A ZERO- $\sqrt{5}/2$ LAW FOR COSINE FAMILIES

JEAN ESTERLE

(Received 2 May 2015; accepted 24 February 2017; first published online 17 April 2017)

Communicated by G. Willis

Abstract

Let $a \in \mathbb{R}$, and let k(a) be the largest constant such that $\sup |\cos(na) - \cos(nb)| < k(a)$ for $b \in \mathbb{R}$ implies that $b \in \pm a + 2\pi\mathbb{Z}$. We show that if a cosine sequence $(C(n))_{n\in\mathbb{Z}}$ with values in a Banach algebra A satisfies $\sup_{n\geq 1} ||C(n) - \cos(na).1_A|| < k(a)$, then $C(n) = \cos(na).1_A$ for $n \in \mathbb{Z}$. Since $\sqrt{5}/2 \le k(a) \le 8/3\sqrt{3}$ for every $a \in \mathbb{R}$, this shows that if some cosine family $(C(g))_{g\in G}$ over an abelian group G in a Banach algebra satisfies $\sup_{g\in G} ||C(g) - c(g)|| < \sqrt{5}/2$ for some scalar cosine family $(c(g))_{g\in G}$, then C(g) = c(g) for $g \in G$, and the constant $\sqrt{5}/2$ is optimal. We also describe the set of all real numbers $a \in [0, \pi]$ satisfying $k(a) \le \frac{3}{2}$.

2010 Mathematics subject classification: primary 46J45; secondary 47D05.

Keywords and phrases: cosine sequence, scalar cosine sequence, Kronecker's theorem, commutative Banach algebra, cyclotomic polynomial.

1. Introduction

Let *G* be an abelian group. Recall that a *G*-cosine family of elements of a unital normed algebra *A* with unit element 1_A is a family $(C(g))_{g \in G}$ of elements of *A* satisfying the so-called d'Alembert equation

$$C_0 = 1_A, C(g+h) + C(g-h) = 2C(g)C(h), \quad (g \in G, h \in G).$$

A \mathbb{R} -cosine family is called a cosine function, and a \mathbb{Z} -cosine family is called a cosine sequence.

A cosine family $C = (C(g))_{g \in G}$ is said to be bounded if there exists M > 0 such that $||C(g)|| \le M$ for every $g \in G$. In this case, we set

$$||C||_{\infty} = \sup_{g \in G} ||C(g)||, \quad \text{dist}(C_1, C_2) = ||C_1 - C_2||_{\infty}.$$

A cosine family is said to be scalar if $C(g) \in \mathbb{C}.1_A$ for every $g \in G$. It is easy to see and well known that a bounded complex-valued cosine sequence satisfies $C(n) = \cos(an)$ for some $a \in \mathbb{R}$.

^{© 2017} Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

Strongly continuous operator valued cosine functions are a classical tool in the study of differential equations (see, for example, [1, 3, 14, 18]) and a functional calculus approach to these objects was developed recently in [10, 11].

Bobrowski and Chojnacki proved in [4] that if a strongly continuous operator valued cosine function on a Banach space $(C(t))_{t\in\mathbb{R}}$ satisfies $\sup_{t\geq 0} ||C(t) - c(t)|| < 1/2$ for some scalar bounded continuous cosine function c(t), then C(t) = c(t) for $t \in \mathbb{R}$, and Zwart and Schwenninger showed in [16] that this result remains valid under the condition $\sup_{t\geq 0} ||C(t) - c(t)|| < 1$. The proofs were based on rather involved arguments from operator theory and semigroup theory. Very recently, Bobrowski *et al.* [5] showed more precisely that if a cosine function C = C(t) satisfies $\sup_{t\in\mathbb{R}} ||C(t) - c(t)|| < 8/3\sqrt{3}$ for some scalar bounded continuous cosine function c(t), then C(t) = c(t) for $t \in \mathbb{R}$, without any continuity assumption on C, and the same result was obtained independently by the author in [9]. The constant $8/3\sqrt{3}$ is obviously optimal, since $\sup_{t\in\mathbb{R}} ||cos(at) - cos(3at)| = 8/3\sqrt{3}$ for every $a \in \mathbb{R} \setminus \{0\}$.

The author also proved, in [9], that if a cosine sequence $(C(t))_{t \in \mathbb{R}}$ satisfies $\sup_{t \in \mathbb{R}} ||C(t) - \cos(at)1_A|| = m < 2$ for some $a \neq 0$, then the closed algebra generated by $(C(t))_{t \in \mathbb{R}}$ is isomorphic to \mathbb{C}^k for some $k \ge 1$, and there exists a finite family p_1, \ldots, p_k of pairwise orthogonal idempotents of *A* and a family (b_1, \ldots, b_k) of distinct elements of the finite set $\Delta(a, m) := \{b \ge 0 : \sup_{t \in \mathbb{R}} |\cos(bt) - \cos(at)| \le m\}$ such that $C(t) = \sum_{j=1}^k \cos(b_j t) p_j$ $(t \in \mathbb{R})$.

Also, Chojnacki developed, in [6], an elementary argument to show that if $(C(n))_{n\in\mathbb{Z}}$ is a cosine sequence in a unital normed algebra A satisfying $\sup_{n\geq 1} ||C(n) - c(n)|| < 1$ for some scalar cosine sequence $(c(n))_{n\in\mathbb{Z}}$, then c(n) = C(n) for every n, which obviously implies the result of Zwart and Schwenninger. His approach is based on an elaborated adaptation of a very short elementary argument used by Wallen in [19] to prove an improvement of the classical Cox–Nakamura–Yoshida–Hirschfeld–Wallen theorem [7, 12, 15] which shows that if an element a of a unital normed algebra A satisfies $\sup_{n\geq 1} ||a^n - 1|| < 1$, then a = 1.

Applying this result to the cosine sequences C(ng) and c(ng) for $g \in G$, Chonajcki observed, in [6], that if a cosine family C(g) satisfies $\sup_{g \in G} ||C(g) - c(g)|| < 1$ for some scalar cosine family c(g), then C(g) = c(g) for every $g \in G$.

In the same direction, Schwenninger and Zwart showed, in [17], that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ in a Banach algebra *A* satisfies $\sup_{n \ge 1} ||C(n) - 1_A|| < \frac{3}{2}$, then $C(n) = 1_A$ for every *n*.

The purpose of this paper is to obtain optimal results of this type. We prove a 'zero- $\sqrt{5}/2$ ' law: if a cosine family $(C(g))_{g \in G}$ satisfies $\sup_{g \in G} ||C(g) - c(g)|| < \sqrt{5}/2$ for some scalar cosine family $(c(g))_{g \in G}$, then C(g) = c(g) for every $g \in G$. Since $\sup_{n\geq 1} |\cos(2n\pi/5) - \cos(4n\pi/5)| = \cos(2\pi/5) + \cos(\pi/5) = \sqrt{5}/2$, the constant $\sqrt{5}/2$ is optimal.

In fact, for every $a \in \mathbb{R}$, there exists a largest constant k(a) such that $\sup_{n\geq 1} |\cos(nb) - \cos(na)| < k(a)$ implies that $\cos(nb) = \cos(na)$ for $n \geq 1$, and there exists $b \in \mathbb{R}$ such that $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = k(a)$ (see the remark following

197

Proposition 2.2). We prove that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ in a Banach algebra A satisfies $\sup_{n \ge 1} |C(n) - \cos(na)1_A| < k(a)$, then $C(n) = \cos(na).1_A$ for $n \ge 1$. This follows from the following result, which was proved by the author in [9].

THEOREM 1.1. Let $(C(n))_{n \in \mathbb{Z}}$ be a bounded cosine sequence in a Banach algebra A. If $\operatorname{spec}(C(1))$ is a singleton, then the sequence $(C(n))_{n \in \mathbb{Z}}$ is scalar, and so there exists $a \in \mathbb{R}$ such that $C(n) = \cos(na).1_A$ for $n \ge 1$.

The second part of the paper is devoted to a discussion of the values of the constant k(a). As mentioned above, it follows from [17] that $k(0) = \frac{3}{2}$, and it is obvious that $k(a) \leq \sup_{n\geq 1} |\cos(na) - \cos(3na)| \leq 8/3\sqrt{3}$ if $a \notin (\pi/2)\mathbb{Z}$. We observe that $k(a) = 8/3\sqrt{3}$ if a/π is irrational, and we prove, using basic results about cyclotomic fields, that $k(a) < 8/3\sqrt{3}$ if a/π is rational.

We also show that the set $\Omega(m) := \{a \in [0, \pi] : k(a) \le m\}$ is finite for every $m < 8/3\sqrt{3}$. We describe in detail the set $\Omega(\frac{3}{2})$: it contains 43 elements, and the only values for k(a) for which $k(a) < \frac{3}{2}$ are $\sqrt{2}/5 = \cos(\pi/5) + \cos(2\pi/5) \approx 1.1180$, $\sqrt{2} = \cos(\pi/4) + \cos(3\pi/4) \approx 1.4142$ and $\cos(2\pi/11) + \cos(3\pi/11) \approx 1.4961$.

The zero- $\sqrt{5}/2$ law follows from the fact that $k(a) \ge \cos(\pi/5) + \cos(2\pi/5) = \sqrt{5}/2$ for every $a \in \mathbb{R}$.

We also show that, given $a \in \mathbb{R}$ and m < 2, the set $\Gamma(a, m)$ of scalar cosine sequences $(c(n))_{n \in \mathbb{Z}}$ satisfying $\sup_{n \in \mathbb{Z}} |c(n) - \cos(na)| \le m$ is finite. This implies that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ satisfies $\sup_{n \in \mathbb{Z}} ||C(n) - \cos(an)1_A|| \le m$, then there exists $k \le \operatorname{card}(\Gamma(a, m))$ such that the closed algebra generated by $(C(n))_{n \in \mathbb{Z}}$ is isomorphic to \mathbb{C}^k and there exists a finite family p_1, \ldots, p_k of pairwise orthogonal idempotents of A and a finite family c_1, \ldots, c_k of distinct elements of $\Gamma(a, m)$ such that

$$C(n) = \sum_{j=1}^{k} \cos(c_j n) p_j, \quad (n \in \mathbb{Z}).$$

This last result does not extend to cosine families over the general abelian group. Let $G = (\mathbb{Z}/3\mathbb{Z})^{\mathbb{N}}$; we give an easy example of a *G*-cosine family $(C(g))_{g \in G}$ with values in l^{∞} such that the closed subalgebra generated by $(C(g))_{g \in G}$ equals l^{∞} , while $\sup_{g \in G} ||1_{l^{\infty}} - C(g)|| = \frac{3}{2}$.

The author warmly thanks Christine Bachoc and Pierre Parent for providing the arguments from number theory which lead to a simple proof of the fact that $k(a) < 8/3\sqrt{3}$ if $a \notin \pi \mathbb{Q}$.

2. Distance between bounded scalar cosine sequences

We introduce the following notation, to be used throughout the paper.

DEFINITION 2.1. Let $a \in \pi \mathbb{Q}$. The order of *a*, denoted by $\operatorname{ord}(a)$, is the smallest integer $u \ge 1$ such that $e^{iua} = 1$.

Recall that a subset *S* of the unit circle \mathbb{T} is said to be independent if $z_1^{n_1} \cdots z_k^{n^k} \neq 1$ for every finite family (z_1, \ldots, z_k) of distinct elements of *S* and every family $(n_1, \ldots, n_k) \in \mathbb{Z}^k$ such that $n_j \neq 0$ for $1 \leq j \leq k$. It follows from a classical theorem of Kronecker (see, for example, [13], page 21) that if $S = \{z_1, \ldots, z_k\}$ is a finite independent set, then the sequence $(z_1^n, \ldots, z_k^n)_{n\geq 1}$ is dense in \mathbb{T}^k . We deduce from Kronecker's theorem the following observation.

PROPOSITION 2.2. Let $a \in [0, \pi]$. For $m \ge 0$, set $\Gamma(a, m) = \left\{ b \in [0, \pi] : \sup_{n \ge 1} |\cos(na) - \cos(nb)| \le m \right\}.$

Then $\Gamma(a, m)$ is finite for every m < 2.

PROOF. Fix $m \in [1, 2)$. Notice that if $b \in \mathbb{R}$ and if the set $\{e^{ia}, e^{ib}\}$ is independent, then it follows from Kronecker's theorem that the sequence $((e^{ina}, e^{inb}))_{n\geq 1}$ is dense in \mathbb{T}^2 , and so $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$ and $b \notin \Gamma(a, m)$.

Suppose that $(a/\pi) \in \mathbb{Q}$, and denote by *u* the order of *a*, so that $e^{iua} = 1$. If $(b/\pi) \notin \mathbb{Q}$, then the sequence $(e^{iunb})_{n\geq 1}$ is dense in \mathbb{T} , and so

$$2 \ge \sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge \sup_{n \ge 1} |1 - \cos(nub)| = 2,$$

which shows that $b \notin \Gamma(a, m)$.

The same argument shows that if $(a/\pi) \notin \mathbb{Q}$ and if $(b/\pi) \in \mathbb{Q}$, then $b \notin \Gamma(a, m)$. So we are left with two situations:

(1) $a/\pi \notin Q$, and there exists $p \neq 0$, $q \neq 0$ and $k \in \mathbb{Z}$ such that $bq = ap + 2k\pi$; and (2) $a/\pi \in \mathbb{Q}$ and $b/\pi \in \mathbb{Q}$.

We consider the first case. Replacing $b \in [0, \pi]$ by $-b \in [-\pi, 0]$, if necessary, we can assume that $p \ge 1$ and $q \ge 1$, and we can assume that

$$qb = pa + \frac{2k\pi}{r},$$

with greatest common divisor $(gcd)(p,q) = 1, r \ge 1, gcd(r,k) = 1$ if $k \ne 0$.

Since $(ra/\pi) \notin \mathbb{Q}$,

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)|$$

$$\geq \sup_{n \ge 1} |\cos(nrqa) - \cos(nrqb)|$$

$$= \sup_{n \ge 1} |\cos(nrqa) - \cos(nrpa)| = \sup_{t \in \mathbb{R}} |\cos(qt) - \cos(pt)|.$$

Since gcd(p, q) = 1, $sup_{t \in \mathbb{R}} |cos(qt) - cos(pt)| = 2$ if p or q is even, so we can assume that p and q are odd. Set s = (q - 1)/2.

It follows from Bezout's identity that there exist $n \ge 1$ such that $e^{2inp\pi/q} = e^{2is\pi/q}$, and setting $t = 2n\pi/q$,

$$\sup_{t\in\mathbb{R}}|\cos(qt)-\cos(pt)|\geq 1-\cos\left(\frac{2s\pi}{2s+1}\right)=1+\cos\left(\frac{\pi}{q}\right).$$

The same argument shows that

$$\sup_{t \in \mathbb{R}} |\cos(qt) - \cos(pt)| \ge 1 + \cos\left(\frac{\pi}{p}\right).$$

Hence

$$p \le \frac{\pi}{\arccos(m-1)}, \quad q \le \frac{\pi}{\arccos(m-1)}.$$

Also

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge \sup_{n \ge 1} |\cos(nqa) - \cos(nqb)|$$
$$= \sup_{n \ge 1} \left| \cos(nqa) - \cos\left(npa + \frac{2nk\pi}{r}\right) \right|.$$

Assume that $k \neq 0$. Since gcd(k, r) = 1, there exists $u \ge 1$ such that $2uk\pi/r \in (2\pi/r) + 2\pi\mathbb{Z}$. This gives

$$\sup_{n\geq 1} |\cos(na) - \cos(nb)| \ge \sup_{n\geq 1} \left| \cos(nuqa) - \cos\left(npua + \frac{2n\pi}{r}\right) \right|.$$

If *r* is even, set $r_1 = r/2$.

$$\sup_{n\geq 1} \left| \cos(nuqa) - \cos\left(npua + \frac{2n\pi}{r}\right) \right|$$

$$\geq \sup_{n\geq 0} \left| \cos((2n+1)r_1uqa) - \cos((2n+1)r_1upa) + \pi \right|.$$

. .

Since $2r_1ua \notin \pi \mathbb{Q}$, there exists a sequence $(n_j)_{j\geq 1}$ of integers such that

$$\lim_{j\to+\infty}|e^{i2n_jr_1ua+ir_1ua}|=1,$$

so that

$$\lim_{j \to +\infty} |\cos((2n_j + 1)r_1 u q a) - \cos((2n_j + 1)r_1 u p a) + \pi| = 2,$$

and, in this situation, $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$.

So we can assume that \overline{r} is odd. Set $r_1 = (r - 1)/2$. The same calculation as above gives

$$\begin{split} \sup_{n \ge 1} \left| \cos(nuqa) - \cos\left(npua + \frac{2n\pi}{r}\right) \right| \\ \ge \sup_{n \ge 1} \left| \cos((nr+r_1)uqa) - \cos\left((nr+r_1)upa + \frac{2(nr+r_1)}{r}\pi\right) \right| \\ \ge 1 + \cos\left(\frac{2r_1}{r}\pi - \pi\right) = 1 + \cos\left(\frac{\pi}{r}\right). \end{split}$$

Hence $r \leq \pi / \arccos(m - 1)$.

This gives

$$|k| \le \frac{r}{2\pi} |qb - pa| \le \left(\frac{\pi}{\arccos(m-1)}\right)^2.$$

We see that $\Gamma(a, m)$ is finite if $a/\pi \notin Q$ and that

$$\operatorname{card}(\Gamma(a,m)) \le \left(\frac{2\pi}{\arccos(m-1)}\right)^5.$$

Now consider the case where $a/\pi \in \mathbb{Q}$, $b/\pi \in \mathbb{Q}$. We first discuss the case where $a = 0, b \neq 0$. We know that $b = p\pi/q$, where $1 \le p \le q$, gcd(p,q) = 1.

If p = q = 1, then $b = \pi$ and $\sup_{n \ge 1} |1 - \cos(n\pi)| = 2$. So we may assume that $p \le q - 1$. If p is odd,

$$\sup_{n \ge 1} |1 - \cos(nb)| \ge |1 - \cos(qb)| = 1 - \cos(p\pi) = 2.$$

So we can assume that p is even, so that q is odd. Set r = (q-1)/2. There exists $n_0 \ge 1$ and $r \in \mathbb{Z}$ such that $n_0p - r \in q\mathbb{Z}$ and

$$\sup_{n \in \mathbb{Z}} |1 - \cos(nb)| \ge |1 - \cos(2n_0b)| = \left|1 - \cos\left(\frac{2r\pi}{2r+1}\right)\right| = 1 + \cos\left(\frac{\pi}{q}\right).$$

Again $q \le \pi/\arccos(m-1)$ and $\operatorname{card}(\Gamma(0,m)) \le (\pi/\arccos(m-1))^2$. Now assume that $a \ne 0$ and let $u \ge 2$ be the order of a.

$$\sup_{n\geq 1} |1 - \cos(nub)| = \sup_{n\geq 1} |\cos(nua) - \cos(nub)| \le m,$$

and so there exists $c \in \Gamma(0, m)$ such that $\cos(nc) = \cos(nub)$ for $n \ge 1$. In particular, $\cos(c) = \cos(ub)$, and $b = \pm (c/u) + (2k\pi/u)$, where $k \in \mathbb{Z}$.

$$\operatorname{card}(\Gamma(a,m)) \le 2u \operatorname{card}(\Gamma(0,m)) \le 2u \left(\frac{\pi}{\operatorname{arccos}(m-1)}\right)^2.$$

We do not know whether it is possible to obtain a majorant for $card(\Gamma(a, m))$ which depends only on *m* when $a \in \pi\mathbb{Q}$.

Remark. It follows immediately from Proposition 2.2 that, for every $a \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $k(a) = \sup_{n \ge 1} |\cos(na) - \cos(nb)|$.

THEOREM 2.3. Let $a \in \mathbb{R}$, let m < 2 and let $(C(n))_{n \in \mathbb{Z}}$ be a cosine sequence in a Banach algebra A such that $\sup_{n \ge 1} ||C(n) - \cos(na)|| \le m$. Then there exists $k \le \operatorname{card}(\Gamma(a, m))$ such that the closed algebra generated by $(C(n))_{n \in \mathbb{Z}}$ is isomorphic to \mathbb{C}^k , and there exists a finite family p_1, \ldots, p_k of pairwise orthogonal idempotents of A and a finite family b_1, \ldots, b_k of distinct elements of $\Gamma(a, m)$ such that

$$C(n) = \sum_{j=1}^{k} \cos(nb_j) p_j, \quad (n \in \mathbb{Z}).$$

https://doi.org/10.1017/S1446788717000118 Published online by Cambridge University Press

PROOF. Since $c_n = P_n(c_1)$, where P_n denotes the *n*th Tchebishev polynomial, A_1 is the closed unital subalgebra generated by c_1 and the map $\chi \to \chi(c_1)$ is a bijection from $\widehat{A_1}$ onto spec_{A1}(c_1). Now let $\chi \in \widehat{A_1}$. The sequence $(\chi(c_n))_{n \ge 1}$ is a scalar cosine sequence and

$$\sup_{n\geq 1} |\cos(na) - \chi(c_n)| < 2.$$

It follows from Proposition 2.2 that $\operatorname{spec}_{A_1}(c_1) := \{\lambda = \chi(c_1) : \chi \in \widehat{A_1}\}\$ is finite. Hence $\widehat{A_1}$ is finite. Let χ_1, \ldots, χ_m be the elements of $\widehat{A_1}$. It follows from the standard one-variable holomorphic functional calculus (see, for example, [8]) that there exists, for every $j \le m$, an idempotent p_j of A_1 such that $\chi_j(p_j) = 1$ and $\chi_k(p_j) = 0$ for $k \ne j$. Hence $p_j p_k = 0$ for $j \ne k$, and $\sum_{j=1}^m p_j$ is the unit element of A_1 .

Let $x \in A_1$. Then $(p_jc_n)_{n \in \mathbb{Z}}$ is a cosine sequence in the commutative unital Banach algebra p_jA_1 , and spec $_{p_jA_1}(p_jc_1) = \{\chi_j(c_1)\}.$

Since $\sup_{n\geq 1} \|p_j \cos(na) - p_j c_n\| \le 2\|p_j\|$, the sequence $(p_j c_n)_{n\geq 1}$ is bounded, and it follows from Theorem 2.3 that $(p_j c_n)_{n\geq 1}$ is a scalar sequence and there exists $\beta_j \in [0, \pi]$ such that $p_j c_n = \chi_j(c_n)p_j = \cos(n\beta_j)p_j$ for $n \in \mathbb{Z}$.

Hence $c_n = \sum_{j=1}^m \chi_j(c_n) p_j = \sum_{j=1}^m \cos(n\beta_j) p_j$ for $n \ge 1$. Since A_1 is the closed unital subalgebra of A generated by $c_1, x = \sum_{j=1}^m \chi_j(x) p_j$ for every $x \in A_1$, which shows that A_1 is isomorphic to \mathbb{C}^m .

COROLLARY 2.4. Let $a \ge 0 \in \mathbb{R}$ and let k(a) be the largest positive real number m such that $\Gamma(a, m) = \{a\}$ for every m < k(a). If $(C(n))_{n \in \mathbb{Z}}$ is a cosine sequence in a Banach algebra A such that $\sup_{n\ge 1} ||C(n) - \cos(na)1_A|| < k(a)$, then $C(n) = \cos(na)1_A$ for $n \in \mathbb{Z}$.

Theorem 2.3 does not extend to cosine families over general abelian groups, as shown by the following easy result.

PROPOSITION 2.5. Let $G := (\mathbb{Z}/3\mathbb{Z})^{\mathbb{N}}$. Then there exists a *G*-cosine family $(C(g))_{g \in G}$ with values in l^{∞} which satisfies the following two conditions.

- (i) $\sup_{g \in G} ||1_{l^{\infty}} C(g)|| = \frac{3}{2}.$
- (ii) The algebra A generated by the family $(C(g))_{g \in G}$ is dense in l^{∞} .

PROOF. Elements g of G can be written in the form $g = (\overline{g}_m)_{m \ge 1}$, where $g_m \in \{0, 1, 2\}$. Set

$$C(g) := \left(\cos\left(\frac{2g_m\pi}{3}\right)\right)_{m \ge 1}$$

Then $(C(g))_{g\in G}$ is a *G*-cosine family with values in l^{∞} which obviously satisfies (i) since $\cos(2\pi/3) = \cos(4\pi/3) = -\frac{1}{2}$.

Now let $\phi = (\phi_m)_{m \in \mathbb{Z}}$ be an idempotent of l^{∞} and let $S := \{m \ge 1 \mid \phi_m = 1\}$. Set $g_m = 1$ if $m \in S$, $g_m = 0$ if $m \ge 1$, $m \notin S$ and set $g = (\overline{g}_m)_{m \ge 1}$.

$$C(0_G) - C(g) = 1_{l^{\infty}} - C(g) = \frac{3}{2}\phi,$$

and so $\phi \in A$. We can identify l^{∞} to $\mathscr{C}(\beta \mathbb{N})$, the algebra of continuous functions on the Stone–Cěch compactification of \mathbb{N} , and βN is an extremely disconnected compact set,

which means that the closure of every open set is open (see, for example, [2], Ch. 6, Section 6). Since the characteristic function of every open and closed subset of $\beta\mathbb{N}$ is an idempotent of l^{∞} , the idempotents of l^{∞} separate points of $\beta\mathbb{N}$, and it follows from the Stone–Weierstrass theorem that A is dense in l^{∞} , which proves (ii).

3. The values of the constant k(a)

It was shown in [17] that $k(0) = \frac{3}{2}$. We also have the following result.

PROPOSITION 3.1. $k(a) = 8/3\sqrt{3}$ if a/π is irrational and $k(a) < 8/3\sqrt{3}$ if a/π is rational. **PROOF.** Assume that $a/\pi \notin \mathbb{Q}$. Then $3a \notin \pm a + 2\pi\mathbb{Z}$ and

$$k(a) \le \sup_{n \ge 1} |\cos(na) - \cos(3na)| = \sup_{x \in \mathbb{R}} |\cos(x) - \cos(3x)| = \frac{8}{3\sqrt{3}}.$$

We saw above that if b/π in \mathbb{Q} , then $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$, and we also know that $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$ if $pa - qb \notin 2\pi\mathbb{Z}$ for $(p, q) \neq (0, 0)$. So if $\sup_{n\geq 1} |\cos(na) - \cos(nb)| < 2$, there exists $p \in \mathbb{Z} \setminus \{0\}$, $q \in \mathbb{Z} \setminus \{0\}$ and $r \in \mathbb{Z}$ such that $pa - qb = 2r\pi$.

If $p \neq \pm q$, then it follows from [9, Lemma 3.5] that

$$\begin{aligned} \sup_{n\geq 1} |\cos(na) - \cos(nb)| &\geq \sup_{n\geq 1} |\cos(nqa) - \cos(nqb)| \\ &= \sup_{n\geq 1} |\cos(qna) - \cos(pna)| \\ &= \sup_{x\in\mathbb{R}} |\cos(qx) - \cos(px)| \\ &= \sup_{x\in\mathbb{R}} \left| \cos\left(\frac{p}{q}x\right) - \cos(x) \right| \geq \frac{8}{3\sqrt{3}} \end{aligned}$$

We are left with the case where $b = \pm a + (2s\pi/r)$, where $r \in \mathbb{Z} \setminus \{-1, 0, 1\}$, and we can restrict attention to the case where $b = a + (2s\pi/r)$, where $r \ge 2$, $1 \le s \le r - 1$, gcd(r, s) = 1. It follows from Bezout's identity that there exists, for every $p \ge 1$, some positive integer *u* such that $ub - ua - (2p\pi/r) \in 2\pi\mathbb{Z}$. If *r* is even, set p = r/2. Since the set $\{e^{i(2n+1)a}\}_{n\ge 1}$ is dense in the unit circle,

$$\sup_{n \ge 1} |\cos(nb) - \cos(na)| \ge \sup_{n \ge 1} |\cos((2n+1)ub) - \cos((2n+1)ua)|$$
$$= 2 \sup_{n \ge 1} |\cos((2n+1)ua)| = 2.$$

Now assume that r is odd, and set p = (r - 1)/2.

$$\begin{aligned} \sup_{n \ge 1} |\cos(nb) - \cos(na)| \\ &\ge \sup_{n \ge 1} |\cos((2n+1)ub) - \cos((2n+1)ua)| \\ &\ge \sup_{n \ge 1} \left| \cos\left((2nr+1)ua + (2nr+1)\left(\pi - \frac{\pi}{r}\right)\right) - \cos((2nr+1)ua) \right| \\ &\ge \sup_{x \in \mathbb{R}} \left| \cos(x) + \cos\left(x - \frac{\pi}{r}\right) \right| \ge 2\cos\left(\frac{\pi}{2r}\right) \ge \sqrt{3} > \frac{8}{3\sqrt{3}}. \end{aligned}$$

we will see later that this is also true if the order of a equals two or four.

Otherwise,

$$k(a) \le \sup_{n \ge 1} |\cos(na) - \cos(3na)| = \max_{1 \le n \le u} |\cos(na) - \cos(3na)|.$$

We know that $|\cos(nx) - \cos(3nx)| < 8/(\pi\sqrt{3})$ if $x \notin \pm \arccos(1/\sqrt{3}) + \pi\mathbb{Z}$. If $na \in \pm \arccos(1/\sqrt{3}) + \pi\mathbb{Z}$ for some $n \ge 1$, then $\arccos(1/\sqrt{3})/\pi$ would be rational and $\alpha := 1/\sqrt{3} + (\sqrt{2}i)/\sqrt{3}$ would be a root of unity. So $\beta = \alpha^2 = -\frac{1}{3} + (2\sqrt{2}i)/3$ would have the form $\beta = e^{2ik\pi/n}$ for some $n \le 1$ and some positive integer $k \ge n$ such that $\gcd(k, n) = 1$.

Let $\mathbb{Q}(\beta)$ be the smallest subfield of \mathbb{C} containing $\mathbb{Q} \cup \beta$. Since $3\beta^2 + 2\beta + 3 = 0$, the degree of $\mathbb{Q}(\beta)$ over \mathbb{Q} is equal to two. On the other hand, the Galois group $\operatorname{Gal}(\mathbb{Q}(\beta)/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$, the group of invertible elements of $\mathbb{Z}/n\mathbb{Z}$, and (see [20, Theorem 2.5])

$$H(n) = \deg(\mathbb{Q}(\beta)/\mathbb{Q}) = 2,$$

where $H(n) = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^{\times})$ denotes the number of integers $p \in \{1, \ldots, n\}$ such that $\operatorname{gcd}(p, n) = 1$.

Let P(n) be the set of prime divisors of n. It is well known that, writing $n = \prod_{p \in P(n)} p^{\alpha_p}$ (see, for example, [20, Exercise 1.1]),

$$H(n) = \prod_{p \in P(n)} p^{\alpha_p - 1} (p - 1).$$

It follows immediately from this identity that the only possibilities for getting H(n) = 2 are n = 3, n = 4 and n = 6. Since $\beta^3 \neq 1$, $\beta^4 \neq 1$ and $\beta^6 \neq 1$, we see that β/π is irrational, and so $k(a) < 8/3\sqrt{3}$ if a/π is rational.

We know that if a/π is rational and if b/π is irrational, then $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$. We discuss now the case where a/π and b/π are both rational, with $b \notin \pm a + 2\pi\mathbb{Z}$.

LEMMA 3.2. Let $a, b \in (0, \pi]$.

(i) If
$$7a \le b \le \pi/2$$
 or if $\pi/2 \le b \le 5\pi/6$, with $|b - (2\pi/3)| \ge 7a$, then
 $\sup |\cos(na) - \cos(nb)| > 1.55$.

n > 1

(ii) If $(5\pi/6) \le b \le \pi$ and if $b \ge 4a$, then

$$\cos(a) - \cos(b) > 1.57.$$

Proof.

(i) Assume that $7a \le b \le \pi/2$, let p be the largest integer such that $pb < 3\pi/4$ and set q = p + 1. We know that $3\pi/4 \le qb \le 5\pi/4$, $0 \le qa \le 5\pi/28$, so

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge \cos(qa) - \cos(qb) \ge \cos\left(\frac{5\pi}{28}\right) + \cos\left(\frac{\pi}{4}\right) > 1.55.$$

Now assume that $\pi/2 \le b \le 5\pi/6$, with $|b - 2\pi/3| \ge 7a$, and set $c = |3b - 2\pi|$. Since $|b - (2\pi/3)| \le \pi/6$, $21a \le c \le \pi/2$, so

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)|$$

$$\ge \sup_{n \ge 1} |\cos(3na) - \cos(3nb)|$$

$$= \sup_{n \ge 1} |\cos(3na) - \cos(nc)| \ge |\cos(3a) - \cos(c)| > 1.55.$$

(ii) If $5\pi/6 \le b \le \pi$ and if $b \ge 4a$, then $0 < a \le \pi/4$ and

$$\cos(a) - \cos(b) \ge \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{6}\right) > 1.57.$$

LEMMA 3.3. Let p, q be two positive integers such that p < q.

(i) If $q \neq 3p$, then there exists $u_{p,q} \ge 1$ such that, if $\operatorname{ord}(a) \ge u_{p,q}$,

$$\sup_{n\geq 1} |\cos(npa) - \cos(nqa)| > \frac{8}{\sqrt{3}}$$

(ii) If q = 3p, then, for, every $m < 8/3\sqrt{3}$, there exists $u_p(m) \ge 1$ such that, if $\operatorname{ord}(a) \ge u_p(m)$,

$$\sup_{n\geq 1} |\cos(npa) - \cos(3npa)| > m.$$

PROOF. Set $\lambda = \sup_{x \in \mathbb{R}} |\cos(px) - \cos(qx)| = \sup_{x \ge 0} |\cos(px) - \cos(qx)|$. An elementary verification shows that $\lambda > 8/3\sqrt{3}$ if $q \ne 3p$ and $\lambda = 8/3\sqrt{3}$ if q = 3p (see, for example, [9]). Now let $\mu < \lambda$, and let $\eta < \delta$ be two real numbers such that $|\cos(px) - \cos(qx)| > \mu$ for $\eta \le x \le \delta$. Since $\{e^{ian}\}_{n \ge 1} = \{e^{2ni\pi/u}\}_{1 \le n \le u}$, we see that $\sup_{n \ge 1} |\cos(npa) - \cos(nqa)| > \mu$ if $2\pi/u < \delta - \eta$, and the lemma follows. \Box

LEMMA 3.4. Assume that a/π and b/π are rational, let $u \ge 1$ be the order of a and let v be the order of b.

- (i) If $u \neq v$, $u \neq 3v$, $v \neq 3u$, then $\sup_{n \ge 1} |\cos(na) \cos(nb)| \ge 1 + \cos(\pi/5) > 1.8 > 8/3\sqrt{3}$.
- (ii) If u = v and if $b \notin \pm a + 2\pi\mathbb{Z}$, then there exists $w \in \mathbb{Z}$ such that $2 \le w \le u/2$ and gcd(u, w) = 1 satisfying

$$\sup_{n\geq 1} |\cos(na) - \cos(nb)| = \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2nw\pi}{u}\right) \right|.$$
(3.1)

Conversely, if $a \in \pi \mathbb{Q}$ has order u, then, for every integer w such that gcd(w, u) = 1, there exists $b \in \pi \mathbb{Q}$ of order u satisfying (3.1).

(iii) If v = 3u, then there exists an integer w such that $1 \le w \le u/2$ and gcd(u, w) = 1 satisfying

$$\sup_{n\geq 1} |\cos(na) - \cos(nb)| = \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{3u}\right) - \cos\left(\frac{2nw\pi}{u}\right) \right|.$$
(3.2)

Conversely, if $a \in \pi \mathbb{Q}$ has order u, then, for every integer w such that gcd(w, u) = 1, there exists $b \in \pi \mathbb{Q}$ of order 3u satisfying (3.2).

(iv) If u = 3v, then there exists an integer w such that $1 \le w \le u/6$ and gcd(u/3, w) = 1 satisfying

$$\sup_{n\geq 1} |\cos(na) - \cos(nb)| = \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{6nw\pi}{u}\right) \right|.$$
(3.3)

Conversely, if the order u of $a \in \pi \mathbb{Q}$ is divisible by three, then, for every integer w such that gcd(u/3, w) = 1, there exists $b \in \pi \mathbb{Q}$ of order u/3 satisfying (3.3).

Proof.

(i) Assume that $u \neq v$, say, u < v, and let $w \neq 1$ be the order of *ub*, which is a divisor of *v*. We know that $ub = 2\pi\alpha/w$, with $gcd(\alpha, w) = 1$, and there exists $\gamma \ge 1$ such that $\alpha\gamma - 1 \in w\mathbb{Z}$.

$$\sup_{n\geq 1} |\cos(na) - \cos(nb)| \ge \sup_{n\geq 1} |\cos(nu\gamma a) - \cos(nu\gamma b)| = \sup_{1\leq n\leq w} 1 - \cos\left(\frac{2n\pi}{w}\right).$$

If w is even, then $\sup_{n\geq 1} |\cos(na) - \cos(nb)| = 2$. If w is odd, set s = (w - 1)/2.

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge 1 - \cos\left(\frac{2s\pi}{w}\right) = 1 + \cos\left(\frac{\pi}{w}\right)$$

If $w \ge 5$,

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge 1 + \cos\left(\frac{\pi}{5}\right) > 1.8 > \frac{8}{3\sqrt{3}}.$$

If w = 3, let d = gcd(u, v) and set r = (u/d). Then w = 3 = (v/d) > r. So either r = 1 or r = 2.

If r = 2, u = 2d, v = 3d, $a = (2p\pi/2d) = (p\pi/d)$ with p odd, $b = (2q\pi/3d)$ with gcd(q, 3d) = 1, and so

$$2 \ge \sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge |\cos(3da) - \cos(3db)|$$
$$\ge |\cos(3p\pi) - \cos(2q\pi)| = 2.$$

If r = 1, then u = d and v = 3d = 3u.

We thus see that if v > u and $v \neq 3u$, then $\sup_{n \ge 1} |\cos(na) - \cos(nb)| \ge 1 + \cos(\pi/5) > 1.8 > 3/\sqrt{3}$, which proves (i).

(ii) Assume that u = v and that $b \notin \pm a + 2\pi\mathbb{Z}$. There exists $\alpha, \beta \in \{1, \dots, u-1\}$, with $\alpha \neq \beta$, $\alpha \neq u - \beta$ such that $a \in \pm(2\alpha\pi/u) + 2\pi\mathbb{Z}$ and $b \in \pm(2\beta\pi/u) + 2\pi\mathbb{Z}$, and $gcd(\alpha, u) = gcd(\beta, u) = 1$. It follows from Bezout's identity that there exists $\gamma \in \mathbb{Z}$ such that $\alpha\gamma - 1 \in u\mathbb{Z}$. If $\beta\gamma \pm 1 \in u\mathbb{Z}$, then we would have $\alpha\beta\gamma \pm \alpha \in \alpha u\mathbb{Z} \subset u\mathbb{Z}$, and $\beta \pm \alpha \in u\mathbb{Z}$, which is impossible. Hence $\gamma\beta - w \in u\mathbb{Z}$ for some $w \in \{2, \dots, u-2\}$, gcd(w, u) = 1 since $gcd(\gamma, u) = gcd(\beta, u) = 1$, and

$$\begin{aligned} \sup_{n\geq 1} |\cos(na) - \cos(nb)| \\ &\geq \sup_{n\geq 1} |\cos(n\gamma a) - \cos(n\gamma b)| \\ &= \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2nw\pi}{u}\right) \right| \geq \sup_{n\geq 1} \left| \cos\left(\frac{2n\alpha\pi}{u}\right) - \cos\left(\frac{2n\alphaw\pi}{u}\right) \right| \\ &= \sup_{n\geq 1} \left| \cos\left(\frac{2n\alpha\pi}{u}\right) - \cos\left(\frac{2n\beta\pi}{u}\right) \right| = \sup_{n\geq 1} |\cos(na) - \cos(nb)|. \end{aligned}$$

By replacing w by u - w, if necessary, we can assume that $2 \le w \le u/2$.

Now let $w \in \mathbb{Z}$ such that gcd(u, w) = 1. We know that $a = 2\alpha \pi/u$, with $gcd(\alpha, u)$ = 1. The same argument as above shows that

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2nw\pi}{u}\right) \right| = \sup_{n\geq 1} \left| \cos(na) - \cos(nb) \right|,$$

with $b = 2w\alpha \pi/u$, which has order u.

(iii) Now assume that v = 3u. There exists $\alpha \in \{1, \dots, u-1\}$ and $\beta \in \{1, \dots, 3u-1\}$ such that $a \in \pm(2\alpha\pi/u) + 2\pi\mathbb{Z}$ and $b \in \pm(2\beta\pi/3u) + 2\pi\mathbb{Z}$, and $gcd(\alpha, u) = gcd(\beta, 3u) = 1$. Let $\gamma \in \mathbb{Z}$ such that $\beta \gamma - 1 \in 3u\mathbb{Z}$. Then $gcd(\gamma, 3u) = 1$ and a fortiori $gcd(\gamma, u) = 1$. There exists $w \in \mathbb{Z}$ such that $1 \le w \le u/2$ and $\alpha \gamma \in \pm w + u\mathbb{Z}$, and we see, as above, that

$$\sup_{n \ge 1} |\cos(na) - \cos(nb)|$$

$$= \sup_{n \ge 1} \left| \cos\left(\frac{2n\alpha\pi}{u}\right) - \cos\left(\frac{2n\beta\pi}{3u}\right) \right|$$

$$= \sup_{n \ge 1} \left| \cos\left(\frac{2n\alpha\gamma\pi}{u}\right) - \cos\left(\frac{2n\beta\gamma\pi}{3u}\right) \right| = \sup_{n \ge 1} \left| \cos\left(\frac{2nw\pi}{u}\right) - \cos\left(\frac{2n\pi}{3u}\right) \right|.$$

Conversely, let $a = 2\alpha \pi/u \in \pi \mathbb{Q}$ have order u, and let $w \in \mathbb{Z}$ be such that gcd(u, w) = 1. If α is not divisible by three, then $gcd(\alpha, 3u) = 1$. If α is divisible by three, then u is not divisible by three, and so $\alpha + u \in \alpha + u\mathbb{Z}$ is not divisible by three. So we can assume, without loss of generality, that α is not divisible by three, and there exists $\beta \ge 1$ such that $\alpha\beta - 1 \in 3u\pi\mathbb{Z}$. Similarly, we can assume, without loss of generality, that w is not divisible by three, and there exists $\gamma \ge 1$ such that $w\gamma - 1 \in 3u\pi\mathbb{Z}$. Set $b = (2\alpha\gamma\pi/3u)$. Then b has order 3u, and we see, as above, that

$$\begin{split} \sup_{n\geq 1} \left| \cos\left(\frac{2nw\pi}{u}\right) - \cos\left(\frac{2n\pi}{3u}\right) \right| \\ &\geq \sup_{n\geq 1} \left| \cos\left(\frac{2n\alpha\gamma w\pi}{u}\right) - \cos\left(\frac{2n\alpha\gamma\pi}{3u}\right) \right| \\ &= \sup_{n\geq 1} \left| \cos(na) - \cos(nb) \right| \geq \sup_{n\geq 1} \left| \cos\left(\frac{2n\alpha\gamma w\beta w\pi}{u}\right) - \cos\left(\frac{2n\alpha\gamma\beta w\pi}{3u}\right) \right| \\ &= \sup_{n\geq 1} \left| \cos\left(\frac{2nw\pi}{u}\right) - \cos\left(\frac{2n\pi}{3u}\right) \right|, \end{split}$$

which concludes the proof of (iii).

http

(iv) Clearly, the first assertion of (iv) is a reformulation of the first assertion of (iii). Now assume that the order u of $a \in \pi \mathbb{Q}$ is divisible by three, set v = u/3, write $a = 2\alpha\pi/u$ and let $w \in \mathbb{Z}$ such that gcd(w, v) = 1. We see, as above, that we can assume, without loss of generality, that gcd(u, w) = 1.

Since $gcd(\alpha, u) = 1$, a fortiori $gcd(\alpha, v) = 1$, so that $gcd(\alpha w, v) = 1$, so that b := $6\alpha w\pi/u$ has order v and we see, as above, that a, b, u and w satisfy (3.3). П

In order to use Lemma 3.4, we introduce the following notions.

DEFINITION 3.5. Let $u \ge 2$, denote by $\Delta(u)$ the set of all integers s satisfying $1 \le s \le u/2$, gcd(u, s) = 1 and let $\Delta_1(u) = \Delta(u) \setminus \{1\}$. We set

$$\sigma(u) = \inf_{w \in \Delta(u)} \left[\sup_{n \ge 1} \left| \cos\left(\frac{2\pi}{3u}\right) - \cos\left(\frac{2w\pi}{u}\right) \right| \right],$$

$$\theta(u) = \inf_{w \in \Delta_1(u)} \left[\sup_{n \ge 1} \left| \cos\left(\frac{2\pi}{u}\right) - \cos\left(\frac{2w\pi}{u}\right) \right| \right],$$

with the convention $\theta(u) = 2$ if $\Delta_1(u) = \emptyset$.

Notice that $\Delta_1(u) = \emptyset$ if u = 2, 3, 4 or 6 and that $\Delta_1(u) \neq \emptyset$ otherwise, since, as we observed above, $H(n) = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^{\times}) \ge 3$ if $n \notin \{1, 2, 3, 4, 6\}$.

We obtain the following corollary, which shows, in particular, that the value of k(a)depends only on the order of a.

COROLLARY 3.6. Let $a \in \pi \mathbb{Q}$ and let $u \ge 1$ be the order of a.

- If u is not divisible by three, then $k(a) = \inf(\sigma(u), \theta(u))$. (i)
- (ii) If u is divisible by three, then $k(a) = \inf(\sigma(u/3), \sigma(u), \theta(u))$.

PROOF. Set:

[13]

- $\Lambda_1(a) = \{ b \in \pi \mathbb{Q} | b \notin \pm a + 2\pi \mathbb{Z}, \operatorname{ord}(b) = \operatorname{ord}(a) \};$
- $\Lambda_2(a) = \{b \in \pi \mathbb{Q} | \operatorname{ord}(b) = \operatorname{3ord}(a)\};\$ ٠
- $\Lambda_3(a) = \{b \in \pi \mathbb{Q} | 3 \operatorname{ord}(b) = \operatorname{ord}(a) \};$
- $\Lambda_4(a) = \{b \in \pi \mathbb{Q} | \operatorname{ord}(b) \neq \operatorname{ord}(a) \neq \operatorname{3ord}(b)\};\$

and, for $1 \le i \le 4$, set

$$\lambda_i(a) = \inf_{b \in \Lambda_i(a)} \sup_{n \ge 1} |\cos(na) - \cos(nb)|,$$

with the convention $\lambda_i(a) = 2$ if $\Lambda_i(a) = \emptyset$.

Since $b \notin \pm a + 2\pi\mathbb{Z}$ if $\operatorname{ord}(b) \neq \operatorname{ord}(a)$, $\lambda_2(a) \leq 8/3\sqrt{3}$, and it follows from Lemma 3.4(i) that

$$k(a) = \inf_{1 \le i \le 4} \lambda_i(a) = \inf_{1 \le i \le 3} \lambda_i(a)$$

and it follows from Lemma 3.4(ii), (iii) and (iv) that $\lambda_1(a) = \theta(u)$ if $\Delta_1(u) \neq \emptyset$, that $\lambda_2(a) = \sigma(u)$ and that $\lambda_3(a) = \sigma(u/3)$ if u is divisible by three.

We know that $\Delta_1(2) = \Delta_1(4) = \emptyset$, and so $k(a) = \sigma(2)$ if $\operatorname{ord}(a) = 2$ and $k(a) = \sigma(4)$ if $\operatorname{ord}(a) = 4$, and an immediate verification then shows that $k(a) = \frac{3}{2}$ if $\operatorname{ord}(a) \in \{2, 4\}$.

We have the following theorem.

THEOREM 3.7. Let $m < 8/3\sqrt{3}$. Then the set $\Omega(m) := \{a \in [0, \pi] : k(a) \le m\}$ is finite.

PROOF. It follows from Lemma 3.3 applied to $2\pi/u$ and $6\pi/u$ that there exists $u_0 \ge 1$ such that, for $u \ge u_0$,

(i)
$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| > m \quad \text{if } 2 \le w \le \inf\left(\frac{u}{2}, 6\right),$$

(ii)
$$\sup_{n\geq 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{2(3w+1)n\pi}{u}\right) \right| > m \quad \text{if } 0 \le w \le 6,$$

(iii)
$$\sup_{n\geq 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{2(3w+2)n\pi}{u}\right) \right| > m \quad \text{if } 0 \le w \le 6.$$

Let $u \ge u_0$, and let w be an integer such that $2 \le w \le u/2$. If $2w\pi/u \le \pi/2$ or if $2w\pi/u \ge 5\pi/6$, it follows from Lemma 3.2 and property (i) that

$$\sup_{n\geq 1}\left|\cos\left(\frac{2n\pi}{u}\right)-\cos\left(\frac{2wn\pi}{u}\right)\right|>m.$$

Now assume that $\pi/2 \le 2w\pi/u \le 5\pi/6$. If $|w - (u/3)| \ge 7$, it follows from Lemma 3.2 that

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| > 1.55 > m.$$

If |w - (u/3)| < 7, set r = |3w - u|. Then $0 \le r \le 20$ and

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| \geq \sup_{n\geq 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{2nr\pi}{u}\right) \right|.$$

If *u* is not divisible by three, then either r = 3s + 1 or r = 3s + 2, with $0 \le s \le 6$, and it follows from (ii) and (iii) that

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| > m.$$

If *u* is divisible by three then *r* is also divisible by three. Set v = u/3 and s = r/3. Then $0 \le s \le 6$ and

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| \ge \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{v}\right) - \cos\left(\frac{2ns\pi}{v}\right) \right|.$$

If $s \in \{2, 3, 4, 5, 6\}$, it follows from (i) that, if $u \ge 3u_0$,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{v}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| > m.$$

https://doi.org/10.1017/S1446788717000118 Published online by Cambridge University Press

[14]

Now assume that s = 0. If $u \ge 15$, then $v \ge 5$ and

$$\sup_{n\geq 1} \left|\cos\left(\frac{2n\pi}{\nu}\right) - \cos\left(\frac{2sn\pi}{u}\right)\right| = \sup_{n\geq 1} \left|\cos\left(\frac{2n\pi}{\nu}\right) - 1\right| \ge 1 + \cos\left(\frac{\pi}{5}\right) > 1.8 > m.$$

Now assume that s = 1. With $\epsilon = \pm 1$,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right|$$
$$= \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{3v}\right) - \cos\left(\frac{2n\pi}{3v} + \frac{2n\epsilon\pi}{3}\right) \right|$$
$$\geq \sup_{n\geq 1} \left| \cos\left(\frac{2(3n+1)\pi}{3v}\right) - \cos\left(\frac{2(3n+1)\pi}{3v} + \frac{2\epsilon\pi}{3}\right) \right|$$
$$= \sqrt{3} \left| \sin\left(\frac{2n\pi}{v} + \frac{2\pi}{3v} + \frac{\epsilon\pi}{3}\right) \right|.$$

There exists $p \ge 1$ and $q \in \mathbb{Z}$ such that $(\pi/2) - (\pi/v) \le (2p\pi/v) + (2\pi/3v) + (\epsilon\pi/3) + 2q\pi \le (\pi/2) + (\pi/v)$ and we obtain, for $u \ge 21$, $w = v \pm 1$,

$$\sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| \ge \sqrt{3}\cos\left(\frac{\pi}{v}\right) \ge \sqrt{3}\cos\left(\frac{\pi}{7}\right) \ge 1.56 > m$$

We thus see that if $u \ge u_0$ is not divisible by three or if $u \ge \max(21, 3u_0)$ is divisible by three, for $2 \le w \le (u/2)$,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2wn\pi}{u}\right) \right| \geq m,$$

so that $k(2\pi/u) > m$.

It follows from Corollary 3.6 that k(a) depends only on the order u of a. Hence k(a) > m if $u \ge \max(21, 3u_0)$, which shows that $\Omega(m)$ is finite.

We now want to identify the real numbers *a* for which $k(a) \le 1.5$.

If $a \in \pi \mathbb{Q}$ has order one, two or four, then $\sup_{n \ge 1} |\cos(an) - \cos(3an)| = 0$. We also know the following elementary facts.

LEMMA 3.8. Let $a \in \pi \mathbb{Q}$, and let $u \notin \{1, 2, 4\}$ be the order of a.

(1) If $u \notin \{3, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 22, 24, 30\}$, then

$$\sup_{n \ge 1} |\cos(an) - \cos(3an)| > 1.5.$$

(2) If $u \in \{3, 6, 9, 12, 15, 18, 24, 30\}$, then

$$\sup_{n \ge 1} |\cos(an) - \cos(3an)| = 1.5.$$

(3) If $u \in \{5, 10\}$, then

$$\sup_{n\geq 1} |\cos(an) - \cos(3an)| = \frac{\sqrt{5}}{2}.$$

<u>_</u>

(4) If $u \in \{8, 16\}$, then

 $\sup_{n\geq 1} |\cos(an) - \cos(3an)| = \sqrt{2}.$

(5) If $u \in \{11, 22\}$, then

$$\sup_{n \ge 1} |\cos(an) - \cos(3an)| = -\cos\left(\frac{8\pi}{11}\right) + \cos\left(\frac{24\pi}{11}\right)$$
$$= \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) \approx 1.4961.$$

PROOF. We know that $\{e^{ian}\}_{n\geq 1} = \{e^{2in\pi/u}\}_{1\leq n\leq u}$, and so

$$\sup_{n \ge 1} |\cos(an) - \cos(3an)| = \sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{6n\pi}{u}\right) \right|$$
$$= \sup_{1 \le n \le u} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{6n\pi}{u}\right) \right|$$

and the value of $\sup_{n\geq 1} |\cos(an) - \cos(3an)|$ depends only on the order *u* of *a*.

The function $x \to \cos(x) - \cos(3x)$ is increasing on $[0, \arccos(1/\sqrt{3})]$ and decreasing on $[\arccos(1/\sqrt{3}), -\arccos(1/\sqrt{3})]$, and $0.275\pi < \arccos(1/\sqrt{3}) < 0.333\pi$. Since $\cos(x) - \cos(3x) > 1.5$ if $x = 0.275\pi$ or if $x = 0.333\pi$, there exists a closed interval *I* of length 0.058π on which $\cos(x) - \cos(3x) > 1.5$. So, if $u \ge 35 > \frac{2}{0.058}$, there exists $n \ge 1$ such that $(2n\pi/u) \in I$, and

$$\sup_{n\geq 1} |\cos(an) - \cos(3an)| > 1.5 \quad \forall n \geq 35.$$

The other properties follow from computations of $\sup_{1 \le n \le u} |\cos(2n\pi/u) - \cos(6n\pi/u)|$ for $3 \le u \le 34$ and are left to the reader.

We now wish to obtain similar estimates for $\sup_{n\geq 1} |\cos(2\pi/n) - \cos(2s\pi/n)|$ for $s \in \{2, 4, 5, 6\}$. Set $f_s(x) = \cos(x) - \cos(sx)$, $\theta_s = \sup_{x\geq 0} |f_s(x)|$, $\delta_s = \sup_{x\geq 0} |f_s''(x)|$. If *s* is even, $\theta_s = 2$, and a computer verification shows that $\theta_s > 1.8$ for s = 5. It follows from the Taylor–Lagrange inequality that if f_s attains it maximum at α_s , then

$$|f_s(x) - \theta_s| \le \frac{\delta_s}{2} (x - \alpha_s)^2, \quad |f_s(x)| \ge \theta_s - \frac{\delta_s}{2} (x - \alpha_s)^2,$$

and so $|f_s(x)| > 1.5$ if $(x - \alpha_s)^2 \le (2\theta_s - 3)/\delta_s$. So if $l_s < \sqrt{(2\theta_s - 3)/\delta_s}$, there exists a closed interval of length $2l_s$ on which $|f_s(x)| > 1.5$. Let $u_s \ge (\pi/l_s)$ be an integer.

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| > 1.5 \quad \forall u \geq u_s.$$

Values for u_s are given in Table 1. We obtain the following lemma.

TABLE 1. Values of u_s , s = 2, 4, 5, 6.

s	θ_s	δ_s	l_s	u_s
2	2	≤5	0.4472	8
4	2	≤17	0.2425	13
5	>1.8	≤26	0.1519	21
6	2	≤37	0.1644	20

LEMMA 3.9. Let $u \ge 4$ be an integer and let $s \le u/4$ be a nonnegative integer, with $s \ne 1$. If $s \ne 3$, then

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2ns\pi}{u}\right) \right| > 1.5$$

PROOF. If s = 0, then

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2ns\pi}{u}\right) \right| = \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - 1 \right| > 1.8.$$

If $s \ge 7$, the result follows from Lemma 3.2(i). If $s \in \{2, 4, 6\}$, the result follows from Table 1 since $u \ge 4s$. If s = 5, the result also follows from the table for $u \ge 21$, and a direct computation shows that

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{20}\right) - \cos\left(\frac{10n\pi}{20}\right) \right| = \sup_{1\leq n\leq 20} \left| \cos\left(\frac{n\pi}{10}\right) - \cos\left(\frac{n\pi}{2}\right) \right|$$
$$= 1 + \cos\left(\frac{\pi}{5}\right) > 1.8.$$

Now set $g_s(x) = \cos(3x) - \cos(sx)$, $\theta_s = \sup_{x\geq 0} |g(s)|$, $\delta_s = \sup_{x\geq 0} |g''_s(x)|$. If *s* is even, $\theta_s = 2$, and a computer verification shows that $\theta_s > 1.85$ for s = 5, $\theta_s > 1.91$ for s = 7, s = 11, $\theta_s > 1.97$ for s = 13, s = 17, $\theta_s > 1.96$ for s = 19. We see, as above, that if $l_s < \sqrt{(2\theta_s - 3)/\delta_s}$ and if $u_s \ge \pi/l_s$ is an integer,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2sn\pi}{u}\right) - \cos\left(\frac{6n\pi}{u}\right) \right| > 1.5 \quad \forall u \geq u_s.$$

Our results are shown in Table 2.

We will be interested here in the case where *u* is not divisible by three and where $(2s\pi/u) \le (\pi/2)$, which means that $u \ge 4s$. So we are left with s = 2, u = 8, 10 or 11, and with s = 5, u = 20. We obtain, by direct computation,

$$\begin{split} \sup_{n\geq 1} \left| \cos\left(\frac{4n\pi}{8}\right) - \cos\left(\frac{6n\pi}{8}\right) \right| &= \sup_{n\geq 1} \left| \cos\left(\frac{n\pi}{2}\right) - \cos\left(\frac{3n\pi}{4}\right) \right| = 2.\\ \sup_{n\geq 1} \left| \cos\left(\frac{4n\pi}{10}\right) - \cos\left(\frac{6n\pi}{10}\right) \right| &= \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{5}\right) - \cos\left(\frac{3n\pi}{5}\right) \right| = 2.\\ \sup_{n\geq 1} \left| \cos\left(\frac{4n\pi}{11}\right) - \cos\left(\frac{6n\pi}{11}\right) \right| &= \cos\left(\frac{20\pi}{11}\right) - \cos\left(\frac{30\pi}{11}\right) = \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) \approx 1.4961.\\ \sup_{n\geq 1} \left| \cos\left(\frac{10n\pi}{20}\right) - \cos\left(\frac{6n\pi}{20}\right) \right| &= \sup_{n\geq 1} \left| \cos\left(\frac{n\pi}{2}\right) - \cos\left(\frac{3n\pi}{10}\right) \right| > 1.80. \end{split}$$

S	θ_s	δ_s	l_s	u_s
2	2	≤13	0.2774	12
4	2	≤23	0.2085	16
5	>1.85	≤34	0.1435	22
7	>1.91	≤58	0.1189	27
8	2	≤73	0.1170	27
10	2	≤109	0.0958	33
11	>1.91	≤130	0.0794	40
13	>1.97	≤178	0.0727	44
14	2	≤205	0.0698	45
16	2	≤275	0.0603	53
17	>1.97	≤298	0.0562	56
19	>1.96	≤390	0.0486	65
20	2	≤409	0.0494	64

TABLE 2. Values of u_s , $2 \le s \le 20$, *s* not divisible by three.

We obtain the following lemma.

LEMMA 3.10. Let u, s be positive integers satisfying $u \ge 4$ and $u/4 \le s \le 5u/12$, with $s \ge 2$, so that $u \ge 5$.

$$\begin{split} \sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \\ &\times \begin{cases} = \cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right) & \text{if } u = 5, s = 2 \text{ or if } u = 10, s = 3, \\ = \sqrt{2} & \text{if } u = 8, s = 3 \text{ or if } u = 16, s = 5, \\ = \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) & \text{if } u = 11, s = 3 \text{ or } s = 4 \text{ or if } u = 22, s = 7, \\ = 1.5 & \text{if } u = 9 \text{ or } u = 12, s = 3, \\ > 1.5 & \text{otherwise.} \end{cases}$$

PROOF. Set r = |3s - u|. Since $(2\pi/3) - (\pi/2) = (5\pi/6) - (2\pi/3) = (\pi/6), 0 \le (2\pi r/u) \le (\pi/2)$. If $r \ge 21$, it follows from the second assertion of Lemma 3.2(i) applied to $a = 2\pi/u$ and $b = 2s\pi/u$ that $\sup_{n\ge 1} |\cos(2n\pi/u) - \cos(2sn\pi/u)| > 1.5$.

If *u* is not divisible by three, then *r* is not divisible by three either, and it follows from the discussion above that if $r \neq 1$, $r \neq 2$, $r \leq 20$, or if r = 2, $u \neq 11$, then

$$\begin{split} \sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| &\ge \sup_{n \ge 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{2rn\pi}{u}\right) \right| > 1.5. \\ \text{If } r = 2, \, u = 11, \, \text{then } |s - \frac{11}{3}| &= |s - (u/3)| = \frac{2}{3}, \, \text{and so } s = 3 \, \text{and} \\ \sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{11}\right) - \cos\left(\frac{6n\pi}{11}\right) \right| &= \sup_{1 \le n \le 11} \left| \cos\left(\frac{2n\pi}{11}\right) - \cos\left(\frac{6n\pi}{11}\right) \right| \\ &= \left| \cos\left(\frac{8\pi}{11}\right) - \cos\left(\frac{24\pi}{11}\right) \right| = \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) \approx 1.4961. \end{split}$$

The condition r = 1 gives $|s - (u/3)| = \frac{1}{3}$, and so s = (u - 1)/3 if $u \equiv 1 \mod 3$, and s = (u + 1)/3 if $u \equiv 2 \mod 3$. In this situation,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \ge \sup_{n\geq 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{6sn\pi}{u}\right) \right|$$
$$= \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{6n\pi}{u}\right) \right|.$$

Since $|s - (u/3)| = \frac{1}{3}$, it follows from Lemma 3.8 that if $n \notin \{5, 8, 10, 11, 16, 22\}$, or if $u = 5, s \neq 2$, or if $u = 8, s \neq 3$, or if $u = 10, s \neq 3$, or if $u = 11, s \neq 4$, or if u = 16, $s \neq 5$, or if $u = 22, s \neq 7$, then

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| > 1.5.$$

A direct computation then shows that

$$\begin{split} \sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \\ &= \sup_{1 \le n \le u} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \\ &= \begin{cases} \cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right) & \text{if } u = 5, s = 2 \text{ or if } u = 10, s = 3, \\ \sqrt{2} & \text{if } u = 8, s = 3 \text{ or if } u = 16, s = 5, \\ \cos\left(\frac{2\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) & \text{if } u = 11, s = 4 \text{ or if } u = 22, s = 7. \end{split}$$

We now consider the case where u = 3v is divisible by three. Then *r* is also divisible by three. If r = 0 and if $u \neq 9$, then

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \ge \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{v}\right) - 1 \right| > 1.8.$$

If u = 9, then s = 3 and

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| = \sup_{1\leq n\leq 9} \left| \cos\left(\frac{2n\pi}{9}\right) - \cos\left(\frac{2n\pi}{3}\right) \right| = 1.5.$$

Now assume that r = 3, which means that $s = v + \epsilon$, with $\epsilon = \pm 1$. $\sup_{n \to \infty} \left| \cos\left(\frac{2n\pi}{n}\right) - \cos\left(\frac{2sn\pi}{n}\right) \right| = \sup_{n \to \infty} \left| \cos\left(\frac{2n\pi}{n}\right) - \cos\left(\frac{2n\pi}{n} + \frac{2\epsilon n\pi}{n}\right) \right|$

$$\begin{aligned} \sup_{n \ge 1} |\cos\left(\frac{\pi}{u}\right) - \cos\left(\frac{\pi}{u}\right)| &= \sup_{1 \le n \le 3\nu} |\cos\left(\frac{\pi}{3\nu}\right) - \cos\left(\frac{\pi}{3} + \frac{\pi}{3\nu}\right)| \\ &= 2 \sup_{1 \le n \le 3\nu} \left|\sin\left(\frac{n\pi}{3} + \frac{(1 + \epsilon)n\pi}{3\nu}\right)\right| \left|\sin\left(-\frac{n\pi}{3} + \frac{(1 - \epsilon)n\pi}{3\nu}\right)\right| \\ &= 2 \sup_{1 \le n \le 3\nu} \left|\sin\left(\frac{n\pi}{3}\right)\right| \left|\sin\left(\frac{n\pi}{3} + \frac{2n\pi}{3\nu}\right)\right| \\ &\ge \sqrt{3} \sup_{0 \le n \le \nu} \left|\sin\left(\frac{(3n + 1)\pi}{3} + \frac{2(3n + 1)\pi}{3\nu}\right)\right| \\ &= \sqrt{3} \sup_{0 \le n \le \nu} \left|\sin\left(\frac{2n\pi}{\nu} + \frac{(\nu + 2)\pi}{3\nu}\right)\right|. \end{aligned}$$

Since $\sin(x) > \sqrt{3}/2$ for $\pi/3 < x < 2\pi/3$, there exists $n \in \{1, ..., v\}$ such that $\sin((2n\pi/v) + ((v+2)\pi/3v)) > \sqrt{3}/2$ if $v \ge 7$, so

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| > 1.5 \quad \text{if } u \geq 21.$$

We are left with the cases where u = 6, v = 2, s = 1 or 3, u = 9, v = 3, s = 2 or 4, u = 12, v = 4, s = 3 or 5, u = 15, v = 5, s = 4 or 6, u = 18, v = 6, s = 5 or 7. But s = 1 is not relevant, and the condition $u/4 \le s \le 5u/12$ is not satisfied for u = 6, s = 3 and for u = 9, s = 2 or 4.

Direct computations, which are left to the reader, show that

$$\sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \begin{cases} >1.64 & \text{if } u = 15 \text{ and } s = 4, \\ >1.70 & \text{or if } u = 18 \text{ and } s = 5 \text{ or } s = 7, \\ >1.72 & \text{if } u = 15 \text{ and } s = 6, \\ >1.73 & \text{if } u = 12 \text{ and } s = 5. \end{cases}$$

So $\sup_{n\geq 1} |\cos(2n\pi/u) - \cos(2sn\pi/u)| > 1.5$ if $u/4 \le s \le 5u/12$ when *u* is divisible by three and when $s - (u/3) \in \{-1, 0, 1\}$, unless u = 12 and s = 3. If u = 12 and s = 3,

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| = \sup_{n\geq 1} \left| \cos\left(\frac{n\pi}{6}\right) - \cos\left(\frac{n\pi}{2}\right) \right| = 1.5.$$

Now assume that u = 3v is divisible by three and that $2 \le |s - v| \le 6$. Set again r = |3s - u| and set p = r/3, so that $2 \le p \le 6$. Notice also that $p \le u/12$ since $r \le u/4$, so that $u \ge 24$ and $v \ge 8$.

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \ge \sup_{n\geq 1} \left| \cos\left(\frac{6n\pi}{u}\right) - \cos\left(\frac{2rn\pi}{u}\right) \right|$$
$$= \sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{v}\right) - \cos\left(\frac{2pn\pi}{v}\right) \right|.$$

It follows then from Lemma 3.9 that $\sup_{n\geq 1} |\cos(2n\pi/u) - \cos(2sn\pi/u)| > 1.5$ if $p \neq 3$.

If p = 3, then $u \ge 36$, and so $v \ge 12$. Since $s - v = \pm 3$, it follows from Lemma 3.8 that we only have to consider the cases when:

- u = 36, s = 9 or 15,
- u = 45, s = 12 or 18,
- u = 54, s = 15 or 21,
- u = 72, s = 21 or 27,
- u = 90, s = 27 or 33.

Direct computations, which are left to the reader, show that

$$\sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right|$$

$$\times \begin{cases} >1.93 & \text{if } u = 36 \text{ and } s = 9 \text{ or if } u = 45 \text{ and } s = 12 \text{ or } 18 \\ \text{or if } u = 72 \text{ and } s = 27 \text{ or if } u = 90 \text{ and } s = 27 \text{ or } 33, \\ >1.91 & \text{or if } u = 54 \text{ and } s = 15, \\ >1.87 & \text{or if } u = 72 \text{ and } s = 24, \\ >1.85 & \text{or if } u = 36 \text{ and } s = 15, \\ >1.83 & \text{or if } u = 54 \text{ and } s = 21. \end{cases}$$

This concludes the proof of the lemma.

LEMMA 3.11. Let u, s be positive integers satisfying $5u/12 \le s \le u/2$, with $s \ge 2$, so that $u \ge 4$.

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| = \begin{cases} =1.5 & \text{if } u = 6 \text{ and } s = 3, \\ >1.5 & \text{otherwise.} \end{cases}$$

PROOF. If $s \ge 4$, it follows from Lemma 3.2(ii) that

$$\sup_{n\geq 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| > 1.57.$$

So we only have to consider the cases s = 3, u = 6 or 7 and s = 2, u = 4.

A direct computation then shows that

$$\sup_{n \ge 1} \left| \cos\left(\frac{2n\pi}{u}\right) - \cos\left(\frac{2sn\pi}{u}\right) \right| \begin{cases} = 2 & \text{if } u = 4 \text{ and } s = 2, \\ = 1.5 & \text{if } u = 6 \text{ and } s = 3, \\ = \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{\pi}{7}\right) \approx 1.5245 \text{ if } u = 7 \text{ and } s = 3. \end{cases} \square$$

We consider again the numbers $\theta(u)$ and $\sigma(u)$ introduced in Definition 3.5.

It follows from Lemmas 3.8-3.11 that we have the following results.

LEMMA 3.12. $\theta(5) = \theta(10) = \cos(\pi/5) + \cos(2\pi/5), \theta(8) = \theta(16) = \sqrt{2}, \theta(11) = \theta(22) = \cos(2\pi/11) + \cos(3\pi/11), and \theta(u) > 1.5 for <math>u \ge 4, u \ne 5, u \ne 8, u \ne 10, u \ne 11, u \ne 16, u \ne 22.$

LEMMA 3.13. $\sigma(u) = 1.5$ if $u \in \{1, 2, 3, 4, 5, 6, 8, 10\}$ and $\sigma(u) > 1.5$ otherwise.

Hence, if *u* is divisible by three, $\sigma(u/3) = 1.5$ if $u \in \{3, 6, 9, 12, 15, 18, 24, 30\}$ and $\sigma(u) > 1.5$ otherwise. We then deduce from Corollary 3.6 a complete description of the set $\Omega(1.5) = \{a \in [0, \pi] \mid k(a) \le 1.5\}$.

THEOREM 3.14. *Let* $a \in [0, \pi]$.

- If $a \in \{\pi/5, 2\pi/5, 3\pi/5, 4\pi/5\}$, then $k(a) = \cos(\pi/5) + \cos(2\pi/5) \approx 1, 1180$.
- If $a \in \{\pi/8, \pi/4, 3\pi/8, 5\pi/8, 5\pi/4, 7\pi/8\}$, then $k(a) = \sqrt{2} \approx 1,4142$.

- If $a \in \{\pi/11, 2\pi/11, 3\pi/11, 4\pi/11, 5\pi/11, 6\pi/11, 7\pi/11, 8\pi/11, 9\pi/11, 10\pi/11\}$, then $k(a) = \cos(2\pi/11) + \cos(3\pi/11) \approx 1,4961$.
- If $a \in \{0, \pi/6, \pi/3, \pi/2, 2\pi/3, 5\pi/6\} \cup \{\pi/9, 2\pi/9, 4\pi/9, 5\pi/9, 7\pi/9, 8\pi/9\} \cup \{\pi/12, 5\pi/12, 7\pi/12\} \cup \{\pi/15, 2\pi/15, 4\pi/15, 7\pi/15, 8\pi/15, 11\pi/15, 13\pi/15, 14\pi/15\},$ then k(a) = 1.5.
- For all other values of a, $1.5 < k(a) \le 8/3\sqrt{3} \approx 1.5396$.

COROLLARY 3.15. Let G be an abelian group and let $(C(g))_{g\in G}$ be a G-cosine family in a unital Banach algebra A such that $\sup_{g\in G} ||C(g) - c(g)|| < \sqrt{5}/2$ for some bounded scalar G-cosine family $(c(g))_{g\in G}$. Then C(g) = c(g) for every $g \in G$.

PROOF. Let $g \in G$. Since the scalar cosine sequence $(c(ng))_{n \in \mathbb{Z}}$ is bounded, a standard argument shows that there exists $a(g) \in \mathbb{R}$ such that $c(ng) = \cos(na(g))1_A$ for $n \in \mathbb{Z}$. Since $k(a(g)) \ge \sqrt{5}/2$, it follows from Corollary 2.4 that $C(ng) = \cos(na(g))1_A = c(ng)$ for $n \in \mathbb{Z}$, and C(g) = c(g).

References

- [1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems* (Birkhäuser, Basel, 2001).
- [2] A. V. Arkhangel'skii and V. I. Ponomarev, *Fundamentals of General Topology: Problems and Exercises* (D. Reidel Publishing Company/Hindustan Publishing Company, 1984), (translated from Russian).
- [3] A. Batkai, K.-J. Engel and M. Haase, 'Cosine families generated by second order differential operators on W^{1,1}(0, 1) with generalized Wentzell boundary conditions', *Appl. Anal.* 84 (2005), 867–876.
- [4] A. Bobrowski and W. Chojnacki, 'Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space', *Studia Math.* 217 (2013), 219–241.
- [5] A. Bobrowski, W. Chojnacki and A. Gregosiewicz, 'On close-to-scalar one-parameter cosine families', J. Math. Anal. Appl. 429 (2015), 383–394.
- [6] W. Chojnacki, 'On cosine families close to scalar cosine families', J. Aust. Math. Soc. 99 (2015), 166–174.
- [7] R. H. Cox, 'Matrices all of whose powers lie close to the identity', *Amer. Math. Monthly* **73** (1966), 813.
- [8] H. G. Dales, *Banach Algebras and Automatic Continuity*, London Mathematical Society Monographs, 24 (Clarendon Press, Oxford, 2001).
- [9] J. Esterle, 'Bounded cosine functions close to continuous scalar bounded cosine functions', *Int. Eq. Op. Th.* 85 (2016), 347–357.
- [10] M. Haase, 'The group reduction for bounded cosine functions on UMD spaces', Math. Z. 262(2) (2009), 281–299.
- [11] M. Haase, 'The functional calculus approach to cosine operator functions', in: *Recent Trends in Analysis, Proceedings of the Conference in honour of N. K. Nikolski held in Bordeaux 2011* (Theta Foundation, Bucharest, 2013), 123–147.
- [12] R. A. Hirschfeld, 'On semi-groups in Banach algebras close to the identity', Proc. Japan Acad. Ser. A Math. Sci. 44 (1968), 755.
- [13] J. P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques (Hermann, Paris, 1963).
- [14] B. Nagy, 'Cosine operator functions and the abstract Cauchy problem', *Period. Math. Hungar.* 7 (1976), 15–18.
- [15] M. Nakamura and M. Yoshida, 'On a generalization of a theorem of Cox', *Proc. Japan Acad. Ser.* A *Math. Sci.* 43 (1967), 108–110.

A zero- $\sqrt{5}/2$ law for cosine families

- [16] F. Schwenninger and H. Zwart, 'Less than one, implies zero', Studia Math. 229 (2015), 181–188.
- [17] F. Schwenninger and H. Zwart, 'Zero-two law for cosine families', J. Evol. Equ. 15 (2015), 559–569.
- [18] C. Travis and G. Webb, 'Cosine families and abstract nonlinear second order differential equation', Acta Math. Acad. Sci. Hungar. 32 (1978), 75–96.
- [19] L. J. Wallen, 'On the magnitude of $||x^n 1||$ in a normed algebra', *Proc. Amer. Math. Soc.* 18 (1967), 956.
- [20] L. C. Washington, *Cyclotomic Fields*, 2nd edn, Graduate Texts in Mathematics, 83 (Springer, New York–Berlin–Heidelberg, 1997).

JEAN ESTERLE, IMB, UMR 5251,

Université de Bordeaux, 351, cours de la Libération, 33405 Talence, France e-mail: esterle@math.u-bordeaux1.fr

[23]