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Abstract

We formulate and study Howe–Moore type properties in the setting of quantum groups
and in the setting of rigid C∗-tensor categories. We say that a rigid C∗-tensor category
C has the Howe–Moore property if every completely positive multiplier on C has a limit
at infinity. We prove that the representation categories of q-deformations of connected
compact simple Lie groups with trivial center satisfy the Howe–Moore property. As
an immediate consequence, we deduce the Howe–Moore property for Temperley–Lieb–
Jones standard invariants with principal graph A∞. These results form a special case
of a more general result on the convergence of completely bounded multipliers on the
aforementioned categories. This more general result also holds for the representation
categories of the free orthogonal quantum groups and for the Kazhdan–Wenzl categories.
Additionally, in the specific case of the quantum groups SUq(N), we are able, using a
result of the first-named author, to give an explicit characterization of the central states
on the quantum coordinate algebra of SUq(N), which coincide with the completely
positive multipliers on the representation category of SUq(N).

1. Introduction

A locally compact group has the Howe–Moore property if for every unitary representation
without invariant vectors, the matrix coefficients of the representation vanish at infinity. This
property was established for connected non-compact simple Lie groups with finite center by
Howe and Moore [HM79] and Zimmer [Zim84]. Howe and Moore also showed the property for
certain subgroups of simple algebraic groups over non-Archimedean local fields. Other important
examples of groups with the Howe–Moore property are given in [LM92] and [BM00]. The
Howe–Moore property plays an essential role in the proofs of several rigidity results, most
notably in Margulis’s superrigidity theorem and Mostow’s rigidity theorem. More generally,
the Howe–Moore property has important applications to ergodicity and strong mixingness of
actions and flows. For an overview on and a unified approach to locally compact groups with the
Howe–Moore property, we refer to [Cio15] and [BG17].

For Lie groups and algebraic groups over non-Archimedean local fields, we know much
more than the Howe–Moore property about the asymptotic behaviour of matrix coefficients
of representations. Recall that for every locally compact group G, the space WAP(G) of weakly
almost periodic functions on G admits a unique invariant mean. By a result of Veech [Vee79]
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(see also [EN89]), it is known that every weakly almost periodic function on a connected
non-compact simple Lie group with finite center has a limit at infinity, and this limit is equal
to the mean of the function. As a consequence, it follows that a very strong version of the
Howe–Moore property holds for such groups: for every uniformly bounded representation on a
reflexive Banach space without invariant vectors, the matrix coefficients of the representation
vanish at infinity. Recently, Bader and Gelander presented an abstract and general framework
for such Howe–Moore type phenomena [BG17], and in particular they explain that Veech’s result
also holds in the setting of connected simple algebraic groups over non-Archimedean local fields.

In this article, we initiate the study of Howe–Moore type phenomena in the setting of
quantum groups and in the setting of rigid C∗-tensor categories. Unitary representations for
quantum groups have been studied extensively, and recently, Popa and Vaes developed a unitary
representation theory for ‘subfactor related group-like objects’ in the setting of rigid C∗-tensor
categories [PV15] (see also [NY16]). Our main result is a Howe–Moore type theorem for the
representation categories of q-deformations of compact simple Lie groups, which are ubiquitous
and historically motivating examples of compact quantum groups. The theory of compact
quantum groups was initiated by Woronowicz [Wor87], and we refer to [NT13] for a thorough
account of the theory. Recall that the representation category of a compact quantum group
G is the category of finite-dimensional unitary representations of G. It is a rigid C∗-tensor
category, and, very strikingly, in the presence of a well-behaved functor into the category of
finite-dimensional Hilbert spaces, there is a way to realize a rigid C∗-tensor category as the
representation category of a certain compact quantum group (see e.g. [NT13]).

Let C be a rigid C∗-tensor category, and let Irr(C) denote the set of equivalence classes of
irreducible objects in C. Then C is said to have the Howe–Moore property if every completely
positive multiplier ω : Irr(C) → C has a limit at infinity (see Definition 3.1).

Theorem A. Let q ∈ (0, 1], and let Kq be a q-deformation of a connected compact simple Lie
group K with trivial center. Then every completely bounded multiplier on Rep(Kq) has a limit
at infinity. In particular, the representation category Rep(Kq) has the Howe–Moore property.

Another rich source of rigid C∗-tensor categories is Jones’s theory of subfactors. Every
inclusion N ⊂ M of II1-factors with finite index [M : N ] < ∞ can be enhanced to its Jones
tower M−1 ⊂ M0 ⊂ M1 ⊂ M2 ⊂ · · · of II1-factors, where M−1 = N and M0 = M , satisfying
[Mi+1 : Mi] = [M : N ] for all i > 0 and having the property that every Mi+1 is generated
by Mi and a projection ei commuting with Mi−1 (see [Jon83] for details). The projection ei
is commonly referred to as the ith Jones projection. The relative commutants M ′i ∩ Mj , with
i 6 j, of algebras in the Jones tower form a lattice of finite-dimensional C∗-algebras. This lattice
is called the standard invariant of N ⊂ M and has played a fundamental role in many aspects
of subfactor theory, such as the classification of subfactors of small index (see e.g. [JMS14]).
Standard invariants have been abstractly characterized in several different ways, most notably
as λ-lattices by Popa in [Pop95] and, more diagrammatically, as subfactor planar algebras by
Jones [Jon99]. It is a striking result due to Popa (see [Pop95]) that every abstract λ-lattice (and
hence every subfactor planar algebra) can be realized as a concrete one coming from a subfactor
N ⊂M of index [M : N ] = λ−1.

A central example of a standard invariant is the Temperley–Lieb–Jones standard invariant
TLJ(λ). It embeds into any other standard invariant coming from a subfactor N ⊂M with index
[M : N ] = λ−1, so it can be viewed as an initial object for the category of standard invariants.
With the Jones tower of N ⊂ M , we can naturally associate a rigid C∗-tensor category CM
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consisting of all M -bimodules that are isomorphic to a finite direct sum of M -subbimodules of

ML
2(Mi)M , where i > 0. The tensor operation, or fusion, in this category is the Connes tensor

product over M . It is known that the category CM is equivalent, as a rigid C∗-tensor category,
to the representation category of the compact quantum group PSUq(2), where q is the unique
number 0 < q 6 1 such that q + 1/q = λ−1/2 (see e.g. [PV15]). The following result is therefore
an immediate consequence of Theorem A.

Corollary B. Let N ⊂ M be an inclusion of II1 factors with index [M : N ] = λ−1 > 4 and
Temperley–Lieb–Jones standard invariant TLJ(λ) (and hence principal graph A∞). The rigid
C∗-tensor category CM of M -bimodules associated with the Jones tower of N ⊂ M has the
Howe–Moore property.

Theorem A (and hence Corollary B) follows from a more general result (see Theorem 3.6)
on the convergence of completely bounded multipliers on certain rigid C∗-tensor categories. This
more general result also holds for the representation categories of the free orthogonal quantum
groups and for the Kazhdan–Wenzl categories. We refer to § 3 for the details.

Our Howe–Moore type results are the first such phenomena beyond the setting of locally
compact groups. They may be useful for the study of quantum group actions. More specifically,
the central Howe–Moore property (see § 3) may be of use in the setting of actions of discrete
quantum groups on certain operator algebras (cf. [DSV17]). More generally, one may apply the
Howe–Moore property directly in the setting of actions of rigid C∗-tensor categories, which are
just tensor functors from the tensor category to the category of bimodules over a von Neumann
algebra (cf. [Pop94, HY00, Mas16]).

For the proof of Theorem 3.6 (and hence of Theorem A), we relate the character algebra of
Kq to the character algebra of K, which can in turn be identified with the algebra of continuous
functions on T/W , where T is a maximal torus and W is the associated Weyl group. A crucial
ingredient of our proof is a certain general asymptotic behaviour of the characters of highest
weight representations of compact Lie groups (see Proposition 3.5).

The Howe–Moore property for rigid C∗-tensor categories describes certain asymptotic
behaviour of completely positive multipliers. The family of completely positive multipliers on the
category Rep(G) (which is more restrictive than the family of completely bounded multipliers)
coincides with the central states on the quantum coordinate algebra O(G), which were already
investigated in [DCFY14]. For the most well-known examples of q-deformations, namely the
quantum groups SUq(N), where N > 2, it turns out that we can find an explicit characterization
of the central states. To this end, we use recent work of the first-named author [Ara17], in which
the unitary representation theory of the Drinfel’d double of a q-deformation of a compact Lie
group is compared with the unitary representation theory of the complexification of the compact
Lie group. Indeed, we are able to relate the central states very concretely to SU(N)-bi-invariant
positive-definite functions on SL(N,C). Below, let Q denote the root lattice and P the weight
lattice with respect to a fixed Cartan subalgebra (see § 2.5). Recall that a central state on
O(SUq(N)) is uniquely determined by its restriction to a chosen set P+ of positive weights.
Hence, we can identify the central states with maps ϕ : P+ → C.

Theorem C. For every central state ϕ : P+ → C on SUq(N), there exist SU(N)-bi-invariant
positive-definite functions ϕχ on SL(N,C) such that

ϕ(λ) =
∑

χ∈P̂/Q

χ(λ)ϕχ(q2λ+2ρ),
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and

‖ϕ‖ 6
∑

χ∈P̂/Q

‖ϕχ‖ 6 C‖ϕ‖,

where C is a constant (not depending on ϕ) and ρ is half of the sum of the positive roots.

This explicit characterization of central states can be useful for the study of the analytic
properties of the quantum groups SUq(N) that involve central states.

The article is organized as follows. We recall some preliminaries in § 2. Theorem A is proven
in § 3 and Theorem C in § 4.

2. Preliminaries

2.1 Rigid C∗-tensor categories
A C∗-tensor category is a category that behaves similar to the category of Hilbert spaces. For
the basic theory of C∗-tensor categories and the facts mentioned in this subsection, we refer to
[NT13, ch. 2].

In what follows, all tensor categories will be assumed to be strict, unless explicitly mentioned
otherwise. This is not a fundamental restriction, since every tensor category can be strictified.

Let C be a C∗-tensor category. An object ū in C is conjugate to an object u in C if there are
R ∈ Mor(1, ū⊗u) and R̄ ∈ Mor(1, u⊗ ū) such that

u
1⊗R−−−→ u⊗ ū⊗u R̄∗⊗ 1−−−−→ u and ū

1⊗ R̄−−−→ ū⊗u⊗ ū R∗⊗ 1−−−−→ ū

are the identity morphisms. Conjugate objects are uniquely determined up to isomorphism.
If every object has a conjugate object, then the category C is called a rigid C∗-tensor category.

Let Irr(C) denote the set of equivalence classes of irreducible objects in C. Using the same
notation as above, if u is an irreducible object with a conjugate, then d(u) = ‖R‖‖R̄‖ is
independent of the choice of the morphisms R and R̄. An arbitrary object u in a rigid C∗-tensor
category is unitarily equivalent to a direct sum u ∼=

⊕
k uk of irreducible objects, and we put

d(u) =
∑

k d(uk). The function d : C→ [0,∞) defined in this way is called the intrinsic dimension
of C.

2.2 Multipliers on rigid C∗-tensor categories
Multipliers on rigid C∗-tensor categories were introduced by Popa and Vaes [PV15].

Definition 2.1. A multiplier on a rigid C∗-tensor category C is a family of linear maps

θα,β : End(α⊗β) → End(α⊗β)

indexed by α, β ∈ C such that

θα2,β2(UXV ∗) = Uθα1,β1(X)V ∗,

θα1⊗α2,β1⊗β2(1⊗X ⊗ 1) = 1⊗ θα2,β1(X)⊗ 1
(1)

for all αi, βi ∈ C, X ∈ End(α2⊗β1) and U, V ∈ Mor(α1, α2)⊗Mor(β2, β1).

A multiplier (θα,β) is said to be completely positive (or a cp-multiplier) if all maps θα,β are
completely positive. A multiplier (θα,β) is said to be completely bounded (or a cb-multiplier)
if all maps θα,β are completely bounded and ‖θ‖cb = supα,β∈C ‖θα,β‖cb < ∞. By [PV15,
Proposition 3.6], every multiplier corresponds uniquely to a function ϕ : Irr(C) → C and we
will often mean such a function when we speak of a multiplier.
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2.3 The fusion algebra and admissible ∗-representations
Recall that the fusion algebra C[C] of a rigid C∗-tensor category C is defined as the free vector
space with basis Irr(C) and multiplication given by

αβ =
∑

γ∈Irr(C)

mult(α⊗β, γ)γ, α, β ∈ Irr(C).

In fact, the fusion algebra is a ∗-algebra when equipped with the involution α] = ᾱ.
In [PV15], Popa and Vaes defined the notion of admissible ∗-representation of C[C] as a unital

∗-representation Θ : C[C] → B(H) such that for all ξ ∈ H the map

Irr(C) → C, α → d(α)−1〈Θ(α)ξ, ξ〉

is a cp-multiplier. Moreover, they proved the existence of a universal admissible ∗-representation
and denoted the corresponding enveloping C∗-algebra of C[C] by Cu(C).

2.4 The tube algebra
In [GJ16], the representation theory of rigid C∗-tensor categories was related to Ocneanu’s tube
algebra, which was introduced in [Ocn94]. Let us recall the definition of the tube algebra. Let
C be a rigid C∗-tensor category. For each equivalence class α ∈ Irr(C), choose a representative
Xα ∈ α, and let X0 denote the representative of the tensor unit. Moreover, let Λ be a countable
family of equivalence classes of objects in C with distinct representatives Yβ ∈ β for every β ∈ Λ.
The annular algebra with weight set Λ is defined as

AΛ =
⊕

α,β∈Λ,γ∈Irr(C)

Mor(Xγ ⊗Yα, Yβ ⊗Xγ).

The algebra AΛ comes equipped with the structure of an associative ∗-algebra. We will always
assume the weight set Λ to be full, i.e. every irreducible object is equivalent to a subobject of
some element in Λ. The annular algebra with weight set Λ = Irr(C) is called the tube algebra of
Ocneanu, and we write AΛ = AC.

2.5 q-deformations of compact simple Lie groups
A compact quantum group is a pair (A,∆) consisting of a unital C∗-algebra A and a unital
∗-homomorphism ∆ : A → A⊗A (comultiplication) such that (∆⊗ id)∆ = (id⊗∆)∆ and such
that span{(A ⊗ 1)∆(A)} and span{(1 ⊗ A)∆(A)} are dense in A ⊗ A. The tensor product ⊗
denotes the minimal tensor product. For a recent thorough introduction to the theory of compact
quantum groups, we refer to [NT13].

Another class of quantum groups is the class of discrete quantum groups, which is dual to
the class of compact quantum groups under an appropriate generalization of Pontryagin duality.
In fact, the search for such an appropriate notion of duality was a central motivation in the early
days of quantum group theory. The most general analytic framework for quantum groups is the
theory of locally compact quantum groups, as introduced by Kustermans and Vaes [KV00]. It
includes both the compact and discrete quantum groups and the locally compact groups, and it
provides a satisfying answer to the duality question. This theory is, however, significantly more
complicated.

Notable examples of compact quantum groups are the q-deformations of compact Lie groups.
We recall their construction below. For details, see e.g. [NT13, § 2.4] or [KS97]. Let K be
a connected simply connected compact simple Lie group. We restrict ourselves to the case of
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K being simple, because we need this later. However, for the construction of q-deformations,
this is not essential. Let G = KC be the complexification of K. The group G has an Iwasawa
decomposition G = KAN . Let g be the Lie algebra of G and fix a Cartan subalgebra h of g.
Let ∆ be the associated set of roots, let Q ⊂ h∗ be the root lattice and P ⊂ h∗ the weight
lattice. Denote by (· , ·) the natural bilinear form on h, which we assume to be normalized by
(α, α) = 2 for a short root α. For each α ∈ ∆, define the coroot as α∨ = 2α/(α, α). Choose a set
Π = {αi | i ∈ I} of simple roots, and let ∆+ denote the set of positive roots, Q+ the positive
elements in the root lattice and P+ the positive weights. Put di = (αi, αi)/2, and denote by
aij = (αi, αj)/di the entries of the Cartan matrix.

Fix q ∈ (0, 1). Define qi = qdi , and set

[n]q =
qn − q−n

q − q−1
, [n]q! = [n]q[n− 1]q · · · [1]q and

[
n
m

]
q

=
[n]q!

[m]q![n−m]q!
.

The quantized enveloping algebra Uq(g) of g is the unital algebra defined by the generators
{K±1

i , Ei, Fi | i ∈ I} and the relations

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,

KiEjK
−1
i = q

aij
i Ej , KiFjK

−1
i = q

−aij
i Fj ,

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

EriEjE
1−aij−r
i = 0,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

F ri FjF
1−aij−r
i = 0.

Note that the quantized enveloping algebra is a deformation of the universal enveloping algebra
of g. In fact, the quantized enveloping algebra Uq(g) can be turned into a Hopf ∗-algebra by
defining a comultiplication ∆̂q and involution ∗ by

∆̂q(Ki) = Ki ⊗Ki, ∆̂q(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆̂q(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

K∗i = Ki, E∗i = FiKi, F ∗i = K−1
i Ei.

Recall that the counit ε̂q and the antipode Ŝq are given by the formulas

ε̂q(Ki) = 1, ε̂q(Ei) = ε̂q(Fi) = 0,

Ŝq(Ki) = K−1
i , Ŝq(Ei) = −K−1

i Ei, Ŝq(Fi) = −FiKi.

Let V be an Uq(g)-module, and let µ ∈ P . The weight space Vµ is defined as

Vµ = {v ∈ V | Kiv = q
(µ,α∨i )
i v ∀i ∈ I}.

The module V is said to be of type 1 if V decomposes as a direct sum V =
⊕

µ∈P Vµ. If a vector
v ∈ V is an element of the direct summand Vµ, we sometimes refer to the weight µ as wt(v).

For each λ ∈ P+, there exists a uniquely determined irreducible module V (λ) of highest

weight λ, i.e. V (λ) = Uq(g)vλ for a non-zero vector vλ ∈ V (λ) satisfying Kivλ = q
(λ,α∨i )
i vλ and

Eivλ = 0 for all i ∈ I. The module V (λ) is finite-dimensional and admits an invariant inner
product.

For v, w ∈ Vµ, define uµvw ∈ Uq(g)∗ by (uµvw, x) = (xv,w). Let O(Kq) be the quantum
coordinate algebra, i.e. the subspace of Uq(g)∗ consisting of matrix coefficients of finite-
dimensional unitary modules of type 1. More precisely,

O(Kq) = span{uµvw | µ ∈ P, v, w ∈ Vµ}.
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The algebra O(Kq) admits a unique Hopf ∗-algebra structure that turns the pairing O(Kq) ×
Uq(g) → C into a Hopf ∗-algebra pairing. More concretely, multiplication, involution and
comultiplication on O(Kq) are given by the formulas

(ab)(x) = (a⊗ b)(∆̂q(x)), a∗(x) = a(Ŝq(x)∗) and ∆q(a)(x⊗ y) = a(xy)

for a, b ∈ O(Kq) and x, y ∈ Uq(g). The universal C∗-completion C(Kq) of the ∗-algebra O(Kq)
is (the C∗-algebra associated with) the compact quantum group Kq.

3. The Howe–Moore property for representation categories

In this section, we prove the Howe–Moore property for the representation categories of q-
deformations of connected compact simple Lie groups with trivial center, i.e. Theorem A.

Definition 3.1. A rigid C∗-tensor category C is said to have the Howe–Moore property if for
every completely positive multiplier ω : Irr(C) → C, we have ω ∈ c0(Irr(C))⊕ C.

In the case where C is the representation category of a compact quantum group G, it turns out
that the Howe–Moore property for Rep(G) is equivalent to a central version of the Howe–Moore
property, i.e. a version of the Howe–Moore property for the central states on the quantum
coordinate algebra O(G) of G. This central Howe–Moore property can be viewed as a property
for the dual Ĝ of G. The dual of a compact quantum group is a discrete quantum group. As
indicated in § 1, the approach of structural properties of quantum groups through central versions
of these properties for their duals goes back to [DCFY14]. It also played an important role in
the work of the first-named author on property (T) in the setting of quantum groups [Ara16].

Definition 3.2. Let G be a compact quantum group. The discrete quantum group Ĝ is said to
have the central Howe–Moore property if ω ∈ c0(Ĝ)⊕ C for every central state ω on O(G).

The following result relates the Howe–Moore property for representation categories to
the central Howe–Moore property of the duals of the underlying quantum groups. It follows
immediately from the fact that completely positive multipliers on the category Rep(G) coincide
with the central states of G (see [PV15, Proposition 6.1]).

Proposition 3.3. Let G be a compact quantum group. The representation category Rep(G)
has the Howe–Moore property for rigid C∗-tensor categories if and only if the dual Ĝ of G has
the central Howe–Moore property.

Let us now start working towards the proof of Theorem A.

Lemma 3.4. Let ∆ be a root system with a root subsystem ∆0 ⊂ ∆. Then for all α ∈ ∆, we
have the following: whenever there exists β ∈ ∆\∆0 such that (α, β) 6= 0, then α ∈ span(∆\∆0).

In particular, if ∆ is irreducible and ∆0 is a proper subsystem, then span(∆\∆0) = h∗.

Proof. The first assertion follows in a straightforward way from a consideration of root systems
with rank 2. The second assertion follows from the fact that ∆1 = ∆ ∩ span(∆\∆0) and ∆2 =
∆\∆1 are root systems that are perpendicular to each other. 2
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The following result constitutes a crucial ingredient of our approach. Let K be a connected
compact simple Lie group (with center Z(K)), and fix a Cartan subalgebra of its Lie algebra.
Let T be the associated maximal torus, ∆ the set of roots (with positive part ∆+) and P the
weight lattice (with positive part P+). Let ρ = 1

2

∑
α∈∆+

α. For λ ∈ P+, the highest weight
representation is denoted by V (λ). The character of V (λ) is denoted by χλ. We refer to § 2.5 for
details on the aforementioned structures.

Proposition 3.5. Let K be a connected compact simple Lie group, and let T , P+ and V (λ) be
as above. For every t ∈ T\Z(K), we have

1

dim(V (λ))
χλ(t) → 0 as λ →∞.

Proof. We use the Weyl character formula (see e.g. [Hel84, Theorem V.1.7]), which computes the
character χλ of a highest weight representation V (λ) of highest weight λ of a connected compact
simple Lie group:

χλ(eH) =

∑
w∈W (−1)l(w)ew(λ+ρ)(H)

eρ(H)
∏
α∈∆+

(1− e−α(H))
,

and the Weyl dimension formula (see e.g. [Hel84, Theorem V.1.8]), which computes the dimension
of the highest weight representation V (λ):

dim(V (λ)) =

∏
α∈∆+

(λ+ ρ, α)∏
α∈∆+

(ρ, α)
.

In the rest of this section, we will write t = eH and e.g. tα for eα(H).
Fix t0 ∈ T\Z(K). Then ∆0 = {α ∈ ∆ | t−α0 = 1} 6= ∆ is a root system with positive

roots ∆0
+ = {α ∈ ∆+ | t−α0 = 1} and Weyl group W0 = {w ∈ W | wt0 = t0} (see [Kac90,

Proposition 6.6]). Put ρ0 = 1
2

∑
α∈∆0

+
α. Fix representatives of W0\W in W . Then

χλ(t0) = lim
t→t0

∑
w′∈W0\W

(−1)l(w
′) 1

tρ
∏
α∈∆+\∆0

+
(1− t−α)

∑
w∈W0

(−1)l(w)tww
′(λ+ρ)∏

α∈∆0
+

(1− t−α)

= lim
s→1

∑
w′∈W0\W

(−1)l(w
′) t

w′(λ+ρ)
0

tρ0s
ρ−ρ0

∏
α∈∆+\∆0

+
(1− (t0s)−α)

∑
w∈W0

(−1)l(w)sww
′(λ+ρ)

sρ0
∏
α∈∆0

+
(1− s−α)

,

where we have used the invariance of t0 under the action of W0 in the second equality. Note that
by taking the limit s → 1 in the Weyl character formula for the subsystem ∆0 in the same way
as in the proof of the Weyl dimension formula, we obtain

lim
s→1

∑
w∈W0

(−1)l(w)sww
′(λ+ρ)

sρ0
∏
α∈∆0

+
(1− s−α)

=

∏
α∈∆0

+
(w′(λ+ ρ), α)∏

α∈∆0
+

(ρ0, α)
.

Moreover, since tρ0s
ρ−ρ0∏

α∈∆+\∆0
+

(1− (t0s)
−α) is non-zero whenever s is sufficiently close to 1,

it suffices to show that for every w′, we have∏
α∈∆0

+
(w′(λ+ ρ), α)∏

α∈∆+
(λ+ ρ, α)

→ 0 as λ →∞.
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To this end, put

∆w′,0
+ = {β ∈ ∆+ | ±β ∈ (w′)−1∆0

+}.

Then ∏
α∈∆0

+
(w′(λ+ ρ), α)∏

α∈∆+
(λ+ ρ, α)

= ±
∏

α∈∆+\∆w′,0
+

1

(λ+ ρ, α)
.

Note that every factor 1/(λ+ ρ, α) is at most 1. Write λ as a linear combination of $i, where
$i is the fundamental weight, i.e. ($i, α

∨
j ) = δij . Then the maximum of the coefficients tends

to infinity as λ tends to infinity. Hence, we only need to show that for all i ∈ I, there exists an

α ∈ ∆+\∆w′,0
+ such that ($i, α) 6= 0.

Suppose that this is not the case. Then there exists an i ∈ I such that for all α ∈ ∆+\∆w′,0
+ ,

we have ($i, α) = 0. This shows that (w′$i, α) = 0 for any α ∈ ∆\∆0. From Lemma 3.4 and
the assumption that K is simple, we obtain that (w′$i, α) = 0 for all α ∈ span(∆+\∆0

+) = h∗,
which is a contradiction. 2

Recall that the character algebra of C(Kq) is the C∗-subalgebra of C(Kq) spanned by

χqλ :=
∑
i

uλvv,

where uλvv is as in § 2.5.

Theorem 3.6. Let K be a connected compact simple Lie group, and let C be a rigid C∗-tensor
category satisfying the fusion rules of K (i.e. the fusion ring of C is isomorphic to the fusion ring
of K). For every completely bounded multiplier ω on C, there exists a map c : Z(K) → C such
that

ω(λ)−
∑

t∈Z(K)

c(t)tλ → 0 as λ →∞.

In particular, if K has trivial center, then the category C has the Howe–Moore property.

Proof. Let ω : P+ → C be a completely bounded multiplier on C. Then ω gives rise to a normal
completely bounded map T : AC′′ → AC′′, where AC is the tube algebra. We restrict T to the
fusion algebra in order to get a completely bounded map

T : C(T/W ) → C(T/W ), χλ 7→ ω(λ)χλ.

After composing this with the evaluation map at the neutral element in T , we obtain a bounded
functional

ω̃ : C(T/W ) → C : χλ 7→ dim(V (λ))ω(λ).

Since ω̃ is a bounded functional on C(T/W ), there exists a finite measure µ on T/W such that

ω(λ) =
1

dim(V (λ))

∫
t∈T/W

χλ(t) dµ(t).

Put c(t) = µ({t}). By Proposition 3.5 and the dominated convergence theorem, we obtain that

ω(λ)−
∑

t∈Z(K)

c(t)tλ → 0 as λ→∞. 2
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Obvious examples of categories C satisfying the conditions of Theorem 3.6 are the
representation categories of q-deformations of connected compact simple Lie groups, where
q ∈ (0, 1]. If, moreover, the Lie group has trivial center, then the result directly implies
Theorem A.

Remark 3.7. It follows directly from the proof that Theorem 3.6 also holds for Rep(SUq(2)) for
q ∈ (−1, 0). Since every free orthogonal quantum group O+

F is monoidally equivalent to SUq(2)
(and hence has the same representation category) for some uniquely determined q ∈ [−1, 0)∪(0, 1],
the representation categories of free orthogonal quantum groups also satisfy the conditions of
Theorem 3.6. Other examples of rigid C∗-tensor categories with the same fusion ring as some
connected compact simple Lie group are the Kazhdan–Wenzl categories [KW93] (see also [Jor14]).

4. A characterization of central states on SUq(N)

Let K be a connected simply connected compact simple Lie group, and take its complexification
G = KC, which has Iwasawa decomposition G = KAN . Let g be the Lie algebra of G, and let
h be a Cartan subalgebra of g. Let Kq be a q-deformation of K, where q ∈ (0, 1). Recall the
following definition from [Ara17].

Definition 4.1. We say that ν ∈ h∗ is almost real (with respect to q) if (Im(ν), α) < 2π log(q)−1

for all α ∈ ∆.

Recall the classification of extremal positive-definite functions of G. The spherical admissible
dual of G is homeomorphic to h∗/W and the Berezin–Harish–Chandra formula (see [Hel84,
Theorem 5.7]) (with induction parameter 1

2ν) asserts that the corresponding K-bi-invariant
function for ν ∈ h∗ is

ϕν1(qµ) =
χ(1/2)ν−ρ(q

µ)

χ(1/2)ν−ρ(1)
,

where µ ∈ h∗R, the element qµ is an element in A, the weight ρ is half of the sum of the positive
roots (which equals the sum of the fundamental weights), and χν is the analytic continuation of
the Weyl character formula:

χν(qµ) =
Aν+ρ(q

µ)

Aρ(qµ)
where Aν(qµ) =

∑
w∈W

(−1)l(w)q(µ,wν).

Note that this formula holds for every (non-unitary) spherical principal series representation,
since both sides of the equation are analytic. The unitary spherical dual (equivalently, the set of
zonal spherical functions) is parametrized by ν ∈ h∗ such that ϕν1 is positive-definite.

Recall that a central state ω on C(Kq) is called extremal if ω is a extremal point in the set
of the central states. The following theorem follows from [Ara17].

Theorem 4.2. For q ∈ (0, 1], we have the following:

(i) the set of extremal central states on Kq is parametrized by ν ∈ h∗/2πi log(q)−1Q∨oW such
that

ϕνq (λ) =
χλ(qν)

χλ(q2ρ)

is positive-definite;

(ii) if ν ∈ h∗ is almost real, then ϕνq is positive-definite if and only if ϕν1 is;

(iii) if K = SU(N), then for all ν ∈ h∗, we have χ ∈ 2πi log(q)−1P∨ such that ν − χ is almost
real with respect to q.
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Proof. Recall that by [DCFY14, Theorem 29], the central states are in one-to-one correspondence
with the Kq-invariant states on the quantum codouble Cu0 (D̂Kq), and hence unitary
representations with a Kq-invariant vector. Then we obtain (i) from [Ara16, Corollary 3.6],
(ii) from [Ara17, Theorem 4.9] and (iii) from [Ara17, Lemma 2.5]. 2

Proposition 4.3. For q ∈ (0, 1], we have

ϕνq (λ) =
ϕν1(q2λ+2ρ)

ϕν1(q2ρ)
.

Proof. From the Weyl character formula, it follows that

ϕνq (λ) =
Aλ+ρ(q

ν)

Aρ(qν)

Aρ(q
2ρ)

Aλ+ρ(q2ρ)
.

Using that Aν(qµ) = Aµ(qν), we compute that

ϕνq (λ) =
A(1/2)ν(q2λ+2ρ)

Aρ(q2λ+2ρ)

Aρ(q
2ρ)

A(1/2)ν(q2ρ)
=
ϕν1(q2λ+2ρ)

ϕν1(q2ρ)
. 2

Just as the Weyl character formula, the above formula should be viewed as a ‘formal’ formula,
which literally holds only for generic ν. (For special ν, we might get 0/0.) Both the numerator
and the denominator are analytic functions in the variable ν, and we take the analytic extension
of the left hand side in general. Thus we can compute the zeroes of the denominator.

Proposition 4.4. For all ν ∈ h∗, we have ϕν1(q2ρ) = 0 if and only if there exists α ∈ ∆+ such
that (ν, α∨) ∈ 2πi log(qα)−1Z\{0}.

Proof. Recall that

ϕν1(q2ρ) =
χ(1/2)ν−ρ(q

2ρ)

χ(1/2)ν−ρ(1)
=
A(1/2)ν(q2ρ)

Aρ(q2ρ)

∏
α∈∆+

(ρ, α)∏
α∈∆+

(1
2ν, α)

,

where we have used the Weyl dimension formula for the computation of the denominator.
It follows that:

– the scalars
∏
α∈∆+

(ρ, α) and Aρ(q
2ρ) are non-zero;

– the function
∏
α∈∆+

(1
2ν, α) has a zero whenever (ν, α) = 0, and each zero has order 1;

– from the Weyl denominator formula, we obtain

A(1/2)ν(q2ρ) = Aρ(q
ν) = q(ρ,ν)

∏
α∈∆+

(1− q−(α,ν)),

which has a zero whenever (ν, α) ∈ 2πi log(q)−1Z, and each zero has order 1.

Combining these, we get the desired conclusion. 2

Corollary 4.5. Let ν ∈ h∗ be an almost real weight such that ϕν1 is self-adjoint. Then we have
ϕν1(q2ρ) > 0.
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Proof. Since q2ρ and q−2ρ lie in the same K-orbit, we know that ϕν1(q2ρ) is real. We only need
to show that the set X of almost real weights ν such that ϕν1 is self-adjoint is connected. Once
one shows this, since ϕν1(q2ρ) is non-zero, we only need to check the positivity at an arbitrary
point in X, say ν = 2ρ. In this case ϕ2ρ

1 (q2ρ) = 1, which completes the proof.
To show the claim, we may assume that Re(ν) is dominant, that is to say, Re(ν) lies in the

closure of the fundamental Weyl chamber. Note that ϕν1 is self-adjoint if and only if there exists
w ∈W such that ν = −wν. Hence νt = Re(ν) + it Im(ν) is a homotopy in X that connects ν and
Re(ν). On the other hand, the equation ν = −wν shows that Re(ν) = −w0 Re(ν), where w0 is
the longest element of W . So the straight line connecting Re(ν) and 2ρ is a homotopy in X. 2

For 0 < q 6 1, let Zq be the unitary spherical dual of Gq inside h∗/2πi log(q)−1Q∨ oW . We

make the identification 2πi log(q)−1(P∨/Q∨) ' P̂/Q.

Lemma 4.6. Let K = SU(N). Then we have a decomposition

Zq =
∐

χ∈P̂/Q

Zχq

with the following properties:

– if ν ∈ Zχq , then ν − χ ∈ Z1;

– the function ν 7→ 1/ϕ1
ν−χ(q2ρ) is positive and bounded on Zχq .

Proof. Immediate from Theorem 4.2 and Corollary 4.5. 2

We can now give the proof of Theorem C.

Proof of Theorem C. Take the decomposition as in Lemma 4.6. Put

C = sup

{
1

ϕ1
ν−χ(q2ρ)

∣∣∣∣ ν ∈ Zχq , χ ∈ P̂/Q}.
We know that ϕ is positive-definite if and only if there exists a finite measure µ on the unitary
spherical dual such that

ϕ =

∫
ϕνq dµ(ν).

By putting dµχ(ν) = dµ(ν + χ)|Zχq , we obtain a measure on Z1. Defining ϕχ as

ϕχ =

∫
ϕν1

dµχ(ν)

ϕν1(q2ρ)
,

this gives the desired decomposition. 2
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