A NOTE ON MEASURES DETERMINED BY CONTINUOUS FUNCTIONS

BY
A. M. BRUCKNER(${ }^{1}$)

1. Introduction. Ellis and Jeffery [2] studied Borel measures determined in a certain way by real valued functions of a real variable which have finite left and right hand limits at each point. If f is such a function and is of bounded variation on an interval I, then the associated measure μ_{f} has the property that $\mu_{f}(I)$ equals the total variation of f on I. The authors then indicated in [3] how some of these measures permit the definition of generalized integrals of Denjoy type. In [1], the authors construct an example of a continuous function f, not of bounded variation, such that the associated measure μ_{f} is the zero measure. The purpose of this note is to show that "most" continuous functions give rise to the zero measure in the sense that there is a residual subset R of $C[a, b]$ such that for each $f \in R$, the associated measure μ_{f} is the zero measure.
2. Preliminaries. For convenience, we shall deal with continuous functions defined on the interval $[0,1]$ rather than on the whole real line. Let $C[0,1]$ denote, as usual, the space of all such functions furnished with the sup norm.
Now let $f \in C[0,1]$. Following [1], [2], or [3] we define an outer measure μ_{f}^{*} by Munroe's method II [5]. Thus, for each positive integer n, let C_{n} denote the class of closed intervals of length less than $1 / n$. We now obtain an outer measure $\mu_{f, n}^{*}$ defined for each subset A of $[0,1]$ by the equation

$$
\mu_{f, n}^{*}(A)=\inf \left\{\sum_{k=1}^{\infty}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|:\left[a_{k}, b_{k}\right] \in C_{n} ; \bigcup_{k=1}^{\infty}\left[a_{k}, b_{k}\right] \supset A\right\} .
$$

Finally, we define μ_{f}^{*} by the equation

$$
\mu_{f}^{*}(A)=\lim _{n \rightarrow \infty} \mu_{f, n}^{*}(A)
$$

The measure μ_{f} which is the restriction of μ_{f}^{*} to its class of measurable sets is then the required measure.
3. Main result. In this section we prove that the class of continuous functions f for which μ_{f} is the zero measure, is residual in $C[0,1]$. We begin with a lemma.

Lemma. Let $f \in C[0,1]$ and let λ denote Lebesgue measure. Then $\mu_{f}(A)=0$ for each $A \subset[0,1]$ for which $\lambda(f(A))=0$.
$\left.{ }^{(}{ }^{1}\right)$ The author was supported in part by NSF Grant GP-18968.

Proof. Let A be any set in $[0,1]$ for which $\lambda(f(A))=0$. It suffices to show that for each positive integer $n, \mu_{f, n}^{*}(A)=0$, for in that case

$$
\mu_{f}^{*}(A)=\lim _{n \rightarrow \infty} \mu_{f, n}^{*}(A)=0
$$

whence $\mu_{f}(A)=0$ since μ_{f} is a complete measure. Thus, fix n and decompose [0,1] into finitely many intervals each of length less than $1 / n$. Let I be one of these intervals. We shall show that $\mu_{f, n}^{*}(I \cap A)=0$ from which it follows (by the subadditivity of $\left.\mu_{f, n}^{*}\right)$ that $\mu_{f, n}^{*}(A)=0$.

Towards this end let M denote the set of points in I at which f attains a strict relative maximum or minimum. The set M is denumerable [7, p. 261], so $\mu_{f, n}^{*}(M)$ $=0$. Let

$$
B=\left\{x \in A \cap I: f(x)=f\left(x^{\prime}\right) \text { for some } x^{\prime} \in I, x^{\prime} \neq x\right\}
$$

then $\mu_{f, n}^{*}(B)=0$. To see this, associate with each $x \in B$ an $x^{\prime} \in I, x^{\prime} \neq x$ such that $f(x)=f\left(x^{\prime}\right)$. The family of intervals $\left[x, x^{\prime}\right]$ thus obtained covers B. There exists a denumerable subfamily of this family, $\left\{\left[x_{k}, x_{k}^{\prime}\right]\right\}_{k=1}^{\infty}$, which also covers B. Since $\lambda(I)<1 / n$, we infer

$$
\mu_{f, n}^{*}(B) \leq \sum_{k=1}^{\infty}\left|f\left(x_{k}\right)-f\left(x_{k}^{\prime}\right)\right|=0 .
$$

Now let $D=(I \cap A) \sim(B \cup M)$. Each $x \in D$ is isolated in its level set over I : that is, if $x \in D$, then for each $x^{\prime} \in I\left(x^{\prime} \neq x\right)$, we have $f(x) \neq f\left(x^{\prime}\right)$. Furthermore, since $x \notin M, f(t)>f(x)$ for all $t \in I$ on one side of x and $f(t)<f(x)$ for all $t \in I$ on the other side of x. For definiteness, suppose $f(t)>f(x)$ if $t>x, t \in I$ and $f(t)<f(x)$ if $t<x, t \in I$. It follows from the intermediate value property for continuous functions that the sense of the inequalities is preserved in all $x \in D$. In particular, f is strictly increasing on D. It now follows directly from the definition of $\mu_{f, n}^{*}$ and the fact that $\lambda(f(D))=0$ that $\mu_{f, n}^{*}(D)=0$. Specifically, for $\epsilon>0$, let $\bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right)$ be an open cover of the set $f(D)$ such that $\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)<\epsilon$. Since f is monotonic on D, each of the sets $D \cap f^{-1}\left(\left(a_{k}, b_{k}\right)\right)$ is a relative interval of D : that is, there exist numbers c_{k} and d_{k} such that $f\left(c_{k}\right)=a_{k}, f\left(b_{k}\right)=d_{k}$ and $D \cap f^{-1}\left(\left(a_{k}, b_{k}\right)\right)$ $=D \cap\left(c_{k}, d_{k}\right)$. Then $D \subset \bigcup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)$ and

$$
\mu_{f, n}^{*}(D) \leq \mu_{f, n}^{*}\left(\bigcup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)\right) \leq \sum_{k=1}^{\infty}\left|f\left(c_{k}\right)-f\left(d_{k}\right)\right|=\sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right)<\epsilon .
$$

Since ϵ was arbitrary, we infer $\mu_{f, n}^{*}(D)=0$.
We have shown that $\mu_{f, n}^{*}(M)=0, \mu_{f, n}^{*}(B)=0$, and $\mu_{f, n}^{*}(D)=0$. Since $I \cap A$ $=M \cup B \cup D$, it follows that $\mu_{f, n}^{*}(I \cap A)=0$, and the proof of the lemma is complete.

Theorem. The class of functions f in $C[0,1]$ for which μ_{f} is the zero measure, is residual in $C[0,1]$.

Proof. Marcus [4] has proved that if the set of values a continuous function f takes at points where the derivative exists, (finite or infinite), forms a set of Lebesgue measure zero, then for almost every y in the range of f, the level set $L_{y} \equiv\{x: f(x)=y\}$ is perfect. Let f be such a function. Let $B=\left\{x: L_{f(x)}\right.$ is perfect $\}$. Then, as in the proof of the lemma, $\mu_{f}(B)=0$. Let $A=[0,1] \sim B$. Then $\lambda(f(A))=0$ so, by the lemma, $\mu_{f}(A)=0$.

Now [6] the class of continuous functions which at no point have a finite or infinite derivative forms a residual subset of $C[0,1]$. Each function in this class satisfies the conditions of Marcus' theorem, thus each such function gives rise to the zero measure.

References

1. J. H. W. Burry and H. W. Ellis, On measures determined by continuous functions that are not of bounded variation, Canad. Math. Bull. (1) 13 (1970), 121-124.
2. H. W. Ellis and R. L. Jeffery, On measures determined by functions with finite right and left limits everywhere, Canad. Math. Bull. (2) 10 (1967), 207-225.
3. -_, Derivatives and integrals with respect to a base function of generalized variation, Canad. J. Math. 19 (1967), 225-241.
4. S. Marcus, Sur un théorème de M. S. Stoilow, concernant les functions continues d'une variable réelle, Rev. Gén. Sci. Pures Appl. 2 (1957), 409-412.
5. M. E. Munroe, Introduction to measure and integration, Addison-Wesley, Reading, Mass., 1953.
6. S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211-219.
7. -, Theory of the integral, Warsav, 1937.

University of California, Santa Barbara, California

