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The development of simple, low-order and accurate unsteady aerodynamic models
represents a crucial challenge for the design optimisation and control of fluid dynamical
systems. In this work, wind tunnel experiments of a pitching NACA 0018 aerofoil
conducted at a Reynolds number Re = 2.8 x 10° and at different free-stream turbulence
intensities are used to identify data-driven nonlinear state-space models relating the
time-varying angle of attack of the aerofoil to the lift coefficient. The proposed state-space
neural network (SS-NN) modelling technique explores an innovative methodology, which
brings the flexibility of artificial neural networks into a classical state-space representation
and offers new insights into the construction of reduced-order unsteady aerodynamic
models. The work demonstrates that this technique provides accurate predictions of
the nonlinear unsteady aerodynamic loads of a pitching aerofoil for a wide variety
of angle-of-attack ranges and frequencies of oscillation. Results are compared with a
modified version of the Goman—Khrabrov dynamic stall model. It is shown that the SS-NN
methodology outperforms the classical semi-empirical dynamic stall models in terms
of accuracy, while retaining a fast evaluation time. Additionally, the proposed models
are robust to noisy measurements and do not require any pre-processing of the data,
thus involving only a limited user interaction. Overall, these features make the SS-NN
technique an excellent candidate for the construction of accurate data-driven models from
experimental fluid dynamics data, and pave the way for their adoption in applications
entailing design optimisation and real-time control of systems involving lift.
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1. Introduction

In recent years, the importance of unsteady aerodynamics in a wide range of fluid dynamic
applications has led to a substantial increase in research efforts. Typical examples of
unsteady flows include wind turbines (Leishman 2002; Sebastian & Lackner 2013; Le
Fouest & Mulleners 2022), helicopter rotors (Ganesh et al. 2005; Mulleners, Kindler
& Raffel 2012; Tan & Wang 2013), micro-aerial vehicles (Ho et al. 2003; Golubev &
Visbal 2012) and bio-inspired aerodynamics (Birch & Dickinson 2001; Dong, Bode-Oke
& Li 2018). The need for accurate predictions of the unsteady aerodynamic loads
has promoted the development of high-fidelity techniques, such as computational fluid
dynamics (CFD) and wind tunnel experiments. These approaches, however, are time
intensive and costly, which makes them unsuited whenever fast mathematical models
are needed. Indeed, engineering applications involving design optimisation or real-time
control require low-order, fast and accurate models.

As far as pitching aerofoils are concerned, the first analytical unsteady aerodynamics
models trace back to Wagner (1925), who investigated the lift response due to a step change
in angle of attack, and Theodorsen (1935), who developed an unsteady aerodynamics
model for a pitching—plunging flat plate. However, these theories, based on potential flows,
assume small perturbations and cannot be used for aerofoils at high angles of attack and
pitch rates. To overcome these limitations, semi-empirical dynamic stall models have been
developed to account for the unsteady nonlinear lift response associated with nonlinear
aerodynamic phenomena such as dynamic stall, flow separation and vortex shedding.
Examples of dynamic stall models include the Leishman—Beddoes (Leishman & Beddoes
1989), the Goman—Khrabrov (Goman & Khrabrov 1994) and the ONERA (McAlister,
Lambert & Petot 1984) models. Although these techniques are of utmost importance
within unsteady aerodynamic modelling, they present major shortcomings. In particular,
classical dynamic stall models typically have limited accuracy and involve a cumbersome
calibration of the model parameters. The latter are generally tuned on static and dynamic
experiments, which are therefore necessary for the model estimation.

In recent times, the abundance of numerical and experimental datasets has stimulated
the use of data-driven methods. Many different data-driven modelling strategies have
been investigated for the identification of unsteady aerodynamics systems, such as
linear/linearised state-space models (Brunton, Rowley & Williams 2013; Dawson et al.
2015), polynomial nonlinear state-space models (Decuyper et al. 2018; Siddiqui et al.
2022), block-oriented models (Kou, Zhang & Yin 2016) and the sparse identification of
nonlinear dynamics method (Brunton, Proctor & Kutz 2016; Loiseau, Noack & Brunton
2018; Sun et al. 2021). A promising data-driven technique is the state-space neural network
(SS-NN) methodology (Schoukens 2021), which exploits the flexibility of artificial neural
networks within a classical state-space representation. The state-space formulation proves
particularly useful since it facilitates the integration of the model within larger simulation
and control frameworks. Previous work (Damiola ef al. 2023a) has demonstrated the huge
potential of SS-NN models on a test case where numerical CFD data were used for the
estimation of the unsteady lift coefficient of a pitching aerofoil.

The present contribution represents a substantial extension of that work, and aims
at assessing the capability of state-space neural networks for the construction of
reduced-order models from noisy and highly nonlinear wind tunnel experimental data.
The use case being considered involves the modelling of the unsteady lift of a pitching
NACA 0018 aerofoil for two distinct free-stream turbulence intensities, 0.3 % and 8.2 %.
The analysis of different inflow turbulence levels aims at reproducing different scenarios
often encountered in real-life applications, where aerofoils experience a variety of
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free-stream turbulence intensities that can dramatically change their stall characteristics.
The SS-NN models are trained using broadband sine-sweep signals, and they are validated
on sine-sweep motions and simple harmonic motions performed at different oscillating
frequencies and for different angle-of-attack ranges, including pre-stall and post-stall
flow conditions. Results are benchmarked with the output of a modified version of the
Goman—Khrabrov dynamic stall model (Williams et al. 2017). The Goman—Khrabrov
(GK) model is a first-order model that is gaining more and more attention within the
fluid dynamics community, especially for closed-loop flow control applications, such as
lift hysteresis reduction during pitching manoeuvres (Williams et al. 2015) and gust load
alleviation (Williams & King 2018; Sedky, Jones & Lagor 2020). Recent efforts towards
the enhancement of the GK model include the work of An et al. (2021), who estimated
the instantaneous lift coefficient of a pitching aerofoil by assimilating the predictions of a
GK model with limited surface pressure measurements, and the studies of Williams et al.
(2019) and De Troyer et al. (2022), who extended the formulation of the GK model to
account for active flow control by slot blowing and plasma actuation, respectively. Finally,
Ayancik & Mulleners (2022) proposed to revisit and generalise the GK model by replacing
its empirical parameters with physics-based time constants.

The remainder of the manuscript is structured as follows. Section 2 details the
methodology proposed in this work, which includes a description of the experimental
set-up and a thorough explanation of the implementation of the SS-NN model and the GK
model. Results are compared and discussed in § 3, and the major outcomes of the work are
summarised in § 4.

2. Methodology

The methodology proposed in this work relies on a black-box modelling approach,
in which unsteady aerodynamic data are obtained through dedicated wind tunnel
experiments. Results are then compared with the predictions of a modified version of the
GK dynamic stall model.

2.1. Wind tunnel experiments

Experiments are performed in the open-circuit wind tunnel of the Vrije Universiteit
Brussel. This facility is characterised by a rectangular inlet test section with a width of
2 m and a height of 1 m. The test chamber has a length of 12 m and features a divergent
ceiling (opening angle equal to 0.29 degrees) which accounts for the development of the
boundary layer. Figure 1 depicts the experimental set-up, which features a rectangular
wing with NACA 0018 aerofoil shape, chord length of 300 mm and aspect ratio of 1.8.
The wing comprises a central 3D printed part and two equal carbon-fibre sections on
the sides. A circular rod connects the wing to the sidewall of the wind tunnel, and an
actuation mechanism is used to impose a rotation about the pitch axis, which is located
at the mid-chord. To minimise three-dimensional effects, two equal endplates of circular
shape are positioned at the tip and root of the wing. This set-up is capable of testing
a wide range of pitching motions, including simple harmonic signals, sine sweeps and
random-phase multisines. The solid blockage ratio is between 4.5 % and 7 % for every
imposed motion. The wing features 47 pressure taps, as illustrated in figure 1(b), which
are situated at mid-span. Data are acquired using a ZOC33/64Px Scanivalve® pressure
measurement system which samples at 200 Hz. As there is no tap in the rearmost part
of the aerofoil, the pressure at the trailing edge is determined using linear extrapolation.
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Figure 1. (a) CAD model of the experimental set-up, (b) graphical representation of the 47 pressure taps
located at the mid-span of the wing and (c¢) square-mesh grid used to increase the free-stream turbulence level
(dimensions are in centimetres). Figure taken from Damiola et al. (2023b).

The aerodynamic forces exerted on the wing are determined by numerically integrating
the readings of the pressure taps.

By adjusting the distance between the grid illustrated in figure 1(c) and the wing model,
a range of longitudinal free-stream turbulence intensities between 0.3 % and 8.2 % can
be achieved. For more details regarding the experimental set-up, and for a comprehensive
analysis of the free-stream turbulence characteristics and flow uniformity, the reader is
referred to Damiola et al. (2023b), in which dual-component hot-wire measurements were
used to evaluate the inflow conditions.

2.2. The aerodynamic characteristics of a NACA 0018 aerofoil at Re = 2.8 x 107

Before proceeding with the modelling task, it is important to have a good understanding
of the system under consideration. For this purpose, the aerodynamic characteristics
of the aerofoil are evaluated under quasi-static conditions for the two different
free-stream turbulence levels, I, = 0.3 % and I, = 8.2 %. Measurements are acquired
by pitching the aerofoil around its mid-chord in a sinusoidal manner at a reduced
frequency « = (7tfc)/Ux = 0.0006, which corresponds to an equivalent reduced pitch
rate rog = a1 (m/180)k = 2.8 x 10~*. This value is sufficiently small to ensure an accurate
evaluation of the static aerodynamic loads. Results are obtained by computing the phase
average over three subsequent periods. Figure 2 illustrates the quasi-static lift coefficient
obtained for the considered NACA 0018 aerofoil at a Reynolds number Re = 2.8 x 10°.
Note that the values shown in the figure represent averages over a sliding window
containing 130 samples. The different free-stream turbulence intensity completely alters
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Figure 2. Quasi-static lift coefficient of a NACA 0018 profile at Re = 2.8 x 10° for two different free-stream
turbulence levels. Solid line indicates upstroke motion, dashed line indicates downstroke and the coloured band

represents standard deviation. Note the positive deviation from the linear curve at @ = 8° for the low /,, case,
betraying the presence of a LSB. This is absent in the high 7, case.

the static stall characteristics of the aerofoil. While for the clean tunnel (/, = 0.3 %)
an abrupt stall occurs at 21°, at high turbulence intensity (/, = 8.2 %) stall is delayed
to 23° and exhibits a much more gentle behaviour. The sudden occurrence of lift stall
at a low level of free-stream turbulence is attributed to the bursting of a leading-edge
laminar separation bubble (LSB) on the suction side of the aerofoil, as supported by the
experimental results of Gerakopulos, Boutilier & Yarusevych (2010), Mueller-Vahl et al.
(2015) and Damiola et al. (2023b). The larger free-stream disturbances also produce an
increase in the maximum lift coefficient by approximately 13 %. Another crucial difference
is the presence of a sizeable stall hysteresis at low turbulence level in the angle-of-attack
range 13 < «a < 22, which is related to the breakdown of the LSB and indicates the
existence of two stable configurations. This flow feature is absent in the highly turbulent
case, in which the large free-stream disturbances trigger early laminar—turbulent transition
and prevent the formation of the LSB.

2.3. State-space neural network model

Among the many existing data-driven modelling tools available, the state-space
representation is selected because it possesses universal approximation properties which
make this approach suitable for a large range of engineering applications (Schoukens &
Ljung 2019). The classical formulation of a nonlinear state-space model in discrete time is
given by

x(k+1) = f (x(k), u(k))

(2.1)

y(k) = g (x(k), u(k))
where x(k) indicates the states of the system at time k, u(k) is the input of the system
and y(k) is the output of the system. The relation presented above can be reformulated by
explicitly separating a linear part from a nonlinear part. In the context of this work, the
latter is described using a single-hidden-layer neural network. The resulting state-space
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Input

Figure 3. Illustration of the SS-NN model structure described in (2.2a) and (2.2b): layers 1 and 2 represent the
state equation, layers 3 and 4 represent the output equation. Note that a nonlinear activation function (‘tansig’)
is used in the first and third layers, whereas a linear activation function (‘purelin’) is used in the second and
fourth layers.

representation is denominated SS-NN, and can be written as follows (Schoukens 2021):

x(k+1)=[A B] [ﬁg} + W, tanh ([fo W] [ﬁg} + bf) + by (2.2q)
y(k) =[C D] ng] + W, tanh ([ng Weu] ng] + bg) + by, (2.2b)

where A, B, C and D are the linear state-space matrices, tanh(-) is the hyperbolic tangent
activation function and Wy, Wy, W, Wy, Wey, Wy, by, by, by and b, denote the weights
and biases of the neural network. The current study considers a single input single output
system, in which the input u(k) consists in the time-dependent angle of attack of the
aerofoil, and the output y(k) is the lift coefficient. A time step At = 0.005 s is selected,
corresponding to the sampling time of the pressure measurement system. It is important to
remark that the time step selected during the training phase becomes an intrinsic property
of the model, and thus must be kept unchanged when evaluating the model. Considering
a model structure with n states and with two single-hidden-layer neural networks of
equal size (n, = ny neurons) to model the nonlinear contributions in the state and output
equations, the free parameters of the model assume the dimensions A € R"*" B e
R™>1 C e R DeR, W, e R™, Wy € RIxmy, Wi € R Wy, € R W, €
R™>" Wy, € Ru>x1 b e R, by € R, by € R™, by € R™. Figure 3 provides a graphical
illustration of the state-space equations reported in (2.2a) and (2.2b). The free parameters
of the model, which consist in the linear state-space matrices and in the weights
and biases of the neural network, are obtained by minimising the mean-squared-error
cost function using the Levenberg—Marquardt algorithm provided in the neural network
toolbox of Matlab (Levenberg 1944; Beale, Hagan & Demuth 2018). Following the
methodology proposed by Schoukens (2021), the model parameters are initialised with
a linear approximation of the nonlinear system. This approach is chosen in the attempt to
prevent the nonlinear optimisation algorithm from reaching a local minimum.

2.4. State-space neural network model training

For an accurate model estimation, it is essential to select a suitable training dataset
which effectively covers the parameter space of interest. Within the system identification
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No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

o (deg.) 5 10 10 14 14 18 18 22
) (deg) 10 6 10 6 10 6 10 6
To (s) 50 50 50 50 50 50 50 50

f (Hz) (0-21 [0-2] [0-2] [0-2] [0-2] [0-2] [0-2] [0-2]

Table 1. Parameters defining the eight swept sines used for model training.

community, it has been established that broadband signals represent excellent candidates
for data-driven modelling applications (Pintelon & Schoukens 2012; Decuyper et al.
2018). The present work makes use of sine-sweep signals, which are excitations rich
in information and designed to effectively cover the desired frequency band. From a
practical perspective, a further advantage of using sine sweeps is that they closely
resemble simple harmonic motions. The latter are frequently encountered in numerous
engineering applications, including wind turbines and helicopter aerodynamics. The
sine-sweep signals considered in this study excite the frequency range f = [0 — 2] Hz,
which corresponds to a reduced frequency x = [0 — 0.126]. These values represent an
appropriate and sufficiently wide range for the analysis of unsteady aerodynamics. The
mathematical description of the considered sine-sweep motions is given as

oo + ap sin [(ayt + by)t] for 0 <t < T
a(t):{ 0 1 (a1 1) 0 23)

ao + ay sin[(ax(t — To) + b2)(t — To)] for Top <t <27y,

where o represents the mean angle of attack, o is the amplitude of oscillation, Ty
is the half—sweep peri0d> al = n(fmax _fmin)/T0> ap = jT(fmin _fmax)/TOv by = 2T[fmin
and by = 27f,4c. Note that this signal is denominated by linear sine sweep, since the
frequency is varied over time in a linear fashion. The complete training dataset is generated
through the concatenation of eight sine-sweep motions of equal length covering distinct
angle-of-attack ranges, as described in table 1. We choose to concatenate multiple signals
in order to obtain one single time series to train the model across the desired parameter
space. The relative root-mean-square error, e, is introduced as a measure of the accuracy
of the model, according to the following definition:

m

Nl _ A 2
erms = 3 ey YN (k) — $(k19))

—  where ¢, =
N 1

P YV k) —E@Gi)?

In (2.4), y(k) represents the true output of the system and y(k|6) the output of the SS-NN
model, with 6 being the vector containing all model parameters (i.e. the weights and biases
of the neural networks, and the coefficients of the linear state-space matrices). Moreover,
N denotes the total number of samples, m indicates the number of different parts which
compose the data, N; is the number of samples associated with the ith data part and E(y;)
is the expected value related to the ith data part.

Two independent SS-NN models are estimated for the two different levels of free-stream
turbulence intensity, but the underlying structure of the model is maintained identical.
For both datasets, a one-state model (n = 1) with n, = n, = 20 neurons defining the
neural network represents a good compromise between accuracy and complexity of the
model. The choice of a one-state model is also motivated by the desire to provide a fair
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Figure 4. Modelling error on the training data as a function of the number of neurons. Note that the models
with zero neurons represent linear models.

comparison with the GK model, which is a first-order model. On the other hand, the
number of neurons was determined after evaluating multiple models with increasing size
of the neural network. Figure 4 illustrates the modelling error on the training data as a
function of the number of neurons, for the two considered turbulence intensities. It can be
noted that even a small neural network composed of 10 neurons allows for the identification
of a very accurate model, whereas a model with zero neurons, which is effectively a
linear model, provides a poor description of the highly nonlinear dynamical system under
consideration. Moreover, the root-mean-square error remains almost constant when the
number of neurons is increased from 10 to 50. It is important to note that the models
trained with data at high turbulence intensity converge to a larger error compared with
the models obtained at low turbulence level, because of the higher noise level in the
measurements. The opposite trend is observed for a number of neurons equal to zero
(linear models), where the model obtained at high turbulence intensity performs better
than the one obtained at low turbulence level. This result indicates that the nonlinearity of
the system is greater at low turbulence intensity, confirming what could be inferred from
the quasi-static lift curves, figure 2.

Based on this analysis, a one-state model with 20 neurons is chosen for both turbulence
levels, and these settings are retained for the remainder of the paper. According to (2.4),
the selected models exhibit a root-mean-square error e,,s; = 0.125 for low turbulence
intensity, figure 5(a), and e,s = 0.247 for high turbulence intensity, figure 5(b).
A comparison of the two different scenarios demonstrates that, at elevated free-stream
turbulence intensity, the overall error is larger by approximately a factor two, since the
incoming flow is characterised by strong velocity fluctuations which result in an extremely
high noise floor. Additionally, the performance of the selected models on the training data
is graphically illustrated in figure 5. For clarity, the modelling error is visualised as the
difference between the true experimental output and the SS-NN model output at all time
instants. The error is generally smaller at low angles of attack, whereas it becomes larger
at the high angle-of-attack ranges where the unsteadiness and nonlinearity of the flow are
greater.
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Figure 5. Model training for the two different free-stream turbulence intensities. The top figure illustrates
the input signal used for training, i.e. a concatenation of 8 sine sweeps covering the angle-of-attack range
[—5°,28°]. The central figure shows the corresponding output signal used for training, together with the
prediction of the SS-NN model. The bottom figure depicts the modelling error defined as Cy,,, (k) — Ci,,,4, (K);
(@) I, =0.3% and (b) I, = 8.2 %.

2.5. Goman—Khrabrov model

In the present work, the SS-NN technique is compared with a classical dynamic stall
model, i.e. the modified version of the GK model developed by Williams et al. (2017).
In 1994, Goman & Khrabrov (1994) proposed an empirical low-order state-space model
to represent the lift force of a wing in unsteady motion at high angles of attack. The
model employs a first-order state equation for the internal dynamic variable x(¢), which
indicates the degree of flow attachment over the wing. More specifically, the value
x = 1 corresponds to fully attached flow, x = 0 corresponds to fully separated flow and
0 < x < 1 indicates partially attached flow states. The evolution of the state variable x()
is defined by the following differential equation:

dx(r) .
TIT + x(t) = xp(a(t) — o (1)). (2.5)
In (2.5), the function xp(e) indicates the degree of flow separation when the wing
undergoes a quasi-static pitching motion at sufficiently small reduced pitch rate. Moreover,
the time constants 71 and 17 are introduced to scale the dynamic effects of the pitching
motion. They represent distinct physical processes:

(1) 71 reflects the transient aerodynamics of separated flow: any disturbance at fixed o
will cause the flow to adjust to the steady state over time in a relaxation process that
can be approximated by a first-order differential equation;

(i) T concerns circulation and boundary-layer convection lags that affect flow
separation and reattachment; those lags are proportional to ¢, so that these effects
can be modelled through an argument shift of the quasi-static separation point,
xo(o — o).

In their original paper, Goman and Khrabrov suggested to use linear cavitation theory
to define the lift coefficient in terms of the angle of attack and the point of separation

Cila, x) = gsina(l + V0. (2.6)
983 A8-9
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Figure 6. Quasi-static lift coefficient as a function of the angle of attack: solid line indicates pitch-up motion,
dashed line indicates pitch-down motion. Linear approximations are shown for pre-stall (blue line) and
post-stall (red line); (a) I, = 0.3 % and (b) I, = 8.2 %.

Parameter [, =03% I,=82%

Mpre 0.758 0.734
Mpost 0.220 0.355
Qo (rad) 0.054 0.025

Table 2. Parameters obtained through linear fit of the lift coefficient data for pre-stall and post-stall.

Later, Williams et al. (2017) generalised the output equation to extend the validity of the
model also in the presence of hysteresis in the static lift curve. In the modified formulation,
the lift coefficient is given by

Cilo, x) =2 [F(a)x(t) + G(a)(1 — x(1)]. 2.7)
The functions F(«) and G(«) in (2.7) are defined as

F(a) = mprea, 2.8
G(a) = mpost(a - Oloﬁ)a ‘

where my,, is derived from a linear fit of the quasi-static lift curve in the attached flow
region (pre-stall), whereas m,,,5; and o, are computed through a linear fit in the fully
separated flow region (post-stall). Note that, for the considered symmetrical NACA 0018
aerofoil, no offset is required for F(«). Figure 6 graphically illustrates the curve fitting
of the lift coefficient data in the pre-stall and post-stall regions. For low turbulence
intensity, figure 6(a), linear approximations are computed in the angle-of-attack ranges
o € [0, 11] and o € [23, 26], whereas for high turbulence intensity, figure 6(b), the linear
fitting is performed in the ranges o € [0, 11] and « € [25, 26]. The obtained parameters
are summarised in table 2.

Once the values for myye, myo5 and ayp have been established, the function xo(a) can
be evaluated by inserting the measured quasi-static lift coefficient data into the output
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Figure 7. Quasi-steady point of separation xg as a function of the angle of attack: solid line indicates pitch-up
motion, dashed line indicates pitch-down motion; (a) I, = 0.3 % and (b) I, = 8.2 %.

Upstroke Downstroke
. Umin > aiéartach . .
if & ’ else if Ay > gy else
Clmax > Gy
Lower branch Upper branch Lower branch Upper branch
Table 3. Switching condition in the presence of static hysteresis for low free-stream turbulence intensity
(I, = 0.3%). Note that o | =13.1° and ], = 21.3°.

equation, according to

_ Ci/27m — G(a) B Ci/21 — mpos (00 — ofr)

xo(a) = (2.9)

F(a) — G(a) B Mpre® — mpost(a - aoﬁ) .

The obtained function xg(c), which represents the steady-state dependence of the
separation point on the angle of attack, is illustrated in figure 7. We did not enforce strict
bounds on xp, allowing minor deviations from the [0, 1] interval. The curve associated
with the low free-stream turbulence intensity, figure 7(a), features a large hysteresis loop,
which is linked to the bistable behaviour of the lift coefficient for 13° < o < 23°. By
defining two distinct functions for the upstroke and the downstroke motion, the GK model
is able to account for the static hysteresis, as suggested by Williams et al. (2017). The
switching condition described in table 3 is used to select the appropriate branch of the
curve in the evaluation of xy. Conversely, for high free-stream turbulence, as shown in
figure 7(b), the absence of hysteresis in the quasi-static lift curve causes the function xg
to be similar during pitch-up and pitch-down, removing the need to distinguish between
upstroke and downstroke. It should be noted that xq is very sensitive to small changes in
the parameters defining the linear fits (1., Mpos, Aofr), Making it necessary to carefully
select the appropriate ranges for the linear approximations.

In principle, 7; and 17 can be obtained from flow measurements directly. In practice,
however, this is not straightforward, e.g. when only load measurements are available.
Therefore, it is customary to determine 7| and 72 empirically, by numerically minimising
the error between the model output and one dynamic experiment (a training dataset).
This approach was successfully followed, amongst others, by Williams et al. (2017) and
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Figure 8. Contour plots of the root-mean-square error evaluated on the selected training dataset, as a function
of the time constants of the GK model. The white cross defines the optimal (t1, 72) combination; (a) I, = 0.3 %
and (b) I, = 8.2 %.

An et al. (2021). On the other hand, Ayancik & Mulleners (2022) recently proposed
a different approach in which physics-based information is exploited to evaluate the
time constants. This alternative methodology was tested on different aerofoil geometries
and flow conditions, yielding positive results. This approach looks particularly valuable
whenever only quasi-static measurements are available, and no dynamic experiment can
be used for error minimisation.

In the present work, it was decided not to use physics-based time constants, for several
reasons. Firstly, the physics-based formulation was derived either for simple harmonic
motions or for constant pitch rate motions, whereas in the present study sine-sweep
motions are considered. These signals are intrinsically characterised by a continuously
varying oscillating frequency, which would require 7, to vary in a continuous manner
during the sweep. Moreover, this study considers different free-stream turbulence levels
which cause dramatic changes in the flow physics over the aerofoil, and thus make it
necessary to define different time constants for each turbulence level. For the reasons
listed above, it was chosen to evaluate the time constants t; and 1 based on a numerical
procedure which minimises the root-mean-square error between the model output and
a training dataset. This approach enhances the accuracy of the GK model by utilising
additional information to fine tune the time constants. The selected training dataset
consists of two sine-sweep motions which are also included in the training data of the
SS-NN model. More specifically, we choose the sine-sweep signals labelled no. 2 and
no. 6, according to table 1. Figure 8 illustrates the root-mean-square error on the selected
training dataset as a function of the time constants of the GK model, for the two distinct
free-stream turbulence intensities. It can be noted that the two cases require different time
constants for the minimisation of the cost function. The optimal (7, 72) combinations used
in the remainder of the paper are listed in table 4.

To conclude, the GK model is a simple empirical model capable of reproducing dynamic
stall effects on a pitching aerofoil, using physically interpretable parameters. Yet this
simplicity limits the range of nonlinear phenomena it can reproduce.

2.6. Behaviour of the SS-NN model in quasi-static conditions

A desirable feature for a dynamical model is its ability to revert to linearised perturbations
about quasi-steady conditions for small amplitudes and low frequencies. This property is
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Parameter [, =03% [, =82%

71 (s) 0.15 (7.5¢)  0.08 (4.01,)
o (s) 0.03 (1.5¢.)  0.04 (2.01,)

Table 4. Time constants which minimise the root-mean-square error of the GK model on the selected
training dataset (7. represents the convective time ¢/Uxo).
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Figure 9. Representation of the internal state variable of the model as a function of the angle of attack. The
grey lines indicate the phase-space coverage of the dynamic dataset used to train the model, whereas the
orange line indicates the prediction of the model when evaluated in quasi-static conditions; (a) I, = 0.3 % and
b) 1, =8.2%.

inherent to the GK model, as the nonlinear function xo(«) described in (2.9) is constructed
using the quasi-static lift coefficient. Indeed, the GK model is a static nonlinear model
built upon the quasi-static curve, and it is then augmented with a time delay to account
for the system dynamics. In the case of the proposed black-box SS-NN model, which is a
dynamic nonlinear model, this property is not strictly enforced through the model structure
and the model need not necessarily reduce to a static nonlinear system for low pitch rates.
This feature, however, can be implicitly included in the model by providing a sufficiently
rich training dataset. It is thus important to analyse the phase space covered by the training
data, so that one can identify the bounds within which the model is expected to be accurate.
One way to visualise the phase space is to graphically represent the internal state variable
of the model (x) as a function of the model input, i.e. the angle of attack («), as shown in
figure 9. The grey dotted lines in the figure describe the phase-space coverage of the purely
dynamic data used for model training, whereas the orange line indicates the prediction of
the model when evaluated in quasi-static conditions at reduced frequency x = 0.0006. It
is observed that, at low angles of attack, the phase space is narrow, indicating that the
dynamic effects are less pronounced in the attached flow regime, whereas at higher angles
of attack the phase space expands. The enlargement of the phase space at high incidence is
more apparent at low free-stream turbulence level, figure 9(a). In this scenario, the phase
space reveals a central region which is never visited by the training data, reflecting the
significant lift hysteresis associated with the considered aerofoil shape and flow conditions.
It is noteworthy that the internal state variable predicted by the SS-NN model when
evaluated in quasi-static conditions (orange line) consistently remains close to the dynamic
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Figure 10. Representation of the lift coefficient as a function of the angle of attack. The prediction of the
SS-NN model in quasi-static conditions (orange line) is compared against the true experimental quasi-static
result (black line). The grey dotted lines in the background illustrate the dynamic dataset used to train the
model; (a) I, = 0.3 % and (b) I, = 8.2 %.

training data. Furthermore, it is apparent that a qualitative resemblance exists between the
predicted state variable for quasi-static conditions and the xo function of the GK model
presented in figure 7. The similarity is observed for both turbulence levels, and represents
an interesting result, as it was not enforced in any way through the model structure. When
representing the coverage of the phase space in terms of the output—input relationship
(lift coefficient vs angle of attack), it can be noted that the predicted lift coefficient in
quasi-static conditions is in good agreement with the true experimental data, as illustrated
in figure 10. This result is notable and underlines the model’s capability to reproduce the
static behaviour, despite being predominantly trained on high-frequency pitching motions.

3. Results

It has been shown in the previous sections that the aerodynamic characteristics of the
selected NACA 0018 aerofoil at Re = 2.8 x 107 are completely different at different
levels of free-stream turbulence intensity. Therefore, engineering models should be able
to correctly reproduce the physics related to the distinct physical processes. In the present
paper, two independent models are estimated for the two different free-stream turbulence
intensities, both for the SS-NN model and for the GK model. The obtained models are
then validated at the considered turbulence levels using different kinds of motion, i.e.
sine-sweep signals and simple harmonic motions.

3.1. State-space neural network model validation: sine-sweep motions

The chosen SS-NN model is first tested on sine-sweep motions. The major difference with
respect to the sine-sweep signals included in the training dataset is the sweep rate, which
is five times larger (from 2.4 to 12 Hz min~"). The pitch amplitude of the motions is
set to 6° and, to test the performance of the model in a wide range of angles of attack,
two different cases with a distinct mean angle are considered. The selected mean angles,
ap = 12° and op = 18°, are chosen since these two experiments constitute a pre-stall and
a post-stall case, respectively. Therefore, they represent excellent validation cases which
feature different flow behaviours.
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Figure 11. Model validation on sine-sweep motion («g = 12°). The error is defined as C;,,,, (k) — Ci,,, (K);
(a)I, =0.3% and (b) I, = 8.2 %.

The experiment with mean angle of attack of 12°, figure 11, reaches a maximum pitch
angle well below the static stall angle, and thus is characterised by a moderately separated
flow and exhibits an almost linear lift response. No large-scale vortices are shed and the
flow is generally well behaved. At low turbulence intensity, figure 11(a), the SS-NN model
captures very accurately the unsteady lift generated by the aerofoil. On the other hand,
the GK model tends to overestimate the maximum lift coefficient and underestimate the
minimum lift coefficient, and also exhibits some deviations from the experimental data
at low pitching frequency. At elevated turbulence level, figure 11(b), the time series of
the instantaneous lift coefficient presents severe load fluctuations. In this highly turbulent
case and with such noisy measurements, the performance of the two models is much more
similar, and both approaches can predict the mean value of the time-varying lift coefficient
to a good approximation.
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Figure 12. Model validation on sine-sweep motion (cp = 18°). The error is defined as Cy,,,, (k) — Clop (k);
(a)l, =0.3% and (b) I,, = 8.2 %.

A more challenging scenario is encountered when the mean angle of attack of the
sine-sweep motion is increased to «g = 18°, figure 12. At low turbulence intensity,
figure 12(a), experimental data show the abrupt occurrence of stall. The highly nonlinear
response of the system increases the complexity of the modelling task and highlights
the weaknesses of the GK model. The largest deviations from the experimental values
appear at low pitching frequencies, where the GK model predicts a too early stall
occurrence. The SS-NN model, on the other hand, follows the experimental data much
more accurately and reproduces the stall location to a very good degree of approximation.
It is interesting to note that the experimental data in this angle-of-attack range contain
important cycle-to-cycle variations. Two clear examples can be seen around t = 7.5 s and
t = 14.1 s: in these cases, the lift coefficient assumes surprisingly high values, which are
approximately 60 % larger compared with the values obtained at the same phase angle in
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oy = 12° o = 18°
Relative error: e, Relative error: e,
I,=03% I,=82% I,=03% 1,=82%
SS-NN 0.075 0.234  SS-NN 0.239 0.408
GK 0.196 0.270 GK 0.476 0.415

R oR

Table 5. Comparison of the modelling error evaluated on the sine-sweep motions used for validation.

the neighbouring cycles. This odd behaviour only occurs for this angle-of-attack range,
since in this case the maximum pitch angle is close to the stall angle. In this case,
even a small perturbation in the free-stream conditions is sufficient to modify the stall
behaviour and cause the flow to reattach earlier, with a less severe lift reduction. This
behaviour is clearly not captured by the models, which are not able to predict such a
random phenomenon.

When considering the experiment performed at high turbulence level, figure 12(b), the
turbulent boundary layer on the aerofoil surface prevents the formation and bursting of the
leading-edge LSB, producing a more gentle stall behaviour. In this case, the modelling
errors of the SS-NN model and the GK model are comparable. Both approaches manage
to represent the general evolution of the lift coefficient, but leave out small details which
are hard to capture due to the extremely large noise level.

A summary of the modelling error for each case is illustrated in table 5. Overall, it
can be noted that, at low free-stream turbulence level, the SS-NN model outperforms the
GK model at both angle-of-attack ranges, with a relative root-mean-square error which
is approximately half compared with that of the GK approach. Conversely, when the
free-stream disturbances are high, the performance of the two techniques becomes more
comparable, with the SS-NN model showing an error only a few percentage points lower
than that of the GK model.

3.2. State-space neural network model validation: simple harmonic motions

In this section, the selected data-driven models are validated on simple harmonic motions
which are intrinsically different from the signals that compose the training dataset. These
motions hold significant relevance in fluid dynamics due to their frequent utilisation
in real-world applications, such as helicopters or wind turbines. Several motions are
imposed on the aerofoil in order to test the models under a wide variety of flow
conditions, including pre-stall and post-stall. Three distinct frequencies of oscillation are
analysed, corresponding to reduced frequencies ¥ = 0.025, ¥ = 0.063 and « = 0.100. It
is important to note that the experimental results have been obtained by phase averaging
a large number of periods (31 periods for k = 0.025, 39 periods for x = 0.063 and 47
periods for k = 0.100); the figures reported in the remainder of the paper show the mean
value of the experimental lift coefficient, together with the associated standard deviation
band depicted as a shaded region.

3.2.1. Case I: a(t) = 12° + 4° sin(2nft)
The first test case under consideration consists of a sinusoidal motion characterised by
a small pitch amplitude oy = 4°. The SS-NN model has been trained on sine sweeps
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Figure 13. Model validation on simple harmonic motions characterised by different reduced frequencies (/, =

0.3 %). Panels show (@) & = 0.025 (reg = 0.0017), (b) x = 0.063 (reg = 0.0044) and (c) k = 0.100 (rpy =
0.0070).
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Figure 14. Model validation on simple harmonic motions characterised by different reduced frequencies (1, =

8.2 %). Panels show (a) k = 0.025 (reg = 0.0017), (b) k = 0.063 (rey = 0.0044) and (¢) & = 0.100 (roy =
0.0070).

with amplitudes equal to 6° and 10°, and thus this case effectively represents an
extrapolation of the results to a smaller amplitude of oscillation. In this example, the
maximum angle of attack of the aerofoil is significantly lower than the stall angle in static
conditions. Consequently, the flow over the aerofoil exhibits moderate flow separation
in the trailing-edge region, and its lift response is characterised by a low degree of
nonlinearity.

Considering the experiments conducted at low free-stream turbulence intensity,
figure 13, the SS-NN model is able to reproduce very accurately the enlargement
of the hysteresis loop and the increase in maximum lift coefficient related to the
increased frequency of oscillation. On the other hand, the GK model generally predicts
a larger hysteresis loop and overestimates the maximum lift coefficient at high pitching
frequencies.

As for the elevated free-stream turbulence level, figure 14, both models are capable of
estimating the evolution of the lift coefficient in spite of the high level of flow unsteadiness.
Predictions always lie within the experimental standard deviation band, with the SS-NN
model giving better results at k = 0.025 and « = 0.063, and the GK model providing
a slightly better match at the highest reduced frequency « = 0.100. It is important to
underline the robustness and the ability of the SS-NN model to cope with very noisy
training data, which were not pre-processed in any way. This aspect is particularly valuable
as it suggests a limited user interaction required for the construction of the model.
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Relative error: e,

L =03% I, =82%

f=04Hz f=10Hz f=16Hz f=04Hz f=10Hz f=16Hz
SS-NN  0.050 0.091 0.127 0.093 0.076 0.157
GK 0.241 0.243 0.223 0.149 0.082 0.121

A =193%  —626%  —43.0%  -37.6%  -73% (HEESEEEN

Table 6. Modelling error on the simple harmonic motion « () = 12° + 4° sin(2mwtf?).

(a) (b) ()
ap=16° 0, =8°, f=0.4 Hz ap=16% 0, =8° f=1Hz ap=16% a; =8, f= 1.6 Hz
2.0 2.0 2.0
- %S-NN
—GK
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Figure 15. Model validation on simple harmonic motions characterised by different reduced frequencies (1, =
0.3 %). Panels show (a) k = 0.025 (.4 = 0.0035), (b) k = 0.063 (r,y = 0.0088) and (c) x = 0.100 (r,; =
0.0140).

The relative root-mean-square error is used as a metric to quantitatively compare the
accuracy of the SS-NN model and the GK model. Table 6 demonstrates that the SS-NN
model dramatically reduces the error at low turbulence levels, whereas results at elevated
free-stream turbulence show a more comparable level of accuracy.

3.2.2. Case 2: a(t) = 16° 4 8° sin(2nft)

The present section considers simple harmonic motions in which the maximum pitch
angle, o = 24°, is slightly larger than the static stall angle. This case exhibits a
qualitatively different flow behaviour between low and high free-stream turbulence levels,
as a direct consequence of their distinct static stall characteristics. While at I, = 0.3 %
the flow presents an abrupt stall and a strong hysteretic behaviour, at 7, = 8.2 % the
lift coefficient features a much smaller hysteresis loop. The hysteresis loop is due to the
pitching motion of the aerofoil, which tends to delay flow separation in the upstroke motion
and promotes late flow reattachment in the downstroke.

As for the low turbulence intensity case, figure 15, the SS-NN model predictions provide
excellent agreement with the experimental data. The GK model, conversely, qualitatively
captures the shape of the lift hysteresis, but misses critical flow features such as an accurate
prediction of the stall angle, the reattachment point and the maximum lift coefficient. As
highlighted in table 7, the SS-NN model drastically reduces the root-mean-square error by
at least 60 % compared with the classical GK model, reaching an accuracy improvement
of 85 % at the smallest reduced frequency x = 0.025.

As for the high turbulence intensity case, figure 16, predictions from the SS-NN
model and the GK model exhibit a consistent behaviour in general agreement with the
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Relative error: e,

I, =03% L, =82%

f=04Hz f=10Hz f=16Hz f=04Hz f=10Hz f=16Hz
SS-NN 0072 0.110 0.090 0.085 0.077 0.168
GK 0.503 0.299 0.226 0.141 0.104 0.122

A -857%  —632%  —602%  -397%  -260% (NN

Table 7. Modelling error on the simple harmonic motion a(f) = 16° + 8° sin(2mwtf?).

(a) (b) (©
ap=16% o, =8°% f=04Hz ayg=16% a;=8°% f=1Hz ay=16% a;=8°% f=1.6 Hz
2.0 2.0 2.0
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150 B L5 L5
G 10 /%E 1.0 1.0
0.5 0.5 0.5

0 0 0
6 8 101214161820222426 6 8 10121416 1820222426 6 8 101214161820222426
o (deg.) o (deg.) o (deg.)
Figure 16. Model validation on simple harmonic motions characterised by different reduced frequencies (1, =

8.2 %). Panels show (@) k = 0.025 (rey = 0.0035), (b) x = 0.063(r,y = 0.0088) and (¢) x = 0.100 (roy =
0.0140).

experimental data. The only relevant deviation from the wind tunnel measurements is
observed at the highest pitching frequency, where both models estimate a slightly smaller
hysteresis loop and underpredict the maximum lift coefficient by 3 %.

3.2.3. Case 3: a(t) = 20° + 8° sin(2mntft)

Lastly, model validation is conducted on sinusoidal motions reaching angles of attack
well above the static stall angle and up to 28°, where the lift response is highly
nonlinear. Therefore, this case is particularly challenging and demanding from a modelling
perspective. Similar to the previous case, free-stream turbulence plays a crucial role. The
large free-stream disturbances change the lift response of the aerofoil, producing a less
abrupt stall and promoting early flow reattachment during the downstroke motion. In this
highly nonlinear context, table 8 demonstrates that, for all tested turbulence intensities and
pitching frequencies, the root-mean-square error obtained with the SS-NN technique is at
least 62 % lower compared with that of the GK model, with performance enhancements
up to 82 %. At the lowest free-stream turbulence intensity, figure 17, the SS-NN model
provides a significantly better accuracy, especially in the prediction of the stall angle.
The GK model badly reproduces this crucial feature and estimates its occurrence at an
incidence which is approximately two degrees smaller compared with the actual stall
angle. Moreover, the SS-NN model greatly improves the prediction of the shape and size
of the hysteresis loop, providing a very good agreement with the experimental results
at every angular position. As for the highest free-stream turbulence level, figure 18, the
SS-NN approach significantly improves the prediction of the lift coefficient, especially
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Relative error: e,

L =03% I, =82%

f=04Hz f=10Hz f=16Hz f=04Hz f=10Hz f=16Hz
SS-NN  0.059 0.109 0.109 0.141 0.091 0.099
GK 0.341 0.307 0.335 0.504 0.389 0.264

A -827%  —645%  —615%  -T20%  -766% = —625%

Table 8. Modelling error on the simple harmonic motion o () = 20° + 8° sin(27f?).

(@) (b) (©)
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o (deg.) o (deg.) a (deg.)
Figure 17. Model validation on simple harmonic motions characterised by different reduced frequencies (1, =
0.3 %). Panels show (a) k¥ = 0.025 (1,4 = 0.0035), (b) k = 0.063 (req = 0.0088) and (c) k = 0.100 (r,; =
0.0140).
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Figure 18. Model validation on simple harmonic motions characterised by different reduced frequencies (1, =

8.2 %). Panels show (a) k = 0.025 (req = 0.0035), (b) k = 0.063 (req = 0.0088) and (c) k = 0.100 (r,; =

0.0140).

during the downstroke motion, where the GK model overestimates the lift generated by
the aerofoil.

To better clarify the flow physics at play, figure 19 provides a spatio-temporal
graph depicting the pressure coefficient on the suction side of the aerofoil over four
consecutive representative periods obtained at a pitching frequency of 1 Hz (x = 0.063).
At low free-stream turbulence levels, the passage of a dynamic stall vortex at every
pitching cycle can be identified as an oblique line characterised by a significantly higher
suction. Conversely, there is no clear evidence of a strong coherent vortical structure
at high free-stream turbulence. According to Sharma & Visbal (2019), who conducted
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Figure 19. Spatio-temporal representation of the pressure coefficient on the upper side of the aerofoil over four
consecutive representative periods for o () = 20° 4 8° sin(2mnft) at f = 1 Hz (x = 0.063). The corresponding
experimental lift time history (black line) together with the predictions of the SS-NN model (orange line) and
the GK model (blue line) are also reported as a function of the non-dimensional time #/7, with 7 being the
period of oscillation; (a) I, = 0.3 % and (b) I,, = 8.2 %.

a numerical investigation of the flow around four symmetric NACA aerofoils with
different thickness-to-chord ratios at Re = 2 x 10%, the onset of dynamic stall for a thick
NACA 0018 profile at low free-stream turbulence might be attributed to the interaction
between trailing-edge separation and the LSB, rather than solely being related to the
bursting of the LSB, as observed in thinner symmetric aerofoils. Figure 19 also illustrates
the lift time history associated with the sinusoidal pitching motion, further highlighting
that, in the case of elevated free-stream disturbances, the lift coefficient is generally higher
and characterised by large and rapid fluctuations. Despite the high noise level, the SS-NN
model consistently provides accurate estimates of the aerodynamic loads.

Overall, such accurate predictions in this highly nonlinear scenario show the huge
potential of the SS-NN technique, which is able to effectively reproduce the hard-to-model
nonlinear dynamics of the system at high angles of attack. Although the identification of
nonlinear systems is known to be a very difficult task, unsteady aerodynamics models
must be able to account for nonlinear effects. Good models must be able to capture flow
features such as the stall angle, the reattachment angle and the shape of the hysteresis
loop in a precise and reliable manner, since these predictions have a crucial impact in
performance estimations and in the assessment of fatigue loads.

4. Conclusions

This work has explored the identification of data-driven nonlinear state-space models in
fluid dynamics through the SS-NN modelling technique. This novel methodology, which
combines the flexibility of neural networks with a classical state-space representation,
provides a new insight into the construction of reduced-order unsteady aerodynamic
models. The technique has been applied to experimental wind tunnel data of a pitching
NACA 0018 aerofoil at a chord-based Reynolds number of 2.8 x 107, considering two
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distinct levels of free-stream turbulence intensity, 0.3 % and 8.2 %. The obtained SS-NN
models have a general model structure and relate the time-varying angle of attack of the
aerofoil to the lift coefficient. They represent fast and accurate mathematical models which
are well suited for applications involving aerodynamic optimisation and control of systems
based on lift.

The SS-NN models were trained using a concatenation of eight sine-sweep motions
performed at different angle-of-attack ranges. Sine sweeps were found to be suitable for
this purpose given their ability to efficiently cover the desired frequency range. Model
validation was conducted on distinct sine-sweep motions and on simple harmonic motions
performed in a wide range of angles of attack and reduced frequencies. Results were
compared with the output of a modified version of the GK dynamic stall model, whose
parameters were set using the experimental static lift curve together with two sine-sweep
experiments.

Overall, both approaches succeeded in representing the aerodynamic loads on the
aerofoil at the different angle-of-attack ranges, pitching frequencies and free-stream
turbulence intensities. However, the SS-NN models demonstrated a greater accuracy,
especially at low free-stream turbulence level, where static experiments exhibited a large
stall hysteresis. Moreover, performance enhancements were particularly evident at high
angles of attack, where the SS-NN models significantly outperformed the GK model,
providing better predictions in terms of stall angle, reattachment angle and overall shape of
the dynamic hysteresis loop. Although the GK model might be satisfactory for applications
which do not require high accuracy, its inherent simplicity makes it not suitable whenever
load variations must be captured in detail. In these scenarios, the SS-NN technique
represents a fast and powerful tool. It is, however, worth mentioning that the presented
SS-NN models are constructed using a black-box approach, and thus they trade the (albeit
limited) physical interpretability of the GK model for better agreement with the data.
Findings also revealed that SS-NN models were robust to noisy measurements and did
not require any pre-processing of the data, thus involving a limited user interaction. The
entire model estimation only required one set of dynamic experiments and a single training
session. Overall, these properties make the SS-NN technique an excellent candidate for
the construction of parsimonious and accurate data-driven models, which can lead to
substantial performance gains in fluid dynamics systems involving design optimisation
and real-time control.
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