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The description of weakly nonlinear water-wave evolution over a horizontal bottom by the
integro-differential Zakharov equation, because of utilising the underlying Hamiltonian
structure, has many advantages over direct use of the Euler equations. However, its
application to finite-depth situations is not straightforward since, in contrast to the
deep-water case, the kernels governing the four-wave interactions are singular, as well
as the kernels in the canonical transformation that removes non-resonant interactions
from the original equations of motion. At the singularities, these kernels are finite but
not unique. The issue of how to use the Zakharov equation for finite depth and whether
it is possible at all was debated intensely in the literature for decades but remains
outstanding. Here we show that the absence of a limit of the kernels at the singularities
is inconsequential, since in the equations of motion it is only the integral that matters. By
applying the definition of the Dirac-δ, we show that all the integrals involving a trivial
manifold singularity are evaluated uniquely. Therefore, the Zakharov evolution equation
and the nonlinear canonical transformation are only apparently singular. The findings are
validated by application to examples where predictions based on the Zakharov equation
are compared with known solutions obtained from the Euler equations.

Key words: surface gravity waves, Hamiltonian theory

1. Introduction

The Hamiltonian structure of the water-wave problem found by Vladimir Zakharov
allows a compact description of dynamics of weakly nonlinear wave fields via a single
integro-differential equation; see e.g. Zakharov (1968) and also Krasitskii (1994).
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To cubic order in surface steepness, the amplitude evolution is governed by the Zakharov
equation:

i
db1

dt
= ω1b1 +

∫
T3,4

1,2 b∗
2b3b4δ

3,4
1,2 dk2,3,4, (1.1)

where bi = b(ki, t) are complex amplitudes related to the physical variables, characterising
the free surface elevation and velocity potential on the surface, through a number of
canonical transformations; see Appendix A. Also,ω2

1 = gk1τ1, with k1 = |k1| the modulus
of the two-dimensional (2-D) wave vector k1 ∈ R2, and τ1 = tanh (k1h). Notation is made
compact by using subscripts and superscripts: the symbol δ is the Dirac-delta written in
compact notation, i.e. δ3,4

1,2 = δ(k1 + k2 − k3 − k4), T3,4
1,2 = T(k1,k2,k3,k4) is the kernel

describing the interaction among four waves, and the integration symbol stands for a triple
R2 integration with dk2,3,4 = dk2 dk3 dk4. The expression for T3,4

1,2 and all the canonical
transformations, summarised in Appendix A, are based on the work by Krasitskii (1994).

Besides being a widely used model for the analysis of fundamental aspects of nonlinear
wave propagation, the Zakharov equation (1.1) also provides the basis for the derivation
of the kinetic equation (e.g. Zakharov, L’vov & Falkovich 1992; Nazarenko 2011); the
latter, known as the Hasselmann equation in the water-wave context, is the backbone of
the spectral models used e.g. for the ocean wave modelling and forecasting (Komen et al.
1996).

In the deep-water limit, the Zakharov equation raises no concerns and is used widely for
modelling of wave dynamics (e.g. Annenkov & Shrira 2001; Janssen 2004). In contrast,
the question of whether the Zakharov equation (1.1) is also fully satisfying in water of
finite depth (Zakharov 1999), and hence could be used in practice, has been discussed for
decades. The difficulty is that while T3,4

1,2 has a well-formed structure, its degenerate forms

T1,2
1,2 and T1,1

1,1 , also known as ‘trivial interaction’ kernels, are not generally defined. The
role of the trivial interaction kernels is to account for the Stokes-like frequency shift of
the wave harmonic with wave vector k1 caused by the harmonic k2. These interactions are
called trivial since they operate only as frequency shifts and do not affect the evolution
of the wave amplitudes. The calculation of T1,2

1,2 is not straightforward and has to be done
in the sense of a limit in two dimensions. For example, one has to use the constraint
k4 = k1 + k2 − k3 prescribed by the Dirac-δ in (1.1), and let k3 → k1 (e.g. Janssen &
Onorato 2007). When accounting for finite depth, this limit operation does not return a
unique answer (see e.g. Herterich & Hasselmann 1980), therefore the limit does not exist,
i.e. T3,4

1,2 is singular.
The singularity of the evolution equation kernel originates from the nonlinear canonical

transformation that expresses the wave amplitudes in terms of the transformed variable
b(k). More specifically, we refer to the part of the transformation that removes the
Hamiltonians in the manifold k1 + k2 = k3 and, automatically, in the manifold k1 =
k2 + k3, given by (3.13) and (3.14) in Krasitskii (1994), reported here as (A11). The
degenerate form of that part of the canonical transformation contributes in setting the
surface mean set-up and the wave-induced current. At the four-wave interaction level,
the same three-wave interaction kernels enter the canonical transformation as correction
to higher moments of the surface elevation and the four-wave interaction kernel of the
evolution equation. This is formalised by the four-wave transformation kernel found by
Krasitskii (1994) ((3.24) therein), which corresponds to our (A12c). The latter enters
the cohomological equation (3.5) by Krasitskii (1994) and thus determines the evolution
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Finite-depth Zakharov equation

equation kernel. As a result, the degenerate form of the three-wave kernels are the cause
of the non-uniqueness of the trivial interaction kernel. To summarise, the non-uniqueness
of the mean set-up of the wave-induced current and of the nonlinear frequency shift have
the same origin.

The present work aims to clarify the nature of the singularities in the kernels and thus
remove the obstacles to using the Zakharov equation for finite depth. It is motivated by
the question: If this ‘theory’ indeed has a singularity, is it legitimate to disregard it and
keep only the regular part? This is truly crucial not only for coherence of the theory, but
because of all important practical applications, such as ocean-wave modelling in finite
water depths. First, we’ll try to examine whether the singularities of the kernels manifest
themselves as actual singularities of the equations.

To understand the origin of the singular terms, it is convenient to express the kernel
T3,4

1,2 as

T3,4
1,2 = 2H3,4

1,2 + R3,4
1,2 + S3,4

1,2 + S4,3
1,2, (1.2)

where H3,4
1,2 is a well-defined function governing interactions of two wave pairs, while

the last three terms are a result of the canonical integral transformation eliminating all
triad interactions, relegating them to the status of second-order ‘bound modes’ (see e.g.
(2.17) in Krasitskii 1994). The R term is linked to the elimination of the super-harmonics,
while the S terms are the result of the removal of the sub-harmonics. These S terms are
referred to as ‘singular’ by Stiassnie & Gramstad (2009), since S kernels are not defined
on the manifolds k3 = k1 and k3 = k2, i.e. the ‘limits’ S1,1

1,1 and S2,1
1,2 do not exist. These

manifolds are responsible for the wave-induced current and mean set-up.
At this point, one might wonder whether the removal of the sub-harmonics from

the equation of motion makes sense, or if the nearly resonant triad interactions are
really important for the dynamics. Herterich & Hasselmann (1980), concentrating
on the errors associated with an improper treatment of the singularity of the sole
self-interaction kernel, suggested removing the uncertainty just by averaging over the
limit approaching direction, and then forcing this average to be zero. Zakharov &
Kuznetsov (1997), however, observe that in systems with such dispersion laws, where ω
is becoming linear as k ↓ 0, the low-frequency motion has to be described by a separate
equation.

The issue related to the mean flow, wave-induced or not, is pervading the various
approaches to the problem. For example, Madsen & Fuhrman (2006, 2012), by means
of a classical perturbation method and admitting a stationary ambient current, found
a well-defined Stokes-like frequency shift, but the transfer functions turn out to be
unbounded on the resonant manifold. Janssen & Onorato (2007), under assumptions
of narrow band and one-dimensional (1-D) wave propagation, found a well-defined
self-resonant kernel T1,1

1,1 , and an expression for the mean flow. These results coincide
with those obtained by Whitham (1974) using a variational principle. The peculiarity of
this kernel is that it is negative for kh < 1.363, which means that in relatively shallow
waters, weakly nonlinear phase speed is lower than the linear one. Starting from the
simplest Boussinesq model, Onorato et al. (2009) derived a Zakharov equation in which
the self-resonant kernel behaves in the same way.

Stiassnie & Gramstad (2009) investigated whether in two dimensions, the singular terms
also have the same form of the wave-induced flow and the mean surface elevation that
can be obtained by the canonical transformation; unfortunately, the results proved to
be inconclusive, since Stiassnie & Gramstad (2009) considered a non-fully symmetric
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Zakharov kernel, and the implications of the departure from the symmetric kernel are not
clear. Gramstad (2014) concentrated the effort in splitting the equations into wave and
mean motions. This approach follows Craig, Guyenne & Sulem (2010), who identified
the original sin with the singularity at k = 0 of the linear Zakharov transformation
(A4a,b). According to Zakharov (1999, § 6), on the resonant manifold, singular terms
of the four-wave kernel cancel each other in the shallow-water limit. However, this does
not lead to the conclusion that also on the self-resonant manifold, singular terms vanish
in shallow water (Zakharov 1999, § 9). Starting from the Davey & Stewartson (1974)
equation (D–S equation), Onorato et al. (2009) showed that the associated four-wave
coupling kernel is exactly zero on the four-wave resonant manifold. An expression for the
self-resonant kernel of the D–S equation was proposed by Janssen (2017): the singular term
in intermediate waters is finite and depends strongly on the directional spread, whereas in
the shallow-water limit, the singular term is zero.

Besides the obvious need for a consistent 2-D formulation for the weakly nonlinear
dispersion relation, we stress that the problem of finding the 2-D form of the
trivial resonance kernel is crucial for the description of all other weakly nonlinear
phenomena. There are important practical aspects involved. As pointed out, the two-wave
interaction kernel T1,2

1,2 accounts for only the Stokes-like frequency shift, and does
not affect directly the commonly used kinetic equation for the wave-action density.
We must also add that if a slightly modified statistical closure accounting also for
faster wave-field evolution is employed, then the wave–wave interaction kernel seems
to enter the kinetic equation for the wave-action density (Gramstad & Stiassnie 2013;
Annenkov & Shrira 2018). In any case, the relation between the wave-action density
and the physical variables depends on the integral canonical transformation and its
kernels.

There are also much more significant implications of the augmented knowledge on this
issue. The dynamic equations for wave amplitude and the corresponding integral canonical
transformation are connected intimately. In fact, the latter shapes the former, and naturally
takes part in quadratic energy statistics. Among them, we find the second-order spectrum
introduced by Janssen (2009), which is crucial to refine the prediction of spectral moments.

Thus understanding the singularities of the Zakharov equation is fundamental
for the description of both water-wave evolution, including long-term statistics, and
phase-averaged quantities, e.g. those predicted by forecast centres and used in climate
models.

The paper is organised as follows. In § 2, we use the simplest solution of the Zakharov
equation to find that the singularities of the kernel are just apparent singularities of the
equation. After computing the 2-D form of the self-interaction kernel, in § 3, we show how
the result affects the Stokes shift correction of the dispersion relation. In § 4, to validate
the results, we analyse the stability of 2-D side-band perturbations of the monochromatic
wave. In particular, we show that established results for long-wave modulations (Hayes
1973; Whitham 1974) can be found as a limiting case of the Zakharov solution. In § 5,
we find the 2-D-consistent monochromatic wave solution in physical space, integrating up
to third order the nonlinear canonical transform. Also, the singularities of the canonical
transformation kernels turn out to be apparent singularities of the transformation.
Finally, in concluding § 6, we provide a brief summary and discussion of the
results.
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Finite-depth Zakharov equation

2. Monochromatic solution of the Zakharov equation

2.1. Solving the equation of motion
It is known that the monochromatic wave

b1(k1, t) = β(t) δ1
0 (2.1)

is an exact solution of the Zakharov equation (1.1), provided that β(t) satisfies a relation
that we specify below. First, we review the analytical process that supports this proposition.
By plugging (2.1) into (1.1), we find immediately that

i
dβ
dt
δ1

0 =
(
ω1δ

1
0 + |β|2

∫
T3,4

1,2δ
2
0δ

3
0δ

4
0δ

3,4
1,2 dk2,3,4

)
β. (2.2)

The second term in parentheses is the frequency shift proportional to the square of the
amplitude β. Proceeding from (2.2), after triple integration in R2, we are left with

i
dβ
dt
δ1

0 = βω1δ
1
0 + β |β|2 T0,0

1,0+0−1δ
1
0 . (2.3)

Integrating (2.3) in dk1, we find

i
dβ
dt

= βω0 + β |β|2 T̃0, (2.4)

where

T̃0 =
∫

T0,0
1,0+0−1δ

1
0 dk1. (2.5)

This is an improper integral, and the singularity at the pole (� limk1→k0 T0,0
1,0+0−1) does not

allow a straightforward removal of the Dirac-δ. The evaluation of (2.5) is the key element
of the present work, and it is discussed in the next paragraph.

After invoking an arbitrary initial condition, β(t = 0) = β(0) ∈ C, the solution of (2.4)
takes the form

c(t) = β(0) e−iΩ0t, (2.6a)

Ω0 = ω0 + |β(0)|2 T̃0. (2.6b)

According to the canonical transformations (A3), (A4a,b) and (A7a,b), together with the
ansatz (2.1), the initial value can be written in terms of the amplitude η of the fundamental
Fourier mode of the surface elevation:

|β(0)| = π

√
2g
ω0
η. (2.7)

By means of (2.7) and (2.6b), the weakly nonlinear Stokes shift can be expressed in
physical variables and put in the non-dimensional form

Ω

ω
− 1 = γ

(
kη
τ 2

)2

, (2.8)
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where we have dropped the subscripts referring to k0, and introduced a convenient
rescaling for (2.5), i.e.

γ = 2π2τ 3

k3 T̃0. (2.9)

As shown in the next paragraphs, γ turns out to be bounded for any kh, thus indicating that
the Stokes shift (2.8) could be not valid for relative water depths kh smaller than (kη)0.5.

2.2. Evaluation of the self-interaction integral
The kernel of the integration (2.5) is not defined at the singularity k1 = k0. In this case, the
straightforward application of the Dirac-δ identity property does not help. We must take a
step back, and recall the actual meaning of the Dirac-δ. Let us pick the bucket function

ψε(k) =
⎧⎨
⎩

1
πε2 , |k| ≤ ε,

0, |k| > ε.

(2.10)

Taking ε = εn = 1/n with n ∈ N, the sequence ψεn converges to the Dirac-delta, sharing
with it the necessary properties. For example, the circular shape of the compact support
ensures that ψεn is invariant to an arbitrary rotation of the axes (see e.g. Jones 1982). We
can thus write

lim
ε→0

ψε(k) = δ(k). (2.11)

By means of (2.11), the integral in (2.5), which operates over R2, becomes an integral over
a finite domain, i.e.

T̃0 = lim
ε→0

∫
T0,0

1,0+0−1ψε(k1 − k0) dk1 = lim
ε→0

1
πε2

∫
|k1−k0|≤ε

T0,0
1,0+0−1 dk1. (2.12)

At this point, we make the change of variables k1 = k0 + k2, with k2 being expressed via
polar coordinates, k2 = k2[cos θ2, sin θ2], to get from (2.12) a more convenient form:

T̃0 = lim
ε→0

1
πε2

∫ 2π

0

∫ ε

0
T0,0

0+2,0−2k2 dk2 dθ2. (2.13)

Using the explicit formula given in Appendix A, one can verify that T0,0
0+2,0−2 can be

broken into a sum of rational functions. Most of them, at k2 = 0, are functions of just
k0. All other members, originating in particular from the expansion of S in (A10b), have
numerator and denominator that can both be expressed as convergent Taylor series around
k2 = 0, with leading term of the same order. Among them we find, for example,

ω2
2

(ω0+2 − ω0)
2 − ω2

2
= c2

s k2
2 + ∑∞

i=4 αiki
2

(c2
g,0 cos2 θ2 − c2

s )k
2
2 + ∑∞

i=4 βiki
2
, (2.14)

where cg,0 = ∂ω0/∂k0 is the modulus of the group celerity, cs = √
gh is the linear

shallow-water celerity, and the multipliers αi and βi are some functions of k0 and θ2.
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Finite-depth Zakharov equation

This is sufficient to ensure that T0,0
0+2,0−2 can be presented, near k2 = 0, as a convergent

series in powers of k2, that is,

T0,0
0+2,0−2 =

∞∑
n=0

kn
2

n!
wn. (2.15)

The multipliers wn are continuous functions of the direction θ2:

wn(θ2) = ∂n

∂nk2
T0,0

0+2,0−2(k2, θ2)

∣∣∣∣
k2=0

. (2.16)

It is understood that some of them, certainly the leading term, have to be evaluated as
limits for k2 → 0+. Plugging the expansion (2.15) into the expression for T̃0 in (2.13), and
integrating over k2, we get

T̃0 = lim
ε→0

∞∑
n=0

εn

π(n + 2) n!

∫ 2π

0
wn dθ2. (2.17)

On taking the limit for ε, all the high-order terms (n > 0) vanish, so that, recalling w0 from
(2.16), we finally have an expression for T̃0 that does not depend on θ2:

T̃0 = 1
2π

∫ 2π

0
lim

k2→0
T0,0

0+2,0−2(k2, θ2) dθ2. (2.18)

This is the key point of this work. Its implications are discussed below. In deep water, the
limit for k2 ↓ 0 does not depend on the angle θ2, hence the circular average in (2.18) is just
a simple identity.

2.3. Explicit expression for the self-interaction kernel
Recalling (1.2), we note that only the S terms can be singular, thus in need of the treatment
suggested in § 2.2. Then, extending the notation of (2.18) to the S term, from (1.2), we have

T̃0 = 2H0,0
0,0 + R0,0

0,0 + 2S̃0, (2.19)

where

S̃0 = 1
2π

∫ 2π

0
lim

k2→0
S0,0

0+2,0−2(k2, θ2) dθ2. (2.20)

This is actually the term that represents the effect of the ‘mean motion’ that has been
removed by the canonical integral transformation. Recalling (A10b), together with (A13b),
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(A14b) and (A15b), after taking the limit for k2 → 0, we find that (2.20) becomes

S̃0 = − k3
0c2

s

8(2π)3

∫ 2π

0

{
(1 − τ 2

0 )
2

τ0(c2
s − c2

g,0 cos2 θ2)

+
[

4gcg,0

ω0c2
s
(1 − τ 2

0 )+ 4
k0h

]
cos2 θ2

c2
s − c2

g,0 cos2 θ2

}
dθ2. (2.21)

Taking the directional average, we finally get

S̃0 = − k3
0c2

s

8(2π)2(c2
s − c2

g,0)

[
(1 − τ 2

0 )
2

τ0
J0,0

0 + 4gcg,0

ω0c2
s
(1 − τ 2

0 )J
2,0
0 + 4

k0h
J2,0

0

]
, (2.22)

where

Jm,n
i =

c2
s − c2

g,i

2π

∫ 2π

0

cosm θ sinn θ

c2
s − c2

g,i cos2 θ
dθ. (2.23)

These integrals can be evaluated easily, e.g. using the change of variables u = tan (θ/2),
to find

J0,0
i =

√
c2

s − c2
g,i

cs
, J2,0

i =
cs

√
c2

s − c2
g,i − c2

s + c2
g,i

c2
g,i

. (2.24a,b)

The sum of the remaining ‘regular’ terms in (2.19) has the well-known expression (e.g.
(13.123) in Whitham 1974)

2H0,0
0,0 + R0,0

0,0 = k3
0

(2π)2

9τ 4
0 − 10τ 2

0 + 9

8τ 3
0

. (2.25)

Finally, summing (2.25) and (2.22), we obtain T̃0 according to (2.19). Considering the
scaling introduced by (2.9), we have

γ2D = 9τ 4 − 10τ 2 + 9
16

− c2
s τ

3

8(c2
s − c2

g)

[
(1 − τ 2)2

τ
J0,0 + 4gcg

ωc2
s
(1 − τ 2)J2,0 + 4

kh
J2,0

]
.

(2.26)
Note that in this equation, we have dropped the no longer needed subscript pointing to k0,
while we have added the subscript 2D to γ on the left-hand side.

3. Weakly nonlinear dispersion

3.1. Stokes shift in the 1-D Zakharov equation
Let us first consider the 1-D version of (1.1). Interpreting k ∈ R, we can repeat the solution
process of § 2.1. The integral (2.5) defining T̃0 is, in this case, a 1-D operation. As can
be deduced examining the general 2-D limit in the integrand of (2.21), the singular terms
contributions are symmetric about the origin. Thus, in one dimension, the limit T0,0

0,0 exists,
and the application of the Dirac-δ identity is straightforward. This result was found by
Janssen & Onorato (2007). Using the scaling (2.9), with the obvious meaning of the 1D
subscript, we have

γ1D = 9τ 4 − 10τ 2 + 9
16

− c2
s τ

3

8(c2
s − c2

g)

[
(1 − τ 2)2

τ
+ 4gcg

ωc2
s
(1 − τ 2)+ 4

kh

]
. (3.1)
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0.500 1.3630 0.100 1.000 5.000 10.000
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–9/16
–1/2

0γ

1/2
9/16

Figure 1. Depth dependence of the nonlinear frequency shift parameter γ given by various formulations:
dotted line for ‘regular’ terms only, solid line for full 2-D (2.26), blue dash-dotted line for 1-D (3.1), orange
dash-dotted line for D–S (3.2) with ρ = 0.01, and orange dashed line for D–S (3.2) with ρ = 1.00. The abscissa
is stretched with a cubic power law.

3.2. A correction due to a full account of 2-D induced currents
The problem of finding a correction to (3.1) in order to account for a wave-induced current
caused by 2-D modulations has been addressed by Janssen (2017). Instead of working
directly with the Zakharov equation, Janssen (2017) derives an additional term, to be added
to (3.1), proceeding from the D–S equation. The latter is a quasi-2-D system admitting a
certain degree of lateral spreading. Expressing with ρ = δθ/δω the ratio of directional
spreading with respect to frequency spreading, the corresponding Stokes shift parameter
γ can be written in our notation (Janssen 2017, (B1) and (B2)) as

γDS = γ1D + ρ2τ 2[2cp + cg(1 − τ 2)]2

8(c2
s − c2

g)[(1 + ρ2)c2
s − c2

g]
, (3.2)

where cp = ω/k is the phase celerity.
Figure 1 gives a graphical representation of the three presented Stokes shift parameters:

the full 2-D version (2.26), the 1-D solution (3.1), and the D–S based solution (3.2). We
also added a dotted line to represent the regular terms, given by the first term in (2.26) and
(3.1), i.e. the original Stokes dispersion correction in the absence of mean flow (Whitham
1974, (13.123)).

At kh ≈ 1.363, the 1-D formula (3.1) presents the well-known sign change of the 1-D
nonlinear coefficient, which becomes negative in shallower waters. Its value is −9/16 at
kh = 0. The deviation from the Stokes dispersion (dotted line) whose shallow-water value
is 9/16 is due to the ‘singular terms’. In the 2-D expressions, the ‘singular terms’ do not
dominate, especially in shallow water, where their contribution is exactly zero. In (3.2),
this happens even admitting very small, but finite, directional spreading. Thus a small but
finite relaxation of the strict one-dimensionality, as in the D–S system, leads to a positive
value of the frequency correction in relatively shallow waters (in contrast to the strictly
1-D setting).
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4. Modulational instability (Class I) of a monochromatic wave

One-dimensional periodic wavetrains are modulationally unstable for kh > 1.363 (see e.g.
Benjamin 1967; Hasimoto & Ono 1972; Whitham 1974). This result can also be found by
perturbing a monochromatic wave with side-bands aligned with the carrier, and accounting
for their evolution in the Zakharov equation (1.1), as shown by Janssen & Onorato (2007).

For the monochromatic solution of (1.1), the sub-harmonics set reduces to the
wave-induced current (see § 5). In the 1-D setting, its contribution to the nonlinear
dispersion causes a sign change at kh = 1.363. This fact suggests that the wave-induced
current has a stabilising effect in the shallow-water region (Janssen & Onorato 2007). The
1-D characteristic sign change at kh = 1.363 is absent in the 2-D formulation; see figure 1.
Thus the Zakharov equation suggests that the effect of the wave-induced current is not as
strong as predicted by 1-D theories. However, since the effect of the wave-induced current
is less strong in the 2-D formulation and is not causing sign change, it would be interesting
to clarify the role of the sub-harmonic component in the stability of the monochromatic
wave solution.

Recall that Hayes (1973) extended the 1-D stability analysis of Whitham (1974, Ch. 16)
and Lighthill (1965) to two dimensions. The Hayes–Whitham–Lighthill approach relies
on the existence of a variational principle fully describing the gravity-wave problem
(Whitham 1967). To study the stability of a periodic wavetrain, the solution is perturbed
in amplitude, frequency and wavenumber with a small modulation (Hayes 1973, § 4). The
result is that in a fully 2-D system, due to oblique perturbations, the Stokes wave is unstable
also for kh < 1.363, but unconditionally stable for kh < 0.380. Exactly the same result was
found by Davey & Stewartson (1974) (see also Djordjevic & Redekopp 1977). We wish to
check if the same applies for the monochromatic solution of the Zakharov equation.

The stability of a uniform wavetrain is governed by (6.8) of Hayes (1973), which is
identical to (3.9) in Davey & Stewartson (1974). In order to facilitate the analysis that
follows, we rewrite these results in our notation (see Appendix C for details). The growth
rate of the modulations of a Stokes wave with wavelength 2π/k travelling at depth h can
be expressed as

σ 2
Hay ∝ G(kh, θ)L(kh, θ), (4.1)

where G is termed the ‘dispersion form’ (Hayes 1973, (6.11)) and equals

G(kh, θ) = cg

k
(1 − cos2 θ)+ ∂cg

∂k
cos2 θ, (4.2)

and L is the ‘effective hardness parameter’ (Hayes 1973, (6.10)) matching

L(kh, θ) = 9τ 4 − 10τ 2 + 9
8τ 3 − c2

s

4(c2
s − c2

g cos2 θ)

×
{
(1 − τ 2)2

τ
+

[
4gcg

ωc2
s
(1 − τ 2)+ 4

kh

]
cos2 θ

}
. (4.3)

In the equations above, θ is the relative direction (with respect to the main wavefront)
of the initially small perturbation. As deduced originally by Hayes (1973) and also found
by Janssen & Onorato (2007), from (4.1) with θ = nπ, n ∈ Z, we recover the stability
condition of a monochromatic wave in a pure 1-D system matching the well-established
Whitham result (see Whitham 1974, Ch. 16). The marginal stability line L = 0 cuts the
θ = nπ branches at kh ≈ 1.363.
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Finite-depth Zakharov equation

In our linear stability analysis, we account for side-band perturbations following
Crawford et al. (1981), hence we consider

b(k1) = b0δ
0
1 + εb−δ−1 + εb+δ+1 , (4.4)

with ε being a small ordering parameter, and the choice of wave vectors

k± = k0 ± κ (4.5)

identifying the simplest Class I instability triplet 2k0 = k+ + k−.
On substituting the ansatz (4.4) into (1.1), neglecting ε2 terms, and properly treating the

arising residual Dirac-delta functions (as done in § 2.1), one finds that the system admits
solutions of the type

b0 = β0 e−iΩt, b+ = β+ e−i(Ω++σ)t, b− = β− e−i(Ω−−σ ∗)t,
d
dt
βi = 0, (4.6a–d)

where

Ω = ω0 + T̃0 |β|2 , (4.7a)

Ω± = ω± + 1
2Δ

+,−
0,0 + (T̃0 ± T̃0,+ ∓ T̃0,−) |β|2 (4.7b)

and

σ 2 =
[

1
2Δ

0,0
+,− + (T̃0,+ + T̃0,− − T̃0) |β|2

]2 − (T0,0
+,−)

2 |β|4 . (4.8)

In (4.7) and (4.8), the objects T̃0 and T̃0,± are the trivial-resonance integrals given by
(2.18) and (B14), respectively, andΔ0,0

+,− = ω+ + ω− − 2ω0. The stability of the side-band
perturbations is thus governed by the balance between the off-resonant interaction among
the three modes T0,0

+,− (the last term in the equation above) and a frequency detuning,
including the ‘trivial-resonance’ terms.

Hayes–Whitham–Lighthill perturbations can be considered as side-band perturbations
in a limit sense (Crawford et al. 1981), that is, with an eye to (4.5), for small κ/k, i.e.
for side-bands representing very-long-wave modulations. For κ/k = 0, (4.8) predicts no
instability, i.e. σ 2 = 0. It is easy to see that Δ0,0

+,− = ω+ + ω− − 2ω vanishes. In order
to see that the remaining term (proportional to β2) also vanishes, one has to recall the
expressions (2.19) and (B16). After noticing that the ‘regular terms’ cancel each other, we
have

lim
κ
(T̃0,+ + T̃0,− − T̃0 − T0,0

+,−)

= lim
κ
(S+,0

0,+ + S̃0,+ + S−,0
0,− + S̃0,− − 2S̃0 − 2S0,0

+,−) = 0, (4.9)

since for symmetry reasons, limκ S+,0
0,+ = limκ S−,0

0,− = limκ S0,0
+,−, which is represented by

the integrand of (2.21), and limκ S̃0,± = S̃0 (see § B.4).
We thus have to compute the higher-order terms in the Maclaurin expansion for κ ,

i.e. κ = κ[cos θ, sin θ ]. At first order, we find only terms proportional to |β|4, since the
multipliers of |β|0 and |β|2 are zero. At second order, the multiplier of |β|0 is zero, while

972 A35-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.729


P. Pezzutto and V.I. Shrira

the multiplier of |β|2 reads

lim
κ→0

[(
∂2

∂κ2Δ
0,0
+,−

)
(T̃0,+ + T̃0,− − T̃0)

]

= 2G(kh, θ)[2H0,0
0,0 + R0,0

0,0 + lim
κ→0

(S+,0
0,+ + S̃0,+ + S−,0

0,− + S̃0,− − 2S̃0)]

= 2G(kh, θ)[2H0,0
0,0 + R0,0

0,0 + 2 lim
κ→0

S+,0
0,+(κ, θ)] = k3

2π2 G(kh, θ)L(kh, θ). (4.10)

Putting all this together, disregarding the contribution of |β|4 terms, and recalling the
surface elevation amplitude η = |β|√ω/(π√

2g), we have

σ 2 = κ2(kη)2
ω

2τ
G(kh, θ)L(kh, θ)+ O[κ(kη)4] + O(κ3). (4.11)

The leading term behaviour is exactly that predicted by (4.1), i.e. by Hayes (1973) and
Davey & Stewartson (1974). This behaviour dominates, provided that the steepness of the
carrier is small enough.

Note that in (4.10), we have used the fact limκ S̃0,± = S̃0, i.e. limκ T̃0,± = T̃0 (see § B.4).
As a result, in the limit for small κ , the self-interaction integral T̃0, given by (2.18), does
not contribute to the growth rate of the sidebands. In turn, the growth rate is determined
by L given by (4.3), which is the integrand of (2.18).

5. Surface elevation and potential

The simplest solution of the Zakharov equation (1.1) is the monochromatic wave (2.6a),
(2.6b), which gives us a solution in terms of canonical variables b(k, t). Combining
the two canonical transformations, (A4a,b) and (A3), we return to the original physical
variables of free surface elevation ζ and potential at the surface ψ . That is, we find the
Fourier-transformed elevation (B1) and the potential (B3) evaluated at the free surface.

5.1. Free surface
The free surface can be recovered directly from (B1) via inverse Fourier transform
according to (A7a,b). After invoking the ansatz (2.1) and the solution (2.6a), we obtain
the well-known Stokes expansion in terms of the generalised Stokes number

Û = kη
τ 3 , (5.1)

that is,

ζ(x)
η

= −Z0Û + (1 − Z1Û2) cos (μ)+ Z2Û cos (2μ)+ Z3Û2 cos (3μ), (5.2)

where η is the amplitude of the free mode,

μ = k · x −Ωt, (5.3)
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Figure 2. Coefficients of the Stokes series (5.2). In shallow water, the correction to the surface elevation Z0 is
one order of magnitude (kh) smaller than the other multipliers, and also smaller than the 1-D solution (Z0,1D).

and

Z0 = cgcpτ
2

4(c2
s − c2

g)

[
2J2,0 + c2

s

cpcg
(1 − τ 2)J0,0

]
, (5.4a)

Z1 = 1
32 [(3 − τ 2)2 + 8τ 2(1 − τ 2)Z0], (5.4b)

Z2 = 1
4(3 − τ 2), (5.4c)

Z3 = 3
64(3 − τ 2)(3 + τ 4) (5.4d)

are the coefficients plotted in figure 2.
The expressions coincide with the findings of Janssen (2009), except for the mean

set-down Z0. The Janssen (2009) formula can be obtained from the above Z0 requiring
the narrow-band approximation, i.e. by restricting the solution to the 1-D setting (in
practice substituting J2n,0 = 1). In order to compute Z0, we have to compute an integral
around a singularity, thus using the same technique adopted for the calculation of the
self-interaction kernel (see § 2.2).

The 2-D mean set-down turns out to be small compared to the other second-order
contribution. In the 1-D environment, the shallow-water mean flow is as big as the
amplitude of the second bound harmonic, while in two dimensions, Z0/Z2 → kh.

5.2. Potential
In the evaluation of the potential, we need to take the inverse transform ((4.1) in Krasitskii
1994)

φ(x, z, t) = 1
2π

∫
φ̂1

cosh [k(h + z)]
sinh kh

eik · x dk (5.5)
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of the expansion (A5), after plugging in (B1) and (B3). At z = 0, the transformation (5.5)
is just the inverse Fourier transform of (A5). Again, invoking the ansatz (2.1) and the
solution (2.6a), we find, finally,

ω

gη
φ(x, 0, t) = Π0Û x

h
+ (1 −Π1Û2) sinμ+Π2Û sin 2μ+Π3Û2 sin 3μ, (5.6)

where

Π0 = c2
s τ

3

4(c2
s − c2

g)

[
cg

cp
(1 − τ 2)+ 2

]
J2,0, (5.7a)

Π1 = 1
32

1
1 + τ 2 (9 + 9τ 2 + 14τ 4 − 46τ 8)+ τ 5

2kh
(1 − τ 2 − 2khτ)W2, (5.7b)

Π2 = 3
8(1 − τ 2)(1 + τ 2), (5.7c)

Π3 = 1
64(1 − τ 2)(1 + 3τ 2)(9 − 13τ 2), (5.7d)

with

W2 = c2
s

8(c2
s − c2

g)

[
(1 − τ 2)J0,0 + 2cgcp

c2
s

J2,0
]
. (5.8)

For the details on the calculation of the mean motion Π0, see § B.3.

6. Concluding remarks

It has been known for more than forty years that in finite-depth water, the kernels
of the Zakharov equation and of the associated canonical transformation are singular
(Herterich & Hasselmann 1980). Here, by focusing on the simplest solution of the
Zakharov equation, we show that it does not matter whether the kernels are singular, since,
upon treating the Dirac-δ correctly, the integrals involving the singularities are evaluated
uniquely, thus the theory is self-sufficient. The key conclusion is that both the four-wave
Zakharov equation and the associated canonical transformations are only apparently
singular. This means that it is now straightforward to extend to finite-depth waters the
efficient way of modelling of all aspects of weakly nonlinear wave dynamics based on the
Zakharov equation and the associated canonical transformations, which proved to be so
fruitful for deep water (e.g. Annenkov & Shrira 2001, 2013, 2018; Janssen 2003, 2004,
2009). The explicit expressions for the interaction kernels and the associated canonical
transformations have been established by Krasitskii (1990, 1994) more than thirty
years ago.

The validity of the proposed way of handling the finite-depth Zakharov equation has
been verified by considering several examples that have been solved earlier employing
the Euler equations. In particular, in § 4 concerned with the finite-depth modulational
instability, we show that in the limit of very-long-wave perturbations, the stability
analysis of the monochromatic solution obtained employing the Zakharov equation
yields the same predictions as in Hayes (1973): that is, periodic long-crested waves
are modulationally stable if kh < 1.363, but only for perturbations aligned with the
carrier.

We recall that all this proceeds from the continuum Hamiltonian theory of water waves
that describes the full 2-D initial-value problem on the infinite plane. The results, of
course, inherit all the limitations of the Hamiltonian expansion for small depths and finite
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Finite-depth Zakharov equation

surface gradients. The Stokes series parameter Û (see (5.1)) indicates once again that
in relatively shallow waters, the theory loses meaning if the steepness is O(kh)3. With
respect to other solutions, however, the wave-induced flow and the mean-level correction
are bounded even if kη ∼ (kh)2. What is worth emphasizing is that, even in shallow waters,
a small increase in steepness corresponds to an increase of the phase celerity. This is the
opposite of what is predicted by the Whitham variational principle approach (Whitham
1974, Ch. 6), but is in line with a more intuitive concept that higher waves travel faster.
Some 1-D solutions allow a freedom of choice for some parameters, connected to the
reference water level and the mean flow, allowing for a wider range of nonlinear corrections
to the phase celerity (Fenton 1985; Creedon, Deconinck & Trichtchenko 2022). These
discrepancies deserve special attention and more detailed examination, since at first glance
it seems that different but equally acceptable approaches to the same problem end up
describing different physics.

The limitations of the Zakharov equation in shallow water are well known: for
sufficiently shallow water and steep waves, the canonical transformation diverges, since
exclusion of near-resonant triad interactions becomes impossible. Regimes of nonlinear
wave dynamics where such triads are dominant are also possible to describe within the
framework of a different Zakharov equation with quadratic nonlinearity (e.g. Vrecica &
Toledo 2019). However, a consideration of such nonlinear regimes is beyond the scope of
this study.

Although this work is devoted exclusively to water waves, similar Zakharov equations
emerge in many branches of physics (see e.g. Zakharov et al. 1992), and the same
difficulties have to be common. The proposed way of handling the singularities in the
kernels is generic, and we expect its use to not be confined to water waves.

We reiterate our main conclusion: we now have a tool that fully describes 2-D
weakly nonlinear waves in waters of intermediate depth, and since we understand all
the limitations of this approach, we know a priori the allowed range of water depth and
wave steepness. Thus it has become straightforward to extend to intermediate waters the
deep-water findings and techniques based on properties of the Zakharov equation and the
associated canonical transformations.
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Appendix A. Zakharov Hamiltonian formulation

A.1. Canonical transformations
The equation of motion (1.1) is one of the two conjugate Hamilton equations

i
db
dt

= δH(b, b∗)
δb∗ , (A1)
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where H is the reduced Hamiltonian

H =
∫
ω1b1b∗

2δ
2
1 dk1,2 +

∫
T3,4

1,2 b∗
1b∗

2b3b4δ
3,4
1,2 dk1,2. (A2)

The latter is derived by the one corresponding to the full H(a, a∗) through the power series
transformation

a1 = b1 +
∫

B1,2,3b∗
2b∗

3δ1,2,3 dk2,3 +
∫

B3
1,2b∗

2b3δ
3
1,2 dk2,3 +

∫
B2,3

1 b2b3δ
2,3
1 dk2,3

+
∫

B1,2,3,4b∗
2b∗

3b∗
4δ1,2,3,4 dk2,3,4 +

∫
B4

1,2,3b∗
2b∗

3b4δ
4
1,2,3 dk2,3,4

+
∫

B3,4
1,2b∗

2b3b4δ
3,4
1,2 dk2,3,4 +

∫
B2,3,4

1 b2b3b4δ
2,3,4
1 dk2,3,4. (A3)

The observable wave action a is given by

ζ̂1 = M1
(
a1 + a∗

−1
)
, iψ̂1 = N1

(
a1 − a∗

−1
)
, (A4a,b)

where ζ̂ is the Fourier transformed free-surface elevation, and the potential calculated at
the free surface φ̂ has to be recovered from the coordinate ψ̂ via the transformation (see
Krasitskii 1994)

φ̂1

τ1
= ψ̂1 − 1

2π

∫
k2τ2ψ̂2ζ̂3δ

2,3
1 dk2,3 − 1

(2π)2

∫
Φ

3,4
1,2 ψ̂2ζ̂3ζ̂4δ

2,3,4
1 dk2,3,4, (A5)

where

Φ
3,4
1,2 = 1

2

[
k2

2 − q2(q1−3 + q1−4)
]
. (A6)

The inverse Fourier transforms are

ζ = 1
2π

∫
ζ̂ eik · x dk, ψ = 1

2π

∫
ψ̂ eik · x dk. (A7a,b)

All three transformations are canonical, in the sense that the motion (A1) corresponds, for
example, to the coupled equations

dζ
dt

= δH (ζ, φ)

δφ
,

dφ
dt

= −δH (ζ, φ)

δζ
, (A8a,b)

where H(ζ, φ) is the third-order (in wave steepness) truncation of the original
Hamiltonian.
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Finite-depth Zakharov equation

A.2. Kernels
In order to perform the evolution calculations, one needs

T3,4
1,2 = 2H3,4

1,2 + R3,4
1,2 + S3,4

1,2 + S4,3
1,2, (A9)

where

R3,4
1,2 = 9

(
1

Δ1,2,1+2 + 1
Δ3,4,3+4

)
H−1−2,1,2H−3−4,3,4 +

(
1

Δ1+2
1,2

+ 1

Δ3+4
3,4

)
H1,2

1+2H3,4
3+4,

(A10a)

S3,4
1,2 =

(
1

Δ
3,1−3
1

+ 1

Δ
2,4−2
4

)
H3,1−3

1 H2,4−2
4 +

(
1

Δ
1,3−1
3

+ 1

Δ
4,2−4
2

)
H1,3−1

3 H4,2−4
2 .

(A10b)

The transformation (A3) requires

B1,2,3 = −3
H1,2,3

Δ1,2,3
, (A11a)

B2,3
1 = −H2,3

1

Δ
2,3
1

(A11b)

and

B1,2,3,4 = − 1
Δ1,2,3,4

[
2
3

(
3H−1−2,1,2B3,4

3+4 + 3H−1−3,1,3B2,4
2+4 + 3H−1−4,1,4B2,3

2+3

+ H1,2
1+2B−3−4,3,4 + H1,3

1+3B−2−4,2,4 + H1,4
1+4B−2−3,2,3

)
+ 4H1,2,3,4

]
,

(A12a)

B4
1,2,3 = − 1

Δ4
1,2,3

[
2
(

H1,4−1
4 B2,3

2+3 − H1,2
1+2B3,4−3

4 − H1,3
1+3B2,4−2

4

− 3H1,2,−1−2B4,3−4
3 − 3H1,3,−1−3B4,2−4

2 + H4,1−4
1 B2,3,−2−3

)
+ 3H1,2,3

4

]
,

(A12b)

B3,4
1,2 = B1,2,−1−2B3,4,−3−4 − B1,2

1+2B3,4
3+4

+ B1,4−1
4 B3,2−3

2 − B4,1−4
1 B2,3−2

3 + B1,3−1
3 B4,2−4

2 − B3,1−3
1 B2,4−2

4 , (A12c)

B2,3,4
1 = − 1

Δ
2,3,4
1

[
2
3

(
H2,1−2

1 B3,4
3+4 + H3,1−3

1 B2,4
2+4 + H4,1−4

1 B2,3
2+3

+ H1,2−1
2 B3,4,−3−4 + H1,3−1

3 B2,4,−2−4 + H1,4−1
4 B2,3,−2−3

)
+ H2,3,4

1

]
.

(A12d)
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The H elements are the kernels of the linear complex action Hamiltonian H(a, a∗):

H1,2,3 = −1
3

(
F3

1,2 + F2
1,3 + F1

2,3

)
, (A13a)

H2,3
1 = F3

1,−2 + F2
1,−3 − F1

2,3, (A13b)

H1,2,3,4 = −1
6

(
F3,4

1,2 + F2,4
1,3 + F2,3

1,4 + F1,4
2,3 + F1,3

2,4 + F1,2
3,4

)
, (A13c)

H3,4
1,2 = −F−3,−4

1,2 + F2,−4
1,−3 + F2,−3

1,−4 + F1,−4
2,−3 + F1,−3

2,−4 − F−1,−2
3,4 , (A13d)

H2,3,4
1 = 2

3

(
F3,4

−1,2 + F2,4
−1,3 + F2,3

−1,4 − F−1,4
2,3 − F−1,3

2,4 − F−1,2
3,4

)
, (A13e)

where

F3,4
1,2 = N1N2M3M4E3,4

1,2, (A14a)

F3
1,2 = N1N2M3E3

1,2, (A14b)

with

E3,4
1,2 = 1

8(2π)2

[
q1q2 (q1+3 + q1+4 + q2+3 + q2+4)− 2q1k2

2 − 2q2k2
1

]
, (A15a)

E3
1,2 = − 1

2(2π)
(q1q2 + k1 · k2) (A15b)

being the kernels of H(ζ̂, φ̂), and

M1 =
√
ω1

2g
, N1 =

√
g

2ω1
, q1 = k1τ1 = k1 tanh k1h. (A16)

Appendix B. Reconstruction of physical variables

B.1. Free surface
Combining (A3) with (A4a,b), we obtain the free surface, in wavenumber space, in terms
of the reduced action b:

ζ̂1 = M1(b1 + b∗
−1)+

∫
Y3

1,2b∗
2b3δ

3
1,2 dk2,3 +

∫
Y1,2,3(b∗

2b∗
3 + b−2b−3)δ1,2,3 dk2,3

+
∫

Y4
1,2,3(b

∗
2b∗

3b4 + b−2b−3b∗
−4)δ

4
1,2,3 dk2,3,4

+
∫

Y1,2,3,4(b∗
2b∗

3b∗
4 + b−2b−3b−4)δ1,2,3,4 dk2,3,4, (B1)

where

Y1,2,3 = M1

(
B1,2,3 + B2,3

−1

)
, (B2a)

Y3
1,2 = M1

(
B3

1,2 + B2
−1,3

)
, (B2b)
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Finite-depth Zakharov equation

Y1,2,3,4 = M1

(
B1,2,3,4 + B2,3,4

−1

)
, (B2c)

Y4
1,2,3 = M1

(
B4

1,2,3 + B2,3
−1,4

)
. (B2d)

B.2. Potential
Combining (A3) with (A4a,b), we obtain the second canonical variable:

iψ̂1 = N1
(
b1 − b∗

−1
) +

∫
X3

1,2b∗
2b3δ

3
1,2 dk2,3

+
∫

X1,2,3
(
b∗

2b∗
3 − b−2b−3

)
δ1,2,3 dk2,3

+
∫

X1,2,3,4
(
b∗

2b∗
3b∗

4 − b−2b−3b−4
)
δ1,2,3,4 dk2,3,4

+
∫

X4
1,2,3

(
b∗

2b∗
3b4 − b−2b−3b∗

−4
)
δ4

1,2,3 dk2,3,4, (B3)

with

X1,2,3 = N1

(
B1,2,3 − B2,3

−1

)
, (B4a)

X3
1,2 = N1

(
B3

1,2 − B2
−1,3

)
, (B4b)

X1,2,3,4 = N1

(
B1,2,3,4 − B2,3,4

−1

)
, (B4c)

X4
1,2,3 = N1

(
B4

1,2,3 − B2,3
−1,4

)
. (B4d)

Plugging (B3) and (B1) into (A5), we have

i
φ̂1

τ1
= N1

(
b1 − b∗

−1
) +

∫
P3

1,2b∗
2b3δ

3
1,2 dk2,3

+
∫

P1,2,3
(
b∗

2b∗
3 − b−2b−3

)
δ1,2,3 dk2,3

+
∫

P1,2,3,4
(
b∗

2b∗
3b∗

4 − b−2b−3b−4
)
δ1,2,3,4 dk2,3,4

+
∫

P4
1,2,3

(
b∗

2b∗
3b4 − b−2b−3b∗

−4
)
δ4

1,2,3 dk2,3,4. (B5)

After proper symmetrisation, the coefficients are

P1,2,3 = X1,2,3 + 1
4π

(k2τ2N2M3 + k3τ3N3M2) , (B6a)

P3
1,2 = X3

1,2 + 1
2π

(k2τ2N2M3 − k3τ3N3M2) , (B6b)
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P1,2,3,4 = X1,2,3,4 + 1
3(2π)2

(
N2M3M4Φ

−3,−4
1,−2 + N3M2M4Φ

−2,−4
1,−3 + N4M2M3Φ

−2,−3
1,−4

)
− 1

6π

(
k1+2τ1+2M2X1+2,3,4 − k2τ2N2Y1+2,3,4

)
− 1

6π

(
k1+3τ1+3M3X1+3,2,4 − k3τ3N3Y1+3,2,4

)
− 1

6π

(
k1+4τ1+4M4X1+4,2,3 − k4τ4N4Y1+4,2,3

)
, (B6c)

P4
1,2,3 = X4

1,2,3 − 1
2π

(
k2+3τ2+3M4X−2−3,2,3 + k4τ4N4Y−2−3,2,3

)
− 1

4π

(
k4−3τ4−3M2X4

4−3,3 + k4−2τ4−2M3X4
4−2,2

)
+ 1

4π

(
k2τ2N2Y4

4−3,3 + k3τ3N3Y4
4−2,2

)
+ 1
(2π)2

[
N2M3M4Φ

−3,4
1,−2 + M2N3M4Φ

−2,4
1,−3 − M2M3N4Φ

−2,−3
1,4

]
. (B6d)

B.3. Mean flow
The evaluation of the mean flow associated with the monochromatic solution is somehow
critical, since the kernel is strongly singular. After invoking the monochromatic ansatz,
and applying inverse Fourier, the second integral of (B5) becomes∫

P1+2
2,1 δ2 eik2 · x dk2 =

∫
X1+2

2,1 δ2 eik2 · x dk2

+
∫

1
2π

(k1τ1N1M1+2 − k1+2τ1+2N1+2M1) δ2 eik2 · x dk2. (B7)

The second term is clearly zero, but the first is singular:

lim
k2

X1+2
2,1 → lim

k2

1
k2

W
cos θ

c2
s − c2

g cos2 θ
+ · · · , (B8)

with

W = gk
4π

[
cg

cp
(1 − τ 2)+ 2

]
. (B9)

The leading term in (B8) is likely to vanish when taking the directional average, but it
is unclear if the Maclaurin expansion exists. Instead of studying the higher-order terms,
it is convenient to look directly at the mean flow quantities. By taking the gradient – in
Cartesian reference this reads ∇ = (∂x, ∂y, ∂z) – of the mean potential, we find the mean
velocities

i 2π (ū, v̄, w̄) = ∇
∫
τ2P1+2

2,1
cosh k2 (z + h)

sinh k2h
δ2 eik2 · x dk2, (B10)

which have to be evaluated according to the procedure outlined in § 2.2. Assuming that k1
is oriented along the abscissa x, to lowest order,

∇ cosh k2(z + h)
sinh k2h

eik2 · x =
(

i
h

cos θ,
i
h

sin θ, k2
z + h

h

)
, (B11)
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Finite-depth Zakharov equation

so that, as expected, the only non-zero contribution is along the main motion k1:

(ū, v̄, w̄) =
(

W
2π(c2

s − c2
g)

J2,0, 0, 0

)
, (B12)

with J2,0 given by (2.24a,b). We can then integrate back to find the mean flow potential
and, recalling (B9), define

P1
0,1 =

∫
P1+2

2,1 δ2 eik2 · x dk2 = gk
4π(c2

s − c2
g)

[
cg

cp
(1 − τ 2)+ 2

]
J2,0x (B13)

plus an arbitrary constant. Note that again, the mean motion is similar to the Whitham
1-D finding, except for the multiplier J2,0. This reduces the intensity of the mean flow, in
shallow waters, from O(1) in one dimension to O(kh) in two dimensions.

B.4. Explicit expressions for trivial resonances
Finite water depth introduces singularities not only in the motion of the monochromatic
wave, but all along the more general wave–wave interactions, that is, the degenerate
quartets interactions that one would encounter, for example, studying the evolution of a
bi-chromatic wave field. The singularities of the kernel T3,4

1,2 lie on the manifold k3 = k1

(k4 = k2), that is, the object T1,2
1,2 does not exist. However, whether or not this limit exists

is not important. Using the same careful steps as outlined in §§ 2.1 and 2.2, one finds that
the generic trivial interactions are to be determined computing the more general integral

T̃1,2 = 1
2π

∫ 2π

0
lim

k3→0
T1,2

1+3,2−3(k3, θ3) dθ3, (B14)

and we can then verify that the result of § 2.2 can be obtained in a straightforward way:

T̃1 = lim
k2→k1

T̃1,2, (B15)

with T̃1 given by (2.18), obviously interchanging the subscripts 0 and 1. Substituting (1.2)
into (B14), we have

T̃1,2 = 2H1,2
1,2 + R1,2

1,2 + S2,1
1,2 + S̃1,2, (B16)

where

S̃1,2 = 1
2π

∫ 2π

0
lim

k3→0
S1,2

1+3,2−3(k3, θ3) dθ3, (B17)

and the terms H1,2
1,2, R1,2

1,2 and S2,1
1,2 exist, in the sense that they can be calculated

straightforwardly from the general expressions H3,4
1,2, R3,4

1,2 and S4,3
1,2 (see Appendix A)

without passing through a limiting process. We recall that the sum 2H1,2
1,2 + R1,2

1,2 in
(B16) constitutes the ‘regular part’ of the kernel, equal to the one reported by Stiassnie
& Gramstad (2009), and thus, according to Stiassnie & Gramstad, corresponds to the
expression for the Stokes shift given by Madsen & Fuhrman (2006).
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According to (B17), after making use of the definitions in Appendix A, we find

S̃1,2 = − g
16(2π)2(c2

s − c2
g,1)

{
sP1P2J0,0

1 + [
csQ1Q2 cos θ1,2

− cg,1(P2Q1 − P1Q2 cos θ1,2)
]

J2,0
1

}
− g

16(2π)2(c2
s − c2

g,2)

{
csP1P2J0,0

2 + [
csQ1Q2 cos θ1,2

− cg,2(P1Q2 − P2Q1 cos θ1,2)
]

J2,0
2

}
, (B18)

where θ1,2 is the angle spanned by k1 rotating anticlockwise over k2,

Pi = k2
i
√

cs

ωi
(τ 2

i − 1), Qi = 2ki√
cs
, (B19a,b)

and J is given by (2.24a,b). The expression (B18) corresponds to the directional average,
with respect to the angles θa3 and θb3, of (5.1) in Stiassnie & Gramstad (2009).

Appendix C. Modulations growth rate equivalence

This appendix shows that (6.8) in Hayes (1973) as well as (3.9) in Davey & Stewartson
(1974) can be rewritten as (4.1).

The right-hand side of (6.8) in Hayes (1973) gives the growth rate of the modulations in
terms of the product of two functions, termed as dispersion and hardness:

σ 2 ∝ Ω ′
AHkk : nn, (C1)

where Ω ′
A is the hardness parameter given by (6.10) in Hayes (1973):

Ω ′
A = ΩA −

(
k2

h

)
μ2(gh + 2C0B)+ B2

gh − μ2C2
0

. (C2)

Using (6.4d) with (6.3) of Hayes (1973) to find ΩA, and then, for the second term, (6.5)
and (6.6), which is the group celerity, one finds an explicit form for Ω ′

A. After recalling
from Hayes (1973) the definition μ = cosψ and substituting T (which stands for tanh kh)
with τ , and ψ with θ , one finds that Ω ′

A = L, with L given by (4.3).
The dispersion parameter, given by (6.11) in Hayes (1973), is

Hkk : nn = [−1
4 k−2ω0 + 1

2 (2k−1 − hT−1 − 3hT)B]μ2A

+ [ 1
2 k−2ω0 + k−1B](1 − μ2)A, (C3)

with A the amplitude of the carrier. Using (6.5) and (6.6) of Hayes (1973), one finds
immediately that the second term in square brackets is half the group celerity divided
by k, and, with a bit of algebra, can verify that the first term in square brackets is half the
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derivative of the group celerity with respect to k, i.e.

Hkk : nn = 1
2

A
[
∂cg

∂k
μ2 + cg

k
(1 − μ2)

]
. (C4)

Therefore, recalling the meaning of μ, we find Hkk : nn = 1
2 A G(kh, θ), with G given by

(4.2). This is sufficient to prove that (C1) corresponds to our (4.1).
Also, (3.9) in Davey & Stewartson (1974) gives the growth rate as a product of two

functions:

σ 2 ∝ (λl2 + μm2)

(
ν + ν1κ1m2

λ1l2 + μ1m2

)
, (C5)

with l and m the wavenumbers of the modulation in their rescaled reference, namely ζ =
ε(x − cgt) and η = εy. The magnitudes of l and m are not prescribed. We can map them in
polar coordinates by putting l2 + m2 = κ2, l/κ = cos θ and m/κ = sin θ , without making
any restriction. Recalling also λ, μ, λ1 and μ1 from (2.5) in Davey & Stewartson (1974),
we find from (C5) that

σ 2 ∝ 1
2
κ2

[
∂cg

∂k
cos2 θ + cg

k
(1 − cos2 θ)

][
ν + ν1κ1(1 − cos2 θ)

c2
s − c2

g cos2 θ

]
. (C6)

The first term is clearly the dispersion parameter G given by (4.2). In order to verify that
the last term equals L given by (4.3), one has to invoke ν, ν1 and κ1 from (2.5) in Davey
& Stewartson (1974), or the inviscid version of the corresponding (2.17) in Djordjevic &
Redekopp (1977), and then rearrange the terms. In both papers, the formulas for ν and ν1
are affected by typos, which fortunately are different and can be spotted easily. For the
sake of completeness, we report here their correct versions (replacing their σ with our τ ):

ν = k4

4ω

{
9 − 10τ 2 + 9τ 4

τ 2 − 8c2
g

c2
s − c2

g

[(
cp

cg

)2

+ cp

cg
(1 − τ 2)+ cs

4c2
g
(1 − τ 2)2

]}
,

(C7)

ν1 = k4

ω

[
cp

cg
+ 1

2
(1 − τ 2)

]
, (C8)

with cp = ω/k and cs = √
gh. Thus (C5) also matches our (4.1).

REFERENCES

ANNENKOV, S.Y. & SHRIRA, V.I. 2001 Numerical modelling of water-wave evolution based on the Zakharov
equation. J. Fluid Mech. 449, 341–371.

ANNENKOV, S.Y. & SHRIRA, V.I. 2013 Large-time evolution of statistical moments of wind wave fields.
J. Fluid Mech. 726, 517–546.

ANNENKOV, S.Y. & SHRIRA, V.I. 2018 Spectral evolution of weakly nonlinear random waves: kinetic
description versus direct numerical simulations. J. Fluid Mech. 844, 766–795.

BENJAMIN, T.B. 1967 Instability of periodic wavetrains in nonlinear dispersive systems and discussion. Proc.
R. Soc. Lond. A 299 (1456), 59–76.

CRAIG, W., GUYENNE, P. & SULEM, C. 2010 A Hamiltonian approach to nonlinear modulation of surface
water waves. Wave Motion 47 (8), 552–563.

CRAWFORD, D.R., LAKE, B.C., SAFFMAN, P.G. & YUEN, H.C. 1981 Stability of weakly nonlinear
deep-water waves in two and three dimensions. J. Fluid Mech. 105, 177–191.

CREEDON, R.P., DECONINCK, B. & TRICHTCHENKO, O. 2022 High-frequency instabilities of Stokes waves.
J. Fluid Mech. 937, 1–32.

972 A35-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.729


P. Pezzutto and V.I. Shrira

DAVEY, A. & STEWARTSON, F.R.S. 1974 On three-dimensional packets of surface waves. Proc. R. Soc. Lond.
A 338 (1613), 101–110.

DJORDJEVIC, V.D. & REDEKOPP, L.G. 1977 On two-dimensional packets of capillary-gravity waves. J. Fluid
Mech. 79 (04), 703–714.

FENTON, J.D. 1985 A fifth-order Stokes theory for steady waves. ASCE J. Waterway Port Coastal Ocean
Engng 111 (2), 216–234.

GRAMSTAD, O. 2014 The Zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 740,
254–277.

GRAMSTAD, O. & STIASSNIE, M. 2013 Phase-averaged equation for water waves. J. Fluid Mech. 718,
280–303.

HASIMOTO, H. & ONO, H. 1972 Nonlinear modulation of gravity waves. J. Phys. Soc. Japan 33 (3), 805–811.
HAYES, W.D. 1973 Group velocity and nonlinear dispersive wave propagation. Proc. R. Soc. Lond. A

332 (1589), 199–221.
HERTERICH, K. & HASSELMANN, K. 1980 A similarity relation for the nonlinear energy transfer in a

finite-depth gravity-wave spectrum. J. Fluid Mech. 97 (1), 215–224.
JANSSEN, P.A.E.M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4),

863–884.
JANSSEN, P.A.E.M. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.
JANSSEN, P.A.E.M. 2009 On some consequences of the canonical transformation in the Hamiltonian theory

of water waves. J. Fluid Mech. 637 (November), 1–44.
JANSSEN, P.A.E.M. 2017 Shallow-water version of the Freak Wave Warning System. Tech. Rep. 813. ECMWF.
JANSSEN, P.A.E.M. & ONORATO, M. 2007 The intermediate water depth limit of the Zakharov equation and

consequences for wave prediction. J. Phys. Oceanogr. 37 (10), 2389–2400.
JONES, D.S. 1982 The Theory of Generalised Functions, 2nd edn. Cambridge University Press.
KOMEN, G.J., CAVALERI, L., DONELAN, M.A., HASSELMANN, K., HASSELMANN, S. & JANSSEN,

P.A.E.M. 1996 Dynamics and Modelling of Ocean Waves. Cambridge University Press.
KRASITSKII, V.P. 1990 Canonical transformation in a theory of weakly nonlinear waves with a nondecay

dispersion law. J. Expl Theor. Phys. 71, 921–927.
KRASITSKII, V.P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves.

J. Fluid Mech. 272, 1–20.
LIGHTHILL, M.J. 1965 Contributions to the theory of waves in non-linear dispersive systems. IMA J. Appl.

Maths 1 (3), 269–306.
MADSEN, P.A. & FUHRMAN, D.R. 2006 Third-order theory for bichromatic bi-directional water waves.

J. Fluid Mech. 557, 369–397.
MADSEN, P.A. & FUHRMAN, D.R. 2012 Third-order theory for multi-directional irregular waves. J. Fluid

Mech. 1 (1), 1–31.
NAZARENKO, S.V. 2011 Wave Turbulence. Springer.
ONORATO, M., OSBORNE, A.R., JANSSEN, P.A.E.M. & RESIO, D. 2009 Four-wave resonant interactions

in the classical quadratic Boussinesq equations. J. Fluid Mech. 618, 263–277.
STIASSNIE, M. & GRAMSTAD, O. 2009 On Zakharov’s kernel and the interaction of non-collinear wavetrains

in finite water depth. J. Fluid Mech. 639 (2009), 433–442.
VRECICA, T. & TOLEDO, Y. 2019 Consistent nonlinear deterministic and stochastic wave evolution equations

from deep water to the breaking region. J. Fluid Mech. 877, 373–404.
WHITHAM, G.B. 1967 Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299 (1456),

6–25.
WHITHAM, G.B. 1974 Linear and Nonlinear Waves. Wiley.
ZAKHAROV, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Pril.

Mekh. Tekh. Fiz. 9 (2), 86–94.
ZAKHAROV, V.E. 1999 Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid.

Eur. J. Mech. B/Fluids 18 (3), 327–344.
ZAKHAROV, V.E. & KUZNETSOV, E.A. 1997 Hamiltonian formalism for nonlinear waves. Phys. Uspekhi

40 (11), 1087–1116.
ZAKHAROV, V.E., L’VOV, V.S. & FALKOVICH, G. 1992 Kolmogorov Spectra of Turbulence I: Wave

Turbulence. Springer.

972 A35-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.729

	1 Introduction
	2 Monochromatic solution of the Zakharov equation
	2.1 Solving the equation of motion
	2.2 Evaluation of the self-interaction integral
	2.3 Explicit expression for the self-interaction kernel

	3 Weakly nonlinear dispersion
	3.1 Stokes shift in the 1-D Zakharov equation
	3.2 A correction due to a full account of 2-D induced currents

	4 Modulational instability (Class I) of a monochromatic wave
	5 Surface elevation and potential
	5.1 Free surface
	5.2 Potential

	6 Concluding remarks
	Appendix A. Zakharov Hamiltonian formulation
	A.1 Canonical transformations
	A.2 Kernels

	Appendix B. Reconstruction of physical variables
	B.1 Free surface
	B.2 Potential
	B.3 Mean flow
	B.4 Explicit expressions for trivial resonances

	Appendix C. Modulations growth rate equivalence
	References

