if u = 18 and s = 5 or s = 7,
>1.72 if u = 15 and s = 6,
>1.73 if u = 12 and s = 5.

So supn≥1 |cos(2nπ/u) − cos(2snπ/u)| > 1.5 if u/4 ≤ s ≤ 5u/12 when u is divisible
by three and when s − (u/3) ∈ {−1, 0, 1}, unless u = 12 and s = 3. If u = 12 and s = 3,

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ = supn≥1

∣∣∣∣∣cos
(nπ

6

)
− cos

(nπ
2

)∣∣∣∣∣ = 1.5.

Now assume that u = 3v is divisible by three and that 2 ≤ |s − v| ≤ 6. Set again
r = |3s − u| and set p = r/3, so that 2 ≤ p ≤ 6. Notice also that p ≤ u/12 since r ≤ u/4,
so that u ≥ 24 and v ≥ 8.

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣≥ sup
n≥1

∣∣∣∣∣cos
(6nπ

u

)
− cos

(2rnπ
u

)∣∣∣∣∣
= sup

n≥1

∣∣∣∣∣cos
(2nπ

v

)
− cos

(2pnπ
v

)∣∣∣∣∣.
It follows then from Lemma 3.9 that supn≥1 |cos(2nπ/u) − cos(2snπ/u)| > 1.5 if

p , 3.
If p = 3, then u ≥ 36, and so v ≥ 12. Since s − v = ±3, it follows from Lemma 3.8

that we only have to consider the cases when:

• u = 36, s = 9 or 15,
• u = 45, s = 12 or 18,
• u = 54, s = 15 or 21,
• u = 72, s = 21 or 27,
• u = 90, s = 27 or 33.
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Direct computations, which are left to the reader, show that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣

×



>1.93 if u = 36 and s = 9 or if u = 45 and s = 12 or 18
or if u = 72 and s = 27 or if u = 90 and s = 27 or 33,
>1.91 or if u = 54 and s = 15,
>1.87 or if u = 72 and s = 24,
>1.85 or if u = 36 and s = 15,
>1.83 or if u = 54 and s = 21.

This concludes the proof of the lemma. �

Lemma 3.11. Let u, s be positive integers satisfying 5u/12 ≤ s ≤ u/2, with s ≥ 2, so
that u ≥ 4.

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ =

=1.5 if u = 6 and s = 3,
>1.5 otherwise.

Proof. If s ≥ 4, it follows from Lemma 3.2(ii) that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣ > 1.57.

So we only have to consider the cases s = 3, u = 6 or 7 and s = 2, u = 4.
A direct computation then shows that

sup
n≥1

∣∣∣∣∣cos
(2nπ

u

)
− cos

(2snπ
u

)∣∣∣∣∣

=2 if u = 4 and s = 2,
=1.5 if u = 6 and s = 3,

= cos
(2π

7

)
+ cos

(
π

7

)
≈ 1.5245 if u = 7 and s = 3. �

We consider again the numbers θ(u) and σ(u) introduced in Definition 3.5.
It follows from Lemmas 3.8–3.11 that we have the following results.

Lemma 3.12. θ(5) = θ(10) = cos(π/5) + cos(2π/5), θ(8) = θ(16) =
√

2, θ(11) = θ(22) =

cos(2π/11) + cos(3π/11), and θ(u) > 1.5 for u ≥ 4, u , 5, u , 8, u , 10, u , 11, u ,
16, u , 22.

Lemma 3.13. σ(u) = 1.5 if u ∈ {1, 2, 3, 4, 5, 6, 8, 10} and σ(u) > 1.5 otherwise.

Hence, if u is divisible by three, σ(u/3) = 1.5 if u ∈ {3, 6, 9, 12, 15, 18, 24, 30} and
σ(u) > 1.5 otherwise. We then deduce from Corollary 3.6 a complete description of
the set Ω(1.5) = {a ∈ [0, π] | k(a) ≤ 1.5}.

Theorem 3.14. Let a ∈ [0, π].

• If a ∈ {π/5, 2π/5, 3π/5, 4π/5}, then k(a) = cos(π/5) + cos(2π/5) ≈ 1, 1180.
• If a ∈ {π/8, π/4, 3π/8, 5π/8, 5π/4, 7π/8}, then k(a) =

√
2 ≈ 1, 4142.
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• If a ∈ {π/11, 2π/11, 3π/11, 4π/11, 5π/11, 6π/11, 7π/11, 8π/11, 9π/11, 10π/11},
then k(a) = cos(2π/11) + cos(3π/11) ≈ 1, 4961.

• If a ∈ {0, π/6, π/3, π/2,2π/3,5π/6} ∪ {π/9,2π/9,4π/9,5π/9,7π/9,8π/9} ∪ {π/12,
5π/12, 7π/12} ∪ {π/15, 2π/15, 4π/15, 7π/15, 8π/15, 11π/15, 13π/15, 14π/15},
then k(a) = 1.5.

• For all other values of a, 1.5 < k(a) ≤ 8/3
√

3 ≈ 1.5396.

Corollary 3.15. Let G be an abelian group and let (C(g))g∈G be a G-cosine family in
a unital Banach algebra A such that supg∈G ‖C(g) − c(g)‖ <

√
5/2 for some bounded

scalar G-cosine family (c(g))g∈G. Then C(g) = c(g) for every g ∈ G.

Proof. Let g ∈ G. Since the scalar cosine sequence (c(ng))n∈Z is bounded, a standard
argument shows that there exists a(g) ∈ R such that c(ng) = cos(na(g))1A for n ∈ Z.
Since k(a(g)) ≥

√
5/2, it follows from Corollary 2.4 that C(ng) = cos(na(g))1A = c(ng)

for n ∈ Z, and C(g) = c(g). �
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