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Mean value of real Dirichlet characters
using a double Dirichlet series
Martin Čech

Abstract. We study the double character sum ∑
m≤X ,
m odd

∑
n≤Y ,
n odd

( m
n ) and its smoothly weighted counter-

part. An asymptotic formula with power saving error term was obtained by Conrey, Farmer, and
Soundararajan by applying the Poisson summation formula. The result is interesting because the main
term involves a non-smooth function. In this paper, we apply the inverse Mellin transform twice
and study the resulting double integral that involves a double Dirichlet series. This method has two
advantages—it leads to a better error term, and the surprising main term naturally arises from three
residues of the double Dirichlet series.

1 Introduction

We study the double character sum

S(X , Y) ∶= ∑
m≤X ,
m odd

∑
n≤Y ,
n odd

(m
n
) .(1.1)

This sum was studied by Conrey, Farmer, and Soundararajan in [CFS], where the
authors give an asymptotic formula valid for all large X and Y.

If Y = o(X/ log X), then the main term of S(X , Y) comes from the terms where n is
a square, and the error term can be estimated using the Pólya–Vinogradov inequality.
In particular, we get that in this range,

S(X , Y) = 2
π2 XY 1/2 + O(Y 3/2 log Y + Y 1/2+ε + X log Y),(1.2)

and similarly for X = o(Y/ log Y).
Conrey, Farmer, and Soundararajan showed that there is a transition in the

behavior of S(X , Y) when X , Y are of similar size. In particular, they proved the
following asymptotic formula, which is valid for all large X , Y :

S(X , Y) = 2
π2 X3/2C (Y

X
) + O ((XY 7/16 + Y X7/16) log(XY)) ,(1.3)

where

C(α) = α + α3/2 2
π

∞

∑
k=1

1
k2 ∫

1/α

0

√y sin(πk2

2y
) d y.(1.4)

Published online on Cambridge Core March 22, 2023.
AMS subject classification: 11M32, 11L40.
Keywords: Analytic number theory, Dirichlet characters, multiple Dirichlet series, character sums.

https://doi.org/10.4153/S000843952300022X Published online by Cambridge University Press

http://dx.doi.org/10.4153/S000843952300022X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S000843952300022X&domain=pdf
https://doi.org/10.4153/S000843952300022X


1136 M. Čech

The size of the main term in this formula is XY 1/2 + Y X1/2, so it is always larger than
the error term. The result is interesting, because C(α) is a non-smooth function. For
a heuristic explanation, why such functions arise in this type of problems, see the first
section in [Pet] and the references therein.

Conrey, Farmer, and Soundararajan also gave the following asymptotic estimates
for C(α):

C(α) =
√

α + π
18

α
3
2 + O (α5/2) as α → 0(1.5)

and

C(α) = α + O (α−1) as α →∞.(1.6)

To prove (1.3), Conrey, Farmer, and Soundararajan applied the Poisson summation
formula and estimated the sums of Gauss sums which appeared in the computation.
Similar techniques were used in the work of Gao and Zhao to compute the mean value
in other families of characters, such as cubic and quartic Dirichlet characters [GZ2],
and some quadratic, cubic, and quartic Hecke characters [GZ1]. Gao used similar
methods to compute the mean value of the divisor function twisted by quadratic
characters [Gao].

Our approach is to rewrite S(X , Y) as a double integral by using the inverse Mellin
transform twice. The integral will then involve the double Dirichlet series

A(s, w) = ∑
m odd

∑
n odd

(m
n )

mw ns ,

which was studied by Blomer [Blo], who showed that it admits a meromorphic
continuation to the whole C

2 and determined the polar lines. We then shift the
integrals to the left and compute the contribution of the residues. The quality of
the error term depends whether we assume the truth of the Riemann Hypothesis
because the zeros of ζ(s) appear in the location of the poles of A(s, w), and also in
the contribution of the residues.

An interesting feature of our proof is that the three polar lines from which our
main term arises naturally correspond to the contribution of squares (the polar lines
s = 1 and w = 1), and the transition term where the non-smooth function appears (the
polar line s +w = 3/2).

A more general theory of multiple Dirichlet series has been developed by Bump,
Chinta, Diaconu, Friedberg, Goldfeld, Hoffstein, and others. We refer the reader
interested in the theory and its applications to the expository articles [BFH, Bum,
CFH], the paper [DGH], or the book [BFG].

To state our results, we first define the smooth sum

S(X , Y ; φ, ψ) = ∑
m ,n odd

(m
n
)φ(m/X)ψ(n/Y),(1.7)

where φ, ψ are nonnegative smooth functions supported in (0, 1).
If we denote by f̂ the Mellin transform of f (see (2.7)), the main result is the

following.
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Mean value of real characters using a double Dirichlet series 1137

Theorem 1.1 Let ε > 0. Then for all large X , Y , we have

S(X , Y ; φ, ψ) = 2
π2 ⋅ X3/2 ⋅ D (Y

X
; φ, ψ) + Oε(XY δ + Y Xδ),(1.8)

where δ = ε, and

D(α; φ, ψ) =
φ̂(1)ψ̂ ( 1

2) α1/2 + ψ̂(1)φ̂ ( 1
2) α

2

+ 1
i
√

π ∫
(3/4)

( α
2π
)

s
⋅ φ̂ (3

2
− s) ψ̂(s)�(s − 1

2
) sin(πs

2
) ζ(2s − 1)ds.

If we assume the Riemann Hypothesis, then we can take δ = −1/4 + ε.

We can remove the smooth weights and obtain the following asymptotic formula
for S(X , Y), which improves the error term in (1.3):

Theorem 1.2 Let ε > 0. Then for all large X , Y, we have

S(X , Y) = 2
π2 ⋅ X3/2 ⋅ D (Y

X
) + Oε(XY 1/4+ε + Y X1/4+ε),(1.9)

where

D(α) =
√

α + α − 1
i
√

π ∫
(3/4)

( α
2π
)

s
⋅
� (s − 3

2) sin ( πs
2 ) ζ(2s − 1)

s
ds.(1.10)

We show in Section 7 that D(α) = C(α), so our main term agrees with that of
Conrey, Farmer, and Soundararajan.

Let us also remark that a similar asymptotic can be obtained if the integers m, n
were restricted to lie in a congruence class modulo 8 by working with a suitable
combination of the twisted double Dirichlet series, as defined in (3.3).

2 Preliminaries and notation

Throughout the paper, ε will denote a sufficiently small positive number, different at
each occurrence, and all implied constants are allowed to depend on ε.

We follow the notation of [Blo]. For integers m, n, we denote by χm(n) the
Kronecker symbol

χm(n) = (m
n
) .

Assume that m is odd and write it as m = m0m2
1 with m0 squarefree. Then χm is a

character of conductor ∣m0∣ if m ≡ 1mod 4 and ∣4m0∣ if m ≡ 3mod 4. We denote by
ψ1 , ψ−1 , ψ2 , ψ−2 the four Dirichlet characters modulo 8 given by the Kronecker symbol
ψ j(n) = ( j

n ) . We also let

χ̃m =
⎧⎪⎪⎨⎪⎪⎩

χm , if m ≡ 1 mod 4,
χ−m , if m ≡ 3 mod 4.
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1138 M. Čech

With this notation, quadratic reciprocity tells us that for odd positive integers m, n,

χm(n) = χ̃n(m).(2.1)

The fundamental discriminants m correspond to primitive real characters of
conductor ∣m∣. In such cases, the completed L-function is

Λ(s, χm) = (
∣m∣
π
)

s+a
2

�( s + a
2

) L(s, χm),

where a = 0 or 1 depending on whether the character is even or odd, i.e., whether
χm(−1) = 1 or −1, and we have the functional equation

Λ(s, χm) = Λ(1 − s, χm).(2.2)

All primitive real characters can be uniquely written as χm0 ψ j for some positive odd
squarefree integer m0 and j ∈ {±1,±2}.

If m is not a fundamental discriminant, then χm is a character of conductor m0 ∣
4m, and we have

L(s, χm) = L(s, χm0) ⋅ ∏
p∣ ∣m∣m0

(1 − χm0(p)
ps ) .(2.3)

A subscript 2 of an L-function means that the Euler factor at 2 is removed, so, in
particular,

L2(s, χ) = ∑
n odd

χ(n)
ns .(2.4)

We now record two estimates that will be used later.
The first estimate holds for any s with Re(s) ≥ 1/2:

∑
m≤X ,
m odd

∣L2(s, χmψ j)∣ ≪ε X1+ε ∣s∣ 1
4+ε .(2.5)

It follows after applying Hölder’s inequality on the bound for the fourth moment,
proved by Heath-Brown [Hea, Theorem 2].

The second is conditional under RH, and it says that for any fixed σ > 1/2, we have

∣ 1
ζ(σ + it) ∣ ≪ε (1 + ∣t∣)ε .(2.6)

It follows from [CC, Theorem 2].
For a function f (x), we denote by f̂ (s) its Mellin transform, which is defined as

f̂ (s) = ∫
∞

0
f (x)x s−1dx ,(2.7)
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Mean value of real characters using a double Dirichlet series 1139

when the integral converges. If f̂ is analytic in the strip a < Re(s) < b, then the inverse
Mellin transform is given by

f (x) = 1
2πi ∫

(c)

x−s f̂ (s)ds,(2.8)

where the integral is over the vertical line Re(s) = c, and a < c < b is arbitrary.
We will use the following estimate for the Gamma function, which is a consequence

of Stirling’s formula: for a fixed σ ∈ R and ∣t∣ ≥ 1, we have

∣�(σ + it)∣ ≍ e−∣t∣
π
2 ∣t∣σ−1/2 .(2.9)

We will also use the formula
� ( 1−s

2 )
� ( s

2)
= 2s sin(πs/2)�(1 − s)√

π
.(2.10)

We write the functional equation for the Riemann zeta function as

ζ(s) = χ(s)ζ(1 − s),(2.11)

where

∣χ(σ + it)∣ ≪σ (1 + ∣t∣)1/2−σ .(2.12)

We will also use the estimate

∫
T

−T
∣ζ(σ + it)∣2dt ≪ T 1+ε ,(2.13)

which is true for any σ ≥ 1/2.

3 Outline of the proof and double Dirichlet series

Applying Mellin inversion to S(X , Y ; φ, ψ) twice, we obtain

S(X , Y ; φ, ψ) = ( 1
2πi

)
2

∫
(σ)

∫
(ω)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds,(3.1)

where for Re(s) = σ and Re(w) = ω large enough, we have the absolutely convergent
double Dirichlet series

A(s, w) = ∑
m odd

∑
n odd

(m
n )

mw ns = ∑
m odd

L2(s, χm)
mw .(3.2)

We use the results of Blomer to meromorphically continue A(s, w) to the whole C2,
shift the two integrals to the left and compute the contribution of the crossed polar
lines.

We now cite and sketch the proof of Lemma 2 in [Blo]. For two characters ψ, ψ′ of
conductor dividing 8, we define

Z(s, w; ψ, ψ′) ∶= ζ2(2s + 2w − 1) ∑
m ,n odd

χm(n)ψ(n)ψ′(m)
mw ns ,(3.3)
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which converges absolutely if Re(s) and Re(w) are large enough, and we let

Z(s, w) ∶= Z(s, w; ψ1 , ψ1) = ζ2(2s + 2w − 1)A(s, w).(3.4)

We also denote

Z(s, w; ψ) =
⎛
⎜⎜⎜
⎝

Z(s, w; ψ, ψ1)
Z(s, w; ψ, ψ−1)
Z(s, w; ψ, ψ2)

Z(s, w; ψ, ψ−2)

⎞
⎟⎟⎟
⎠

, Z(s, w) =
⎛
⎜⎜⎜
⎝

Z(s, w , ψ1)
Z(s, w , ψ−1)
Z(s, w , ψ2)

Z(s, w , ψ−2)

⎞
⎟⎟⎟
⎠

.

Theorem 3.1 The functions Z(s, w; ψ, ψ′) have a meromorphic continuation to the
whole C2 with a polar line s +w = 3/2. There is an additional polar line at s = 1 with
residue res(1,w)Z(s, w) = ζ2(2w)/2 if and only if ψ = ψ1, and an additional polar line
w = 1 with residue res(s ,1)Z(s, w) = ζ2(2s)/2 if and only if ψ′ = ψ1.

The functions (s − 1)(w − 1)(s +w − 3/2)Z(s, w; ψ, ψ′) are polynomially bounded
in vertical strips, meaning that for fixed Re(s) and Re(w), (s − 1)(w − 1)(s +w −
3/2)Z(s, w; ψ, ψ′) is bounded by a polynomial in Im(s), Im(w). The functions satisfy
functional equations relating Z(s, w) with Z(w , s), and Z(s, w) with Z(1 − s, s +w −
1/2).

Remarks (i) Blomer gives explicit 16 × 16 matrices A and B(s), such that
Z(s, w) = A ⋅ Z(w , s) and Z(s, w) = B(s) ⋅ Z(1 − s, s +w − 1/2), we will use
the explicit form in (5.2) to compute the residues on the polar line s +w = 3/2.

(ii) We can also iterate the two functional equations and obtain others, for example,
relating Z(s, w) with Z(1 − s, 1 −w). Blomer also gives an almost explicit form
of this case.

(iii) For us, a polar line means that if we fix one of the variables, the resulting
function of the other variable has a pole on the corresponding line with the
given residue. What we state doesn’t exactly hold at the points (1/2, 1) and
(1, 1/2), where two of the polar lines intersect, but we will not need to know
the exact behavior at these points.

Proof sketch We write the Dirichlet series for Z(s, w; ψ, ψ′) in two ways.
First, writing m = m0m2

1 with μ2(m0) = 1, we have

Z(s, w; ψ, ψ′) = ζ2(2s + 2w − 1) ∑
m0 odd,

μ2(m0)=1

L2(s, χm0 ψ)ψ′(m0)
mw

0

× ∑
m1 odd

1
m2w

1
∏
p∣m1

(1 − χm0 ψ(p)
ps )

= ζ2(2s + 2w − 1) ∑
m0 odd,

μ2(m0)=1

L2(s, χm0 ψ)ψ′(m0)ζ2(2w)
mw

0 L2(s + 2w , χm0 ψ) .

(3.5)

If ψ is nontrivial, the right-hand side converges absolutely in the region

{(s, w) ∶ Re(w) > 1 and Re(s +w) > 3/2},
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Mean value of real characters using a double Dirichlet series 1141

the second condition comes from using the functional equation in the numerator
when Re(s) < 1/2. When ψ is the trivial character, the summand corresponding to
m0 = 1 is ζ2(s)ζ2(2w)

ζ2(s+2w) , so there is a pole at s = 1 with residue ζ2(2w)/2. Note that the
other potential polar lines coming from ζ2(2w)

L2(s+2w , χd0 ψ) are outside of the considered
region.

The second way to write Z(s, w; ψ, ψ′) is by exchanging summations and using the
quadratic reciprocity. We obtain

Z(s, w; ψ, ψ′) = ζ2(2s + 2w − 1) ∑
m ,n odd

χm(n)ψ(n)ψ′(m)
mw ns

= ζ2(2s + 2w − 1) ∑
n odd

L2(w , χ̃nψ′)ψ(n)
ns .

(3.6)

We can again write n = n0n2
1 with μ2(n0) = 1 and obtain a series that is absolutely

convergent in the region

{(s, w) ∶ Re(s) > 1 and Re(s +w) > 3/2},

unless ψ′ is the trivial character, in which case there is a pole at w = 1 coming from
the summands when n is a square, and the residue is ζ2(2s)/2.

Note that (3.6) gives a link between Z(s, w; ψ, ψ′) and Z(w , s; ψ′ , ψ), which gives
us a functional equation relating Z(s, w) with Z(w , s). To finish the proof and obtain
the meromorphic continuation to the whole C2, we use the functional equation in the
numerator of (3.5), which gives a functional equation relating Z(s, w) and Z(1 − s, s +
w − 1/2), where the change in the second coordinate comes from the conductor in the
functional equation for L(s, χm). Notice that this change of variables interchanges
2s + 2w − 1 and 2w, leaves s + 2w fixed, and maps the line w = 1 to s +w = 3/2, which
becomes a new polar line.

We can iterate the two transformations coming from (3.5) and (3.6) and obtain a
function meromorphic on a tube region of the form {(s, w) ∶ Re(s)2 + Re(w)2 > c}
for some c. During this process, we obtain some additional potential polar lines, but
these will be canceled by the gamma factors coming from the functional equations. To
obtain a continuation to the region {(s, w) ∶ Re(s)2 + Re(w)2 ≤ c}, we use Bochner’s
Tube theorem from multivariable complex analysis, which states that a function that
is holomorphic on a tube region can be continued to its convex hull (see [Boc]).

The proof that the function is polynomially bounded in vertical strips is similar to
the proof of Proposition 4.11 in [DGH]. ∎

We will also use the following estimate, which is Theorem 2 in [Blo].

Theorem 3.2 For any Y1 , Y2 ≥ 1 and characters ψ, ψ′ modulo 8, we have

∫
Y1

−Y1
∫

Y2

−Y2
∣Z(1/2 + it, 1/2 + iu; ψ, ψ′)∣2dudt ≪ (Y1Y2)1+ε .(3.7)
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In the next two sections, we are going to shift the two integrals in (3.1) to the left
and compute the contribution of the crossed polar lines. By Theorem 3.1, the polar
lines of A(s, w) = Z(s ,w)

ζ2(2s+2w−1) are the following:

• The polar lines of Z(s, w), which give us the main term in Theorem 1.2:
– the line s = 1 with residue res(1,w)A(s, w) = ζ2(2w)

2ζ2(2w+1) ,
– the line w = 1 with residue res(s ,1)A(s, w) = ζ2(2s)

2ζ2(2s+1) ,
– the line s +w = 3/2, whose residue will be computed in Lemma 5.1.

• Zeros of ζ2(2s + 2w − 1) = ζ(2s + 2w − 1) (1 − 21−2s−2w), which are the lines s +w =
ρ+1

2 , where ρ is such that ζ(ρ) = 0, or s +w = kπi
log 2 +

1
2 for some k ∈ Z. All these

satisfy Re(s +w) < 1, and even Re(s +w) ≤ 3
4 if we assume RH.

We will see that the main term comes from the polar lines of Z(s, w), whereas the
polar lines coming from the zeros of ζ2(2s + 2w − 1) determine how far to the left we
will be able to shift the integrals, so they give us our error term.

4 Contribution of the polar lines s = 1 and w = 1

In this section, we shift the integrals to the left and compute the contribution of the
polar lines s = 1 and w = 1. We begin with σ = 2 and ω = 2 in (3.1), where everything
converges absolutely.

Then we move the inner integral to the line Re(w) = 3/4 + ε, so we obtain

S(X , Y ; φ, ψ) = ( 1
2πi

)
2

∫
(2)

∫
(3/4+ε)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds

+ 1
2πi ∫

(2)

XY s φ̂(1)ψ̂(s)res(s ,1)A(s, w)ds.
(4.1)

This shift of integrals is justified by the fast decay of the Mellin transform and
polynomial boundedness of A(s, w) in vertical strips.

Now we compute the second integral in (4.1), which equals

φ̂(1)X
2πi ∫

(2)

Y sψ̂(s)ζ2(2s)
2ζ2(2s + 1) ds.(4.2)

We again estimate this integral using the residue theorem. The integrand has the
following poles:
• At s = 1/2 with residue

Y 1/2ψ̂ ( 1
2)

8ζ2(2) =
Y 1/2ψ̂ ( 1

2)
π2 .

• Zeros of

ζ2(2s + 1) = (1 − 1
22s+1 ) ζ(2s + 1).
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These are at the points s = ρ−1
2 , where ζ(ρ) = 0, and

s = kπi
log 2

− 1
2

, k ∈ Z.

These poles have Re(s) < 0 and if we assume RH, they all have Re(s) ≤ −1/4.
Therefore, we have the following:

φ̂(1)X
2πi ∫

(2)

Y sψ̂(s)ζ2(2s)
2ζ2(2s + 1) ds =

φ̂(1)ψ̂ ( 1
2)XY 1/2

π2 + φ̂(1)X
2πi ∫

(δ)

Y sψ̂(s)ζ2(2s)
2ζ2(2s + 1) ds.

(4.3)

Depending whether we assume RH or not, we take δ = − 1
4 + ε or δ = ε, bound the

integral trivially (we use (2.6) when δ = −1/4 + ε) and get

φ̂(1)X
2πi ∫

(2)

Y sψ̂(s)ζ2(2s)
2ζ2(2s + 1) ds =

φ̂(1)ψ̂ ( 1
2)XY 1/2

π2 + O (XY δ) .(4.4)

Using this in (4.1), we obtain

S(X , Y ; φ, ψ) =
φ̂(1)ψ̂ ( 1

2)XY 1/2

π2

+ ( 1
2πi

)
2

∫
(2)

∫
(3/4+ε)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds + O(XY δ),

(4.5)

Note that when φ = ψ = 1[0,1], the first term is 2
π2 XY 1/2 and corresponds to the

contribution when n is a square.
Next, we exchange the integrals and shift the integral over Re(s) = 2 to Re(s) = 3/4,

crossing the polar line at s = 1. The computation of the residues coming from this
polar line is completely analogous to the previous case, and the result is stated in the
following theorem.

Theorem 4.1 Let ε > 0. Then we have

∑
m odd

∑
n odd

(m
n
)φ (m

X
)ψ ( n

Y
) =

φ̂(1)ψ̂ ( 1
2)XY 1/2 + ψ̂(1)φ̂ ( 1

2)Y X1/2

π2

+ ( 1
2πi

)
2

∫
(3/4)

∫
(3/4+ε)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds + Oε (Y Xδ + XY δ) ,

(4.6)

where δ = ε. If we assume the Riemann Hypothesis, then we can take δ = −1/4 + ε.

5 Contribution of the polar line s +w = 3/2

Before further shifting the integrals, we need to compute the residues on the polar
line s +w = 3/2, which is done in the following lemma.

https://doi.org/10.4153/S000843952300022X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952300022X


1144 M. Čech

Lemma 5.1 For all s ∈ C,

res(s , 3
2−s)Z(s, w) =

√
π sin ( πs

2 )� (s − 1
2) ζ(2s − 1)

2(2π)s .(5.1)

Proof We use the functional equation (28) in [Blo], from which it follows that

Z(1 − u, u + v − 1/2) =
π−u+ 1

2 � ( u
2 )

(41−u − 4)� ( 1−u
2 )

⋅
⎛
⎝
− 4u Z(u, v; ψ1 , ψ1)

+ (4u − 2)Z(u, v; ψ1 , ψ−1) + (2u − 21−u) (Z(u, v; ψ1 , ψ2) + Z(u, v; ψ1 , ψ−2))
⎞
⎠

.

(5.2)

Under the change of variables (s, w) = (1 − u, u + v − 1/2), the line v = 1 transforms
to the line s +w = 3/2. Since v = 1 is a polar line of Z(u, v; ψ, ψ′) if and only if ψ′ = ψ1,
the residue comes only from the first term in the parenthesis on the right-hand side
of (5.2), and is given by

res(1−u ,u+ 1
2 )

Z(u, v; ψ1 , ψ1) =
π−u+ 1

2 � ( u
2 ) (−4u) ζ2(2u)

2 (41−u − 4)� ( 1−u
2 )

=
π−u+ 1

2 � ( u
2 ) ζ(2u)

2 ⋅ 41−u� ( 1−u
2 )

,

so we have

res(s , 3
2−s)Z(s, w) =

πs− 1
2 � ( 1−s

2 ) ζ(2 − 2s)
2 ⋅ 4s� ( s

2)
=
√

π sin ( πs
2 )� (s − 1

2) ζ(2s − 1)
2(2π)s ,

where the last equality follows after using the functional equation for ζ(s) and the
formula (2.10). ∎

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 We move the integral from (4.6) further to the left. Accord-
ing to the discussion at the end of Section 3, we know that except the line s +w = 3/2,
the integrand has no poles with Re(s +w) ≥ 1, or with Re(s +w) > 3/4 if we assume
RH. Hence we have

( 1
2πi

)
2

∫
(3/4)

∫
(3/4+ε)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds

= ( 1
2πi

)
2

∫
(3/4)

∫
(δ′)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds

+ 1
2πi ∫

(3/4)

X
3
2−sY s φ̂ (3

2
− s) ψ̂ (s) res(s , 3

2−s)A(s, w)ds,

(5.3)
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where δ′ = 1/4 + ε, or ε under RH. Using Lemma 5.1 and (3.4), we have

res(s , 3
2−s)A(s, w) =

res(s , 3
2−s)Z(s, w)
ζ2(2) =

√
π sin ( πs

2 )� (s − 1
2) ζ(2s − 1)

2ζ2(2)(2π)s .

Therefore, the second integral on the right-hand side of (5.3) is

2X 3
2

iπ 5
2
∫
(3/4)

( Y
2πX

)
s

φ̂ (3
2
− s) ψ̂(s)�(s − 1

2
) sin(πs

2
) ζ(2s − 1)ds.(5.4)

Hence, we have

S(X , Y ; φ, ψ) =
φ̂(1)ψ̂ ( 1

2)XY 1/2 + ψ̂(1)φ̂ ( 1
2)Y X1/2

π2

+ 2X 3
2

iπ 5
2
∫
(3/4)

( Y
2πX

)
s

φ̂ (3
2
− s) ψ̂(s)�(s − 1

2
) sin(πs

2
) ζ(2s − 1)ds

+ ( 1
2πi

)
2

∫
(3/4)

∫
(δ′)

A(s, w)Xw Y s φ̂(w)ψ̂(s)dwds + O (XY δ + Y Xδ)

= 2
π2 ⋅ X3/2 ⋅ D (Y

X
; φ, ψ) + O (XY δ + Y Xδ) ,

(5.5)

where the last equality follows after trivially bounding the second integral, and using
Xδ′Y 3

4 ≪ XY δ + Y Xδ . ∎

6 Removing the smooth weights

In this section, we show how to remove the smooth weights from Theorem 1.1 and
prove Theorem 1.2. We choose the weights φ = ψ to be a smooth function which is 1
on the interval [ 1

U , 1 − 1
U ] for some U to be chosen later, and 0 outside of (0, 1), and

which satisfies

∣φ̂(σ + it)∣ ≪ j,σ
U j−1

1 + ∣t∣ j(6.1)

for all j ≥ 1. Then using the Pólya–Vinogradov inequality (see (3.1) in [CFS]), we have

∣S(X , Y) − S(X , Y ; φ, ψ)∣ ≪ X3/2 + Y 3/2

U
log(XY).(6.2)

Now we need to estimate the dependence on U of the error term in the computa-
tion of S(X , Y ; φ, ψ). These come from the following:
• The error from the polar lines s = 1 and w = 1.
• The error from the shifted integral.
• The difference of the main terms.
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The error from the polar lines s = 1 is

≪ XY σ ∣∫
(δ)

ψ̂(s)ζ2(2s)
ζ2(2s + 1) ds∣ ,(6.3)

where δ = ε, or −1/4 + ε, and similarly for the error from the polar line w = 1. We have
1

ζ2(2δ+2i t+1) ≪ 1 in both cases by (2.6).
We can shift the integral (6.3) to any vertical line Re(s) = σ with 1/4 ≥ σ ≥ δ, and

bound the integral using the Cauchy–Schwarz inequality as

≪ ∫
(σ)

∣ψ̂(s)ζ(2s)∣ds

≪ (∫
(σ)

∣ζ(1 − 2s)∣2
(1 + ∣s∣)1+ε ds)

1
2

(∫
(σ)

∣ψ̂(s)χ(2s)∣2(1 + ∣s∣)1+εds)
1
2

≪ U j−1 ∫
(σ)
(1 + ∣s∣)2−4σ−2 j+εds

≪ U 1/2−2σ+ε ,

(6.4)

where the first integral on the second line converges by (2.13), and we took j = 3/2 −
2σ + ε.

A similar computation for the polar line w = 1 gives the same result with X , Y
interchanged, so the error from these terms is

(XY σ + Y Xσ)U 1/2−2σ+ε .(6.5)

For the error coming from the shifted integral, we need to estimate

∣∫
(σ)

∫
(ω)

A(s, w)φ̂(w)ψ̂(s)Xw Y sdwds∣ .(6.6)

We have

A(s, w) = Z(s, w)
ζ2(2s + 2w − 1) ,(6.7)

so the integral is

≪ XωY σ ∫
(σ)

∫
(ω)

∣Z(s, w)φ̂(w)ψ̂(s)∣ dwds(6.8)

provided σ + ω > 1 + ε or > 3/4 + ε if we assume RH. We take σ = ω = 1/2 + ε and
estimate the double integral using the Cauchy–Schwarz inequality as follows:

∫
( 1

2+ε)
∫
( 1

2+ε)
∣Z(s, w)φ̂(w)ψ̂(s)∣ dwds

≪
⎛
⎜⎜
⎝
∫
( 1

2+ε)

∫
( 1

2+ε)

∣Z(s, w)∣ 2

(1 + ∣s∣)1+ε(1 + ∣w∣)1+ε dwds
⎞
⎟⎟
⎠

1
2
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×
⎛
⎜⎜
⎝
∫
( 1

2+ε)

∫
( 1

2+ε)

∣φ̂(w)ψ̂(s)∣ 2(1 + ∣s∣)1+ε(1 + ∣w∣)1+εdwds
⎞
⎟⎟
⎠

1
2

(6.9)

≪ U j1+ j2−2
⎛
⎜⎜
⎝
∫
( 1

2+ε)

∫
( 1

2+ε)

(1 + ∣s∣)1+ε−2 j1(1 + ∣w∣)1+ε−2 j2 dwds
⎞
⎟⎟
⎠

1/2

≪ U ε ,

where the integral on the second line converges by (3.7), and we took j1 = j2 = 1 + ε.
It follows that the error from the shifted integral is

≪ (XY)1/2+εU ε .(6.10)

The error from the difference of the main terms is

E(X , Y ; φ, ψ) = 2
π2 X3/2 (D (Y

X
; φ, ψ) − D (Y

X
))

≪ XY 1/2 ∣φ̂(1)ψ̂(1/2) − 2∣ + Y X1/2 ∣ψ̂(1)φ̂(1/2) − 2∣

+ X3/2 ∫
(3/4)

∣( Y
2πX

)
s
�(s − 1

2
) sin(πs

2
) ζ(2s − 1)∣

× ∣φ̂(3/2 − s)ψ̂(s) − 1
s(3/2 − s) ∣ ds

≪ XY 1/2 ∣φ̂(1)ψ̂(1/2) − 2∣ + Y X1/2 ∣ψ̂(1)φ̂(1/2) − 2∣

+ (XY)3/4 ∫
(3/4)

(1 + ∣t∣)−
1
4 ∣ζ(2s − 1)∣

,,,,,,,,,,,
φ̂ (3

2
− s) ψ̂(s) − 1

s ( 3
2 − s)

,,,,,,,,,,,
ds.

(6.11)

We estimate the Mellin transforms in the following lemma.

Lemma 6.1 For s = σ + it, 0 < σ < 1 and φ, ψ as above, we have

φ̂(1)ψ̂(1/2) = 2 + O (U−1/2) ,(6.12)

and

∣φ̂(3/2 − s)ψ̂(s) − 1
s(3/2 − s) ∣ ≪

∣φ̂(3/2 − s)∣
U σ + 1

∣s∣U 3/2−σ .(6.13)

Proof For (6.12), we have

φ̂(1)ψ̂(1/2) = ∫
∞

0
φ(u)du∫

∞

0
ψ(v)v−1/2dv

=
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1
U

∫
0

+
1

∫
1− 1

U

⎞
⎟⎟
⎠

φ(u)du + 1 − 2
U

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1
U

∫
0

+
1

∫
1− 1

U

⎞
⎟⎟
⎠

ψ(v)√
v

dv +
1− 1

U

∫
1
U

1√
v

dv
⎞
⎟⎟
⎠

(6.14)
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= (1 + O ( 1
U
))

⎛
⎝

O ( 1√
U
) + 2

⎛
⎝

√
1 − 1

U
− 1√

U
⎞
⎠
⎞
⎠

= 2 + O (U−1/2) .

For (6.13), we first use the triangle inequality to get

∣φ̂(3/2 − s)ψ̂(s) − 1
s(3/2 − s) ∣

≤ ∣φ̂(3/2 − s)∣ ∣ψ̂(s) − 1
s
∣ + ∣ 1

s
∣ ∣φ̂(3/2 − s) − 1

3/2 − s
∣ .

(6.15)

Now we have

∣ψ̂(s) − 1
s
∣ ≤ ∫

∞

0
∣ψ(u) − 1∣uσ−1du

= ∫
1
U

0
∣ψ(u) − 1∣uσ−1du + ∫

1

1− 1
U

∣ψ(u) − 1∣uσ−1du

≪ 1
U σ ,

(6.16)

and similarly

∣φ̂(3/2 − s) − 1
3/2 − s

∣ ≤ ∫
∞

0
∣φ(u) − 1∣u1/2−σ du ≪ 1

U 3/2−σ .(6.17) ∎

Using this Lemma in (6.11), we get

E(X , Y ; φ, ψ) ≪ XY 1/2 + Y X1/2
√

U
+ (XY

U
)

3/4
.(6.18)

Putting everything together, the error in both cases is

X 3
2+ε + Y 3

2+ε

U
+ XY 1

2 + Y X 1
2

√
U

+ (XY
U

)
3
4

+ (XY σ + Y Xσ)U
1
2−2σ+ε + (XY) 1

2 U ε ,

(6.19)

where 1/4 ≥ σ ≥ δ. In both cases, the best choice is σ = 1/4. Then we can take U =
min{X , Y} and obtain the error

XY 1/4+ε + Y X1/4+ε(6.20)

in the range Y 2/5 ≤ X ≤ Y 5/2 . In the remaining range, the result follows from (1.2) and
the asymptotic expansion of C(α) (1.5) and (1.6), together with the fact that C(α) =
D(α) as will be proved in the next section.
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7 Proving that C(α) = D(α)

In this section, we show that C(α) = D(α). Recall that

D(α) =
√

α + α − 2
√

π
2πi ∫

(3/4)

( α
2π
)

s
⋅
� (s − 3

2) sin ( πs
2 ) ζ(2s − 1)

s
ds.(7.1)

We shift the integral to the left, capturing the pole at s = 1
2 , which contributes

2
√

π ( α
2π
)

1/2
⋅ − sin(π/4)ζ(0)

1/2 = α1/2 .

The horizontal integrals vanish by (2.9) and a convexity estimate for ζ(s), so

D(α) = α − 2
√

π
2πi ∫

(−1/4)

( α
2π
)

s
⋅
� (s − 3

2) sin ( πs
2 ) ζ(2s − 1)

s
ds

= α − 2
√

π
2πi ∫

(1/4)

α−s ⋅
(2π)s� (−s − 3

2) sin ( πs
2 ) ζ(−2s − 1)

s
ds.

(7.2)

This integral is an inverse Mellin transform, so we rewrite C(α) using Mellin inver-
sion. We have

C(α) = α + α3/2 2
π

∞

∑
k=1

1
k2 ∫

1/α

0

√y sin(πk2

2y
) d y

= α + 2
π

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2α

2u
) du

= α + 2
π
⋅ 1

2πi ∫
(c)

α−s f̂ (s)ds,

(7.3)

where

f (x) =
∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du.(7.4)

For 0 < Re(s) < 1, we have

f̂ (s) = ∫
∞

0

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du x s−1dx

=
∞

∑
k=1

1
k2 ∫

1

0

√
u∫

∞

0
sin(πk2x

2u
) x s−1dx du,

(7.5)

which isn’t obvious as the double integral doesn’t converge absolutely, but we will
justify the interchange of summation and integrals in Lemma 7.1. We can now make
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a change of variables y = πk2 x
2u and obtain

f̂ (s) =
∞

∑
k=1

1
k2 ∫

1

0

√
u∫

∞

0
sin(y)ys−1d y ( 2u

πk2 )
s

du

= ( 2
π
)

s
ζ(2 + 2s)∫

1

0
us+1/2du∫

∞

0
sin(y)ys−1d y

=
2s ζ(2 + 2s)�(s) sin ( πs

2 )
πs(s + 3/2) ,

(7.6)

which holds for 0 < Re(s) < 1, so we can take c = 1/4 in (7.3). It therefore suffices to
show that

−2
√

π
(2π)s� (−s − 3

2) sin ( πs
2 ) ζ(−2s − 1)

s
= 2

π
⋅

2s ζ(2 + 2s)�(s) sin ( πs
2 )

πs(s + 3/2) .(7.7)

The functional equation for the zeta function gives

ζ(2s + 2) = π2s+3/2 ⋅
� (−s − 1

2)
�(s + 1) ζ(−2s − 1),(7.8)

so using s�(s) = �(s + 1) and (−s − 3/2)�(−s − 3/2) = �(−s − 1/2) gives the result.
It remains to justify the interchange of the order of summation and integrations in

(7.5).

Lemma 7.1 If 0 < Re(s) < 1, it holds that

∫
∞

0

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du x s−1dx

=
∞

∑
k=1

1
k2 ∫

1

0

√
u∫

∞

0
sin(πk2x

2u
) x s−1dx du.

(7.9)

Proof We have

∫
∞

0

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du x s−1dx

= lim
A→∞∫

A

1/A

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du x s−1dx .

(7.10)

We can now interchange the integrals and summation, because
∞

∑
k=1

1
k2 ∫

1

0
∫

A

1/A
∣
√

u sin(πk2x
2u

) x s−1∣ dx du ≪ A,(7.11)

so

lim
A→∞∫

A

1/A

∞

∑
k=1

1
k2 ∫

1

0

√
u sin(πk2x

2u
) du x s−1dx

= lim
A→∞

∞

∑
k=1

1
k2 ∫

1

0

√
u∫

A

1/A
sin(πk2x

2u
) x s−1dx du.

(7.12)
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To insert the limit inside the sum and integral, we use the Dominated convergence
theorem with the bound

√
u∣ ∫

A
1/A sin( πk2 x

2u ) x s−1dx∣ ≤ K
√

u for an absolute constant
K independent of u and A in our range, which holds because ∫

∞
0 sin(y)ys−1d y

converges. ∎
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