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Abstract

Understanding the nature of meaning and its extensions (with metaphor as one typical kind) has been one
core issue in figurative language study since Aristotle’s time. This research takes a computational cogni-
tive perspective to model metaphor based on the assumption that meaning is perceptual, embodied, and
encyclopedic. We model word meaning representation for metaphor detection with embodiment infor-
mation obtained from behavioral experiments. Our work is the first attempt to incorporate sensorimotor
knowledge into neural networks for metaphor detection, and demonstrates superiority, consistency, and
interpretability compared to peer systems based on two general datasets. In addition, with cross-sectional
analysis of different feature schemas, our results suggest that metaphor, as a device of cognitive concep-
tualization, can be ‘learned’ from the perceptual and actional information independent of several more
explicit levels of linguistic representation. The access to such knowledge allows us to probe further into
word meaning mapping tendencies relevant to our conceptualization and reaction to the physical world.

Keywords: Metaphor detection; Deep learning; Knowledge incorporation; Sense modality; Embodiment

1. Introduction
1.1. Metaphor and perception

Metaphor is one of the prominent figurative devices in our cognitive system. Research on
metaphor and theory of metaphor have advanced our understanding of the conceptual systems
underpinning human language and advanced findings in the fields of lexical semantics, cognitive
linguistics and computational linguistics. Lakoff and Johnson (1980) describe metaphor as a cog-
nitive mechanism (a property of language) reflected by our conceptual system for structuring our
understanding of the world. Using metaphors, we can relate our known experiences to a multitude
of other subjects and contexts that are more complex, implicit or less known. In general, metaphor
is widely used in a language for effective communication, which usually involves a domain trans-
fer (Ahrens and Jiang 2020), concreteness contrast (Maudslay ef al. 2020), or semantic surprise
(Zhang and Barnden 2013). The common theoretical premise is that this degree of complexity is
driven by the concept of embodiment (Gibbs et al. 2004), which involves a mapping from a more
embodied and concrete domain to a less embodied one. That is, metaphors use our shared bodily
experience to describe more abstract concepts. For instance, the metaphorical expression ‘apple
of my eye’ uses the concrete and embodied apple to describe more abstract concept of ‘some-
thing to be cherished’. Other than having a solid body, embodiment is also often described by
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the perception of our body, and the degree of bodily involvement of the particular perception.
For instance, tactile sense requires actual contact with the body and is considered the most con-
crete sensory domain. Based on this interpretation, metaphorical expressions are highly reliant on
bodily experiences, especially perception.

1.2. Metaphor detection

Metaphor detection can refer generally to the identification of metaphorical expressions, or more
specifically to the identification of the source domain, target domain, and mapping principles
of each metaphorical expression. Past studies on metaphor detection can be broadly classified
as theory-oriented or processing-oriented. For the identification of metaphor, the best-known
framework is the metaphor identification procedure (MIP) by the Pragglejaz Group (Pragglejaz
Group 2007), which focuses on how to differentiate the metaphorical usages of a linguistic expres-
sion from other usages, including literal, ironic, metonymic, etc. Earlier theoretical works typically
assume that metaphorical expressions are already identified with consensus. This accounts for why
a set of criteria for identifying metaphor, that is the MIP (Steen 2010), was proposed only recently
despite the long history of metaphor analysis in the literature. Several NLP studies on the iden-
tification of metaphorical expressions predates the MIP [e.g., Martin (1990); Fass (1991)]. Fass
(1991), for instance, focused on differentiating metaphoric expressions from metonymic expres-
sions, a topic that remains challenging both theoretically and computationally. On the other hand,
since the emergence of the Conceptual Metaphor Theory (CMT, Lakoff and Johnson 1980), there
has been continuous attention in theoretical studies on the identification of mappings between
target and source domains [e.g., Gentner (1988); Gibbs (1996); Kovecses (2000)]. Computational
work on the identification of mapping and interpretation soon followed [e.g., Ahrens et al. (2003);
Veale (2003); Mason (2004)].

More recently, the processing of metaphoric expression has become one of the most impor-
tant challenges in the processing of non-literal, figurative language (Veale, Shutova, and Klebanov
2016). Metaphor detection can be formalized in several ways, for example sequence-to-sequence
labeling (Gao et al. 2018; Chen et al. 2021; Raval et al. 2021), IOB (inside-outside-beginning)
tagging or sequence chunking (Bizzoni and Ghanimifard 2018; Tanasescu et al. 2018; Rohanian
et al. 2020), as a paraphrasing task (Shutova 2010), and token-level binary classification (Leong,
Klebanov, and Shutova 2018; Leong et al. 2020; Su et al. 2020), and so on. For replicability and eval-
uation, the current study adopts the model of two shared tasks on metaphor detection focusing on
token-level binary classification. Take Example 1 for illustration. Given a sentence S =wy, . . ., wy
with n words and a target word w; € S, the classification task predicts the metaphoricity (i.e.,
metaphorical or literal) of the target word w;. We aim at developing a metaphor detection model
for a binary classification task.

Example 1.

The Ahlbergs have been accused of not facing up to the harsh
w1 %) w3

realities of life , of being too cozy and sweet ,

Wi Wn

The model returns a binary output, that is 1 if the target word w; (‘sweet’ in Example 1 in
S) is metaphorical or 0 otherwise. Here the target word ‘sweet’ is marked as a metaphorical use
following the metaphor identification procedure (MIP) (Steen 2010). The word ‘sweet’ in its con-
text demonstrates a meaning of pleasant experience which is part of the property of sweetness
yet not denoting the gustatory meaning, where a modality shift is observed. Evaluation of the
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performance of the model is then calculated by the widely adopted metrics of Precision, Recall
and F1-score based on the predictions of the model by reference to the gold labels in the entire
dataset.

1.3. The linguistic motivation

Metaphor is an important device for the linguistic representation of embodied cognition [e.g.,
Gibbs (2006); Lakoft (2012)]. Since the sensory inputs are the main sources of information of the
embodied world, sensory information plays an essential role in the conceptualizing and mapping
of metaphor. That is, the sense modalities (fouch, hearing, smell, taste, vision, and interoception) as
perceptual domains in our cognitive system can either serve as the source domain of metaphors
(Yu 2003; Zhao 2018) or provide crucial information about the source domains. In addition to
the perceptual manifestations, the action effectors (mouth/throat, hand/arm, foot/leg, head, and
torso), serve as another fundamental way to reflect human experience and their cognition in lan-
guage. The actions denoted in word concepts can affect people’s way of using metaphors, a notion
noted as an embodied metaphor (Gibbs et al. 2004; Casasanto and Gijssels 2015), as exempli-
fied in “headpigh—empodiea Of [Pembridge Investments]joy—empodied” - The word ‘head’ serves as the
effector or the location of effectors of all the sensory modalities and is highly embodied, while
its modified phrase ‘Pembridge Investments’ demonstrates no obvious sense modality or action
effector. The sense modalities and their action effectors provide information about the physical
world; their lexical realizations are the sources of linguistic devices utilized in figurative language.
These assumptions motivate the current work to explore their interactions and hence contribute
to metaphor detection.?

1.4. Research design and objectives

We propose to incorporate the perceptual-actional information associated with words, as pro-
vided by the sensorimotor norms (Lynott et al. 2019) (cf. detailed introduction in Section 3), for
metaphor detection. Such information, as discussed above, links each lexical concept to the phys-
ical world, and in turn plays a central role in the interpretation and modeling of metaphor. As the
sensorimotor norms represent knowledge of embodied cognition, the theoretical premise of the
current study is that the incorporation of direct information about the embodied physical world
facilitates metaphor detection.

To utilize the ubiquitous dual-mapping anchored from the perceptual and actional experiences,
we propose a series of sensorimotor-enriched machine learning models for metaphor detection
based on two publicly available benchmark datasets—the VUA corpus (Steen 2010) and the TOEFL
corpus (Klebanov, Leong, and Flor 2018) (cf. Section 3). A series of machine learning models
are adopted to attest to the generic power of the sensorimotor-enhanced models for metaphor
detection, including statistical Machine Learning models, word embeddings, and Deep Learning
models. We use the sensorimotor norms for constructing a conceptual representation of the tar-
get word and its surrounding words, combining advanced NLP technologies in representing the
semantic and conceptual information of words.

The sensorimotor feature of the word “reduced” in the VUA corpus is presented in a JSON line
in Example 2, where x stores the values of the sensorimotor predictors, with a feature dictionary
of 64 attribute values. As the sensorimotor norms for each word constitute 64 dimensions of fea-
tures, the customized sensorimotor representation for each word in the datasets hence contains
a 64-dimension vector of perception-action ratings [cf. the original data in Lynott et al. (2019)].

2Even though the sensorimotor norms data is originally collected based on special knowledge, it has now been widely
replicated and scaled using automatic norms prediction models [e.g., Chersoni ef al. (2020) made it a reality of framing such
knowledge in a scalable way.]
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Such information is used for concatenation with word embeddings for knowledge enhancement.
In addition to providing a cognitively and linguistically motivated model of word representa-
tions (cf. Sections 3.1 and 4.2), we will also test the extent of how such information may enhance
performance for automatic metaphor detection (cf. Section 5).

Example 2.

{“y:1, “word™:“reduced”, “id”:“clp-fragment01_745_9”, “Xx”: < feature.dictionary >}
Examples of < feature.dictionary >:

{“Max_strength.action™1.238, “N_known.perceptual”:21,. ..

“Foot_leg.Mean™:0.428, . .. “Max_strength.sensorimotor”:2.809. . .}

2. Related work

Figurative, or non-literal, language has been one of the most challenging and theoretically inter-
esting topics in NLP for the past two decades. Computational approaches to the study of metaphor
can be traced back to as early as J. Martin’s 1988 thesis (Martin 1990), and Fass (1991). The 2003
ACL Workshop on the Lexicon and Figurative Language marked the start of the recent surge of
NLP studies of metaphor detection with two papers dedicated to this topic: Ahrens et al. (2003),
and Veale (2003). Later, Veale et al. (2016) presented a comprehensive survey of NLP studies up
to the time of publication.

In general, NLP studies of metaphor detection can be categorized into three approaches, based
on the primary sources of information utilized in the detection process. Note that since NLP
studies often incorporate information from multiple sources, these approaches are not mutually
exclusive. The papers reviewed below are classified by the core elements of their research designs,
especially in terms of their innovation and contribution.

First, the linguistic information-based approach was introduced the earliest, including Wilks
et al. (2013) and the above mentioned (Martin 1990; Fass 1991; Ahrens et al. 2003; Veale
2003). This approach typically relies on lexical or contextual linguistic information to identify
a metaphorical usage. Ahrens et al. (2003) stand out in adopting an ontology-based mapping the-
ory of metaphor, hence integrated the meta-linguistic ontological information. This approach is
later elaborated with additional grammatical features: such as semantic classes (Klebanov et al.
2015), and constructions and frames (Hong 2016). More recent studies adopting this approach
tend to also involve statistic models for the actual processing but continue to incorporate signif-
icant linguistically encoded information such as bigrams (Bizzoni and Ghanimifard 2018), and
emotion (Dankers ef al. 2019). Lastly, we also consider studies that leverage a linguistic task that
presupposes shared linguistic information as an innovative extension of this approach. Shutova
(2010)’s work leveraging paraphrasing is a good example.

The second is the machine learning based approach that, unlike the linguistic approach, does
not rely on explicitly represented information. That is, various learning algorithms, especially the
recently dominant Deep Learning methods, are applied to ‘learn’ to identify metaphors from a
large training data sets. This approach typically requires pre-trained data sets, likely derived from
earlier studies, but requires no external knowledge. Standard technologies adopted include statis-
tical machine learning, deep neural networks, transformer-based pre-trained models, etc. Typical
statistical models include Naive Bayes, Support Vector Machine and Decision Trees. Deep neural
networks use many layers of nodes to derive high-level functions from input information, such
as CNN, RNN and LSTM. A transformer model (such as BERT) is also a neural network that can
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learn context and, thus, meaning by tracking relationships in sequential data (i.e., words in a sen-
tence) by applying an evolving set of mathematical techniques, called attention or self-attention.
Transformers are among the newest, and one of the most powerful classes, of models invented
to date. More details are given below, with the caveat that machine learning is used in almost all
current NLP studies.

Lastly, a cognition-language incorporation approach has emerged recently. Broadly motivated
by the theory of embodied cognition, the approach typically integrates behavioral or neuro-
cognitive data, such as visual information (Shutova, Kiela, and Maillard 2016). More specifically,
this approach often leverages lexically linked perceptual or behavioural information such as sen-
sorimotor knowledge (Barsalou 1999; Wilson 2002). The sensorimotor norms data was originally
collected based on behavioral experiments thus typically smaller in scale; they can be replicated
and scaled up using automatic norms prediction models [e.g., Chersoni et al. (2020)]. The scal-
ing up, and cross-lingual bootstrapping makes this dataset suitable as part of the training data for
deep learning approaches. The motivation to incorporate sensorimotor norms, similar to Shutova
et al. (2016)’s extraction of visual information from text, is to model the contribution of percep-
tual input to interpretation. More specifically, note that current theories of metaphor generally
agree that metaphors involve mapping from more embodied concepts to less embodied concepts.
Hence the perceptual input of embodied information would contribute to the identification of
the embodied possible sources. Recently, Kennington (2021) enriched language models with the
Lancaster norms and image vectors. These current approaches tend to incorporate some aspects
of the earlier two approaches. A detailed review on these works is summarized below.

2.1. Linguistic information based approach

First NLP studies on metaphor detection adopted linguistic theories guidelines for identifying
and categorizing metaphors [e.g., Ahrens ef al. (2003); Mao, Lin, and Guerin (2019); Shutova
(2010); Veale (2003)]. Earlier works [e.g., Martin (1990); Fass (1991); Ahrens et al. (2003); Veale
(2003)] applied linguistic information directly as rule-based heuristics. Per recent trends in NLP,
later studies leverage linguistic information for the preparation of training data. Such stud-
ies can be considered as the pivots between the linguistic information-based approach and the
machine learning based approach. Two sets of linguistically informed guidelines are mostly com-
monly adopted for labeling metaphorical expressions. The first one is the Metaphor Identification
Procedure (MIP), proposed by the Pragglejaz Group (2007), based on the principle that a
metaphor can be recognized based on semantic gaps, that is when the contextual meaning of a
word is different from its literal meaning. Another guideline is the Selectional Preference Violation
(SPV) principle proposed by Wilks (1975), which identifies a metaphoric expression as a target
word with a meaning that violates the selectional restrictions of its neighboring words (Wilks
et al. 2013). For example, in “Don’t twist my words”, the word ‘twist’ denotes an abstract meaning
of misunderstanding someone given the context of “my words”, which is different from the basic
lexical sense of bending and distorting a physical body. In addition, ‘word’ is a non-physical object,
but the basic sense of ‘to twist’ requires a physical object, hence there is a violation of selectional
restriction. These above are how MIP and SPV identify metaphorical expressions respectively. In
principle, the two well-known procedures identify metaphors by judging the semantic gap/or vio-
lation of the target word with its context. A natural extension is the combination of both sets of
principles: MIP and SPV (Zhang and Liu 2022).

Although both MIP and SPV acknowledge the mismatched meanings between the verb ‘to
twist’ and the noun ‘words’, they are unable to pinpoint the metaphoric expression. For MIP,
the meaning of ‘words’ in this context refers to something the subject expressed (by speaking or
writing) that is different from its basic meaning of lexical/linguistic units in a dictionary. For SPV,
it is clear that the collocation of the two expressions violates selectional restrictions. But there
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is no objective way to determine the directionality of violation. As such, both methods require
substantial human intervention, which is more vulnerable to inter-rater disagreement. Thus, NLP
studies rarely rely on linguistic theory based methods only.

2.2. Machine learning based approach

Recent studies of metaphor detection, just like other NLP tasks, converged on the machine learn-
ing methods. These models are neural networks trained on the training data set to learn to
identify metaphorical usages. Some popular deep learning models used for metaphor detection
include Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks,
and Transformer-based models like BERT (Devereux, Shutova, and Huang 2018) and RoBERTa
(Liu et al. 2019).

A representative work by Wu et al. (2018) adopted both Bi-LSTM and CNN for metaphor
detection. Feature-wise, Wu et al. (2018) employed Word2Vec (Mikolov et al. 2013) as basic
features and test different linguistic features such as part-of-speech (POS) and word clustering
information. More relevant works include Gao et al. (2018) who employed Bi-LSTM as an encoder
using GloVe (Pennington, Socher, and Manning 2014) and ELMo (Peters et al. 2018) as text input
representation; Brooks and Youssef (2020) built up an ensemble model of RNNs together with
attention-based Bi-LSTMs for metaphor detection. Chen et al. (2020) adopted BERT to obtain
sentence embeddings, and then applied a linear layer with softmax to each token for metaphoricity
predictions. DeepMet (Su et al. 2020) utilized RoBERTa with various linguistic features. IlliniMet
(Gong et al. 2020) combined RoBERTa to obtain word embeddings in concatenation with lin-
guistic features (e.g., WordNet, VerbNet, POS, topicality, concreteness), and then fed them into
a fully-connected feedforward network to make predictions. MelBert (Choi et al. 2021) proposed
metaphor-aware late interaction over BERT, combining pre-trained contextualized models with
metaphor identification theories. With strong representation power and generalization capability,
such methods show leading performances in almost all fields of work in NLP.

In sum, supervised (or semi-supervised) machine learning has been proven useful for metaphor
detection. Typically, metaphorical words or expressions are manually annotated by human
experts, which are then used as knowledge-incorporated external resources for many metaphor
detection tasks (Leong et al. 2018, 2020). In addition to the annotated training set, recent deep
learning studies using BERT or other large neural language models require substantial computa-
tional resources for pre-training and fine-tuning. In several recent studies, people aim to adopt
alternative techniques to compress BERT-based models for more reasonable production environ-
ments using methods such as weight pruning, matrix factorization, and knowledge distillation
(Zafrir et al. 2019; Rogers, Kovaleva, and Rumshisky 2020; Zafrir et al. 2021).

2.3. Cognition-language incorporation approach

Metaphors, as described in the introductory section, are a cognitive mechanism to express new
and novel experiences or knowledge using old and familiar experiences. As a linguistic device,
its most prominent feature is the lack of any overt linguistic marking. This is why the linguistic
knowledge based and machine learning based approaches, at least in the early data preparation
stage, require human expertise to manually annotate the training data. Given the cost of human
intervention in annotation for both linguistic and machine learning based approaches, there are
some recent attempts to incorporate cognitive knowledge in metaphor identification. One of the
first cognition-language incorporation resources applied was the shared conceptual knowledge of
ontology, and SUMO ontology in particular (Ahrens et al. 2003; Huang et al. 2007; Dunn 2014).

bPlease see Rai and Chakraverty (2020) for a summary of other related issues in these approaches.
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The rationale is that since ontologies are shared conceptual knowledge, they are a potentially pow-
erful tool to represent the differences between and map from source domain to the target domain.
Following the same rationale, and based on the common belief that wordnets are linguistic ontolo-
gies, WordNet, FrameNet, and VerbNet were also adopted (Zhang and Barnden 2013; Jang et al.
2015; Klebanov, Leong, and Gutierrez 2016).

Another characteristic of metaphor that different theories generally agree upon is the embod-
ied cognition hypothesis: that a metaphor is the use of a more embodied (i.e., concrete) concept
to describe a less embodied (i.e., abstract) concept [e.g., Gibbs et al. (2004); Lakoff (2012)].
Since embodied concepts are attested by sensory inputs (Barsalou 1999), NLP studies explored
the incorporation of sensory input-related resources, such as sensory lexicon, synaesthesia, and
vision-based information (Shutova et al. 2016; Tekiroglu, Ozbal, and Strapparava 2015), prop-
erty norms (Zayed, McCrae, and Buitelaar 2018), information about concreteness, imageability
(Maudslay et al. 2020), or emotion (Rai et al. 2019), etc.

An emergent trend that is highly interdisciplinary is to leverage neuro-cognitive research out-
comes in NLP. Although no metaphor processing study has adopted this new paradigm yet, this
new trend may well be the next direction to go. The crucial breakthrough is the direct adaptation
of behavioral or brain activity data, instead of the lexical information from the sensory domain
as reported earlier. The main goal is to synergize neurocognitive and computational approaches
for significant breakthroughs. Two recently founded/revamped workshop series spear-headed this
new development: Linguistic and Neuro-Cognitive Resources (Devereux et al. 2018), and cogni-
tive ordering and computational linguistics (Chen et al. 2021). The eye-tracking dataset is the
earliest adopted data set to NLP, such as Long et al. (2019) and Barrett and Hollenstein (2020),
Baroni and Lenci (2010). There was even a shared task on using NLP to predict eye-tracking results
(Hollenstein et al. 2021). In addition, there are several attempts in CL to incorporate brain mea-
surement data, such as fMRI and EEG, for modeling word embedding results (Chen et al. 2021).
Continuing in this direction, our current study proposes to utilize sensory domain behavioral data
for automatic metaphor detection.

2.4. Innovation of our work

To date, metaphor detection remains a challenging task because the semantic and ontological
differences between metaphorical and non-metaphorical expressions are often subtle and contex-
tually dependent. Existing methods show different strengths for detecting metaphors, yet each has
its respective disadvantages. Knowledge- or theory-based methods (Hong 2016; Mao et al. 2019)
tend to show generalization problems that are not widely applicable in real settings. State-of-the-
art ML-based NLP models (Devereux et al. 2018; Liu et al. 2019; Brooks and Youssef 2020) are
less interpretive to understand the intrinsic properties of metaphors. The innovation of our work
is to model word meaning representations for metaphor detection via both word embeddings
and perception-action knowledge. We take the foundational perception-action knowledge from
embodied cognition and combine it with word embeddings and deep neural networks, with the
expectation of a robust model metaphor processing that will both improve NLP performance and
inform our understanding of embodied cognition.

Among previous studies, Tekiroglu et al. (2015) is the most similar to our work in that they
incorporated both the sensorial features and linguistic synesthesia of the five sense modalities.
Different from us, this work did not incorporate either sensory modality exclusivity or sensori-
motor norm and relied mainly on information based on the Sensicon extracted from WordNet.
They also focus on the adjective-noun pairs extracted from a dependency-parsed corpus (DPC).
Note that at the time of their study sensory modality exclusivity was already available, although
the sensorimotor norms had not been published yet. Thus our current study is distinguished from
Tekiroglu et al. (2015), especially in terms of incorporating the lexicon-based behavioral norms
from empirical studies. In addition, following results from recent studies, we added interoceptive
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as the sixth sense modality. The incorporation of the two behavioral norms is crucial as it allows
empirical data of embodied cognition to play a role in the detection of metaphors. We use the
complete sensorimotor ratings for each word to form a word vector space, which is used to
complement word embeddings. In addition, our study probes further into the correlation of
the various modalities and actions for predicting metaphors, as well as conducts cross-sectional
experiments to look into a wider range of factors, for example text genre, POS, and language
proficiency.

These research objectives on metaphor, as preliminarily attested by the several prototype exper-
iments in metaphor detection competitions (Leong et al. 2020; Wan et al. 2020a, 2020b; Wan and
Xing 2020), will fill a much-needed gap in linguistic and computational research on metaphor
identification. Note that the current work is motivated by yet distinct from these preliminary stud-
ies. For instance, Wan et al. (2020a) adopted simple statistical models (e.g., Logistic Regression)
and some basic linguistic features apart from the conceptual and embodiment features. In addi-
tion, no deep neural network models were attested for further comparisons. As for the paper
in Wan and Xing (2020); Wan et al. (2020b), though they employed neural network models,
the experiments were run on only one dataset-VUA, and there are no subcategory experiments
to look into the variation across genre, POS and language proficiency. In addition, the current
work probes further into the issue of metaphors with more in-depth linguistic introspection and
case-error analysis.

3. Data
3.1. The sensorimotor norms

As observed in the VUA corpus, the prevalence of concept mapping in terms of modality senses or
bodily involvement between the target word and its immediate context implies a high probability
of metaphorical usage. We propose to leverage perception-action information for modeling such
concept mapping to facilitate metaphor detection, as well as to probe into the mapping mechanism
of finer categories.

The Lancaster Sensorimotor norms collected by Lynott et al. (2019) are adopted for enriching
word representations in this study. The data includes a most comprehensive measure of the sen-
sorimotor strength (0-5 scale indicating different degrees of sense modalities and action effectors)
for around 40K English words across six perceptual modalities: touch, hearing, smell, taste, vision,
and interoception, as well as five action effectors: mouth/throat, hand/arm, foot/leg, head (exclud-
ing mouth/throat), and torso. These norms represent the largest ever set of semantic norms for
English, incorporating almost 40,000 words; they provide far greater lexical coverage than has
been possible with previous norms, encompassing the majority of words known to an average
adult speaker of English [i.e., approximating a full-size adult conceptual system; Brysbaert et al.
(2014)]. In the two datasets of the current work, 95% of the lexical words are covered in the senso-
rimotor lexicon. The data has been published in a top-tier journal in psycho-linguistics (Research
Behavior Methods) which has gone through a rigorous review on the quality and reliability of the
annotation (The mean alpha across all dimensions was >.8 and each individual dimension had
alpha >.7 (i.e., very good agreement overall).)

Among the six modality senses, the visual sense allows us to see the external world; the hear-
ing sense permits us to hear the sounds; the gustatory sense considers tastes; the olfactory sense
accounts for odors; the tactile sense perceives temperature, pain, and textures of objects; the inte-
roceptive sense detects the internally stimulated feelings of hunger, exhaustion, disgust, etc. We
use our body parts to undertake and experience these perceptions, as foregrounded in Figure 1.
For example, we need to move our head or torso when we view the surroundings; we will open
our mouth and articulate with our throat when we talk; we use our hands (and arms) to reach and
grasp for objects, and we also resort to our feet (and legs) to walk or to kick. The scale of these
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Table 1. The perceptual-actual ratings of five sample words in the sensorimotor norms

Dimension Word Adopt Big Daze Eat Learn
Perception Auditory 1.222 0.944 0.455 1.263 3.941
Gustatory 0.056 0.167 0.000 4.526 0.765

Haptic 1.056 2.722 0.000 2.158 1.765

Visual 1.889 3.889 1.953 2.632 3.882

Olfatory 0.111 0.111 0.000 2.421 0.588

Interoceptive 1.222 0.333 3.253 2.474 1.529

Action Foot_leg 0.650 1.000 0.350 0.050 0.810
e Hand_arm R 16501900 0850 . 2900 1331
. Head I 2050 3100 — 3200 — 2000 R 4475

— MOUth [ 1350 — 1350 — 0950 — 4350 — 2236

. Torso [ 0900 — 0950 — 0350 — 1600 O 0657

The dominant modality and action effector are highlighted in bold.

Foot /leg Hand / arm Headme;xtftlfg:dr’ng Mouth / throat Torso

Figure 1. Avatarimages describing the area of each effector during action strength norming. Figure downloaded from Lynott
etal. (2019).

dimensions is judged in terms of how the participants experience these concepts through each of
the perceptions and actions they perceive, on a scale from 0 = no feelings at all, to 5 = very strong
feelings. In addition, the dominant effectors and exclusivity® were likewise assigned to each word,
expanding the paradigm of those in the modality exclusivity studies (Lynott and Connell 2009)
with the addition of action effectors.

The augmentation and consolidation of perception and motion in this large-scale norming
study compared to other relevant studies of other minority languages demonstrate a more fine-
grained picture depicting how the specific sensorimotor information is encoded in the language.
To demonstrate the structure of the sensorimotor norms, we provide five sample words and their
six sensory scores and five action effectors, as provided by the sensorimotor norms, in Table 1 for
illustration.

Table 1 and Example 2 demonstrate how words are represented and rated in terms of the
perception-action dimension scale with examples of five words. The vector for each word (in each
column) is composed of 64 dimensions of perception and action values, as well as some derived

CEffector exclusivity is calculated similarly to modality exclusivity, that is a measure of the extent to which a particular
concept is experienced through a single dimension (0-1, typically expressed) as in Lynott and Connell (2009).
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statistics, such as standard deviation, modality/action exclusivity, dominant modality/action effec-
tor, etc. In Table 1, we only display the mean of the six perception modalities and the five action
effector scores here to provide a brief overview. The perception and action effector with the high-
est scores (highlighted in bold) respectively mark the dominant sense modality and action effector
for each word, such as “Visual’ and ‘Head’ for the word ‘Big’; ‘Gustatory” and ‘Mouth’ for the word
‘Eat’. The fact that the perception and action as the two embodied bases of human cognition can
be captured by these two attributes in the model suggests that it could serve as very useful resource
for linguistic processing (Chersoni et al. 2020).

3.2. The metaphor detection datasets

For the metaphor detection experiments, we adopt two benchmark datasets—the VUA and TOEFL
corpora that are commonly used by NLP system competitions on Figurative Language Processing.
The series of shared tasks on metaphor detection have also adopted the two datasets for open com-
petition (Leong et al. 2018, 2020). The two datasets are regarded as the most representative and
large-scale data of metaphors in general with human validation of the metaphor labeling based
on the MIPVU protocol. Although there are two other widely adopted datasets in the metaphor
detection literature-MOH-X (Mohammad, Shutova, and Turney Peter 2016) and TroFi (Birke
and Sarkar 2006), they are designed for verbal metaphors instead of all lexical categories and are
much smaller in size. There are a total of four tracks for evaluation: VUA AllPOS, VUA Verbs,
TOEFL AlIPOS, and TOEFL Verbs. The AIIPOS track is concerned with the detection of all con-
tent words, that is nouns, verbs, adverbs and adjectives while the Verbs track is concerned only
with verbs. Function words are not considered for evaluation.

The metaphorical labels in the two datasets are prelabelled by Tekiroglu et al. (2015) and
Klebanov et al. (2018) for all lexical words (ALLPOS) that have been widely used by many previ-
ous works on metaphor detection (Leong et al. 2018, 2020). The current work, and many other
reported systems, have evaluated on model performance by either (1) focusing on verbs only;
and/or (2) on all POS labels. Many existing studies look at verbal metaphors in particular because
verbs denote more metaphoric meaning, as also testified by our result in Figure 5. Our methodol-
ogy is not just driven by verb-based metaphors, as our experimental results (as shown in Section
5.4.1) have also attested the possible POS effects on metaphor detection, which demonstrate a con-
sistent improvement of adding sensorimotor information to the model for either verbs or other
lexical categories, despite slight variances within each category.

All the results of the testing systems are publicly available online.® Details of the two datasets
are provided below.

3.2.1. The VUA dataset
The first dataset is the VU Amsterdam Metaphor Corpus (VUA) (Steen 2010). This corpus is
a benchmark dataset released for the shared tasks of metaphor detection (Leong et al. 2018,
2020), which is publicly available for standard reference. It is a subcorpus of the British National
Corpus with manually annotated labels indicating the metaphoricity of each token in the corpus.
It consists of 115 text fragments sampled across four genres: Academic, News, Conversation, and
Fiction. The text genre composition is provided in Table 2.

The data has been annotated using the MIPVU procedure (Steen 2010) with a strong inter-
annotator agreement (k > 0.8). Examples of the sentences in the corpus are demonstrated in
Figure 2. Each token in the corpus is encoded with a unique id composed of the text fragment

dMOH-X is a verb metaphor detection dataset with the sentences fromWordNet and TroFi is also a verb metaphor detection

dataset, including sentences from the 1987-89 Wall Street Journal Corpus Release 1.
Chttps://competitions.codalab.org/competitions/22188
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Table 2. Text genre composition of the VUA corpus

Text genres Sentences Tokens Fragments %M_Verbs
Academic 8526 49,561 16 31
Conversation 9653 48,001 24 15
Fiction 7588 44,892 12 25
News 6698 45,116 63 42
TOTAL 32,465 187,570 115 28

“%M_Verbs” denotes the proportion of metaphorical verbs in each text genre.

txt_id sentence_id sentence_txt

ale-fragmentO1l Latest corporate unbundler M reveals laid-back M_approach
ale-fragment01l By FRANK KANE

ale-fragmentO1l IT SEEMS that Roland Franklin , the latest unbundler to ag
ale-fragmentOl He has not properly investigated the M target 's dining fe
ale-fragmentOl The 63-year-old M head of Pembridge Investments , M_throuc
ale-fragmentOl If he had M taken his own rule seriously , he would have 1
ale-fragmentO1l There are other M things he has , M _on his own M _admissior
ale-fragmentOl When the bid was M_launched last week , Mr Franklin M face
ale-fragmentOl He M regards the M_charges as unfounded

ale-fragmentOl 0 M On property , he is M blunt

H WY odonos wN |

Figure 2. Sample of the annotated data in the VUA corpus.

id, sentence id and the token sequence number in each sentence. Thus, the word ‘corporate’ in
the first sentence of Figure 2 has the id of ‘ale-fragment01-1-2’. Each metaphorical expression is
marked by the label of ‘M_’ for distinction. Based on these gold labels, we can conduct supervised
machine learning experiments.

3.2.2. The TOEFL dataset
The second dataset labeled for metaphor was sampled from the publicly available ETS Corpus
of Non-Native Written English, which was first introduced by Klebanov et al. (2018). The anno-
tated data comprises essay responses to eight persuasive/argumentative prompts, for three native
languages of the writers (Japanese, Italian, Arabic), and for two proficiency levels-medium and
high. The argumentative metaphors are annotated with average inter-annotator agreement k =
0.56 — 0.62 by Klebanov et al. (2018). We use the data partition of 180 essays as training data
and 60 essays as testing data. Table 3 shows some descriptive characteristics of the two datasets:
the number of texts (#text), sentences (#sentence), tokens (#token), and metaphorical proportion
(%M) in the data.f

The statistics show that verbs contain a much higher portion of metaphors than the other lexi-
cal categories as suggested by the %M. This may be due to the fact that verbs are shown to be more
mutable [i.e., more likely to change meaning, see Gentner and France (1988); Ahrens (1999)]. We
will revisit this issue in the discussion of results from the perspective of POS in Section 5.

fThe test datasets were not released with annotations for public access, hence we are unable to calculate the metaphorical
proportions in test sets.
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Table 3. Data partition for both VUA and TOEFL datasets

VUA TOEFL
Datasets Train Test Train Test
ftext 90 27 180 60
#sentence 12,123 4081 2741 968
#token 72,611 22,196 26,737 9014
%M (ALLPOS) 18% - 7% -
%M (Verbs) 29% - 13% -

4, Methodology

This work proposes an innovative method for metaphor detection based on the idea that the
basic modality senses ( touch, hearing, smell, taste, vision and interoception) and action effectors
(mouth/throat, hand/arm, foot/leg, head, torso) of words as indicated by the sensorimotor norms
(Lynott et al. 2019) provide crucial information for metaphoricity inference. We utilize both fea-
ture engineering and deep neural networks for implementation,® as detailed in the following
subsections.

4.1. Baseline methods
We adopt the following three strong baselines for peer comparisons to our proposed models.

o Bl (Baseline 1): The first baseline is a feature based statistical Machine Learning
model proposed by Klebanov et al. (2014) which has been widely adopted as a com-
mon strong baseline for many metaphor detection shared tasks. Despite a simple
method, it demonstrates surprisingly better performance than many advanced deep
learning models. The features include lemmatized unigrams, generalized WordNet seman-
tic classes, and differences in concreteness ratings between verbs/adjectives and nouns
(UL + WordNet + CCDB). This baseline is similar to our first model as we also utilize
both knowledge features and statistical ML models (e.g., logistic regression). Therefore, it
can serve as an effective baseline for our model comparisons.

« B2 (Baseline 2): The second baseline is the approach proposed by Brooks and Youssef
(2020) which uses bidirectional attention mechanisms for metaphor detection. In this
model, each word is represented by an 11-gram which contains the target word in the
center together with five neighboring words as the context; each word in the 11-gram is
represented by a 1324 dimensional word embedding (concatenation of ELMo and GloVe
embeddings). Brooks and Youssef (2020) experimented with ensembles of models that
implement different architectures (in terms of attention) trained on POS information. This
baseline is similar to our second model which also utilizes attention based Bi-LSTM, but
the difference is that we adopt Sensorimotor vector instead of ELMo. Therefore, it can
serve as another effective comparison to our deep learning method.

o B3 (Baseline 3): The third baseline is a minimal adaptation of our second model (cf.
SGNN in Section 4.2.2) that replaces the sensorimotor vector of each word with an equal

8Code and data available at: https://github.com/ClaraWan629/Metaphor-Detection_Journal
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dimension of random vectors. This baseline is used to rule out the possibility that the
effect of incorporating sensorimotor knowledge into the deep neural networks is caused
by increased vector space. Hence we model a baseline architecture similar to SGNN except
that randomly generated vectors are concatenated as the additional vector space to word
embeddings.

4.2. Sensorimotor-enriched modeling

4.2.1. SFeature (Statistical models with sensorimotor feature)

Our first model is based on feature engineering with statistical machine learning. For compar-
ison purposes, we modeled three other categories of features in addition to perceptual norms
(i.e., sensorimotor features). These include word-ngram, lemma-ngram and POS-ngram, word
embeddings, and cosine similarity between the target and its neighboring words, as well as B1 as
mentioned in the above section. We use three statistical models and ensemble learning strategies
during training so as to test the cross-model consistency of the various features, as detailed below:

« Sensorimotor Feature: We model the perceptual-actional knowledge to a word by map-
ping the target word to the sensorimotor norms data and acquiring the sensorimotor
vector space for each word in the corpus. The acquired vector space for all the words in
the corpus forms a sensorimotor feature matrix, which contains dictionaries of four key-
value pairs, including the target word, its id, the feature attribute in terms of sensorimotor
ratings (x), as well as the metaphoricity label of each word in the corpus (y). Such fea-
ture structure is formatted in JSON lines to work with Unix-style text processing tools and
shell pipelines, as demonstrated in Example 2. Unmatched words (those not covered in the
sensorimotor norms data) are assigned the average sensorimotor values for each feature
dimension.

« Collocations: Three sets of collocational features are constructed to represent the lexical,
syntactic, and grammatical information of the target nodes and their neighbors: Trigram,
FL (Fivegram Lemma), FPOS (Fivegram POS tags). In the preliminary experiments, we
tested on different window sizes ranging from 2 to 10 for the POS ngrams. The results
show that trigrams and fivegrams produced superior performances and we focus on the
two features for the collocation baseline. The two corpora are lemmatized using the NLTK
WordNetLemmatizer and POS tagged using the NLTK averaged perception tagger (Loper
and Bird 2002) before constructing such features.

« Word Embeddings: We also utilize word embeddings to capture the semantic infor-
mation of words based on the distributional hypothesis on word meaning [e.g., Lenci
(2008)]. Three models are used: GoogleNews.300d, Internal-W2V.300d (pre-trained using
the VUA and TOEFL corpora), and the GloVe vectors. GoogleNews in this work is
pre-trained using the continuous bag-of-words architecture for computing vector rep-
resentations of words (Church 2017). GloVe is an unsupervised learning algorithm for
obtaining vector representations for words. We use the 300d vectors pre-trained on
Wikipedia 20144Gigaword 5 (Pennington et al. 2014).

« Cosine Similarity: We also investigate the cosine similarity (CS) measures for computing
word sense distances between each word and their neighboring lexical words in a given
sentence. This approach can be traced back to earlier vector space neighborhood models of
lexical meaning [e.g., Ploux and Victorri (1998)], as well as cosine similarity measurements
of semantic relations and semantic distance [e.g., Turney and Littman (2005); Baroni and
Lenci (2010)]. It has been applied to detect other non-literal meanings (Xu et al. 2015),
as well as the differentiation of different semantic relations in the TOEFL dataset (Santus
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Table 4. Parameter setting for the three statistical classifiers

Classifier Parameter

Logistic Regression (LR) ‘class weight’: ‘balanced’, ‘max iter’: 5000, ‘tol’: 1

Linear SVC (LSVC) ‘class weight’: ‘balanced’, ‘max iter’: 50000, ‘C’: 10
Random Forest Classifier (RFC) ‘min samples split’: 8, ‘max features’: ‘log2’, ‘oob score’: ‘True’,

‘random state’: 10, ‘class weight’: ‘balanced’

et al. 2016). Recently, it has also been applied to metaphor detection (Rai et al. 2018).
The neighboring lexical words are syntactically close content words that occur in the same
clause of the target word. The CS was computed based on the averaged cosine distance
between the word embedding vectors. Three different sets of CS features are constructed
in this work by using the above three different word embedding models: CS-Google, CS-
GloVe, CS-Internal (word vectors trained on the VUA and TOEFL corpora).

These features provide meaning representations of the target words and their neighbors in
terms of their senses modalities, action effectors, exclusivity etc., as illustrated by the various pre-
dictors of each word in Example 2 [cf. more information on the data structure in Lynott et al.
(2019)]. Wan et al. (2020a), reporting our pilot study, showed that these features are highly indica-
tive of metaphorical uses and are hence hypothesized as more distinctive features than the strong
baselines.

With the above features, three traditional classifiers are used for predicting the metaphoricity of
the tokens, including Logistic Regression (LR), Linear Support Vector Classification (LSVC) and
a Random Forest Classifier (RFC). The Machine Learning experiments are run through utilities
provided in the SciKit-Learn Laboratory (SKLL) (Pedregosa et al. 2011). For parameter tuning,
we use grid search to find optimal parameters for the learners, as in Table 4.

4.2.2. SGNN (Sensorimotor with Glove Neural Network)

SGNN is the second model we propose based on the sensorimotor information and neural net-
works. In the SGNN model, words are processed with the integration of sensorimotor vectors
and word embeddings, as depicted in Figure 3. Since we aim to compare a sensorimotor features
driven system with a pre-trained method (e.g., word embedding with BERT), we do not com-
bine these two models. BERT may show overwhelming performance given the large pretrained
models and training data used, as well as the vast amounts of hyper-parameters that rely on high-
capacity GPU. For most of the fine-tuning experiment in the BERT-based models, more than
16 GB of GPU memory for BERT-Large is needed. However, one major purpose of our study is
to introspect metaphors in-depth (in a cost-effective way) from the perspective of the perceptual
and actional features to interpret the language mechanism in modeling metaphors. We make use
of these features and look into their sub-dimension effects on metaphor detection through sub-
experiments and look at the variances through the model performances instead of just pursuing
model enhancement.

In the SGNN model, we map the words to the sensorimotor norms and obtain the modality
representations (64 dimensions for each word). At the same time, we obtain the word vectors (300
dimension for each word) using GloVe and then concatenate them as inputs to neural networks.
The red boxes represent the vector of sensorimotor information for each input word; the blue
boxes are the word embeddings. For those words not mapped in the sensorimotor norms, we
assigned three kinds of values, including all zeros, random values following normal distribution,
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Figure 3. The architecture of the SGNN model.

as well as average scores of the sensory words in the corpus. In the end, we chose to use the average
score for each dimension of the out-of-dictionary words to optimize our results.

The Bi-LSTM layer produces a hidden status for each word (w;) in a given sentence. We use
this status to calculate an attention weight which is multiplied by the output of the Bi-LSTM layer.
The green box corresponds to the attention weight for each word, and the grey box represents
the hidden vector. Let H € R¥*N be a matrix consisting of hidden vectors [hl, hz hN] that is
produced by LSTM, where d is the size of hidden layers and N is the length of the given sentence.
The attention mechanism will generate an attention weight «. The final sentence representation
is given by:

h=Hxa’
We also add a Linear layer. The final probability distribution is:
y = softmax(W;h + b;)

Let y be the target distribution for the sentence, b; be the bias offset, and y be the predicted
metaphoricity distribution. We train the model to minimize the cross-entropy error between y
and y for all sentences.

1053:—22)/11%5/;4-)»”9“2
i

Then, we get a probability distribution of 0-1 label to train the model and get the predictions.
Our evaluation adopts the commonly used metrics precision (P), recall (R), and F1-measure (F1).
In addition, we use the default hyperparameters of attention-based Bi-LSTM and estimate them
by using a grid search within a reasonable range. Each value of the hyperparameters is shown in
Table 5.
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Table 5. The hyperparameter setting of the

SGNN model

Hyperparameters Value
Input layer size 364
Number of hidden layers 1
Hidden layer size 300*2
Output layer size 1
Dropout 0.5
Loss function NLLLoss
Optimization algorithm Adam
Epochs 15
Batch size 512
Activation function Softmax
Learning rate 0.01

Table 6. Feature evaluation on the VUA Verbs track

Classifier
Feature

Major Secondary LR LSvC RFC
Bl UL + WordNet + CCDB 0.632 0.621 0.618
Collocation Trigram 0.626 0.625 0.612
FL 0.624 0.623 0.621
FPOS 0.378 0.369 0.335

Word Embeddings GoogleNews 0.605 0.607 0.603
GloVe 0.630 0.627 0.633

Internal 0.569 0.555 0.568

Ccs GoogleNews 0.448 0.451 0.445
SFeature 0.637 0.636 0.634

The best performance for each classifier is highlighted in bold.

5. Results and discussions
5.1. Evaluation of SFeature
This evaluation section focuses on the salience of the various features for metaphor detection
as well as their fitness to the three statistical classifiers by focusing on the VUA Verbs track.
The evaluation results on the individual features in terms of the Fl-score are summarized in
Table 6.

Results in Table 6 show that the best individual feature is the sensorimotor vectors with the
LR classifier, followed by B1, W2V.GloVe, Trigram and FL. These results verify the potential con-
tribution of sensorimotor features to metaphor detection. The sensorimotor consistently led to
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Table 7. Comparison of SFeature to B1 on all the four tracks

Track Bl B1+ SFeature SFeature
VUA-Verbs 0.600 0.642 0.652
VUA-AIIPOS 0.589 0.597 0.603
TOEFL-Verbs 0.555 0.581 0.596
TOEFL-AIIPOS 0.543 0.552 0.560

The best performance is highlighted in bold.

better results for metaphor detection as compared to the other features. The performances of the
three classifiers are quite close for each feature set, with LR performing slightly better.

In addition to the evaluation of individual features, we use the best feature set and classifier
(LR) in the above evaluation for testing on all four tracks. The results of our method on the test
sets of the four tracks in terms of F1-score are summarized in Table 7.

In Table 7, ‘B1+SFeature’ stands for ‘Sensorimotor feature fused with baseline 1’ and the best
results for the four tracks are highlighted in bold. The sensorimotor feature shows consistent
improvement (1-5%F1) over baseline 1 and is also more effective when used alone. The evaluation
results demonstrate the effectiveness of using the sensorimotor feature for metaphor detection.
In addition, the results show that the models perform much better for predicting verbs than
other lexical categories for both datasets. As highlighted in Table 7, the SFeature model shows
5.2% F1 and 4.1 F1% improvement for verbs over Bl in the two datasets respectively, while the
improvements for the averaged performance of the four POS categories in the two datasets are
much smaller: 1.4% F1 and 1.7% F1 respectively. Overall, using SFeature shows enhancement for
metaphor detection on all lexical categories.

5.2. Evaluation of SGNN

Recall that, in addition to traditional classifiers, we also concatenated sensorimotor informa-
tion with word embeddings and applied the model to deep neural networks to further explore
the performance of sensorimotor-enriched modeling. The evaluation results in this section are
summarized in Table 8 in terms of P(recision), R(ecall), and F1(-score).

For a meaningful comparison to other work, we focus on the Verbs track first and randomly
select a development set (4,380 tokens) from the training set (17,240 tokens) in proportion to the
Train/Test ratio of the task in Leong et al. (2020). The current focus on the Verbs track is because
most of the reported work for the same task and on the same datasets conduct their experiments
on the Verbs track so that we could compare the results directly. The reported results on the
ALLPOS track are incomplete and hence incomparable. We report the peer results in Table 9 to
observe the model performance across external groups (between models), and then look further
into the POS variances within groups (between lexical categories) in Section 5.4.1.

As introduced in Section 4.1, B2 and B3 are implemented for direct comparisons to SGNN.
We also implement several other approaches with a minimal difference to SGNN for a more
comprehensive comparison that could potentially differentiate the contribution of the linguis-
tic features and neural networks. Table 8 clearly shows that the sensorimotor enhanced models
perform better: a 2.4% F1 improvement of SGNN over Bl, a 3.8% F1 improvement over B2, a
7% F1 improvement over a pure linguistic model, a 1.5% F1 improvement over the pure neural

"The performance difference of B1 is because results in Table 6 are generated from the evaluation experiment which is based
on the training data only. We split the training data into two parts for training and development respectively to find the best
features. In Table 7, prediction results are based on test sets.
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Table 8. Results of sensorimotor-enriched models with neural networks on the Verbs track

Corpus Category Approach P R F1

VUA Baseline 2 ELMo + Glove + LSTM 0.722 0.745 0.737
Baseline 3 Random Vector + Glove + LSTM 0.720 0.725 0.723
Linguistic Sensorimotor + LSTM 0.699 0.675 0.687
Neural Glove 4 LSTM 0.744 0.748 0.746
SGNN Sensorimotor + Glove + LSTM 0.767 0.755 0.761

TOEFL Baseline 2 ELMo + Glove + LSTM 0.686 0.700 0.697
Baseline 3 Random Vector + Glove + LSTM 0.676 0.689 0.682
Linguistic Sensorimotor 4 LSTM 0.654 0.678 0.666
Neural Glove 4 LSTM 0.714 0.689 0.702
>S‘,GNN‘ . ‘S,en;s‘orimotAr + Glo&e +>I;STM . 0.7‘03 . 0.732> ‘ 05117

The best performance in terms of P, R, F1 s highlighted in bold.

Table 9. Comparison of our result to state-of-the-art works on the Verbs track of the VUA corpus

Work Approach F1

Wan et al. (2020a) Modality + embodiment + LR 0.652
Kuo and Carpuat (2020) Bi-LSTM + Embeddings + Unigram Lemmas + Spell Correction 0.686
Kumar and Sharma (2020) Character embeddings + Similarity Networks + Bi-LSTM + Transformer 0.717
Liu et al. (2020) BERT, XNET + POS tags + Bi-LSTM 0.730
Liet al. (2020) ALBERT + Bi-LSTM 0.755
Devereux et al. (2018) BERT: Pre-training of deep bidirectional transformers 0.756
SGNN Sensorimotor + Glove + LSTM 0.761

The best performance is highlighted in bold.

network model. The improvements are salient and consistent in almost all cases, exception for
the precision of the neural model for the TOEFL Corpus, although both the recall and F-score
improved. Note that replacing the sensorimotor vectors with randomly generated vectors (B3)
does not help improve the performance compared to the one without enhancement. It is shown
that adding random vectors lowers the performances across the board. Both facts support our
assumption that adding sensorimotor information into the model enhances performance, and
that the enhancement is not due to a random effect or the increased vector space.

To further demonstrate the effectiveness of our second proposed model, we compare our
results to recent related works on the same dataset focusing on the Verbs track, as displayed in
Table 9. All the results are publicly available, as reported in Leong et al. (2020).

In Table 9, our method is highlighted in italics. Despite using simple neural networks, our
method obtains very promising results: it outperforms all the other related works to various
degrees (0.5-11% F1 gain), reaching state-of-the-art performance. Overall, our results are consis-
tently superior to the three strong baselines and other linguistically-based or pure deep learning
approaches. The above evaluations demonstrate the effectiveness of our model for metaphor
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Table 10. Examples of erroneous predictions by B2 but not by SGNN

Sentence Source domain Target domain
In the opposite, old people mostly have big responsibilities. Visual-Head Interoception-Head
So they do not want to waste their time by helping their communities. Visual-Head Interoception-Head
To seek knowledge is everyone s personal ambition. Visual-Head Auditory-Head

Also oil prices are increasing and not steady. Visual-Foot/Leg Visual-Head
Knowledge of many academic subjects gives many choices to people. Visual-Hand/Arm Visual-Head

Old people have more money and time than the people in young generation. Visual-Head Visual-Hand/Arm &

Interoception-Head

We belong to the internet era; everything is flowing, Visual-Head Interoception-Head &
everything is moving very quickly. Visual-Foot/Leg
Students will need to be able to think and reason, Visual-Head Visual-Hand/Arm

computer will help to connect the dots.

‘I th)‘nk thai fufdre mdﬁt goin thivs dire&ioﬁ to have a - v \v/‘isd‘al—Foot/Leg o ‘Intérovéeption-Hevad v
safe life for us and for future generations.

, then | broke through this change and my business ~ Visual-Hand/Arm  Visual-Head

and work completely changed.

The word (of the source domain) is highlighted in bold, and the word (of the target domain) is underlined.

detection, supporting our hypothesis that metaphor often anchors the perception-action schema
via their source domains.

5.3. Case analysis

To shed light on the contribution of sensorimotor embedding to the detection of metaphors, we
conduct case analysis of the improvement. That is, the examples that are correctly predicted by
SGNN, but not by the B2 counterpart. Typical samples are provided in Table 10.!

The source and target domains of the target word and its immediate context are based on
the pre-labeled data of the metaporical expressions. We also map the source domain and target
domain words to the sensorimotor norms data to get their dominant perception and action infor-
mation. The dominant perception and action of the words as provided in the norms indicate the
most salient perceptual and actional effectors of the word in a person’s conceptual system. For
instance, the word ‘big’ possesses a Visual-Head dominant sensorimotor, while its real meaning
in the first example is to modify ‘responsibilities’ which possesses an Interoception-Head dom-
inant sensorimotor. The modality shift from Visual to Interoceptive indexes a metaphor with a
high probability and hence the sensorimotor-enriched model can correctly predict such cases.
Other examples in Table 10 show similar patterns of having a sensorimotor dominance shift either
from one modality to another or from one action to another, or both. Note that the sensorimotor
information serves as a complementary representation to word embeddings and the effectiveness
will not be maximized if used alone. There are also metaphors without sensorimotor mismatches
between the target word and its context, as in the following examples.

IThe examples and labels of the source and target domains are manually labeled by two linguists with a high agreement
(Pearson correlation = 0.85, p-value = 0.0001)
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Figure 4. Distribution of metaphorical words across the four POS categories in the two datasets. (f_M: frequency of
metaphorical words, f_L: frequency of literal words.)

Example 2-6.

Ex.2: Another reason is the advancement in Science. Both Visual-Head
Ex.3: This is the general scheme of a normal Italian family’s dynamic.  Both Visual-Hand/Arm
Ex.4: fought for equal rights, he believed that all men are created equal. Both Visual-Head
Ex.5: Lastly, the family structure has been changing. Both Visual- Hand/Arm
Ex.6: A lot of things become forbidden just for physical reasons. Both Visual-Head

Metaphors involve various kinds of domain transfer which can anchor a wide range of basic
cognition states such as modality and embodiment experiences. However, its detection is still
challenging due to the subtle differences between the metaphorical expressions and their con-
text, and the perception and interpretation of metaphors can vary from person to person. Some
may be regarded as dead metaphors that are only used as part of an idiom chunk or other for-
mulaic expressions. Such expressions should be recorded as constructions. Nevertheless, with the
incorporation of sensorimotor vector space, word embedding, and linguistic theories, this work
has shown promising results of the concerted efforts for metaphor detection, contributing to the
interpretation and enhancement of the peer models.

5.4. Cross-sectional comparison

In this section, we explore the issue of whether the performance of the sensorimotor enhanced
model is dependent on certain textual properties or not. We examine the performance of the
model vis-a-vis parts-of-speech (POS) categories, text genres, and language proficiency levels, as
detailed below.

5.4.1. Part of speech

Metaphorical expressions have been suggested to show variance among words of different lexical
categories (Shinohara 1999; Ahrens and Huang 2002; Zhao 2018; Dong, Fang, and Qiu 2020). In
particular, verbs are argued to be more likely to employ metaphors (Leong et al. 2020), perhaps
because of the mutability of verbs (Gentner and France 1988; Ahrens 1999) and that the relational
meanings of verbs often rely on metaphoricity (Gentner and Asmuth 2019; Song et al. 2021). We
provide the distribution of literal words (f_L) and metaphorical words (f_M) across the four POS
categories in the two datasets in Figure 4.
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Table 11. Results of model performances across POS categories in the two datasets

Dataset Approach All-POS Verbs Adjectives Nouns Adverbs
VUA Bl 0.589 0.616 0.557 0.564 0.542
SFeature 0.603 0.625 0.595 0.581 0.552
gain 0.014 0.009 0.018 0.017 0.010
B2 0.703 0.737 0.678 0.678 0.648
SGNN 0.732 0.762 0.708 0.712 0.654
gain 0.029 0.025 0.030 0.034 0.006
TOEFL Bl 0.528 0.543 0.618 0.415 0.531
SFeature 0.560 0.587 0.630 0.462 0.517
gain 0.032 0.044 0.012 0.047 —0.014
B2 0.692 0.697 0.749 0.641 0.691
SGNN 0.712 0.717 0.778 0.727 0.626
gain 0.020 0.020 0.029 0.086 —0.065

The top and second performance gains are highlighted in bold and italics respectively.

According to Figure 4, the four POS categories show different metaphorical distributions in
both datasets. Though the occurrences of metaphors in the four POS categories vary to a great
extent, the distribution patterns of the metaphorical words and literal words for both datasets
are uniform. That is, in terms of literal meaning, the frequency of the four POS categories is the
same for both datasets: Noun, Verb, Adverb, and Adjective; in terms of metaphoric meaning, the
frequency of the four POS categories are different but the pattern is similar for both datasets: Verb,
Noun, Adjective, and Adverb. Among the four, verbs show the highest metaphorical uses, followed
by nouns. We aim to investigate how the sensorimotor incorporated model performs in the four
different lexical categories (results presented in Table 11), and to what degrees the performances
vary.

Table 11 shows that, based on the VUA dataset, sensorimotor methods outperform the
baselines consistently across all the POS categories. In particular, the performance gains by sen-
sorimotor methods are the greatest for the Nouns and Adjectives despite the fact verbs are the
most frequent among all the metaphorical expressions. This result is consistent with that of the
TOEFL dataset, except that Adverbs show no performance gain by the sensorimotor enhanced
models. We suspect the reasons why the sensorimotor model works particularly well for nouns
and adjectives are: (1) that a general machine learning method tends to perform better on the
more frequently attested cases, that is verbs; hence leaves little room for improvement, and (2)
that most synesthetic metaphors, mapping between two sensory domains such as ‘sweet voices’,
occur with nouns and adjectives, such as in the example of “sweet voice”. Although adjective-noun
expressions are not the highest structure among all the metaphorical expressions, they benefit the
most from the sensorimotor-enhanced model according to the result in Table 11. In other words,
the sensorimotor norms supplement information for the less frequently attested POS in train-
ing data. The sensorimotor knowledge for adjective-nouns provides informative information for
identifying metaphors in the model, as demonstrated by the many synesthetic metaphors. Since
other models tend to perform well on verbal metaphors, the enhancement of our model on verbs
is relatively minor. However, the overall performance of the four POS categories is consistently
improved by the sensorimotor model for both datasets, confirming the effectiveness of leveraging
sensorimotor information for metaphor detection.

https://doi.org/10.1017/5135132492300044X Published online by Cambridge University Press


https://doi.org/10.1017/S135132492300044X

22 M. Wan et al.

Table 12. Results of our methods in comparison to the two baselines across

the four text genres

Approach AllVUA Academic Conversation Fiction News
Bl 0.589 0.721 0.472 0.458 0.606
SFeature 0.603 0.719 0.482 0.476 0.634
Gain 0.014 —0.002 0.010 0.018 0.028
B2 0.703 0.761 0.599 0.651 0.714
SGNN 0.731 0.765 0.656 0.690 0.744
Gain 0.028 0.004 0.057 0.049 0.030

The top and second performance gains are highlighted in bold and italics respectively.

5.4.2. Text genre

Lexical choices are well attested to vary across different texts. The VUA corpus consists of
115 fragments sampled across four genres from the British National Corpus: Academic, News,
Conversation, and Fiction. Two previous shared tasks on metaphor detection have adopted this
corpus for competition (Leong et al. 2018, 2020). The published results demonstrated a pattern
that are highly consistent across the participant systems: metaphor detection of texts of Academic
and News genres is substantially easier than Fiction and Conversation. This can be accounted
for by the fact that Literary and Conversation genres are more creative and more likely to use
novel metaphors. While metaphoric uses in Academic and News genres typically are dominated
by conventional metaphors, conventional metaphors are also well-attested in training data and
hence easier to detect. Given the nature of different usages of metaphors among different gen-
res, they offer another good test to better understand the contribution of the sensorimotor norms
to metaphor detection. Thus we conducted further experiments by dividing the dataset into the
four subsets according to their text genres and trained the model with the entire training data,
but tested on the same sample size from the four text genres respectively. Results are shown in
Table 12.

As expected, all the metaphor detection models in Table 12 perform the best in the Academic
texts. In addition, the sensorimotor enhanced model gained greater improvement in the other
three text genres. In particular, SFeature outperforms the B1 model the most for the News genre
with a 2.8% F1 gain, followed by the Fiction genre (a 1.8% F1 gain). In addition, SGNN outper-
forms the B2 model the most for the Conversation genre with a 5.7% F1 gain, followed by the
Fiction genre with a 4.9% F1 gain. This result indicates that genre differences did not contribute
to the gains achieved by our model and that the gains by the sensorimotor enhanced models are
likely due to its ability to detect novel usages of metaphors.

5.4.3. Language proficiency
Metaphorical expressions have been regarded as an important linguistic index of the language pro-
ficiency of writers (Klebanov et al. 2018). That is one of the main reasons that the TOEFL corpus
is structured according to two language proficiency levels (Medium and High). We experiment on
the two subcategories of data in the TOEFL corpus to further explore the possible interaction of
the sensorimotor enriched model with language proficiency level for metaphor detection. Results
are provided in Table 13.

Interestingly, the results in Table 13 suggest no apparent relation between the language pro-
ficiency level, with the sensorimotor-enhanced modele as the feature-based method showing a
higher performance gain for high proficiency writing, and the neural network method showing
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Table 13. Results of our methods in comparison to the two
baselines for the two language proficiency levels

Approach All High Medium
Bl 0.528 0.533 0.524
SFeature 0.560 0.567 0.552
Gain 0.032 0.034 0.028
B2 0.692 0.713 0.671
SGNN 0.712 0.725 0.682
Gain 0.020 0.012 0.031

Best performance gain is highlighted in bold.

a higher performance gain for medium proficiency writing. Note that there is also a low pro-
ficiency subset in the original dataset of TOEFL. This portion of data was excluded from the
metaphor labelling by the dataset developer due to too many grammar errors. This fact sug-
gests that grammatical proficiency itself may compound the task of metaphor detection, and the
different frequency of metaphoric uses may not be the salient factor. Given potential compound-
ing factors as well as the relatively small size of annotated data of learners’ corpus, the issue of
correlation between proficiency and metaphor detection cannot currently be resolved.

5.5. Interplay of the 11 sensorimotor dimensions with metaphor prediction

The above models have incorporated all the sensorimotor features; thus, it is not possible to know
which dimension plays a more salient role in predicting metaphors. To find the best predictors, we
use binary logistic regression for modeling the relations between the 11 sensorimotor dimensions
with the metaphoricity of words. We aim to see which dimension is more salient for predicting the
metaphoricity in words. We use the TOEFL corpus for running the model. There are 26,736 lexi-
cal words in the TOEFL corpus; each word is mapped to the sensorimotor lexicon and a successful
mapping returns an 11-dimension vector to the word in terms of the 11 sensorimotor ratings; y
is the metaphoricity of the target word. Figure 5 demonstrates the data frame of the x (sensori-
motor features) and y (metaphoricity gold label). Due to space limitations, only 20 instances are
presented.

Logistic regression is a method for fitting a regression curve, y = f(x), when y is a categorical
variable. The typical use of this model is predicting y given a set of predictors x. The categorical
variable y, in general, can assume different values. In the simplest case scenario y is binary meaning
that it can assume either the value 1 or 0. We run the binomial model using R and the results are
provided in Table 14.

The logistic regression result in Table 14 suggests that the interoceptive modality and the
hand/arm action effector are the most reliable predictors for metaphors and both show a posi-
tive coefficient for predicting a metaphorical expression. In contrast, the olfactory, mouth/throat,
and head effectors are negatively related to metaphors, also with significance. This aligns with the
observation that metaphors are often expressed via various hand movement activities, as in the
expression ‘to break through’. Note also that the most significant positive predictor belongs to the
action effector category (i.e., hand/arm) and the sensory modality (i.e., interoceptive). Action effec-
tors are also body parts associated with embodied activities and often serve as the source domain
of a conceptual metaphor. In contrast, the interoceptive modality, which is associated with mental
states, typically occurs as target domains as they are highly abstract. Thus, we postulate that it is
the strength of association to either a source domain or a target domain that provides the best
predictions.
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Table 14. The binary logistic regression results for predicting
metaphoricity of words

Independent variable Coefficient Std error p-value
Visual 0.15692 0.10478 0.134237
Auditory —0.14349 0.10126 0.156481
Gustatory 0.45780 0.22619 0.042971*
Olfactory —0.70168 0.23225 0.002518**
Tactile 0.06323 0.10590 0.550476
Interoceptive 0.43742 0.10213 1.84e-05***
Leg/foot 0.20644 0.11697 0.077592.
Hand/arm 0.37701 0.11225 0.000783***
Mouth/throat —0.41800 0.13878 0.002595**
Head —0.36979 0.12198 0.002434**
Torso —0.14034 0.16007 0.380630

Signif. codes: 0 ***’0.001 ***’ 0.01 **0.05‘.” 0.1 ‘" 1.

Auditory Gustatory Haptic .Interoceptire. Olfactory Visual -Foot_leg.Hand_ann Head. Mouth Torso

1 y
2 1.94 0.82 1.00 0.82 0.82 2.06 0.25 0.50 225 1.10 0.10 0
8 2.53 1.88 1.94 2.76 2.06 3.00 1.30 1.50 3.25 1.90 1.15 0
4 2.84 0.37 0.53 2.47 0.42 2.84 0.30 0.85 295 2.00 0.35 0
5 3.47 2.76 3.24 2.59 2.65 424 2.88 3.13 3.56 3.06 2.50 0
6 1.06 0.28 0.28 1.78 0.28 2.50 1.14 1.43 271 1.57 1.33 0
7 1.25 0.00 1.81 0.44 0.00 3.75 1.50 2.10 2.00 1.10 1.35 1
8 247 0.21 0.32 1.11 0.21 2.63 0.40 1.10 2.70 2.95 0.45 0
9 3.82 091 3.00 1.45 2.09 4.45 248 3.38 448 3.81 2.43 0
10 1.78 0.22 0.17 0.56 0.17 0.72 0.35 0.75 1.45 1.50 0.25 0
11 2.63 0.05 0.21 1.00 0.58 4.00 0.85 0.90 2.40 0.85 0.85 0
12 1.47 0.37 0.68 0.95 0.21 2.16 0.70 0.65 225 1.30 0.85 0
13 2.72 0.22 1.22 0.67 0.44 3.56 2.86 3.29 3.29 2.81 224 0
14 1.10 0.20 0.55 2.25 0.20 1.55 0.80 0.90 3.35 1.30 1.15 1
15 2.60 2:15 2.80 1.60 2.30 3.60 1.05 1.75 2.00 0.70 0.90 0
16 2.50 0.56 0.94 0.81 0.44 2.38 0.42 1.47 247 1.79 0.37 0
17 2.30 0.30 1.35 1.05 0.30 3.35 0.95 2.00 3.05 1.47 0.84 0
18 2.31 0.56 231 2.06 0.88 3.56 2.89 3.67 3.83 2.78 2.72 0
19 1.74 0.47 0.74 1.89 0.58 242 3.60 1.95 2.60 1.75 1.75 0
20 1.84 0.47 0.58 0.74 0.47 1.68 0.30 0.60 1.30 1.35 0.30 0

Figure 5. Data frame of the sensorimotor and metaphor data.

6. Conclusion

Following the emergent but challenging trend to synergize neuro-cognitive information in NLP,
this paper proposes a novel method for metaphor detection combining sensorimotor norms
(Lynott et al. 2019) with word embeddings (Pennington et al. 2014). The basic perceptual
senses (touch, hearing, smell, taste, vision and interoception) and action effectors ( mouth/throat,
hand/arm, foot/leg, head and torso), identified as such by the sensorimotor norms, provide crucial
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information for metaphoricity inference and interpretation that is supplementary to word embed-
dings. That is, the occurrence of a mismatch in perception and (or) action of a target word with
its context tends to be metaphorical. We experience and learn from the physical world through
our five senses and actions. The sensory, as well as the embodiment lexicon as a collection of sen-
sorimotor words, can hence be considered as basic units of conceptualization of our knowledge
of the physical world. These conceptualization units can be utilized as a useful resource for lin-
guistic modeling (Chersoni et al. 2020; Zhong, Ahrens, and Huang 2023). On such a basis, we
have looked at how such information facilitates metaphor detection. We use statistical machine
learning, Bi-LSTM, and other DL architectures for a comprehensive attestation of our proposed
method. Results show that the proposed model with access to sensorimotor scores outperforms
the counterpart models by at least 0.5% F1, proving that perceptual-conceptual indices are crucial
for identifying metaphors. The proposed model achieves results that (1) are significantly higher
than one without such information, and (2) show leading performances as compared to most
related works on record. The results of the study are in line with results from our pilot study (Wan
et al. 2020a, 2020b), and strengthen the conclusion that sensory modalities and motor effectors are
crucial to metaphors (relevant to both our understanding of metaphors and to NLP).

In addition, sub-experiments are conducted on different lexical categories (nouns, verbs, adjec-
tives and adverbs) with different genres of data (conversation, news, fiction and academic writing)
among people of different language proficiency (high and medium) to probe into the grammatical,
stylistic and other influence on the model. In particular, the performance gains by sensorimotor
methods are the greatest for nouns and adjectives although verbs take the largest proportion of all
the metaphorical expressions. This is possibly because the majority of words in the sensorimotor
lexicon are nouns or adjectives. It is also observed that most of the synesthetic metaphors occur
among nouns and adjectives, such as in the example of “sweet voice”. In addition, although all the
models perform the best in the Academic texts for the task of metaphor detection, our proposed
methods show greater improvement in the other three genres of texts, including Conversation,
News, and Fiction, indicating the high generalization ability of a sensorimotor enriched neural
network, which captures the knowledge of semantic, cognitive, and conceptional information in
one shot.

There are several interesting directions for future work: First, we will extend our research meth-
ods to other types of figurative language. Second, we will run our model on other datasets such as
MOH-X (Mohammad et al. 2016) and TroFi (Birke and Sarkar 2006) to further attest to the effi-
ciency of our model in terms of model robustness and generalization abilities. Third, through the
case analysis, we found that multiple word metaphors affected the performance of the metaphor
detection model. We will further consider multi-word metaphor detection using our current
approach. We will also try alternative methods in introducing sensorimotor information using
other paradigms rather than concatenating embedding with the hope of further enriching the
content. In addition to perceptual and actional dimensions, we are also interested to explore other
dimensions such as the emotional and imageability predictors for metaphors and probe into their
possible relations.

In addition to modeling static conceptual features, some studies (Yee and Thompson-Schill
2016; Trott and Bergen 2022) have also addressed the effects of modeling contextualized fea-
tures across time scales or on communication efficiency. However, these two studies were not
specifically designed for metaphor detection. Still, the idea of contextualized sensorimotor repre-
sentations can be a very interesting way to probe further into linguistically-enriched methods for
metaphor detection in future work.

Note that the existing sensorimotor norms laid the ground work for other enriched neuro-
cognitive information that is lexically anchored (Banks and Connell 2023; Reilly, Flurie, and
Peelle 2020; Zhong and Ahrens 2023). In addition, sensorimotor norms are now available for
Chinese (Zhong et al. 2022), Italian (Repetto et al. 2022), and Russian (Miklashevsky 2020), among
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others. Lastly, Chersoni et al. (2020), Chersoni et al. (2021a), and Chersoni et al. (2021b) illus-
trated that it is possible to bootstrap sensorimotor norms of a different language based on existing
norms. These ongoing developments suggest that our proposed approach has the potential of both
bridging to richer neuro-cognitive resources and expanding to multi- and cross-lingual language
processing.
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