
Canad. Math. Bull. Vol. 15 (2), 1972 

A NOTE ON MEASURES DETERMINED BY 
CONTINUOUS FUNCTIONS 

BY 

A. M. BRUCKNERO 

1. Introduction. Ellis and Jeffery [2] studied Borel measures determined in a 
certain way by real valued functions of a real variable which have finite left and 
right hand limits at each point. Iff is such a function and is of bounded variation 
on an interval /, then the associated measure [xf has the property that fif(I) equals 
the total variation off on /. The authors then indicated in [3] how some of these 
measures permit the definition of generalized integrals of Denjoy type. In [1], the 
authors construct an example of a continuous function/, not of bounded variation, 
such that the associated measure \xf is the zero measure. The purpose of this note 
is to show that "most" continuous functions give rise to the zero measure in the 
sense that there is a residual subset R of C[a, b] such that for e a c h / e R, the 
associated measure fxf is the zero measure. 

2. Preliminaries. For convenience, we shall deal with continuous functions 
defined on the interval [0, 1] rather than on the whole real line. Let C[0, 1] denote, 
as usual, the space of all such functions furnished with the sup norm. 

Now l e t / e C[0, 1]. Following [1], [2], or [3] we define an outer measure $ by 
Munroe's method II [5]. Thus, for each positive integer n, let Cn denote the class 
of closed intervals of length less than 1/n. We now obtain an outer measure 
/x*n defined for each subset A of [0, 1] by the equation 

tf,n(A) = inf { I |/(6fc)-/(*fc)| : [ak9 bk] e Cn; \J [ak, bk] => A \ 

Finally, we define p* by the equation 

l4(A) = lim t4,n(A). 

The measure /xr which is the restriction of nf to its class of measurable sets is then 
the required measure. 

3. Main result. In this section we prove that the class of continuous functions 
/ f o r which fif is the zero measure, is residual in C[0, 1]. We begin with a lemma. 

LEMMA. Let fe C[0, 1] and let A denote Lebesgue measure. Then fjLf(A) = 0 for 
each y*c:[0, 1] far which \(f(A)) = 0. 
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Proof. Let A be any set in [0, 1] for which X(f(A)) = 0. It suffices to show that 
for each positive integer n, ii*tn(A)=09 for in that case 

tf(A) = Urn fi.^A) = 0, 
n->oo 

whence fif(A) = 0 since /xr is a complete measure. Thus, fix n and decompose 
[0, 1] into finitely many intervals each of length less than \\n. Let /be one of these 
intervals. We shall show that itf^JJ^ A) = 0 from which it follows (by the sub-
additivity of/xfn) that [i*tTl(A) = 0. 

Towards this end let M denote the set of points in / at which / attains a strict 
relative maximum or minimum. The set M is denumerable [7, p. 261], so /x*t n(M) 
= 0. Let 

B = {x e A n I:f(x) = f(x') for some x' e I, x' ^ x}, 

then fjL*tn(B) = 0. To see this, associate with each x e B an x' e /, x' ^ x such that 
f(x)=f(x'). The family of intervals [x, x'] thus obtained covers B. There exists a 
denumerable subfamily of this family, {[xk, x'k]}k = l9 which also covers B. Since 
A(7) < l/«, we infer 

rfM < f \f(xk) -/(4)| = 0. 
fc = l 

Now let D=(I n A)~(B u M). Each x e D is isolated in its level set over /: 
that is, if x e D, then for each x' e 7 (X '#* ) , we have f{x)^f(x'). Furthermore, 
since x $ M, fit) >f(x) for all tel on one side of x and f(t) <f(x) for all t e I on 
the other side of x. For definiteness, suppose f(t) >f(x) if t>x, tel and/(*) <f(x) 
ift<x,tel.lt follows from the intermediate value property for continuous func
tions that the sense of the inequalities is preserved in all xe D. In particular, 
/ i s strictly increasing on D. It now follows directly from the definition of ix*tU and 
the fact that X(f(D))=0 that tft n(D) = 0. Specifically, for e > 0, let IJ?= i (ak, bk) be 
an open cover of the set/(Z>) such that 2"=i (bk — ak)<e. Since fis monotonie on 
D, each of the sets D n/_1((afc, bk)) is a relative interval of D: that is, there exist 
numbers ck and dk such that f(ck) = ak, f(bk) = dk and D <^f~\(ak,bk)) 
= Dn (cfc, 4) . Then Dc |Jf B l (Cfc, 4 ) and 

ti.m < fi.n ( û (**,*)) < i i/fe)-/(4)i = i (6,-^) < c 
\ f c = l / k=l fc = l 

Since e was arbitrary, we infer /z*>n(D) = 0. 
We have shown that ^ , n (M)=0, /x^n(£) = 0, and /xjf>n(Z>) = 0. Since I n A 

= M u 5 u D , i t follows that /z*, n(I n A)=0, and the proof of the lemma is com
plete. 

THEOREM. The class of functions fin C[0, I] for which \if is the zero measure, is 
residual in C[0, 1]. 
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Proof. Marcus [4] has proved that if the set of values a continuous function / 
takes at points where the derivative exists, (finite or infinite), forms a set of Lebesgue 
measure zero, then for almost every y in the range of/, the level set Ly={x : f(x) =y) 
is perfect. Let/be such a function. Let B={x : Lnx) is perfect}. Then, as in the proof 
of the lemma, fif(B)=0. Let A = [0,1]~B. Then \(f(A))=Q so, by the lemma, 
i*/04)=0. 

Now [6] the class of continuous functions which at no point have a finite or 
infinite derivative forms a residual subset of C[0, 1]. Each function in this class 
satisfies the conditions of Marcus' theorem, thus each such function gives rise to 
the zero measure. 
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