A ZERO- $\sqrt{5} / 2$ LAW FOR COSINE FAMILIES

JEAN ESTERLE

(Received 2 May 2015; accepted 24 February 2017; first published online 17 April 2017)

Communicated by G. Willis

Abstract

Let $a \in \mathbb{R}$, and let $k(a)$ be the largest constant such that $\sup |\cos (n a)-\cos (n b)|<k(a)$ for $b \in \mathbb{R}$ implies that $b \in \pm a+2 \pi \mathbb{Z}$. We show that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ with values in a Banach algebra A satisfies $\sup _{n \geq 1}\left\|C(n)-\cos (n a) .1_{A}\right\|<k(a)$, then $C(n)=\cos (n a) .1_{A}$ for $n \in \mathbb{Z}$. Since $\sqrt{5} / 2 \leq k(a) \leq 8 / 3 \sqrt{3}$ for every $a \in \mathbb{R}$, this shows that if some cosine family $(C(g))_{g \in G}$ over an abelian group G in a Banach algebra satisfies $\sup _{g \in G}\|C(g)-c(g)\|<\sqrt{5} / 2$ for some scalar cosine family $(c(g))_{g \in G}$, then $C(g)=c(g)$ for $g \in G$, and the constant $\sqrt{5} / 2$ is optimal. We also describe the set of all real numbers $a \in[0, \pi]$ satisfying $k(a) \leq \frac{3}{2}$.

2010 Mathematics subject classification: primary 46J45; secondary 47D05.
Keywords and phrases: cosine sequence, scalar cosine sequence, Kronecker's theorem, commutative Banach algebra, cyclotomic polynomial.

1. Introduction

Let G be an abelian group. Recall that a G-cosine family of elements of a unital normed algebra A with unit element 1_{A} is a family $(C(g))_{g \in G}$ of elements of A satisfying the so-called d'Alembert equation

$$
C_{0}=1_{A}, C(g+h)+C(g-h)=2 C(g) C(h), \quad(g \in G, h \in G) .
$$

A \mathbb{R}-cosine family is called a cosine function, and a \mathbb{Z}-cosine family is called a cosine sequence.

A cosine family $C=(C(g))_{g \in G}$ is said to be bounded if there exists $M>0$ such that $\|C(g)\| \leq M$ for every $g \in G$. In this case, we set

$$
\|C\|_{\infty}=\sup _{g \in G}\|C(g)\|, \quad \operatorname{dist}\left(C_{1}, C_{2}\right)=\left\|C_{1}-C_{2}\right\|_{\infty}
$$

A cosine family is said to be scalar if $C(g) \in \mathbb{C} .1_{A}$ for every $g \in G$. It is easy to see and well known that a bounded complex-valued cosine sequence satisfies $C(n)=\cos (a n)$ for some $a \in \mathbb{R}$.

[^0]Strongly continuous operator valued cosine functions are a classical tool in the study of differential equations (see, for example, $[1,3,14,18]$) and a functional calculus approach to these objects was developed recently in [10, 11].

Bobrowski and Chojnacki proved in [4] that if a strongly continuous operator valued cosine function on a Banach space $(C(t))_{t \in \mathbb{R}}$ satisfies $\sup _{t \geq 0}\|C(t)-c(t)\|<1 / 2$ for some scalar bounded continuous cosine function $c(t)$, then $C(t)=c(t)$ for $t \in \mathbb{R}$, and Zwart and Schwenninger showed in [16] that this result remains valid under the condition $\sup _{t \geq 0}\|C(t)-c(t)\|<1$. The proofs were based on rather involved arguments from operator theory and semigroup theory. Very recently, Bobrowski et al. [5] showed more precisely that if a cosine function $C=C(t)$ satisfies $\sup _{t \in \mathbb{R}}\|C(t)-c(t)\|<$ $8 / 3 \sqrt{3}$ for some scalar bounded continuous cosine function $c(t)$, then $C(t)=c(t)$ for $t \in \mathbb{R}$, without any continuity assumption on C, and the same result was obtained independently by the author in [9]. The constant $8 / 3 \sqrt{3}$ is obviously optimal, since $\sup _{t \in \mathbb{R}}|\cos (a t)-\cos (3 a t)|=8 / 3 \sqrt{3}$ for every $a \in \mathbb{R} \backslash\{0\}$.

The author also proved, in [9], that if a cosine sequence $(C(t))_{t \in \mathbb{R}}$ satisfies $\sup _{t \in \mathbb{R}}\left\|C(t)-\cos (a t) 1_{A}\right\|=m<2$ for some $a \neq 0$, then the closed algebra generated by $(C(t))_{t \in \mathbb{R}}$ is isomorphic to \mathbb{C}^{k} for some $k \geq 1$, and there exists a finite family p_{1}, \ldots, p_{k} of pairwise orthogonal idempotents of A and a family $\left(b_{1}, \ldots, b_{k}\right)$ of distinct elements of the finite set $\Delta(a, m):=\left\{b \geq 0: \sup _{t \in \mathbb{R}}|\cos (b t)-\cos (a t)| \leq m\right\}$ such that $C(t)=\sum_{j=1}^{k} \cos \left(b_{j} t\right) p_{j}(t \in \mathbb{R})$.

Also, Chojnacki developed, in [6], an elementary argument to show that if $(C(n))_{n \in \mathbb{Z}}$ is a cosine sequence in a unital normed algebra A satisfying $\sup _{n \geq 1}\|C(n)-c(n)\|<$ 1 for some scalar cosine sequence $(c(n))_{n \in Z}$, then $c(n)=C(n)$ for every n, which obviously implies the result of Zwart and Schwenninger. His approach is based on an elaborated adaptation of a very short elementary argument used by Wallen in [19] to prove an improvement of the classical Cox-Nakamura-Yoshida-Hirschfeld-Wallen theorem [7, 12, 15] which shows that if an element a of a unital normed algebra A satisfies $\sup _{n \geq 1}\left\|a^{n}-1\right\|<1$, then $a=1$.

Applying this result to the cosine sequences $C(n g)$ and $c(n g)$ for $g \in G$, Chonajcki observed, in [6], that if a cosine family $C(g)$ satisfies $\sup _{g \in G}\|C(g)-c(g)\|<1$ for some scalar cosine family $c(g)$, then $C(g)=c(g)$ for every $g \in G$.

In the same direction, Schwenninger and Zwart showed, in [17], that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ in a Banach algebra A satisfies $\sup _{n \geq 1}\left\|C(n)-1_{A}\right\|<\frac{3}{2}$, then $C(n)=1_{A}$ for every n.

The purpose of this paper is to obtain optimal results of this type. We prove a 'zero- $\sqrt{5} / 2$ ' law: if a cosine family $(C(g))_{g \in G}$ satisfies $\sup _{g \in G}\|C(g)-c(g)\|<\sqrt{5} / 2$ for some scalar cosine family $(c(g))_{g \in G}$, then $C(g)=c(g)$ for every $g \in G$. Since $\sup _{n \geq 1}|\cos (2 n \pi / 5)-\cos (4 n \pi / 5)|=\cos (2 \pi / 5)+\cos (\pi / 5)=\sqrt{5} / 2$, the constant $\sqrt{5} / 2$ is optimal.

In fact, for every $a \in \mathbb{R}$, there exists a largest constant $k(a)$ such that $\sup _{n \geq 1}|\cos (n b)-\cos (n a)|<k(a)$ implies that $\cos (n b)=\cos (n a)$ for $n \geq 1$, and there exists $b \in \mathbb{R}$ such that $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=k(a)$ (see the remark following

Proposition 2.2). We prove that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ in a Banach algebra A satisfies $\sup _{n \geq 1}\left|C(n)-\cos (n a) 1_{A}\right|<k(a)$, then $C(n)=\cos (n a) .1_{A}$ for $n \geq 1$. This follows from the following result, which was proved by the author in [9].

Theorem 1.1. Let $(C(n))_{n \in \mathbb{Z}}$ be a bounded cosine sequence in a Banach algebra A. If $\operatorname{spec}(C(1))$ is a singleton, then the sequence $(C(n))_{n \in \mathbb{Z}}$ is scalar, and so there exists $a \in \mathbb{R}$ such that $C(n)=\cos (n a) .1_{A}$ for $n \geq 1$.

The second part of the paper is devoted to a discussion of the values of the constant $k(a)$. As mentioned above, it follows from [17] that $k(0)=\frac{3}{2}$, and it is obvious that $k(a) \leq \sup _{n \geq 1}|\cos (n a)-\cos (3 n a)| \leq 8 / 3 \sqrt{3}$ if $a \notin(\pi / 2) \mathbb{Z}$. We observe that $k(a)=8 / 3 \sqrt{3}$ if a / π is irrational, and we prove, using basic results about cyclotomic fields, that $k(a)<8 / 3 \sqrt{3}$ if a / π is rational.

We also show that the set $\Omega(m):=\{a \in[0, \pi]: k(a) \leq m\}$ is finite for every $m<$ $8 / 3 \sqrt{3}$. We describe in detail the set $\Omega\left(\frac{3}{2}\right)$: it contains 43 elements, and the only values for $k(a)$ for which $k(a)<\frac{3}{2}$ are $\sqrt{2} / 5=\cos (\pi / 5)+\cos (2 \pi / 5) \approx 1.1180, \sqrt{2}=$ $\cos (\pi / 4)+\cos (3 \pi / 4) \approx 1.4142$ and $\cos (2 \pi / 11)+\cos (3 \pi / 11) \approx 1.4961$.

The zero- $\sqrt{5} / 2$ law follows from the fact that $k(a) \geq \cos (\pi / 5)+\cos (2 \pi / 5)=\sqrt{5} / 2$ for every $a \in \mathbb{R}$.

We also show that, given $a \in \mathbb{R}$ and $m<2$, the set $\Gamma(a, m)$ of scalar cosine sequences $(c(n))_{n \in \mathbb{Z}}$ satisfying $\sup _{n \in \mathbb{Z}}|c(n)-\cos (n a)| \leq m$ is finite. This implies that if a cosine sequence $(C(n))_{n \in \mathbb{Z}}$ satisfies $\sup _{n \in \mathbb{Z}}\left\|C(n)-\cos (a n) 1_{A}\right\| \leq m$, then there exists $k \leq$ $\operatorname{card}(\Gamma(a, m))$ such that the closed algebra generated by $(C(n))_{n \in \mathbb{Z}}$ is isomorphic to \mathbb{C}^{k} and there exists a finite family p_{1}, \ldots, p_{k} of pairwise orthogonal idempotents of A and a finite family c_{1}, \ldots, c_{k} of distinct elements of $\Gamma(a, m)$ such that

$$
C(n)=\sum_{j=1}^{k} \cos \left(c_{j} n\right) p_{j}, \quad(n \in \mathbb{Z}) .
$$

This last result does not extend to cosine families over the general abelian group. Let $G=(\mathbb{Z} / 3 \mathbb{Z})^{\mathbb{N}}$; we give an easy example of a G-cosine family $(C(g))_{g \in G}$ with values in l^{∞} such that the closed subalgebra generated by $(C(g))_{g \in G}$ equals l^{∞}, while $\sup _{g \in G}\left\|1_{l^{\infty}}-C(g)\right\|=\frac{3}{2}$.

The author warmly thanks Christine Bachoc and Pierre Parent for providing the arguments from number theory which lead to a simple proof of the fact that $k(a)<$ $8 / 3 \sqrt{3}$ if $a \notin \pi \mathbb{Q}$.

2. Distance between bounded scalar cosine sequences

We introduce the following notation, to be used throughout the paper.
Defintion 2.1. Let $a \in \pi \mathbb{Q}$. The order of a, denoted by ord (a), is the smallest integer $u \geq 1$ such that $e^{i u a}=1$.

Recall that a subset S of the unit circle \mathbb{T} is said to be independent if $z_{1}^{n_{1}} \cdots z_{k}^{n^{k}} \neq 1$ for every finite family $\left(z_{1}, \ldots, z_{k}\right)$ of distinct elements of S and every family $\left(n_{1}, \ldots, n_{k}\right) \in$ \mathbb{Z}^{k} such that $n_{j} \neq 0$ for $1 \leq j \leq k$. It follows from a classical theorem of Kronecker (see, for example, [13], page 21) that if $S=\left\{z_{1}, \ldots, z_{k}\right\}$ is a finite independent set, then the sequence $\left(z_{1}^{n}, \ldots, z_{k}^{n}\right)_{n \geq 1}$ is dense in \mathbb{T}^{k}. We deduce from Kronecker's theorem the following observation.

Proposition 2.2. Let $a \in[0, \pi]$. For $m \geq 0$, set

$$
\Gamma(a, m)=\left\{b \in[0, \pi]: \sup _{n \geq 1}|\cos (n a)-\cos (n b)| \leq m\right\} .
$$

Then $\Gamma(a, m)$ is finite for every $m<2$.
Proof. Fix $m \in[1,2)$. Notice that if $b \in \mathbb{R}$ and if the set $\left\{e^{i a}, e^{i b}\right\}$ is independent, then it follows from Kronecker's theorem that the sequence $\left(\left(e^{i n a}, e^{i n b}\right)\right)_{n \geq 1}$ is dense in \mathbb{T}^{2}, and so $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=2$ and $b \notin \Gamma(a, m)$.

Suppose that $(a / \pi) \in \mathbb{Q}$, and denote by u the order of a, so that $e^{i u a}=1$. If $(b / \pi) \notin \mathbb{Q}$, then the sequence $\left(e^{i u n b}\right)_{n \geq 1}$ is dense in \mathbb{T}, and so

$$
2 \geq \sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq \sup _{n \geq 1}|1-\cos (n u b)|=2
$$

which shows that $b \notin \Gamma(a, m)$.
The same argument shows that if $(a / \pi) \notin \mathbb{Q}$ and if $(b / \pi) \in \mathbb{Q}$, then $b \notin \Gamma(a, m)$. So we are left with two situations:
(1) $a / \pi \notin Q$, and there exists $p \neq 0, q \neq 0$ and $k \in \mathbb{Z}$ such that $b q=a p+2 k \pi$; and
(2) $\quad a / \pi \in \mathbb{Q}$ and $b / \pi \in \mathbb{Q}$.

We consider the first case. Replacing $b \in[0, \pi]$ by $-b \in[-\pi, 0]$, if necessary, we can assume that $p \geq 1$ and $q \geq 1$, and we can assume that

$$
q b=p a+\frac{2 k \pi}{r}
$$

with greatest common divisor $(\operatorname{gcd})(p, q)=1, r \geq 1, \operatorname{gcd}(r, k)=1$ if $k \neq 0$.
Since $(r a / \pi) \notin \mathbb{Q}$,

$$
\begin{aligned}
\sup _{n \geq 1} \mid & |\cos (n a)-\cos (n b)| \\
& \geq \sup _{n \geq 1}|\cos (n r q a)-\cos (n r q b)| \\
& =\sup _{n \geq 1}|\cos (n r q a)-\cos (n r p a)|=\sup _{t \in \mathbb{R}}|\cos (q t)-\cos (p t)| .
\end{aligned}
$$

Since $\operatorname{gcd}(p, q)=1, \sup _{t \in \mathbb{R}}|\cos (q t)-\cos (p t)|=2$ if p or q is even, so we can assume that p and q are odd. Set $s=(q-1) / 2$.

It follows from Bezout's identity that there exist $n \geq 1$ such that $e^{2 i n p \pi / q}=e^{2 i s \pi / q}$, and setting $t=2 n \pi / q$,

$$
\sup _{t \in \mathbb{R}}|\cos (q t)-\cos (p t)| \geq 1-\cos \left(\frac{2 s \pi}{2 s+1}\right)=1+\cos \left(\frac{\pi}{q}\right)
$$

The same argument shows that

$$
\sup _{t \in \mathbb{R}}|\cos (q t)-\cos (p t)| \geq 1+\cos \left(\frac{\pi}{p}\right)
$$

Hence

$$
p \leq \frac{\pi}{\arccos (m-1)}, \quad q \leq \frac{\pi}{\arccos (m-1)}
$$

Also

$$
\begin{aligned}
\sup _{n \geq 1}^{|\cos (n a)-\cos (n b)|} & \geq \sup _{n \geq 1}|\cos (n q a)-\cos (n q b)| \\
& =\sup _{n \geq 1}\left|\cos (n q a)-\cos \left(n p a+\frac{2 n k \pi}{r}\right)\right| .
\end{aligned}
$$

Assume that $k \neq 0$. Since $\operatorname{gcd}(k, r)=1$, there exists $u \geq 1$ such that $2 u k \pi / r \in$ $(2 \pi / r)+2 \pi \mathbb{Z}$. This gives

$$
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq \sup _{n \geq 1}\left|\cos (n u q a)-\cos \left(n p u a+\frac{2 n \pi}{r}\right)\right| .
$$

If r is even, set $r_{1}=r / 2$.

$$
\begin{aligned}
\sup _{n \geq 1} \mid & \left|\cos (n u q a)-\cos \left(n p u a+\frac{2 n \pi}{r}\right)\right| \\
& \geq \sup _{n \geq 0}\left|\cos \left((2 n+1) r_{1} u q a\right)-\cos \left((2 n+1) r_{1} u p a\right)+\pi\right| .
\end{aligned}
$$

Since $2 r_{1} u a \notin \pi \mathbb{Q}$, there exists a sequence $\left(n_{j}\right)_{j \geq 1}$ of integers such that

$$
\lim _{j \rightarrow+\infty}\left|e^{i 2 n_{j} r_{1} u a+i r_{1} u a}\right|=1
$$

so that

$$
\lim _{j \rightarrow+\infty}\left|\cos \left(\left(2 n_{j}+1\right) r_{1} u q a\right)-\cos \left(\left(2 n_{j}+1\right) r_{1} u p a\right)+\pi\right|=2,
$$

and, in this situation, $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=2$.
So we can assume that r is odd. Set $r_{1}=(r-1) / 2$. The same calculation as above gives

$$
\begin{aligned}
& \left.\sup _{n \geq 1} \left\lvert\, \cos (n \text { uqa })-\cos \left(n p u a+\frac{2 n \pi}{r}\right)\right. \right\rvert\, \\
& \left.\quad \geq \sup _{n \geq 1} \left\lvert\, \cos \left(\left(n r+r_{1}\right) \text { uqa }\right)-\cos \left(\left(n r+r_{1}\right) u p a+\frac{2\left(n r+r_{1}\right)}{r} \pi\right)\right. \right\rvert\, \\
& \quad \geq 1+\cos \left(\frac{2 r_{1}}{r} \pi-\pi\right)=1+\cos \left(\frac{\pi}{r}\right) .
\end{aligned}
$$

Hence $r \leq \pi / \arccos (m-1)$.
This gives

$$
|k| \leq \frac{r}{2 \pi}|q b-p a| \leq\left(\frac{\pi}{\arccos (m-1)}\right)^{2} .
$$

We see that $\Gamma(a, m)$ is finite if $a / \pi \notin Q$ and that

$$
\operatorname{card}(\Gamma(a, m)) \leq\left(\frac{2 \pi}{\arccos (m-1)}\right)^{5}
$$

Now consider the case where $a / \pi \in \mathbb{Q}, b / \pi \in \mathbb{Q}$. We first discuss the case where $a=0, b \neq 0$. We know that $b=p \pi / q$, where $1 \leq p \leq q, \operatorname{gcd}(p, q)=1$.

If $p=q=1$, then $b=\pi$ and $\sup _{n \geq 1}|1-\cos (n \pi)|=2$. So we may assume that $p \leq q-1$. If p is odd,

$$
\sup _{n \geq 1}|1-\cos (n b)| \geq|1-\cos (q b)|=1-\cos (p \pi)=2 .
$$

So we can assume that p is even, so that q is odd. Set $r=(q-1) / 2$. There exists $n_{0} \geq 1$ and $r \in \mathbb{Z}$ such that $n_{0} p-r \in q \mathbb{Z}$ and

$$
\sup _{n \in \mathbb{Z}}|1-\cos (n b)| \geq\left|1-\cos \left(2 n_{0} b\right)\right|=\left|1-\cos \left(\frac{2 r \pi}{2 r+1}\right)\right|=1+\cos \left(\frac{\pi}{q}\right) .
$$

Again $q \leq \pi / \arccos (m-1)$ and $\operatorname{card}(\Gamma(0, m)) \leq(\pi / \arccos (m-1))^{2}$.
Now assume that $a \neq 0$ and let $u \geq 2$ be the order of a.

$$
\sup _{n \geq 1}|1-\cos (n u b)|=\sup _{n \geq 1}|\cos (n u a)-\cos (n u b)| \leq m,
$$

and so there exists $c \in \Gamma(0, m)$ such that $\cos (n c)=\cos (n u b)$ for $n \geq 1$. In particular, $\cos (c)=\cos (u b)$, and $b= \pm(c / u)+(2 k \pi / u)$, where $k \in \mathbb{Z}$.

$$
\operatorname{card}(\Gamma(a, m)) \leq 2 u \operatorname{card}(\Gamma(0, m)) \leq 2 u\left(\frac{\pi}{\arccos (m-1)}\right)^{2}
$$

We do not know whether it is possible to obtain a majorant for $\operatorname{card}(\Gamma(a, m))$ which depends only on m when $a \in \pi \mathbb{Q}$.

Remark. It follows immediately from Proposition 2.2 that, for every $a \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $k(a)=\sup _{n \geq 1}|\cos (n a)-\cos (n b)|$.

Theorem 2.3. Let $a \in \mathbb{R}$, let $m<2$ and let $(C(n))_{n \in \mathbb{Z}}$ be a cosine sequence in a Banach algebra A such that $\sup _{n \geq 1}\|C(n)-\cos (n a)\| \leq m$. Then there exists $k \leq \operatorname{card}(\Gamma(a, m))$ such that the closed algebra generated by $(C(n))_{n \in \mathbb{Z}}$ is isomorphic to \mathbb{C}^{k}, and there exists a finite family p_{1}, \ldots, p_{k} of pairwise orthogonal idempotents of A and a finite family b_{1}, \ldots, b_{k} of distinct elements of $\Gamma(a, m)$ such that

$$
C(n)=\sum_{j=1}^{k} \cos \left(n b_{j}\right) p_{j}, \quad(n \in \mathbb{Z})
$$

Proof. Since $c_{n}=P_{n}\left(c_{1}\right)$, where P_{n} denotes the nth Tchebishev polynomial, A_{1} is the closed unital subalgebra generated by c_{1} and the map $\chi \rightarrow \chi\left(c_{1}\right)$ is a bijection from $\widehat{A_{1}}$ onto $\operatorname{spec}_{A_{1}}\left(c_{1}\right)$. Now let $\chi \in \widehat{A_{1}}$. The sequence $\left(\chi\left(c_{n}\right)\right)_{n \geq 1}$ is a scalar cosine sequence and

$$
\sup _{n \geq 1}\left|\cos (n a)-\chi\left(c_{n}\right)\right|<2
$$

It follows from Proposition 2.2 that $\operatorname{spec}_{A_{1}}\left(c_{1}\right):=\left\{\lambda=\chi\left(c_{1}\right): \chi \in \widehat{A_{1}}\right\}$ is finite. Hence $\widehat{A_{1}}$ is finite. Let $\chi_{1}, \ldots, \chi_{m}$ be the elements of $\widehat{A_{1}}$. It follows from the standard one-variable holomorphic functional calculus (see, for example, [8]) that there exists, for every $j \leq m$, an idempotent p_{j} of A_{1} such that $\chi_{j}\left(p_{j}\right)=1$ and $\chi_{k}\left(p_{j}\right)=0$ for $k \neq j$. Hence $p_{j} p_{k}=0$ for $j \neq k$, and $\sum_{j=1}^{m} p_{j}$ is the unit element of A_{1}.

Let $x \in A_{1}$. Then $\left(p_{j} c_{n}\right)_{n \in \mathbb{Z}}$ is a cosine sequence in the commutative unital Banach algebra $p_{j} A_{1}$, and $\operatorname{spec}_{p_{j} A_{1}}\left(p_{j} c_{1}\right)=\left\{\chi_{j}\left(c_{1}\right)\right\}$.

Since $\sup _{n \geq 1}\left\|p_{j} \cos (n a)-p_{j} c_{n}\right\| \leq 2\left\|p_{j}\right\|$, the sequence $\left(p_{j} c_{n}\right)_{n \geq 1}$ is bounded, and it follows from Theorem 2.3 that $\left(p_{j} c_{n}\right)_{n \geq 1}$ is a scalar sequence and there exists $\beta_{j} \in[0, \pi]$ such that $p_{j} c_{n}=\chi_{j}\left(c_{n}\right) p_{j}=\cos \left(n \beta_{j}\right) p_{j}$ for $n \in \mathbb{Z}$.

Hence $c_{n}=\sum_{j=1}^{m} \chi_{j}\left(c_{n}\right) p_{j}=\sum_{j=1}^{m} \cos \left(n \beta_{j}\right) p_{j}$ for $n \geq 1$. Since A_{1} is the closed unital subalgebra of A generated by $c_{1}, x=\sum_{j=1}^{m} \chi_{j}(x) p_{j}$ for every $x \in A_{1}$, which shows that A_{1} is isomorphic to \mathbb{C}^{m}.

Corollary 2.4. Let $a \geq 0 \in \mathbb{R}$ and let $k(a)$ be the largest positive real number m such that $\Gamma(a, m)=\{a\}$ for every $m<k(a)$. If $(C(n))_{n \in \mathbb{Z}}$ is a cosine sequence in a Banach algebra A such that $\sup _{n \geq 1}\left\|C(n)-\cos (n a) 1_{A}\right\|<k(a)$, then $C(n)=\cos (n a) 1_{A}$ for $n \in \mathbb{Z}$.

Theorem 2.3 does not extend to cosine families over general abelian groups, as shown by the following easy result.

Proposition 2.5. Let $G:=(\mathbb{Z} / 3 \mathbb{Z})^{\mathbb{N}}$. Then there exists a G-cosine family $(C(g))_{g \in G}$ with values in l^{∞} which satisfies the following two conditions.
(i) $\sup _{g \in G}\left\|1_{l^{\infty}}-C(g)\right\|=\frac{3}{2}$.
(ii) The algebra A generated by the family $(C(g))_{g \in G}$ is dense in l^{∞}.

Proof. Elements g of G can be written in the form $g=\left(\bar{g}_{m}\right)_{m \geq 1}$, where $g_{m} \in\{0,1,2\}$. Set

$$
C(g):=\left(\cos \left(\frac{2 g_{m} \pi}{3}\right)\right)_{m \geq 1}
$$

Then $(C(g))_{g \in G}$ is a G-cosine family with values in l^{∞} which obviously satisfies (i) since $\cos (2 \pi / 3)=\cos (4 \pi / 3)=-\frac{1}{2}$.

Now let $\phi=\left(\phi_{m}\right)_{m \in \mathbb{Z}}$ be an idempotent of l^{∞} and let $S:=\left\{m \geq 1 \mid \phi_{m}=1\right\}$. Set $g_{m}=1$ if $m \in S, g_{m}=0$ if $m \geq 1, m \notin S$ and set $g=\left(\bar{g}_{m}\right)_{m \geq 1}$.

$$
C\left(0_{G}\right)-C(g)=1_{l^{\infty}}-C(g)=\frac{3}{2} \phi,
$$

and so $\phi \in A$. We can identify l^{∞} to $\mathscr{C}(\beta \mathbb{N})$, the algebra of continuous functions on the Stone-Cĕch compactification of \mathbb{N}, and βN is an extremely disconnected compact set,
which means that the closure of every open set is open (see, for example, [2], Ch. 6, Section 6). Since the characteristic function of every open and closed subset of $\beta \mathbb{N}$ is an idempotent of l^{∞}, the idempotents of l^{∞} separate points of $\beta \mathbb{N}$, and it follows from the Stone-Weierstrass theorem that A is dense in l^{∞}, which proves (ii).

3. The values of the constant $k(a)$

It was shown in [17] that $k(0)=\frac{3}{2}$. We also have the following result.
Proposition 3.1. $k(a)=8 / 3 \sqrt{3}$ if a / π is irrational and $k(a)<8 / 3 \sqrt{3}$ if a / π is rational.
Proof. Assume that $a / \pi \notin \mathbb{Q}$. Then $3 a \notin \pm a+2 \pi \mathbb{Z}$ and

$$
k(a) \leq \sup _{n \geq 1}|\cos (n a)-\cos (3 n a)|=\sup _{x \in \mathbb{R}}|\cos (x)-\cos (3 x)|=\frac{8}{3 \sqrt{3}} .
$$

We saw above that if b / π in \mathbb{Q}, then $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=2$, and we also know that $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=2$ if $p a-q b \notin 2 \pi \mathbb{Z}$ for $(p, q) \neq(0,0)$. So if $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|<2$, there exists $p \in \mathbb{Z} \backslash\{0\}, q \in \mathbb{Z} \backslash\{0\}$ and $r \in \mathbb{Z}$ such that $p a-q b=2 r \pi$.

If $p \neq \pm q$, then it follows from [9, Lemma 3.5] that

$$
\begin{aligned}
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| & \geq \sup _{n \geq 1}|\cos (n q a)-\cos (n q b)| \\
& =\sup _{n \geq 1}|\cos (q n a)-\cos (p n a)| \\
& =\sup _{x \in \mathbb{R}}|\cos (q x)-\cos (p x)| \\
& =\sup _{x \in \mathbb{R}}\left|\cos \left(\frac{p}{q} x\right)-\cos (x)\right| \geq \frac{8}{3 \sqrt{3}} .
\end{aligned}
$$

We are left with the case where $b= \pm a+(2 s \pi / r)$, where $r \in \mathbb{Z} \backslash\{-1,0,1\}$, and we can restrict attention to the case where $b=a+(2 s \pi / r)$, where $r \geq 2,1 \leq s \leq r-1$, $\operatorname{gcd}(r, s)=1$. It follows from Bezout's identity that there exists, for every $p \geq 1$, some positive integer u such that $u b-u a-(2 p \pi / r) \in 2 \pi \mathbb{Z}$. If r is even, set $p=r / 2$. Since the set $\left\{e^{i(2 n+1) a}\right\}_{n \geq 1}$ is dense in the unit circle,

$$
\begin{aligned}
\sup _{n \geq 1}|\cos (n b)-\cos (n a)| & \geq \sup _{n \geq 1}|\cos ((2 n+1) u b)-\cos ((2 n+1) u a)| \\
& =2 \sup _{n \geq 1}|\cos ((2 n+1) u a)|=2
\end{aligned}
$$

Now assume that r is odd, and set $p=(r-1) / 2$.

$$
\begin{aligned}
& \sup _{n \geq 1}|\cos (n b)-\cos (n a)| \\
& \geq \sup _{n \geq 1}|\cos ((2 n+1) u b)-\cos ((2 n+1) u a)| \\
& \quad \geq \sup _{n \geq 1}\left|\cos \left((2 n r+1) u a+(2 n r+1)\left(\pi-\frac{\pi}{r}\right)\right)-\cos ((2 n r+1) u a)\right| \\
& \quad \geq \sup _{x \in \mathbb{R}}\left|\cos (x)+\cos \left(x-\frac{\pi}{r}\right)\right| \geq 2 \cos \left(\frac{\pi}{2 r}\right) \geq \sqrt{3}>\frac{8}{3 \sqrt{3}} .
\end{aligned}
$$

Now assume that a / π is rational. If the order of a is equal to one, then $k(a)=1.5$, and we will see later that this is also true if the order of a equals two or four.

Otherwise,

$$
k(a) \leq \sup _{n \geq 1}|\cos (n a)-\cos (3 n a)|=\max _{1 \leq n \leq u}|\cos (n a)-\cos (3 n a)| .
$$

We know that $|\cos (n x)-\cos (3 n x)|<8 /(\pi \sqrt{3})$ if $x \notin \pm \arccos (1 / \sqrt{3})+\pi \mathbb{Z}$. If $n a \in$ $\pm \arccos (1 / \sqrt{3})+\pi \mathbb{Z}$ for some $n \geq 1$, then $\arccos (1 / \sqrt{3}) / \pi$ would be rational and $\alpha:=1 / \sqrt{3}+(\sqrt{2} i) / \sqrt{3}$ would be a root of unity. So $\beta=\alpha^{2}=-\frac{1}{3}+(2 \sqrt{2} i) / 3$ would have the form $\beta=e^{2 i k \pi / n}$ for some $n \leq 1$ and some positive integer $k \geq n$ such that $\operatorname{gcd}(k, n)=1$.

Let $\mathbb{Q}(\beta)$ be the smallest subfield of \mathbb{C} containing $\mathbb{Q} \cup \beta$. Since $3 \beta^{2}+2 \beta+3=0$, the degree of $\mathbb{Q}(\beta)$ over \mathbb{Q} is equal to two. On the other hand, the Galois group $\operatorname{Gal}(\mathbb{Q}(\beta) / \mathbb{Q})$ is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$, the group of invertible elements of $\mathbb{Z} / n \mathbb{Z}$, and (see [20, Theorem 2.5])

$$
H(n)=\operatorname{deg}(\mathbb{Q}(\beta) / \mathbb{Q})=2,
$$

where $H(n)=\operatorname{card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)$denotes the number of integers $p \in\{1, \ldots, n\}$ such that $\operatorname{gcd}(p, n)=1$.

Let $P(n)$ be the set of prime divisors of n. It is well known that, writing $n=$ $\Pi_{p \in P(n)} p^{\alpha_{p}}$ (see, for example, [20, Exercise 1.1]),

$$
H(n)=\Pi_{p \in P(n)} p^{\alpha_{p}-1}(p-1) .
$$

It follows immediately from this identity that the only possibilities for getting $H(n)=2$ are $n=3, n=4$ and $n=6$. Since $\beta^{3} \neq 1, \beta^{4} \neq 1$ and $\beta^{6} \neq 1$, we see that β / π is irrational, and so $k(a)<8 / 3 \sqrt{3}$ if a / π is rational.

We know that if a / π is rational and if b / π is irrational, then $\sup _{n \geq 1} \mid \cos (n a)-$ $\cos (n b) \mid=2$. We discuss now the case where a / π and b / π are both rational, with $b \notin \pm a+2 \pi \mathbb{Z}$.

Lemma 3.2. Let $a, b \in(0, \pi]$.

$$
\begin{align*}
& \text { If } 7 a \leq b \leq \pi / 2 \text { or if } \pi / 2 \leq b \leq 5 \pi / 6 \text {, with }|b-(2 \pi / 3)| \geq 7 a \text {, then } \tag{i}\\
& \qquad \sup _{n \geq 1}|\cos (n a)-\cos (n b)|>1.55 .
\end{align*}
$$

(ii) If $(5 \pi / 6) \leq b \leq \pi$ and if $b \geq 4 a$, then

$$
\cos (a)-\cos (b)>1.57
$$

Proof.
(i) Assume that $7 a \leq b \leq \pi / 2$, let p be the largest integer such that $p b<3 \pi / 4$ and set $q=p+1$. We know that $3 \pi / 4 \leq q b \leq 5 \pi / 4,0 \leq q a \leq 5 \pi / 28$, so

$$
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq \cos (q a)-\cos (q b) \geq \cos \left(\frac{5 \pi}{28}\right)+\cos \left(\frac{\pi}{4}\right)>1.55 .
$$

Now assume that $\pi / 2 \leq b \leq 5 \pi / 6$, with $|b-2 \pi / 3| \geq 7 a$, and set $c=|3 b-2 \pi|$. Since $|b-(2 \pi / 3)| \leq \pi / 6,21 a \leq c \leq \pi / 2$, so

$$
\begin{aligned}
& \sup _{n \geq 1}|\cos (n a)-\cos (n b)| \\
& \geq \sup _{n \geq 1}|\cos (3 n a)-\cos (3 n b)| \\
&=\sup _{n \geq 1}|\cos (3 n a)-\cos (n c)| \geq|\cos (3 a)-\cos (c)|>1.55 .
\end{aligned}
$$

(ii) If $5 \pi / 6 \leq b \leq \pi$ and if $b \geq 4 a$, then $0<a \leq \pi / 4$ and

$$
\cos (a)-\cos (b) \geq \cos \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{6}\right)>1.57
$$

Lemma 3.3. Let p, q be two positive integers such that $p<q$.
(i) If $q \neq 3 p$, then there exists $u_{p, q} \geq 1$ such that, if $\operatorname{ord}(a) \geq u_{p, q}$,

$$
\sup _{n \geq 1}|\cos (n p a)-\cos (n q a)|>\frac{8}{\sqrt{3}} .
$$

(ii) If $q=3 p$, then, for, every $m<8 / 3 \sqrt{3}$, there exists $u_{p}(m) \geq 1$ such that, if $\operatorname{ord}(a) \geq u_{p}(m)$,

$$
\sup _{n \geq 1}|\cos (n p a)-\cos (3 n p a)|>m .
$$

Proof. Set $\lambda=\sup _{x \in \mathbb{R}}|\cos (p x)-\cos (q x)|=\sup _{x \geq 0}|\cos (p x)-\cos (q x)|$. An elementary verification shows that $\lambda>8 / 3 \sqrt{3}$ if $q \neq 3 p$ and $\lambda=8 / 3 \sqrt{3}$ if $q=3 p$ (see, for example, [9]). Now let $\mu<\lambda$, and let $\eta<\delta$ be two real numbers such that $|\cos (p x)-\cos (q x)|>\mu$ for $\eta \leq x \leq \delta$. Since $\left\{e^{i a n}\right\}_{n \geq 1}=\left\{e^{2 n i \pi / u}\right\}_{1 \leq n \leq u}$, we see that $\sup _{n \geq 1}|\cos (n p a)-\cos (n q a)|>\mu$ if $2 \pi / u<\delta-\eta$, and the lemma follows.
Lemma 3.4. Assume that a / π and b / π are rational, let $u \geq 1$ be the order of a and let v be the order of b.
(i) If $u \neq v, u \neq 3 v, v \neq 3 u$, then $\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq 1+\cos (\pi / 5)>1.8>$ $8 / 3 \sqrt{3}$.
(ii) If $u=v$ and if $b \notin \pm a+2 \pi \mathbb{Z}$, then there exists $w \in \mathbb{Z}$ such that $2 \leq w \leq u / 2$ and $\operatorname{gcd}(u, w)=1$ satisfying

$$
\begin{equation*}
\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 n w \pi}{u}\right)\right| . \tag{3.1}
\end{equation*}
$$

Conversely, if $a \in \pi \mathbb{Q}$ has order u, then, for every integer w such that $\operatorname{gcd}(w, u)=$ 1 , there exists $b \in \pi \mathbb{Q}$ of order u satisfying (3.1).
(iii) If $v=3 u$, then there exists an integer w such that $1 \leq w \leq u / 2$ and $\operatorname{gcd}(u, w)=1$ satisfying

$$
\begin{equation*}
\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{3 u}\right)-\cos \left(\frac{2 n w \pi}{u}\right)\right| . \tag{3.2}
\end{equation*}
$$

Conversely, if $a \in \pi \mathbb{Q}$ has order u, then, for every integer w such that $\operatorname{gcd}(w, u)=1$, there exists $b \in \pi \mathbb{Q}$ of order $3 u$ satisfying (3.2).
(iv) If $u=3 v$, then there exists an integer w such that $1 \leq w \leq u / 6$ and $\operatorname{gcd}(u / 3, w)=1$ satisfying

$$
\begin{equation*}
\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{6 n w \pi}{u}\right)\right| . \tag{3.3}
\end{equation*}
$$

Conversely, if the order u of $a \in \pi \mathbb{Q}$ is divisible by three, then, for every integer w such that $\operatorname{gcd}(u / 3, w)=1$, there exists $b \in \pi \mathbb{Q}$ of order $u / 3$ satisfying (3.3).

Proof.

(i) Assume that $u \neq v$, say, $u<v$, and let $w \neq 1$ be the order of $u b$, which is a divisor of v. We know that $u b=2 \pi \alpha / w$, with $\operatorname{gcd}(\alpha, w)=1$, and there exists $\gamma \geq 1$ such that $\alpha \gamma-1 \in w \mathbb{Z}$.

$$
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq \sup _{n \geq 1}|\cos (n u \gamma a)-\cos (n u \gamma b)|=\sup _{1 \leq n \leq w} 1-\cos \left(\frac{2 n \pi}{w}\right) .
$$

If w is even, then $\sup _{n \geq 1}|\cos (n a)-\cos (n b)|=2$. If w is odd, set $s=(w-1) / 2$.

$$
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq 1-\cos \left(\frac{2 s \pi}{w}\right)=1+\cos \left(\frac{\pi}{w}\right)
$$

If $w \geq 5$,

$$
\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq 1+\cos \left(\frac{\pi}{5}\right)>1.8>\frac{8}{3 \sqrt{3}}
$$

If $w=3$, let $d=\operatorname{gcd}(u, v)$ and set $r=(u / d)$. Then $w=3=(v / d)>r$. So either $r=1$ or $r=2$.

If $r=2, u=2 d, v=3 d, a=(2 p \pi / 2 d)=(p \pi / d)$ with p odd, $b=(2 q \pi / 3 d)$ with $\operatorname{gcd}(q, 3 d)=1$, and so

$$
\begin{aligned}
2 & \geq \sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq|\cos (3 d a)-\cos (3 d b)| \\
& \geq|\cos (3 p \pi)-\cos (2 q \pi)|=2 .
\end{aligned}
$$

If $r=1$, then $u=d$ and $v=3 d=3 u$.
We thus see that if $v>u$ and $v \neq 3 u$, then $\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq 1+\cos (\pi / 5)>$ $1.8>3 / \sqrt{3}$, which proves (i).
(ii) Assume that $u=v$ and that $b \notin \pm a+2 \pi \mathbb{Z}$. There exists $\alpha, \beta \in\{1, \ldots, u-1\}$, with $\alpha \neq \beta, \alpha \neq u-\beta$ such that $a \in \pm(2 \alpha \pi / u)+2 \pi \mathbb{Z}$ and $b \in \pm(2 \beta \pi / u)+2 \pi \mathbb{Z}$, and $\operatorname{gcd}(\alpha, u)=\operatorname{gcd}(\beta, u)=1$. It follows from Bezout's identity that there exists $\gamma \in \mathbb{Z}$ such that $\alpha \gamma-1 \in u \mathbb{Z}$. If $\beta \gamma \pm 1 \in u \mathbb{Z}$, then we would have $\alpha \beta \gamma \pm \alpha \in \alpha u \mathbb{Z} \subset u \mathbb{Z}$, and $\beta \pm \alpha \in u \mathbb{Z}$, which is impossible. Hence $\gamma \beta-w \in u \mathbb{Z}$ for some $w \in\{2, \ldots, u-2\}$, $\operatorname{gcd}(w, u)=1$ since $\operatorname{gcd}(\gamma, u)=\operatorname{gcd}(\beta, u)=1$, and

$$
\begin{aligned}
& \sup _{n \geq 1}|\cos (n a)-\cos (n b)| \\
& \geq \sup _{n \geq 1}|\cos (n \gamma a)-\cos (n \gamma b)| \\
&=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 n w \pi}{u}\right)\right| \geq \sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \pi}{u}\right)-\cos \left(\frac{2 n \alpha w \pi}{u}\right)\right| \\
&=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \pi}{u}\right)-\cos \left(\frac{2 n \beta \pi}{u}\right)\right|=\sup _{n \geq 1}|\cos (n a)-\cos (n b)| .
\end{aligned}
$$

By replacing w by $u-w$, if necessary, we can assume that $2 \leq w \leq u / 2$.
Now let $w \in \mathbb{Z}$ such that $\operatorname{gcd}(u, w)=1$. We know that $a=2 \alpha \pi / u$, with $\operatorname{gcd}(\alpha, u)$ $=1$. The same argument as above shows that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 n w \pi}{u}\right)\right|=\sup _{n \geq 1}|\cos (n a)-\cos (n b)|,
$$

with $b=2 w \alpha \pi / u$, which has order u.
(iii) Now assume that $v=3 u$. There exists $\alpha \in\{1, \ldots, u-1\}$ and $\beta \in\{1, \ldots, 3 u-1\}$ such that $a \in \pm(2 \alpha \pi / u)+2 \pi \mathbb{Z}$ and $b \in \pm(2 \beta \pi / 3 u)+2 \pi \mathbb{Z}$, and $\operatorname{gcd}(\alpha, u)=\operatorname{gcd}(\beta, 3 u)=1$. Let $\gamma \in \mathbb{Z}$ such that $\beta \gamma-1 \in 3 u \mathbb{Z}$. Then $\operatorname{gcd}(\gamma, 3 u)=1$ and a fortiori $\operatorname{gcd}(\gamma, u)=1$. There exists $w \in \mathbb{Z}$ such that $1 \leq w \leq u / 2$ and $\alpha \gamma \in \pm w+u \mathbb{Z}$, and we see, as above, that

$$
\begin{aligned}
\sup _{n \geq 1} & |\cos (n a)-\cos (n b)| \\
& =\sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \pi}{u}\right)-\cos \left(\frac{2 n \beta \pi}{3 u}\right)\right| \\
& =\sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \gamma \pi}{u}\right)-\cos \left(\frac{2 n \beta \gamma \pi}{3 u}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n w \pi}{u}\right)-\cos \left(\frac{2 n \pi}{3 u}\right)\right| .
\end{aligned}
$$

Conversely, let $a=2 \alpha \pi / u \in \pi \mathbb{Q}$ have order u, and let $w \in \mathbb{Z}$ be such that $\operatorname{gcd}(u, w)=1$. If α is not divisible by three, then $\operatorname{gcd}(\alpha, 3 u)=1$. If α is divisible by three, then u is not divisible by three, and so $\alpha+u \in \alpha+u \mathbb{Z}$ is not divisible by three. So we can assume, without loss of generality, that α is not divisible by three, and there exists $\beta \geq 1$ such that $\alpha \beta-1 \in 3 u \pi \mathbb{Z}$. Similarly, we can assume, without loss of generality, that w is not divisible by three, and there exists $\gamma \geq 1$ such that $w \gamma-1 \in 3 u \pi \mathbb{Z}$. Set $b=(2 \alpha \gamma \pi / 3 u)$. Then b has order $3 u$, and we see, as above, that

$$
\begin{aligned}
\sup _{n \geq 1} & \left|\cos \left(\frac{2 n w \pi}{u}\right)-\cos \left(\frac{2 n \pi}{3 u}\right)\right| \\
& \geq \sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \gamma w \pi}{u}\right)-\cos \left(\frac{2 n \alpha \gamma \pi}{3 u}\right)\right| \\
& =\sup _{n \geq 1}|\cos (n a)-\cos (n b)| \geq \sup _{n \geq 1}\left|\cos \left(\frac{2 n \alpha \gamma w \beta w \pi}{u}\right)-\cos \left(\frac{2 n \alpha \gamma \beta w \pi}{3 u}\right)\right| \\
& =\sup _{n \geq 1}\left|\cos \left(\frac{2 n w \pi}{u}\right)-\cos \left(\frac{2 n \pi}{3 u}\right)\right|,
\end{aligned}
$$

which concludes the proof of (iii).
(iv) Clearly, the first assertion of (iv) is a reformulation of the first assertion of (iii). Now assume that the order u of $a \in \pi \mathbb{Q}$ is divisible by three, set $v=u / 3$, write $a=2 \alpha \pi / u$ and let $w \in \mathbb{Z}$ such that $\operatorname{gcd}(w, v)=1$. We see, as above, that we can assume, without loss of generality, that $\operatorname{gcd}(u, w)=1$.

Since $\operatorname{gcd}(\alpha, u)=1$, a fortiori $\operatorname{gcd}(\alpha, v)=1$, so that $\operatorname{gcd}(\alpha w, v)=1$, so that $b:=$ $6 \alpha w \pi / u$ has order v and we see, as above, that a, b, u and w satisfy (3.3).

In order to use Lemma 3.4, we introduce the following notions.
Definition 3.5. Let $u \geq 2$, denote by $\Delta(u)$ the set of all integers s satisfying $1 \leq s \leq u / 2$, $\operatorname{gcd}(u, s)=1$ and let $\Delta_{1}(u)=\Delta(u) \backslash\{1\}$. We set

$$
\begin{aligned}
& \sigma(u)=\inf _{w \in \Delta(u)}\left[\sup _{n \geq 1}\left|\cos \left(\frac{2 \pi}{3 u}\right)-\cos \left(\frac{2 w \pi}{u}\right)\right|\right], \\
& \theta(u)=\inf _{w \in \Delta_{1}(u)}\left[\sup _{n \geq 1}\left|\cos \left(\frac{2 \pi}{u}\right)-\cos \left(\frac{2 w \pi}{u}\right)\right|\right],
\end{aligned}
$$

with the convention $\theta(u)=2$ if $\Delta_{1}(u)=\emptyset$.
Notice that $\Delta_{1}(u)=\emptyset$ if $u=2,3,4$ or 6 and that $\Delta_{1}(u) \neq \emptyset$ otherwise, since, as we observed above, $H(n)=\operatorname{card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right) \geq 3$ if $n \notin\{1,2,3,4,6\}$.

We obtain the following corollary, which shows, in particular, that the value of $k(a)$ depends only on the order of a.

Corollary 3.6. Let $a \in \pi \mathbb{Q}$ and let $u \geq 1$ be the order of a.
(i) If u is not divisible by three, then $k(a)=\inf (\sigma(u), \theta(u))$.
(ii) If u is divisible by three, then $k(a)=\inf (\sigma(u / 3), \sigma(u), \theta(u))$.

Proof. Set:

- $\quad \Lambda_{1}(a)=\{b \in \pi \mathbb{Q} \mid b \notin \pm a+2 \pi \mathbb{Z}, \operatorname{ord}(b)=\operatorname{ord}(a)\} ;$
- $\Lambda_{2}(a)=\{b \in \pi \mathbb{Q} \mid \operatorname{ord}(b)=3 \operatorname{ord}(a)\} ;$
- $\quad \Lambda_{3}(a)=\{b \in \pi \mathbb{Q} \mid 3 \operatorname{ord}(b)=\operatorname{ord}(a)\} ;$
- $\Lambda_{4}(a)=\{b \in \pi \mathbb{Q} \mid \operatorname{ord}(b) \neq \operatorname{ord}(a) \neq 3 \operatorname{ord}(b)\} ;$
and, for $1 \leq i \leq 4$, set

$$
\lambda_{i}(a)=\inf _{b \in \Lambda_{i}(a)} \sup _{n \geq 1}|\cos (n a)-\cos (n b)|,
$$

with the convention $\lambda_{i}(a)=2$ if $\Lambda_{i}(a)=\emptyset$.
Since $b \notin \pm a+2 \pi \mathbb{Z}$ if $\operatorname{ord}(b) \neq \operatorname{ord}(a), \quad \lambda_{2}(a) \leq 8 / 3 \sqrt{3}$, and it follows from Lemma 3.4(i) that

$$
k(a)=\inf _{1 \leq i \leq 4} \lambda_{i}(a)=\inf _{1 \leq i \leq 3} \lambda_{i}(a)
$$

and it follows from Lemma 3.4(ii), (iii) and (iv) that $\lambda_{1}(a)=\theta(u)$ if $\Delta_{1}(u) \neq \emptyset$, that $\lambda_{2}(a)=\sigma(u)$ and that $\lambda_{3}(a)=\sigma(u / 3)$ if u is divisible by three.

We know that $\Delta_{1}(2)=\Delta_{1}(4)=\emptyset$, and so $k(a)=\sigma(2)$ if $\operatorname{ord}(a)=2$ and $k(a)=\sigma(4)$ if $\operatorname{ord}(a)=4$, and an immediate verification then shows that $k(a)=\frac{3}{2}$ if $\operatorname{ord}(a) \in\{2,4\}$.

We have the following theorem.
Theorem 3.7. Let $m<8 / 3 \sqrt{3}$. Then the set $\Omega(m):=\{a \in[0, \pi]: k(a) \leq m\}$ is finite.
Proof. It follows from Lemma 3.3 applied to $2 \pi / u$ and $6 \pi / u$ that there exists $u_{0} \geq 1$ such that, for $u \geq u_{0}$,
(i) $\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right|>m \quad$ if $2 \leq w \leq \inf \left(\frac{u}{2}, 6\right)$,
(ii) $\sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{2(3 w+1) n \pi}{u}\right)\right|>m \quad$ if $0 \leq w \leq 6$,
(iii) $\sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{2(3 w+2) n \pi}{u}\right)\right|>m \quad$ if $0 \leq w \leq 6$.

Let $u \geq u_{0}$, and let w be an integer such that $2 \leq w \leq u / 2$. If $2 w \pi / u \leq \pi / 2$ or if $2 w \pi / u \geq 5 \pi / 6$, it follows from Lemma 3.2 and property (i) that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right|>m
$$

Now assume that $\pi / 2 \leq 2 w \pi / u \leq 5 \pi / 6$. If $|w-(u / 3)| \geq 7$, it follows from Lemma 3.2 that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right|>1.55>m .
$$

If $|w-(u / 3)|<7$, set $r=|3 w-u|$. Then $0 \leq r \leq 20$ and

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right| \geq \sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{2 n r \pi}{u}\right)\right| .
$$

If u is not divisible by three, then either $r=3 s+1$ or $r=3 s+2$, with $0 \leq s \leq 6$, and it follows from (ii) and (iii) that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right|>m
$$

If u is divisible by three then r is also divisible by three. Set $v=u / 3$ and $s=r / 3$. Then $0 \leq s \leq 6$ and

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right| \geq \sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-\cos \left(\frac{2 n s \pi}{v}\right)\right| .
$$

If $s \in\{2,3,4,5,6\}$, it follows from (i) that, if $u \geq 3 u_{0}$,

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|>m .
$$

Now assume that $s=0$. If $u \geq 15$, then $v \geq 5$ and

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-\cos \left(\frac{2 \operatorname{snn} \pi}{u}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-1\right| \geq 1+\cos \left(\frac{\pi}{5}\right)>1.8>m .
$$

Now assume that $s=1$. With $\epsilon= \pm 1$,

$$
\begin{aligned}
& \sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right| \\
&=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{3 v}\right)-\cos \left(\frac{2 n \pi}{3 v}+\frac{2 n \epsilon \pi}{3}\right)\right| \\
& \geq \sup _{n \geq 1}\left|\cos \left(\frac{2(3 n+1) \pi}{3 v}\right)-\cos \left(\frac{2(3 n+1) \pi}{3 v}+\frac{2 \epsilon \pi}{3}\right)\right| \\
&=\sqrt{3}\left|\sin \left(\frac{2 n \pi}{v}+\frac{2 \pi}{3 v}+\frac{\epsilon \pi}{3}\right)\right| .
\end{aligned}
$$

There exists $p \geq 1$ and $q \in \mathbb{Z}$ such that $(\pi / 2)-(\pi / v) \leq(2 p \pi / v)+(2 \pi / 3 v)+(\epsilon \pi / 3)+$ $2 q \pi \leq(\pi / 2)+(\pi / v)$ and we obtain, for $u \geq 21, w=v \pm 1$,

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right| \geq \sqrt{3} \cos \left(\frac{\pi}{v}\right) \geq \sqrt{3} \cos \left(\frac{\pi}{7}\right) \geq 1.56>m .
$$

We thus see that if $u \geq u_{0}$ is not divisible by three or if $u \geq \max \left(21,3 u_{0}\right)$ is divisible by three, for $2 \leq w \leq(u / 2)$,

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 w n \pi}{u}\right)\right| \geq m
$$

so that $k(2 \pi / u)>m$.
It follows from Corollary 3.6 that $k(a)$ depends only on the order u of a. Hence $k(a)>m$ if $u \geq \max \left(21,3 u_{0}\right)$, which shows that $\Omega(m)$ is finite.

We now want to identify the real numbers a for which $k(a) \leq 1.5$.
If $a \in \pi \mathbb{Q}$ has order one, two or four, then $\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|=0$. We also know the following elementary facts.

Lemma 3.8. Let $a \in \pi \mathbb{Q}$, and let $u \notin\{1,2,4\}$ be the order of a.
(1) If $u \notin\{3,5,6,8,9,10,11,12,15,16,18,22,24,30\}$, then

$$
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|>1.5 \text {. }
$$

(2) If $u \in\{3,6,9,12,15,18,24,30\}$, then

$$
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|=1.5 \text {. }
$$

(3) If $u \in\{5,10\}$, then

$$
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|=\frac{\sqrt{5}}{2}
$$

(4) If $u \in\{8,16\}$, then

$$
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|=\sqrt{2}
$$

(5) If $u \in\{11,22\}$, then

$$
\begin{aligned}
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)| & =-\cos \left(\frac{8 \pi}{11}\right)+\cos \left(\frac{24 \pi}{11}\right) \\
& =\cos \left(\frac{2 \pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right) \approx 1.4961
\end{aligned}
$$

Proof. We know that $\left\{e^{i a n}\right\}_{n \geq 1}=\left\{e^{2 i n \pi / u}\right\}_{1 \leq n \leq u}$, and so

$$
\begin{aligned}
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)| & =\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{6 n \pi}{u}\right)\right| \\
& =\sup _{1 \leq n \leq u}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{6 n \pi}{u}\right)\right|
\end{aligned}
$$

and the value of $\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|$ depends only on the order u of a.
The function $x \rightarrow \cos (x)-\cos (3 x)$ is increasing on $[0, \arccos (1 / \sqrt{3})]$ and decreasing on $[\arccos (1 / \sqrt{3}),-\arccos (1 / \sqrt{3})]$, and $0.275 \pi<\arccos (1 / \sqrt{3})<0.333 \pi$. Since $\cos (x)-\cos (3 x)>1.5$ if $x=0.275 \pi$ or if $x=0.333 \pi$, there exists a closed interval I of length 0.058π on which $\cos (x)-\cos (3 x)>1.5$. So, if $u \geq 35>\frac{2}{0.058}$, there exists $n \geq 1$ such that $(2 n \pi / u) \in I$, and

$$
\sup _{n \geq 1}|\cos (a n)-\cos (3 a n)|>1.5 \quad \forall n \geq 35 \text {. }
$$

The other properties follow from computations of $\sup _{1 \leq n \leq u} \mid \cos (2 n \pi / u)-$ $\cos (6 n \pi / u) \mid$ for $3 \leq u \leq 34$ and are left to the reader.

We now wish to obtain similar estimates for $\sup _{n \geq 1}|\cos (2 \pi / n)-\cos (2 s \pi / n)|$ for $s \in\{2,4,5,6\}$. Set $f_{s}(x)=\cos (x)-\cos (s x), \theta_{s}=\sup _{x \geq 0}\left|f_{s}(x)\right|, \delta_{s}=\sup _{x \geq 0}\left|f_{s}^{\prime \prime}(x)\right|$. If s is even, $\theta_{s}=2$, and a computer verification shows that $\theta_{s}>1.8$ for $s=5$. It follows from the Taylor-Lagrange inequality that if f_{s} attains it maximum at α_{s}, then

$$
\left|f_{s}(x)-\theta_{s}\right| \leq \frac{\delta_{s}}{2}\left(x-\alpha_{s}\right)^{2}, \quad\left|f_{s}(x)\right| \geq \theta_{s}-\frac{\delta_{s}}{2}\left(x-\alpha_{s}\right)^{2}
$$

and so $\left|f_{s}(x)\right|>1.5$ if $\left(x-\alpha_{s}\right)^{2} \leq\left(2 \theta_{s}-3\right) / \delta_{s}$. So if $l_{s}<\sqrt{\left(2 \theta_{s}-3\right) / \delta_{s}}$, there exists a closed interval of length $2 l_{s}$ on which $\left|f_{s}(x)\right|>1.5$. Let $u_{s} \geq\left(\pi / l_{s}\right)$ be an integer.

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|>1.5 \quad \forall u \geq u_{s} .
$$

Values for u_{s} are given in Table 1.
We obtain the following lemma.

Table 1. Values of $u_{s}, s=2,4,5,6$.

s	θ_{s}	δ_{s}	l_{s}	u_{s}
2	2	≤ 5	0.4472	8
4	2	≤ 17	0.2425	13
5	>1.8	≤ 26	0.1519	21
6	2	≤ 37	0.1644	20

Lemma 3.9. Let $u \geq 4$ be an integer and let $s \leq u / 4$ be a nonnegative integer, with $s \neq 1$. If $s \neq 3$, then

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 n s \pi}{u}\right)\right|>1.5
$$

Proof. If $s=0$, then

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 n s \pi}{u}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-1\right|>1.8 \text {. }
$$

If $s \geq 7$, the result follows from Lemma 3.2(i). If $s \in\{2,4,6\}$, the result follows from Table 1 since $u \geq 4 s$. If $s=5$, the result also follows from the table for $u \geq 21$, and a direct computation shows that

$$
\begin{aligned}
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{20}\right)-\cos \left(\frac{10 n \pi}{20}\right)\right| & =\sup _{1 \leq n \leq 20}\left|\cos \left(\frac{n \pi}{10}\right)-\cos \left(\frac{n \pi}{2}\right)\right| \\
& =1+\cos \left(\frac{\pi}{5}\right)>1.8 .
\end{aligned}
$$

Now set $g_{s}(x)=\cos (3 x)-\cos (s x), \theta_{s}=\sup _{x \geq 0}|g(s)|, \delta_{s}=\sup _{x \geq 0}\left|g_{s}^{\prime \prime}(x)\right|$. If s is even, $\theta_{s}=2$, and a computer verification shows that $\theta_{s}>1.85$ for $s=5, \theta_{s}>1.91$ for $s=7, s=11, \theta_{s}>1.97$ for $s=13, s=17, \theta_{s}>1.96$ for $s=19$. We see, as above, that if $l_{s}<\sqrt{\left(2 \theta_{s}-3\right) / \delta_{s}}$ and if $u_{s} \geq \pi / l_{s}$ is an integer,

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)-\cos \left(\frac{6 n \pi}{u}\right)\right|>1.5 \quad \forall u \geq u_{s} .
$$

Our results are shown in Table 2.
We will be interested here in the case where u is not divisible by three and where $(2 s \pi / u) \leq(\pi / 2)$, which means that $u \geq 4 s$. So we are left with $s=2, u=8,10$ or 11 , and with $s=5, u=20$. We obtain, by direct computation,

$$
\begin{gathered}
\sup _{n \geq 1}\left|\cos \left(\frac{4 n \pi}{8}\right)-\cos \left(\frac{6 n \pi}{8}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{n \pi}{2}\right)-\cos \left(\frac{3 n \pi}{4}\right)\right|=2 . \\
\sup _{n \geq 1}\left|\cos \left(\frac{4 n \pi}{10}\right)-\cos \left(\frac{6 n \pi}{10}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{5}\right)-\cos \left(\frac{3 n \pi}{5}\right)\right|=2 . \\
\sup _{n \geq 1}\left|\cos \left(\frac{4 n \pi}{11}\right)-\cos \left(\frac{6 n \pi}{11}\right)\right|=\cos \left(\frac{20 \pi}{11}\right)-\cos \left(\frac{30 \pi}{11}\right)=\cos \left(\frac{2 \pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right) \approx 1.4961 . \\
\sup _{n \geq 1}\left|\cos \left(\frac{10 n \pi}{20}\right)-\cos \left(\frac{6 n \pi}{20}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{n \pi}{2}\right)-\cos \left(\frac{3 n \pi}{10}\right)\right|>1.80 .
\end{gathered}
$$

Table 2. Values of $u_{s}, 2 \leq s \leq 20, s$ not divisible by three.

s	θ_{s}	δ_{s}	l_{s}	u_{s}
2	2	≤ 13	0.2774	12
4	2	≤ 23	0.2085	16
5	>1.85	≤ 34	0.1435	22
7	>1.91	≤ 58	0.1189	27
8	2	≤ 73	0.1170	27
10	2	≤ 109	0.0958	33
11	>1.91	≤ 130	0.0794	40
13	>1.97	≤ 178	0.0727	44
14	2	≤ 205	0.0698	45
16	2	≤ 275	0.0603	53
17	>1.97	≤ 298	0.0562	56
19	>1.96	≤ 390	0.0486	65
20	2	≤ 409	0.0494	64

We obtain the following lemma.
Lemma 3.10. Let u, s be positive integers satisfying $u \geq 4$ and $u / 4 \leq s \leq 5 u / 12$, with $s \geq 2$, so that $u \geq 5$.

$$
\begin{aligned}
& \sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| \\
& \quad \times\left\{\begin{array}{l}
=\cos \left(\frac{\pi}{5}\right)+\cos \left(\frac{2 \pi}{5}\right) \quad \text { if } u=5, s=2 \text { or } \text { if } u=10, s=3, \\
=\sqrt{2} \quad \text { if } u=8, s=3 \text { or if } u=16, s=5, \\
=\cos \left(\frac{2 \pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right) \quad \text { if } u=11, s=3 \text { or } s=4 \text { or if } u=22, s=7, \\
=1.5 \quad \text { if } u=9 \text { or } u=12, s=3, \\
>1.5 \quad \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Proof. Set $r=|3 s-u|$. Since $(2 \pi / 3)-(\pi / 2)=(5 \pi / 6)-(2 \pi / 3)=(\pi / 6), 0 \leq(2 \pi r / u) \leq$ $(\pi / 2)$. If $r \geq 21$, it follows from the second assertion of Lemma 3.2(i) applied to $a=2 \pi / u$ and $b=2 s \pi / u$ that $\sup _{n \geq 1}|\cos (2 n \pi / u)-\cos (2 s n \pi / u)|>1.5$.

If u is not divisible by three, then r is not divisible by three either, and it follows from the discussion above that if $r \neq 1, r \neq 2, r \leq 20$, or if $r=2, u \neq 11$, then

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| \geq \sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{2 r n \pi}{u}\right)\right|>1.5 .
$$

If $r=2, u=11$, then $\left|s-\frac{11}{3}\right|=|s-(u / 3)|=\frac{2}{3}$, and so $s=3$ and

$$
\begin{aligned}
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{11}\right)-\cos \left(\frac{6 n \pi}{11}\right)\right| & =\sup _{1 \leq n \leq 11}\left|\cos \left(\frac{2 n \pi}{11}\right)-\cos \left(\frac{6 n \pi}{11}\right)\right| \\
& =\left|\cos \left(\frac{8 \pi}{11}\right)-\cos \left(\frac{24 \pi}{11}\right)\right|=\cos \left(\frac{2 \pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right) \approx 1.4961 .
\end{aligned}
$$

The condition $r=1$ gives $|s-(u / 3)|=\frac{1}{3}$, and so $s=(u-1) / 3$ if $u \equiv 1 \bmod 3$, and $s=(u+1) / 3$ if $u \equiv 2 \bmod 3$. In this situation,

$$
\begin{aligned}
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{snn}}{u}\right)\right| & \geq \sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{6 \operatorname{sn\pi }}{u}\right)\right| \\
& =\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{6 n \pi}{u}\right)\right| .
\end{aligned}
$$

Since $|s-(u / 3)|=\frac{1}{3}$, it follows from Lemma 3.8 that if $n \notin\{5,8,10,11,16,22\}$, or if $u=5, s \neq 2$, or if $u=8, s \neq 3$, or if $u=10, s \neq 3$, or if $u=11, s \neq 4$, or if $u=16$, $s \neq 5$, or if $u=22, s \neq 7$, then

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|>1.5 .
$$

A direct computation then shows that

$$
\begin{aligned}
\sup _{n \geq 1} \mid & \left.\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 s n \pi}{u}\right) \right\rvert\, \\
& =\sup _{1 \leq n \leq u}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 s n \pi}{u}\right)\right| \\
& =\left\{\begin{array}{l}
\cos \left(\frac{\pi}{5}\right)+\cos \left(\frac{2 \pi}{5}\right) \quad \text { if } u=5, s=2 \text { or if } u=10, s=3, \\
\sqrt{2} \quad \text { if } u=8, s=3 \text { or if } u=16, s=5, \\
\cos \left(\frac{2 \pi}{11}\right)+\cos \left(\frac{3 \pi}{11}\right) \quad \text { if } u=11, s=4 \text { or if } u=22, s=7 .
\end{array}\right.
\end{aligned}
$$

We now consider the case where $u=3 v$ is divisible by three. Then r is also divisible by three. If $r=0$ and if $u \neq 9$, then

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| \geq \sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-1\right|>1.8 .
$$

If $u=9$, then $s=3$ and

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|=\sup _{1 \leq n \leq 9}\left|\cos \left(\frac{2 n \pi}{9}\right)-\cos \left(\frac{2 n \pi}{3}\right)\right|=1.5 .
$$

Now assume that $r=3$, which means that $s=v+\epsilon$, with $\epsilon= \pm 1$.

$$
\begin{aligned}
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 s n \pi}{u}\right)\right| & =\sup _{1 \leq n \leq 3 v}\left|\cos \left(\frac{2 n \pi}{3 v}\right)-\cos \left(\frac{2 n \pi}{3}+\frac{2 \epsilon n \pi}{3 v}\right)\right| \\
& =2 \sup _{1 \leq n \leq 3 v}\left|\sin \left(\frac{n \pi}{3}+\frac{(1+\epsilon) n \pi}{3 v}\right)\right|\left|\sin \left(-\frac{n \pi}{3}+\frac{(1-\epsilon) n \pi}{3 v}\right)\right| \\
& =2 \sup _{1 \leq n \leq 3 v}\left|\sin \left(\frac{n \pi}{3}\right)\right|\left|\sin \left(\frac{n \pi}{3}+\frac{2 n \pi}{3 v}\right)\right| \\
& \geq \sqrt{3} \sup _{0 \leq n \leq v}\left|\sin \left(\frac{(3 n+1) \pi}{3}+\frac{2(3 n+1) \pi}{3 v}\right)\right| \\
& =\sqrt{3} \sup _{0 \leq n \leq v}\left|\sin \left(\frac{2 n \pi}{v}+\frac{(v+2) \pi}{3 v}\right)\right|
\end{aligned}
$$

Since $\sin (x)>\sqrt{3} / 2$ for $\pi / 3<x<2 \pi / 3$, there exists $n \in\{1, \ldots, v\}$ such that $\sin ((2 n \pi / v)+((v+2) \pi / 3 v))>\sqrt{3} / 2$ if $v \geq 7$, so

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|>1.5 \quad \text { if } u \geq 21 .
$$

We are left with the cases where $u=6, v=2, s=1$ or $3, u=9, v=3, s=2$ or 4 , $u=12, v=4, s=3$ or $5, u=15, v=5, s=4$ or $6, u=18, v=6, s=5$ or 7 . But $s=1$ is not relevant, and the condition $u / 4 \leq s \leq 5 u / 12$ is not satisfied for $u=6, s=3$ and for $u=9, s=2$ or 4 .

Direct computations, which are left to the reader, show that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| \begin{cases}>1.64 & \text { if } u=15 \text { and } s=4 \\ >1.70 & \text { or if } u=18 \text { and } s=5 \text { or } s=7, \\ >1.72 & \text { if } u=15 \text { and } s=6 \\ >1.73 & \text { if } u=12 \text { and } s=5\end{cases}
$$

So $\sup _{n \geq 1}|\cos (2 n \pi / u)-\cos (2 s n \pi / u)|>1.5$ if $u / 4 \leq s \leq 5 u / 12$ when u is divisible by three and when $s-(u / 3) \in\{-1,0,1\}$, unless $u=12$ and $s=3$. If $u=12$ and $s=3$,

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|=\sup _{n \geq 1}\left|\cos \left(\frac{n \pi}{6}\right)-\cos \left(\frac{n \pi}{2}\right)\right|=1.5 .
$$

Now assume that $u=3 v$ is divisible by three and that $2 \leq|s-v| \leq 6$. Set again $r=|3 s-u|$ and set $p=r / 3$, so that $2 \leq p \leq 6$. Notice also that $p \leq u / 12$ since $r \leq u / 4$, so that $u \geq 24$ and $v \geq 8$.

$$
\begin{aligned}
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| & \geq \sup _{n \geq 1}\left|\cos \left(\frac{6 n \pi}{u}\right)-\cos \left(\frac{2 r n \pi}{u}\right)\right| \\
& =\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{v}\right)-\cos \left(\frac{2 p n \pi}{v}\right)\right| .
\end{aligned}
$$

It follows then from Lemma 3.9 that $\sup _{n \geq 1}|\cos (2 n \pi / u)-\cos (2 \operatorname{sn\pi } / u)|>1.5$ if $p \neq 3$.

If $p=3$, then $u \geq 36$, and so $v \geq 12$. Since $s-v= \pm 3$, it follows from Lemma 3.8 that we only have to consider the cases when:

- $u=36, s=9$ or 15 ,
- $u=45, s=12$ or 18 ,
- $u=54, s=15$ or 21 ,
- $u=72, s=21$ or 27 ,
- $u=90, s=27$ or 33 .

Direct computations, which are left to the reader, show that

$$
\begin{aligned}
& \sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right| \\
& \quad \times\left\{\begin{array}{l}
>1.93 \quad \text { if } u=36 \text { and } s=9 \text { or if } u=45 \text { and } s=12 \text { or } 18 \\
\text { or if } u=72 \text { and } s=27 \text { or if } u=90 \text { and } s=27 \text { or } 33, \\
>1.91 \quad \text { or if } u=54 \text { and } s=15, \\
>1.87 \quad \text { or if } u=72 \text { and } s=24, \\
>1.85 \quad \text { or if } u=36 \text { and } s=15, \\
>1.83 \quad \text { or if } u=54 \text { and } s=21 .
\end{array}\right.
\end{aligned}
$$

This concludes the proof of the lemma.
Lemma 3.11. Let u, s be positive integers satisfying $5 u / 12 \leq s \leq u / 2$, with $s \geq 2$, so that $u \geq 4$.

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{snn}}{u}\right)\right|= \begin{cases}=1.5 & \text { if } u=6 \text { and } s=3, \\ >1.5 & \text { otherwise. }\end{cases}
$$

Proof. If $s \geq 4$, it follows from Lemma 3.2(ii) that

$$
\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|>1.57 .
$$

So we only have to consider the cases $s=3, u=6$ or 7 and $s=2, u=4$.
A direct computation then shows that
$\sup _{n \geq 1}\left|\cos \left(\frac{2 n \pi}{u}\right)-\cos \left(\frac{2 \operatorname{sn\pi }}{u}\right)\right|\left\{\begin{array}{l}=2 \quad \text { if } u=4 \text { and } s=2, \\ =1.5 \quad \text { if } u=6 \text { and } s=3, \\ =\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{\pi}{7}\right) \approx 1.5245 \text { if } u=7 \text { and } s=3 .\end{array}\right.$
We consider again the numbers $\theta(u)$ and $\sigma(u)$ introduced in Definition 3.5.
It follows from Lemmas 3.8-3.11 that we have the following results.
Lemma 3.12. $\theta(5)=\theta(10)=\cos (\pi / 5)+\cos (2 \pi / 5), \theta(8)=\theta(16)=\sqrt{2}, \theta(11)=\theta(22)=$ $\cos (2 \pi / 11)+\cos (3 \pi / 11)$, and $\theta(u)>1.5$ for $u \geq 4, u \neq 5, u \neq 8, u \neq 10, u \neq 11, u \neq$ $16, u \neq 22$.

Lemma 3.13. $\sigma(u)=1.5$ if $u \in\{1,2,3,4,5,6,8,10\}$ and $\sigma(u)>1.5$ otherwise.
Hence, if u is divisible by three, $\sigma(u / 3)=1.5$ if $u \in\{3,6,9,12,15,18,24,30\}$ and $\sigma(u)>1.5$ otherwise. We then deduce from Corollary 3.6 a complete description of the set $\Omega(1.5)=\{a \in[0, \pi] \mid k(a) \leq 1.5\}$.

Theorem 3.14. Let $a \in[0, \pi]$.

- If $a \in\{\pi / 5,2 \pi / 5,3 \pi / 5,4 \pi / 5\}$, then $k(a)=\cos (\pi / 5)+\cos (2 \pi / 5) \approx 1,1180$.
- If $a \in\{\pi / 8, \pi / 4,3 \pi / 8,5 \pi / 8,5 \pi / 4,7 \pi / 8\}$, then $k(a)=\sqrt{2} \approx 1,4142$.
- If $a \in\{\pi / 11,2 \pi / 11,3 \pi / 11,4 \pi / 11,5 \pi / 11,6 \pi / 11,7 \pi / 11,8 \pi / 11,9 \pi / 11,10 \pi / 11\}$, then $k(a)=\cos (2 \pi / 11)+\cos (3 \pi / 11) \approx 1,4961$.
- If $a \in\{0, \pi / 6, \pi / 3, \pi / 2,2 \pi / 3,5 \pi / 6\} \cup\{\pi / 9,2 \pi / 9,4 \pi / 9,5 \pi / 9,7 \pi / 9,8 \pi / 9\} \cup\{\pi / 12$, $5 \pi / 12,7 \pi / 12\} \cup\{\pi / 15,2 \pi / 15,4 \pi / 15,7 \pi / 15,8 \pi / 15,11 \pi / 15,13 \pi / 15,14 \pi / 15\}$, then $k(a)=1.5$.
- For all other values of $a, 1.5<k(a) \leq 8 / 3 \sqrt{3} \approx 1.5396$.

Corollary 3.15. Let G be an abelian group and let $(C(g))_{g \in G}$ be a G-cosine family in a unital Banach algebra A such that $\sup _{g \in G}\|C(g)-c(g)\|<\sqrt{5} / 2$ for some bounded scalar G-cosine family $(c(g))_{g \in G}$. Then $C(g)=c(g)$ for every $g \in G$.

Proof. Let $g \in G$. Since the scalar cosine sequence $(c(n g))_{n \in \mathbb{Z}}$ is bounded, a standard argument shows that there exists $a(g) \in \mathbb{R}$ such that $c(n g)=\cos (n a(g)) 1_{A}$ for $n \in \mathbb{Z}$. Since $k(a(g)) \geq \sqrt{5} / 2$, it follows from Corollary 2.4 that $C(n g)=\cos (n a(g)) 1_{A}=c(n g)$ for $n \in \mathbb{Z}$, and $C(g)=c(g)$.

References

[1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems (Birkhäuser, Basel, 2001).
[2] A. V. Arkhangel'skii and V. I. Ponomarev, Fundamentals of General Topology: Problems and Exercises (D. Reidel Publishing Company/Hindustan Publishing Company, 1984), (translated from Russian).
[3] A. Batkai, K.-J. Engel and M. Haase, 'Cosine families generated by second order differential operators on $W^{1,1}(0,1)$ with generalized Wentzell boundary conditions', Appl. Anal. 84 (2005), 867-876.
[4] A. Bobrowski and W. Chojnacki, 'Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space', Studia Math. 217 (2013), 219-241.
[5] A. Bobrowski, W. Chojnacki and A. Gregosiewicz, 'On close-to-scalar one-parameter cosine families', J. Math. Anal. Appl. 429 (2015), 383-394.
[6] W. Chojnacki, 'On cosine families close to scalar cosine families', J. Aust. Math. Soc. 99 (2015), 166-174.
[7] R. H. Cox, 'Matrices all of whose powers lie close to the identity', Amer. Math. Monthly 73 (1966), 813.
[8] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 24 (Clarendon Press, Oxford, 2001).
[9] J. Esterle, 'Bounded cosine functions close to continuous scalar bounded cosine functions', Int. Eq. Op. Th. 85 (2016), 347-357.
[10] M. Haase, 'The group reduction for bounded cosine functions on UMD spaces', Math. Z. 262(2) (2009), 281-299.
[11] M. Haase, 'The functional calculus approach to cosine operator functions', in: Recent Trends in Analysis, Proceedings of the Conference in honour of N. K. Nikolski held in Bordeaux 2011 (Theta Foundation, Bucharest, 2013), 123-147.
[12] R. A. Hirschfeld, 'On semi-groups in Banach algebras close to the identity', Proc. Japan Acad. Ser. A Math. Sci. 44 (1968), 755.
[13] J. P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques (Hermann, Paris, 1963).
[14] B. Nagy, 'Cosine operator functions and the abstract Cauchy problem', Period. Math. Hungar. 7 (1976), 15-18.
[15] M. Nakamura and M. Yoshida, 'On a generalization of a theorem of Cox', Proc. Japan Acad. Ser. A Math. Sci. 43 (1967), 108-110.
[16] F. Schwenninger and H. Zwart, 'Less than one, implies zero', Studia Math. 229 (2015), 181-188.
[17] F. Schwenninger and H. Zwart, 'Zero-two law for cosine families', J. Evol. Equ. 15 (2015), 559-569.
[18] C. Travis and G. Webb, 'Cosine families and abstract nonlinear second order differential equation', Acta Math. Acad. Sci. Hungar. 32 (1978), 75-96.
[19] L. J. Wallen, 'On the magnitude of $\left\|x^{n}-1\right\|$ in a normed algebra', Proc. Amer. Math. Soc. 18 (1967), 956.
[20] L. C. Washington, Cyclotomic Fields, 2nd edn, Graduate Texts in Mathematics, 83 (Springer, New York-Berlin-Heidelberg, 1997).

JEAN ESTERLE, IMB, UMR 5251,
Université de Bordeaux, 351, cours de la Libération,
33405 Talence, France
e-mail: esterle@math.u-bordeaux1.fr

[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

